

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	Department of Electrical and Electronics Engineering		LP: EE18701 Rev. No: 00
B.E/B.Tech/M.E/M.Tec	h: EEE	Regulation: 2018	Date: 23/07/2021
PG Specialisation	:		
Sub. Code / Sub. Name	: EE18701 PROTECTION AND SWITCHGEAR		
Unit	: I - PROTECTION SCHEMES		

Unit Syllabus: Principles and need for protective schemes – nature and causes of faults – types of faults – fault current calculation using symmetrical components – Methods of Neutral grounding – Zones of protection and essential qualities of protection – Protection schemes for distributed generation – Microgrid protection - IEEE standards for power system protection.

Objective: To educate the causes of abnormal operating conditions (faults, lightning and switching surges) of the apparatus and system.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Principles and need for protective schemes	2	PPT
2	Nature and causes of faults	2	PPT
3	Types of faults	. 2	PPT
4	Fault current calculation using symmetrical components		PPT
5	Methods of Neutral grounding	3, 8	PPT
6	Zones of protection and essential qualities of protection	3, 8	PPT
7 .	Protection schemes for distributed generation	3, 8	PPT
8	Microgrid protection		PPT
9	IEEE standards for power system protection.	. 2	PPT

Content beyond syllabus covered (if any): Demonstration of Importance of Neutral in the Power system

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: EE18701 PROTECTION AND SWITCHGEAR

Unit: II - ELECTROMAGNETIC RELAYS

Unit Syllabus: Operating principles of relays – Universal torque equation – R-X diagram - Electromagnetic Relays – Over current, Directional, Distance, differential, Negative sequence and Under frequency relays

Objective: To introduce the characteristics and functions of relays and protection schemes.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Operating principles of relays - Electromagnetic relays - attracted armature and induction type	2,5	PPT
2	The Universal relay – Torque equation – R-X diagram	.1	PPT
3	Overcurrent protection – time-current characteristics, current setting, time setting	2, 5	PPT
4	Directional (reverse power) relay	2, 5	PPT
5	Distance protection – impedance, reactance and MHO relay	2, 5	PPT
6	Reach of distance relays	2, 5	PPT
7	Differential relays CBS: A new approach of Mho distance relay for Transmission line protection		PPT
8	Negative sequence relays		PPT
9	Under frequency relays	2, 5	PPT

Content beyond syllabus covered (if any): Demonstration of operation of Electromagnetic IDMT relays.

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: EE18701 PROTECTION AND SWITCHGEAR

Unit: III - APPARATUS PROTECTION

Unit Syllabus: Current transformers and Potential transformers and their applications in protection schemes - Protection of transformer, generator, motor, busbars and transmission line.

Objective: To impart knowledge on apparatus protection

Session No *	Topics to be covered	Ref	Teaching Aids
1	Current transformers – Technical terms	4, 6	PPT
2	Current transformers - Theory, CT errors, applications in protection schemes	4, 6	PPT
3	Potential transformers - Theory, VT errors, applications in protection schemes	4, 6	PPT
4	Protection of transformers – percentage differential protection	4, 6	PPT
5	Buchholz relay – Protection of earthing transformer	4, 6	PPT
6	Protection of generators	4, 6	PPT
7	Protection of motors	4, 6	PPT
8	Protection of busbars	4, 6	PPT
9 .	Protection of transmission lines	4, 6	PPT

Content beyond syllabus covered (if any): Various protections schemes in the Substation

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: EE18701 PROTECTION AND SWITCHGEAR

Unit: IV - STATIC RELAYS AND NUMERICAL PROTECTION

Unit Syllabus: Static relays – Phase, Amplitude Comparators – Synthesis of various relays using Static comparators – Block diagram of Numerical relays – Overcurrent protection, transformer differential protection, distant protection of transmission lines. Introduction to application of Artificial Intelligence in power system protection.

Objective: To introduce static and numerical relays

Session No *	Topics to be covered	Ref	Teaching Aids
1	Static relays – Phase, Amplitude Comparators	1,9	PPT
2	Synthesis of various relays using Static comparators	1, 9	PPT
3	Block diagram of Numerical relays - advantages	1,9	PPT
4	Data acquisition systems (DAS), Numerical relaying algorithm	1, 9	PPT
5	Numerical Overcurrent protection	1, 9	PPT
6	Numerical differential protection of transformer	1,9	PPT
7	Numerical distant protection of transmission lines	1,9	PPT
8	Introduction to application of Artificial Intelligence in power system protection	1	PPT
9	ANN – Design procedure and consideration, useful properties and capabilities CBS: A New Restricted Earth Fault Relay Based on Artificial Intelligence	1, 11	PPT

Content beyond syllabus covered (if any):

A New Restricted Earth Fault Relay Based on Artificial Intelligence

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: EE18701 PROTECTION AND SWITCHGEAR

Unit: V - CIRCUIT BREAKERS

Unit Syllabus: Physics of arcing phenomenon and arc interruption - DC and AC circuit breaking - re-striking voltage and recovery voltage - rate of rise of recovery voltage - resistance switching - current chopping - interruption of capacitive current - Types of circuit breakers - air blast, air break, oil, SF6 and vacuum circuit breakers - high voltage DC circuit breaker - comparison of different circuit breakers - Rating and selection of Circuit breakers.

Objective: To impart knowledge on functioning of circuit breakers

Session No *	Topics to be covered	Ref	Teaching Aids
1	Physics of arcing phenomenon and arc interruption, DC and AC circuit breaking	1,7	PPT
2	Restriking voltage and recovery voltage - rate of rise of recovery voltage - numerical example	1,7	PPT
3	Resistance switching - numerical example	1,7	PPT
4	Current chopping - interruption of capacitive current	1, 7	PPT
5	Types of circuit breakers - air blast, air break circuit breakers	1, 7	PPT
6	Oil, SF6 circuit breakers	1, 7	PPT
7	Vacuum, High voltage DC circuit breakers,		PPT
8	Comparison of different circuit breakers		PPT
9	Rating and selection of Circuit breakers	1,7	PPT

Content beyond syllabus covered (if any): Manifestation of SF6 and Vaccum circuit breaker in the substation

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: EE18701 PROTECTION AND SWITCHGEAR

REFERENCES:

- 1. Badri Ram ,B.H. Vishwakarma, 'Power System Protection and Switchgear', New Age International Pvt Ltd Publishers, Second Edition 2011.
- 2. Y.G.Paithankar and S.R.Bhide, 'Fundamentals of power system protection', Second Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2010.
- 3. C.L.Wadhwa, 'Electrical Power Systems', 6th Edition, New Age International (P) Ltd., 2010
- 4. Ravindra P.Singh, 'Switchgear and Power System Protection', PHI Learning Private Ltd., New Delhi, 2009.
- Bhavesh Bhalja, R.P. Maheshwari, Nilesh G.Chotani, 'Protection and Switchgear' Oxford University Press, 2011.
- 6. Sunil S.Rao, 'Switchgear and Protection', Khanna Publishers, New Delhi, 2008.
- 7. B.Rabindranath and N.Chander, 'Power System Protection and Switchgear', New Age International (P) Ltd., First Edition 2011.
- 8. M.L.Soni, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, 'A Text Book on Power System Engineering', Dhanpat Rai & Co.,1998.
- 9. http://www.cdeep.iitb.ac.in/webpage_data/nptel/Electrical%20Engineering/Power%20System%20Protection/TOC_M1.html
- 10. https://iopscience.iop.org/article/10.1088/1757-899X/518/4/042027
- 11. http://www.ije.ir/Vol32/No1/A/8-2979.pdf

	Prepared by		Approved by	
Signature		- D. S. Pu	KR Sant	
Name	Dr.C.Gopinath	D.S.Purushothaman	Dr.KR.Santha	
Designation	Associate Professor	Assistant Professor	Vice Principal, Professor, HoD/EEE	
Date	23.0	7.2021	021 23.07.2021	
Remarks *: Same lerson plan is follower 2022-23 odd semerten 2.5 The same lesson plan is foll Remarks *: 2023-2024 (odd semester) Oswit colorless			kR. Sanl	

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD