FT/GN/68 01 23 01 16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	Department of Electrical Electronics Engineering		LP: EE22302 Rev. No: 00
B.E.B.Tech/M.E.M.Tech	EEL	Regulation:2022	Date: 02/08/2023
PG Specialisation	NA .		
Sub. Code Sub. Name	: FF22302 - ELECTRIC POWER SYSTEM		
Unit	E1		

Unit Syllabus: STRUCTURE OF POWER SYSTEM

Structure of Electric Power System - Conventional, Deregulated Structure, Micro-grid and Smart Grid Structure – Methods of electric power generations – Conventional (Thermal and Hydro Power Plants)–Renewable Energy based generation – Trends in Transmission and Distribution: EHVAC, HVDC and FACTS – Indian Electricity (IE) Rules and Acts – Tariff – Types – Electrical Safety.

Objective: Learn about various components of Power systems

Session No *	Topics to be covered	Ref	Teaching Aids
1	Structure of Electric Power System	1,2,3,4, 5,6,7	PPT
2	Conventional, Deregulated Structure, Micro-grid and Smart Grid Structure	1,2.3,4. 5,6,7	PPT
3	Methods of electric power generation	1,2,3,4, 5,6,7	PPT
4	Conventional (Thermal and Hydro Power Plants)	1,2,3.4, 5.6,7	PPT
5	Renewable Energy based generation	1.2.3.4. 5,6,7,8	PPT
6	Trends in Transmission and Distribution: EHVAC, HVDC and FACTS	1,2,3,4. 5,6,7.8	PPT
7	Indian Electricity (IE) Rules and Acts	1.2.3,4, 5,6,7,8	PPT
8	Tariff & Type	1,2.3.4, 5,6,7.8	PPT
9	Electrical Safety	1,2,3,4, 5,6,7,8	PPT

Content beyond syllabus covered (if any):

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: EE22302 - ELECTRIC POWER SYSTEM

Unit : II

Unit Syllabus: TRANSMISSION SYSTEM PARAMETERS

Resistance. Inductance and Capacitance calculations -solid, stranded, and bundled conductors- Single-phase and three phase lines – single and double circuit lines - Typical configuration, conductor types - Symmetrical and unsymmetrical spacing and transposition – application of self and mutual GMD - skin and proximity effects – effect of earth on transmission line capacitance-Distribution line model

Objective: Calculate the transmission line parameters for various conductor configurations.

Session No *	Topics to be covered	Ref	Teaching Aids
10	Resistance. Inductance calculations - solid, stranded, and bundled conductors - Typical configuration, conductor types	1,2,3,4, 5,6,7	BB,PPT
11	Inductance calculations - Single-phase phase lines and three phase lines- Symmetrical spacing	1,2,3,4, 5,6,7	BB,PPT
12	Inductance calculations- Three phase lines unsymmetrical spacing and transposition	1,2,3,4, 5,6,7	BB,PPT
13	Inductance calculations - double circuit lines- Application of self and mutual GMD	1,2,3,4, 5,6,7	BB,PPT
14	Capacitance calculations - Single-phase phase lines and three phase lines-Symmetrical spacing	1,2,3,4, 5,6,7	BB,PPT
15	Capacitance calculations - Three phase lines unsymmetrical spacing and transposition	1,2,3,4, 5,6,7	BB,PPT
16	Capacitance calculations - double circuit lines- Application of self and mutual GMD	1,2,3,4. 5,6,7	BB,PPT
17	Skin and proximity effects - Effect of earth on transmission line capacitance - Distribution line model	1.2.3,4. 5,6,7	BB,PPT
18	Tutorial problem on Inductance and Capacitance calculations	1.2.3.4. 5.6.7	BB,PPT

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: EE22302 - ELECTRIC POWER SYSTEM

Unit: III

Unit Syllabus: MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines- Performance of Transmission lines – short line, medium line and long line – ABCD constants - equivalent circuits, phasor diagram – real and reactive power flow in lines – Power Circle diagrams – Ferranti effect- shunt and series compensation- surge-impedance loading. loadability limits based on thermal loading – Formation of Corona – Critical Voltages – Effect on line Performance.

Objective: P

redict the performance of Transmission lines.

Session No *	Topics to be covered	Ref	Teaching Aids
19	Classification of lines - Performance of Transmission lines	1,2,3,4, 5,6,7	BB,PPT
20	Short line, medium line and long line	1,2,3,4, 5,6,7	BB,PPT
21	ABCD constants - equivalent circuits, phasor diagram	1,2,3,4, 5,6,7	BB,PPT
22	Real and reactive power flow in lines	1,2,3,4, 5,6,7	BB,PPT
23	Power Circle diagrams	1,2,3,4, 5,6,7	BB,PPT
24	Ferranti effect- shunt and series compensation	1,2,3,4. 5,6,7	BB,PPT
25	Surge-impedance loading, loadability limits based on thermal loading	1.2.3.4. 5.6,7	BB,PPT
26	Formation of Corona – Critical Voltages- Effect on line Performance.	1.2,3,4. 5,6,7	BB,PPT
27	Tutorial problem on Performance of Transmission lines	1,2,3,4,	BB,PPT

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: EE22302 - ELECTRIC POWER SYSTEM

Unit: IV

Unit Syllabus: INSULATORS, CABLES AND SAG CALCULATION

Insulators: Types - voltage distribution in insulator string - improvement of string efficiency - testing of insulators. Underground cables: Underground cables - Types of cables - insulation resistance -potential gradient capacitance of single-core and three-core cables- Grading of cables - DC cables, Mechanical designs of transmission line: sag and tension calculations for different weather conditions - Tower spotting & Types of towers.

Objective: Understand about different Insulators and Underground cables.

Session No *	Topics to be covered	Ref	Teaching Aids
28	Insulators: Types – voltage distribution in insulator string	1,2,3,4, 5,6,7	BB,PPT
29	Improvement of string efficiency	1,2,3,4. 5,6,7	BB,PPT
30	Testing of insulators	1,2,3,4, 5,6,7	BB,PPT
31	Underground cables - Types of cables - insulation resistance - potential gradient	1,2,3,4. 5.6,7	BB,PPT
32	Capacitance of single-core and three-core cables	1,2,3,4, 5,6,7	BB,PPT
33	Grading of cables- DC cables	1,2,3,4. 5,6,7	BB,PPT
34-35	Mechanical designs of transmission line: sag and tension calculations for different weather conditions	1,2,3.4. 5,6,7	BB,PPT
36	Tower spotting & Types of towers.	1.2.3.4. 5.6,7	BB,PPT

FT GN 68 01 23 01 16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: EE22302 - ELECTRIC POWER SYSTEM

Unit - V

Unit Syllabus: SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM

Classification, major components of substations - Bus-bar arrangements - Importance of earthing in a substation - Qualitative treatment to neutral grounding and earthing practices in substations - Distribution Systems – Kelvin's Law - AC and DC distributions -Concentrated and Distributed loading- Techniques of Voltage Control and Power factor improvement - Distribution Loss- Anti-theft measures - Demand side management (Qualitative)

Objective: Familiarize the basic concepts related to Substation and Distribution system.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Classification, major components of substations	1,2,3,4, 5,6,7	PPT
38	Bus-bar arrangements	1,2,3,4, 5,6,7	PPT
39	Importance of earthing in a substation	1,2,3,4, 5,6,7	РРТ
40	Qualitative treatment to neutral grounding and earthing practices in substations	1,2,3,4, 5,6,7	РРТ
41	Distribution Systems – Kelvin's Law	1,2,3,4, 5,6,7	PPT
42	AC and DC distributions-Concentrated and Distributed loading	1,2,3,4. 5,6,7	PPT
43	Techniques of Voltage Control and Power factor improvement	1,2,3,4, 5,6,7	PPT
44	Distribution Loss- Anti-theft measures	1,2,3,4, 5,6,7	PPT
45	Demand side management (Qualitative)	1,2,3,4, 5,6,7	PPT

Page 6 of 6

Sub Code / Sub Name: EE22302 - ELECTRIC POWER SYSTEM

REFERENCES:

- 1. Gupta B.R. 'Power System Analysis & Design', S.Chand and Company Ltd, 2014, 7th Edition.
- 2. Metha.V.K. and Rohit Metha.. 'Principles of Power System', S.Chand and Company Ltd., 2020.
- 3. Hadı Saadat, 'Power System Analysis,' PSA Publishing; Third Edition, 2011
- Wadwa, C.L., 'Electric Power Systems, New Age International (P) Ltd', New Delhi, 2022, 8th Edition.
- John J. Grainger and Stevenson Jr. W. D. 'Power System Analysis', McGraw Hill International edition, 2016.
- S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2011.
- 7. D.P.Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw-Hill, 2019, 3nd Edition.
- 8. Central Electricity Authority (CEA). "Guidelines for Transmission System Planning", New Delhi

	Prepared by	Approved by
Signature	2/2/08/23.	KR. Sarlazz
Name	Dr. S.Kumaravel / Dr.R.Kannadasan	Dr.KR.Santha
Designation	ASP & AP/EEE	Professor & HOD / EEE
Date	02/08/2023	02/08/2023
Remarks *:		
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD