

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	<u> </u>		LP: EE18703	
	Department of Electrica	and Electronics Engineering	Rev. No: 00	i
B.E/B.Tech/M.E/M.Tec	h : B.E., EEE	Regulation: 2018	Date: 23/07/2021	۱
PG Specialisation	:		9	
Sub. Code / Sub. Name	: EE18703 ELECTRIC	CVEHICLES	·	
Unit	: I ARCHITECTURE	AND SUB-SYSTEMS		

Unit Syllabus: Introduction to Electric and Hybrid Electric Vehicles: History of hybrid and electric vehicles, Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

Objective: Introduce the drive-train topologies and power flow control strategies in Electric and Hybrid Electric Vehicles

Vehicle Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to Electric and Hybrid Electric Vehicles	1, 5, 7	PPT
2	History of hybrid and electric vehicles	1, 5, 7	PPT
3	Basic concept of hybrid traction	1, 5, 7	PPT
4	Introduction to various hybrid drive-train topologies	1, 5, 7	PPT
5	Power flow control in hybrid drive-train topologies: Considerations, Power flow control in series hybrid & parallel hybrid	1, 5, 7	PPT
6	Power flow control in hybrid drive-train topologies: Power flow control in series- parallel hybrid & complex hybrid	1, 5, 7	PPT
7	Fuel efficiency analysis	1, 5, 7	PPT
8	Basic concept of electric traction,	1, 5, 7	PPT
9	Introduction to various electric drive-train topologies	1, 5, 7	PPT
10	Power flow control in electric drive-train topologies	1, 5, 7	PPT
11	Fixed and variable gearing, single and multi-motor drives, in-wheel drives	1, 5, 7	PPT
12	EV parameters, Efficiency analysis, CBS: An Architecture for In-Vehicle Networks	1, 5, 7,	PPT

Content beyond syllabus covered (if any):

An Architecture for In-Vehicle Networks

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: EE18703 ELECTRIC VEHICLES

Unit: II PROPULSION UNITS

Unit Syllabus: Configuration, modelling and control of DC Motor drives, Induction Motor drives, Permanent Magnet Motor drives, Brushless DC motor drives and Switched Reluctance Motor drives - Modes of operation - drive system efficiency

Objective: Develop mathematical models of drive machines and power electronic converters

Session No *	Topics to be covered	Ref	Teaching Aids
13	Electric propulsion – concept of EV motors – configuration	1, 2	PPT
14	Modelling and control of DC Motor drives – introduction	1, 2	PPT
15	Representative two quadrant chopper - Steady state analysis	1, 2	PPT
16	Ripple reduction in torque – modes of operation (CCM, DCM, UNCM, CCM in steady state) – operating point analysis – numerical examples	1, 2	PPT
17	Modelling and control of Induction Motor drives – introduction	1, 2	PPT
18	Vector control of AC motors – Induction motor dq model	1, 2	PPT
19	Rotor flux oriented vector control – indirect vector control - implementation	1, 2	PPT
20	Modelling and control of Permanent Magnet Motor drives, Brushless DC motor drives – introduction	1, 2	PPT
21	PMSM models – vector control – flux weakening, current and voltage controllers	1, 2	PPT
22	Switched Reluctance Motor drives – introduction – torque-speed characteristics	1, 2	РРТ
23	Representative four-quadrant SRM converter – modes of operation – SRM controls – voltage-controlled drive & Current-controlled drive		PPT
24	Drive system efficiency	9, 1, 2	PPT

Content beyond syllabus covered (if any):

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: EE18703 ELECTRIC VEHICLES

Unit: III ENERGY STORAGE SYSTEM

Unit Syllabus: Energy storage technologies in electric and hybrid electric vehicles – battery, flywheel, fuel cell, ultra capacitors- comparison of different energy storage technologies - Hybridization of different energy storage devices.

Objective: Familiarize various energy storage technologies in HEVs and EVs

No *	Topics to be covered	Ref	Teaching Aids
25	Energy storage technologies in electric and hybrid electric vehicles - Introduction	1, 4	PPT
26	Battery Energy storage technology – traction batteries	1, 4	PPT
27	Battery cell structure – chemical reactions – battery parameters - Battery electric circuit models	1, 4	PPT
28	Range Prediction with Constant Current Discharge & Power Density approach	1, 4	PPT
29	Flywheel energy storage – introduction – advantages & drawbacks	1, 4	PPT
30	Fuel cell energy storage – introduction – basic fuel cell structure & characteristics	1, 4	PPT
31	Fuel cell types, Fuel cell model – Hydrogen storage systems, reformers	1,4	PPT
32	Fuel cell-based electric vehicle architecture - Case Study: Toyota Mirai FCEV	1, 4	PPT
33	Ultra capacitor energy storage – symmetrical & asymmetrical ultra capacitors	1, 4	PPT
34	Ultra capacitor modeling	1, 4	PPT
35	Comparison of different energy storage technologies	1, 4	РРТ
36	Hybridization of different energy storage devices	1,4	PPT

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: EE18703 ELECTRIC VEHICLES

Unit: IV DRIVE SYSTEM SIZING

Unit Syllabus: Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Objective: Impart knowledge on drive system sizing and supporting subsystems

Session No *	Topics to be covered	Ref	Teaching Aids
37	Sizing the drive system – introduction	9, 3	PPT
38	Matching the electric machine and the internal combustion engine (ICE) - Epicyclic gear input-output relationships	9, 3	PPT
39	Automatic transmission architectures - Simpson, Wilson & Lepelletier type	9, 3	PPT
40	Sizing the propulsion motor – steps	9, 3	PPT
41	Torque and power, constant power speed ratio, Machine sizing	9, 3	PPT
42	Sizing the power electronics - Switch technology selection,	9, 3	PPT
43	Ripple capacitor design, Switching frequency and PWM	9, 3	PPT
44	Selecting the energy storage technology - Electrical overlay harness	9, 3	PPT
45	Communications - OSI 7-layer model - CAN communication - power & data networks	9, 3	PPT
46	Future communication: TTCAN, FlexRay - Diagnostic test codes (DTC)	9, 3	PPT
47	Supporting subsystems	9, 3	PPT
48	CBS: Sizing of a Battery Pack Based on Series/Parallel Configurations for a High-Power Electric Vehicle as a Constrained Optimization Problem	8, 9, 3	PPT

Sizing of a Battery Pack Based on Series/Parallel Configurations for a High-Power Electric Vehicle as a Constrained Optimization Problem

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: EE18703 ELECTRIC VEHICLES

Unit: V BATTERY CHARGING AND MANAGEMENT STRATEGIES

Unit Syllabus: Different charging technologies: Normal, fast and opportunity charging – Different charging algorithms: CCCV, Multistage charging, Pulse charging – Wireless power transfer – Effect of EV charging on grid – V2G technology – Peak shaving and coordinated charging. Battery management system: Battery parameters – SoC measurement – Battery cell balancing.

Objective: Familiarize battery charging and energy management systems.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Battery Charging And Management Strategies – introduction	4, 6, 9	PPT
50	Different charging technologies: Normal, fast and opportunity charging	4, 6, 9	PPT
51	Different charging algorithms: CCCV	4, 6, 9	PPT
52	Multistage charging & Pulse charging	4, 6, 9	PPT
53	Wireless power transfer	4, 6, 9	PPT
54	Effect of EV charging on grid	4, 6, 9	PPT
55	V2G technology	4, 6, 9	PPT
56	Peak shaving and coordinated charging	4, 6, 9	PPT
57	Battery management system – introduction	4, 6, 9	PPT
58	Battery parameters - SoC measurement	4, 6, 9	PPT
59	Battery cell balancing	4, 6, 9	PPT
60	CBS: Remote Monitoring of Electric Vehicle Charging Stations in Smart Campus Parking Lot	4, 6, 8, 9	PPT

Content beyond syllabus covered (if any):

Remote Monitoring of Electric Vehicle Charging Stations in Smart Campus Parking Lot

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: EE18703 ELECTRIC VEHICLES

REFERENCES:

- 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, Second edition, 2011.
- 2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, Third edition 2018.
- 3. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, Second edition 2012.
- 4. Sheldon S. Williamson, Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer, 2013.
- 5. C.C. Chan and K.T. Chau, Modern Electric Vehicle Technology, OXFORD University Press, 2001.
- 6. Chris Mi, M. Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles Principles and Applications With Practical Perspectives, Wiley Publication, 2011.
- 7. NPTEL lecture on "Electric Vehicles Part 1".
- 8. http://ieeexplore.ieee.org
- 9. John M Miller, Propulsion system for hybrid vehicles, IET Renewable Energy Series 7, The Institution of Engineering and Technology, London, United Kingdom, 2010

lesson plan, the same terson plan KR. Sant 7.22		Prep	pared by	Approved by			
Name Dr.M.Sankar Dr.R.Kannadasan Dr.KR.SANTHA Vice Principal, Professor & HOD/EEE Date 23/07/2021 Remarks *: As there is no change in Previous series for (July 2021 - Dec 2021) Aerson plan, the same lesson plan is followed for this semester (July 2022 - Dec 2021) Remarks *: Dr. M.SANKAR MS. S. AR ULLOZHI Remarks *: The same lesson plan is followed for the AY (2028 - 24). KR. Santha C. KR. Santha Dr. KR. Santha Dr. KR. Santha Dr. KR. Santha C. KR. Santha Dr. KR. Santha Dr. KR. Santha	Signature		Con Den Zing	KR Sant.			
Designation AP/EEE AP/EEE Vice Principal, Professor & HOD/EEE 23/07/2021 23/07/2021 Remarks*: As there is no change in Previous semester (July 2021 - Dec 2021) Aerson plan, the same lesson plan is followed for this semester (July 2022 - Dec 2021) AP/EEE Remarks*: The same lesson plan is followed for the AY & O28-24). Remarks*: The same lesson plan is followed for the AY & O28-24). C. KR. Santha.		Dr.M.Sankar	Dr.R.Kannadasan	Dr.KR.SANTHA			
Date 23/07/2021 Remarks*: As there is no change in previous semester (July 2021-Dec202) Remarks*: As there is no change in previous semester (July 2021-Dec202) Lesson plan, the same lesson plan is followed for this semester (July 2022-Dec.) KR. Sant 4. 22 Dr. KR. SANTHA AP/EEE Remarks*: The same lesson plan is followed for the AY 2028-24). KR. Sant Likes Dr. KR. Santha.		AP/EEE	AP/EEE	Vice Principal, Professor & HOD/EEE			
Remarks *: The same lesson plan is followed for the Ay 2023-24). KR. Santha. Like's Dr. KR. SANTHA VICE PRINCIPAL, PROF & Ho AP/EEE The same lesson plan is followed for the Ay 2023-24). KR. Santha. Dr. KR. Santha.		23/	/07/2021) <u>.</u>		
Remarks *: The same lesson plan is followed for the AY &028-24). KR. Santa.							
Dr. & Arubnozh Dr. & Arubnozh Dr. & Arubnozh * If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Vice Principal, Profess	Dr. KK Shirt Door & Hall						
Faculty and the HOD	408 f EEE						