

## COURSE DELIVERY PLAN - THEORY

Page 1 of 6

| Department of Electrical and Electronics Engineering    |                         | LP: EE22308      |
|---------------------------------------------------------|-------------------------|------------------|
| B.E/B.Tech/M.E/M.Tech: EEE                              | Regulation: R2022       | Rev. No: 00      |
| PG Specialisation :NA                                   |                         | Date: 31.07.2023 |
| Sub. Code / Sub. Name : EE22308 - DIGITAL LOG PRACTICES | IC CIRCUITS: THEORY AND |                  |
| Unit : 1                                                |                         |                  |

### UNIT I NUMBER SYSTEMS, CODES AND BOOLEAN REDUCTION

Review of number systems, Signed binary numbers – Binary Arithmetic – Fixed and floating pointer presentation – Boolean Algebra - laws and theorems – Simplification of Boolean expressions—Sum of Products (SOP) and Product of Sums (POS) forms – Logic Minimization using K-map – Binary codes—BCD code, Gray code, Error detection and Error correction codes. Experiments:

- 1. Reduction and Implementation of Boolean Expression using logic gates (K-map).
- 2. Implementation of Code Converters (Binary to Gray, and Gray to Binary) using logic gates **Objective:**

To impart knowledge on concepts of binary representation, logic gates, and Boolean algebra..

| Session<br>No * | Topics to be covered                                                                                         | Ref   | Teaching<br>Aids |
|-----------------|--------------------------------------------------------------------------------------------------------------|-------|------------------|
| 1               | Review of number systems                                                                                     | 1,2,3 | PPT, BB          |
| 2               | Signed binary numbers – Binary Arithmetic                                                                    | 1,2,3 | PPT, BB          |
| 3               | Fixed and floating pointer presentation -Boolean Algebra - laws and theorems                                 | 1,2,3 | PPT, BB          |
| 4               | Simplification of Boolean expressions—Sum of Products (SOP)                                                  | 1,2,3 | PPT, BB          |
| 5               | Simplification of Boolean expressions -Product of Sums (POS) forms                                           | 1,2,3 | PPT,BB           |
| 6               | Logic Minimization using K-map                                                                               | 1,2,3 | PPT, BB          |
| 7, 8, 9         | Practice session on Reduction and Implementation of Boolean Expression using logic gates (K-map).            | 1,2,3 | BB /<br>Hands on |
| 10              | Simplification of Boolean expressions -Product of Sums (POS) forms                                           | 1,2,3 | PPT, BB          |
| 11              | Binary codes–BCD code, Gray code                                                                             | 1,2,3 | PPT, BB          |
| 12              | Error detection and Error correction codes.                                                                  |       | PPT, BB          |
| 13,14,<br>15    | Practice session on Implementation of Code Converters (Binary to Gray, and Gray to Binary) using logic gates | 1,2,3 | BB /<br>Hands on |

<sup>\*</sup> Session duration: 50 minutes



### COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name:

**EE22308 DIGITAL LOGIC CIRCUITS: THEORY AND PRACTICES** 

Unit: II

## UNIT II COMBINATIONAL CIRCUITS

Combinational logic – Adders, Ripple carry adder, Carry lookahead adder, Subtractor, Multiplexer, Demultiplexer, Encoder, Decoder, Parity generator and checker – Introduction to VHDL coding. Experiments:

- 1. Implementation of Adder and Multiplexer.
- 2. Design and simulation of Adder/ Subtractor circuits.
- 3. Design and simulation of Multiplexer and Demultiplexer.

## Objective:

To design and analyze digital circuits using combinational and sequential logic To develop skills in HDL coding and simulate digital circuits.

| Session<br>No * | Topics to be covered                                   | Ref   | Teaching<br>Aids |
|-----------------|--------------------------------------------------------|-------|------------------|
| 16              | Combinational logic circuit introduction               | 1,2,3 | PPT, BB          |
| 17              | Adders, Ripple carry adder                             | 1,2,3 | PPT, BB          |
| 18              | Carry lookahead adder                                  | 1,2,3 | PPT, BB          |
| 19              | Full Adder and Full Subtractor                         | 1,2,3 | PPT, BB          |
| 20, 21, 22      | Implementation of Adder and Multiplexer                | 1,2,3 | BB /<br>Hands on |
| 23              | Multiplexer, Demultiplexer                             | 1,2,3 | PPT, BB          |
| 24              | Encoder, Decoder, Parity generator and checker         | 1,2,3 | PPT, BB          |
| 25, 26, 27      | Design and simulation of Adder/ Subtractor circuits    | 1,4,7 | BB /<br>Hands on |
| 28              | Introduction to VHDL coding                            | 1,4,7 | PPT, BB          |
| 28,29,30        | Design and simulation of Multiplexer and Demultiplexer | 1,4,7 | BB /<br>Hands on |

<sup>\*</sup> Session duration: 50 mins



#### COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: EE22308 DIGITAL LOGIC CIRCUITS: THEORY AND PRACTICES

Unit: III

## UNIT-III SEQUENTIAL CIRCUITS

Sequential logic - SR, JK, D and T flip flops -Synchronous counter - Ripple Counter - Modulo-n counter-Sequence generator - Design of synchronous sequential circuits - Moore and Mealy models-state diagram, state reduction, state assignment. Experiments:

1. Implementation and simulation of Shift registers.

2. Design, implementation and simulation of Synchronous counter.

To design and analyze digital circuits using sequential logic.

| Session<br>No * | Topics to be covered                                          | Ref   | Teaching<br>Aids         |
|-----------------|---------------------------------------------------------------|-------|--------------------------|
| 31              | Introduction to Sequential circuits                           | 1,2,3 | РРТ,ВВ                   |
| 32              | SR and D flip flops                                           | 1,2,3 | PPT,BB                   |
| 33              | JK and T flip flops                                           | 1,2,3 | PPT,BB                   |
| 34,35, 36       | Implementation and simulation of Shift registers.             | 1,2,3 | BB /<br>Hands on         |
| 37              | Synchronous counter                                           | 1,2,3 | PPT/Hands<br>on training |
| 38              | Ripple Counter                                                | 1,2,3 | PPT,BB                   |
| 39              | Modulo-n counter                                              | 1,2,3 | PPT,BB                   |
| 40              | Sequence generator, Design of synchronous sequential circuits | 1,2,3 | PPT,BB                   |
| 41              | Moore and Mealy models-state diagram                          | 1,2,3 | PPT,BB                   |
| 42              | State diagram, state reduction, state assignment              | 1,2,3 | PPT,BB                   |
| 43,44, 45       | Design, implementation and simulation of Synchronous counter  | 1,2,3 | BB /<br>Hands on         |

Content beyond syllabus covered (if any):

Realization of One Flip-Flop using Other Flip-Flops

SR Flip-Flop to D Flip-Flop, SR Flip-Flop to JK Flip-Flop, JK Flip-Flop to T Flip-Flop JK Flip-Flop to D Flip-Flop , D Flip-Flop to T Flip-Flop , T Flip-Flop to D Flip-Flop



## COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: EE22308 DIGITAL LOGIC CIRCUITS: THEORY AND PRACTICES

Unit: IV

# UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS

Design of Asynchronous sequential circuits – Transition table, flow table – race conditions, hazards and errors in digital circuits; Analysis of asynchronous sequential logic circuits – Design of asynchronous controller for vending machine.

Experiments: 1. Design, implementation and simulation of Asynchronous counter.

Objective:

To design and analyze digital circuits using sequential logic

| Session<br>No * | Topics to be covered                                          | Ref   | Teaching<br>Aids |
|-----------------|---------------------------------------------------------------|-------|------------------|
| 46              | Design of Asynchronous sequential circuits                    | 1,2,3 | PPT,BB           |
| 47              | Design of Asynchronous sequential circuits                    | 1,2,3 | PPT,BB           |
| 48              | Transition table, flow table                                  | 1,2,3 | PPT,BB           |
| 49              | Transition table, flow table                                  | 1,2,3 | PPT,BB           |
| 51              | Race conditions, hazards and errors in digital circuits       | 1,2,3 | PPT,BB           |
| 52              | Race conditions, hazards and errors in digital circuits       | 1,2,3 | PPT,BB           |
| 53              | Analysis of asynchronous sequential logic circuits            | 1,2,3 | PPT,BB           |
| 54              | Analysis of asynchronous sequential logic circuits            | 1,2,3 | PPT,BB           |
| 55, 56 , 57     | Design, implementation and simulation of Asynchronous counter | 1,2,3 | BB /<br>Hands on |
| 58              | Design of asynchronous controller for vending machine         | 1,2,3 | PPT,BB           |
| 59              | Design of asynchronous controller for vending machine         | 1,2,3 | PPT,BB           |
| 60              | Discussion of Asynchronous sequential circuits                | 1,2,3 | PPT,BB           |
| Content be      | eyond syllabus covered (if any):                              |       |                  |



## COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: EE22308 DIGITAL LOGIC CIRCUITS: THEORY AND PRACTICES

Unit: V

## UNIT V MEMORY DEVICES AND DIGITAL LOGICAL FAMILIES

Implementation of combinational logic circuits using PROM, PLA, PAL – Introduction to FPGA–Digital Logic Families: Logic gates using TTL, ECL and MOS families – operation and characteristics of digital logical family.

Experiments:

1. Implementation and verification of two input NOR and NAND gates using TTL / CMOS

Objective:

To design and analyze digital circuits using sequential logic.

| Session<br>No * | Topics to be covered                                                                                             | Ref   | Teaching<br>Aids |
|-----------------|------------------------------------------------------------------------------------------------------------------|-------|------------------|
| 61, 62          | Implementation of combinational logic circuits using PROM,                                                       | 1,2,3 | PPT, BB          |
| 63,64           | Implementation of combinational logic circuits using PLA,                                                        | 1,2,3 | PPT, BB          |
| 65, 66          | Implementation of combinational logic circuits using PAL                                                         | 1,2,3 | PPT, BB          |
| 67              | Introduction to FPGA                                                                                             | 1,2,3 | PPT, BB          |
| 68              | Digital Logic Families: Logic gates using TTL- operation and characteristics                                     | 1,2,3 | PPT, BB          |
| 69              | Digital Logic Families: Logic gates using ECL— operation and characteristics of digital logical family.          | 1,2,3 | PPT, BB          |
| 70              | Digital Logic Families: Logic gates using ECL- operation and characteristics of digital logical family.          | 1,2,3 | PPT, BB          |
| 71, 72          | Digital Logic Families: Logic gates using MOS families – operation and characteristics of digital logical family |       | PPT, BB          |
| 73,74, 75       | Implementation and verification of two input NOR and NAND gates using TTL/CMOS                                   |       | BB /<br>Hands on |



## COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: EE22308 DIGITAL LOGIC CIRCUITS: THEORY AND PRACTICES

### REFERENCES:

- 1.M. Morris Mano, 'Digital Design with an introduction to the VHDL', PearsonEducation,2013.
- 2. John M. Yarbrough, 'Digital Logic, Application & Design', Thomson, 2012.
- 3. Salivahanan, Arivazhagan, 'Digital Circuits & Design', Vikas Publishing House, 2012.
- 4. William Kleitz, 'Digital Electronics-A Practical Approach with VHDL', Pearson, 2014.
- 5. Floyd and Jain, 'Digital Fundamentals', 8th edition, Pearson Education, 2013.
- 6. Anand Kumar, 'Fundamentals of Digital Circuits', PHI,2013.
- 7. Gaganpreet Kaur, 'VHDL Basics to Programming', Pearson, 2013. 6. Mandal, 'Digital Electronics Principles & Application', McGraw Hill Education, 2014

|             | Prepared by                                 | Approved by                          |
|-------------|---------------------------------------------|--------------------------------------|
| Signature   | KR. Sanl & 39m                              | KR. Sant                             |
| Name        | Dr.KR.Santha<br>Mr.D.S.Purushothaman        | Dr.KR.Santha                         |
| Designation | Vice Principal, Professor & HoD /EEE AP/EEE | Vice Principal, Professor & HoD /EEE |
| Date        | 31.7.23                                     | 31.7.23                              |
| Remarks *:  |                                             |                                      |
| Remarks *:  |                                             |                                      |

 $<sup>\</sup>ast$  If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD