FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

B F/ B.Tech/M.E/M.Tec	LP: EE18501 Rev. No: 00		
PG Specialisation	s	Regulation: 2018	Date
Sub. Code / Sub. Name	: EE18501 POWER SYSTEM ANALYSIS		
Unit	: I – INTRODUCTION		

<u>Unit Syllabus</u>: Electric industry structure – Vertically integrated structure – Introduction to restructuring – Single line representation – Per phase and per unit analysis – Synchronous machine – transformer – transmission line and load modeling for different power system studies – Primitive network – Construction of bus admittance (Y-bus) matrix using inspection and singular transformation methods.

Objective: To develop power system models under steady state conditions.

Session No *	Topics to be covered	Ref	Teaching Aids	
1	Subject introduction, Electric industry structure and Vertically integrated structure		PPT	
2	Basic components of a power system, Introduction to restructuring; Deregulation and Opportunities for Industrial Customers	5.3. IEEE paper	PPT	
3	Single line diagram, per phase and per unit analysis	1,4	PPT	
4	Numerical examples in per unit analysis	1,4	PPT	
5	Generator and transformer representation for different power system studies	1, 2	PPT	
6	Transmission line and load representation for different power system studies	1, 2	PPT	
7	Construction of Y-bus using inspection method, numerical examples	2,4	РРТ	
8	Construction of Y-bus using singular transformation method	1	PPT	
9	Numerical examples in Y-bus formation using singular transformation method	1	PPT	
10	Numerical examples in per unit analysis		РРТ	
11	Numerical examples in Y-bus formation		РРТ	
12.	Tutorial		РРТ	

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

6 1.

Sub. Code / Sub. Name: EE18501 POWER SYSTEM ANALYSIS

: II - POWER FLOW ANALYSIS

Unit

<u>Unit Syllabus</u>: Importance of power flow analysis in planning and operation of power systems - statement of power flow problem - classification of buses - development of power flow model in complex variables form - iterative solution using Gauss-Seidel method - Q-limit check for voltage controlled buses - power flow model in polar form - iterative solution using Newton-Raphson method - iterative solution using Fast Decoupled method - Comparison of various power flow iterative solution methods

Objective: To apply iterative solution methods to solve power flow problems.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Importance of power flow analysis in planning and operation of power systems, statement of power flow problem, classification of buses	4, 6, 8	РРТ
2	Development of power flow model in complex variables form	4,6	PPT
3	Iterative solution using Gauss-Seidel method - Q-limit check for voltage controlled buses	1, 4, 6	РРТ
4	Numerical examples in Gauss-Seidel method	1, 4, 6	РРТ
5	Power flow model in polar form	1, 4, 6	PPT
6	Iterative solution using Newton-Raphson method	1, 4, 6	РРТ
7	Numerical examples in Newton-Raphson method	1, 4, 6	РРТ
8	Iterative solution using Fast Decoupled method		PPT
9	Comparison of various power flow iterative solution methods		PPT
10	Numerical examples in Gauss-Seidel method		PPT
11	Numerical examples in Newton-Raphson method		РРТ
12	Numerical examples in Fast Decoupled method		РРТ
13	Tutorial	1, 4, 6	PPT
mient bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: EE18501 POWER SYSTEM ANALYSIS

Unit

: III - BALANCED FAULT ANALYSIS

<u>Unit Syllabus</u> : Importance of short circuit analysis - assumptions in fault analysis - analysis using Thevenin's theorem - Z-bus building algorithm - fault analysis using Z-bus – computations of short circuit capacity, post fault voltage and currents – significance of current limiting reactors in fault analysis <u>Objective</u>: To model and analyze the power system under balanced fault conditions.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Importance of short circuit analysis, assumptions in fault analysis		PPT
2	Introduction to computations of short circuit capacity, post fault voltage and currents; Statistical Fault Analysis	2, 6, 9, IEEE paper	PPT
3	Fault analysis using Thevenin's theorem	4,6	PPT
4	Numerical example in fault analysis using Thevenin's theorem	4,6	PPT
5	Z-bus building algorithm	1, 4, 6	PPT
6	Numerical examples using Z-bus building algorithm	1, 4, 6	. PPT
7	Fault analysis using Z-bus	1, 4, 6	PPT
8	Numerical examples in fault analysis using Z-bus		PPT
9	Significance of current limiting reactors in fault analysis		PPT
10	Numerical examples in fault analysis using Thevenin's theorem		PPT
11	Numerical examples in fault analysis using Z-bus		РРТ
12	Tutorial	1, 4, 6	PPT

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: EE18501 POWER SYSTEM ANALYSIS

Unit

: IV - UNBALANCED FAULT ANALYSIS

<u>Unit Syllabus</u> : Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machine, transformer and transmission lines - sequence networks analysis of single line to ground, line to line and double line to ground faults using Thevenin's theorem and Z-bus matrix- Open conductor fault <u>Objective</u>: To model and analyze the power system under unbalanced fault conditions.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to symmetrical components, sequence impedances	2, 5	PPT
2	Sequence circuits of synchronous machine, transformer and transmission lines	2, 5	РРТ
3	Sequence network analysis of single line to ground fault using Thevenin's theorem and Z-bus matrix	1,2	РРТ
4	Numerical examples	1, 2	РРТ
5	Sequence networks analysis of line-to-line fault using Thevenin's theorem	1, 2, 4	PPT
6	Sequence networks analysis of line-to-line fault using Z-bus matrix	1, 2, 4	РРТ
7	Numerical examples	1.2.4	ррт
8	Sequence networks analysis of double line to ground fault using Thevenin's theorem	1.2.4	ррт
9	Sequence networks analysis of double line to ground fault using Z-bus matrix	1, 2, 4	DDT
10	Numerical examples	1, 2, 4	PPI
11	Open conductor fault	1, 2, 4	PPT
12	Additional numerical exemption	2	PPT
13	Tutorial	1, 2, 4	PPT
Content bey	ond syllabus covered (if any):	1, 2, 4	РРТ

Unit

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: EE18501 POWER SYSTEM ANALYSIS

: V - STABILITY ANALYSIS

Unit Syllabus: Importance of stability analysis in power system planning and operation - classification of power system stability - angle and voltage and voltage of the system system planning and operation - classification of power of system stability - angle and voltage stability. - Single Machine Infinite Bus (SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time- solution of swing equation by modified Euler method and Runge-Kutta fourth order method. Introduction to multi-machine stability analysis Objective: To model and analyze the transient behavior of power system when subjected to a fault.

No *	Topics to be covered	Ref	Teachin Aids
1	Importance of stability analysis in power system planning and operation		PPT
2	Classification of power system stability - angle and voltage stability	1, 2, 5	РРТ
3	Single Machine Infinite Bus (SMIB) system: Development of swing equation	1, 2, 5	РРТ
4	Numerical examples; Improved Swing Equation and Its Properties in Synchronous Generators	I, 2, 5, IEEE paper	PPT
5	Equal area criterion - determination of critical clearing angle and time		PPT
6	Numerical examples		PPT
7	Solution of swing equation by modified Euler method Solution of swing equation by Runge-Kutta fourth order method		РРТ
8			РРТ
9	Introduction to multi-machine stability analysis		
10	Tutorial		PPI .
tent bey	ond syllabus covered (if any): Improved Swing Equation and Its Properties in C	. 1, 2, 5	PPT

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: EE18501 POWER SYSTEM ANALYSIS

REFERENCES:

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. John J. Grainger and W.D. Stevenson Jr., 'Power System Analysis', Tata McGraw-Hill, Sixth reprint, 2010.
- P. Venkatesh, B.V. Manikandan, S. Charles Raja, A. Srinivasan, 'Electrical Power Systems-Analysis, Security and Deregulation', PHI Learning Private Limited, New Delhi, 2012.
- 4. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- 5. Kundur P., 'Power System Stability and Control, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.
- Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- J. Duncan Glover, Mulukutla S. Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
- 8. Olle. I. Elgerd, 'Electric Energy Systems Theory An Introduction', Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2012.
- 9. C.A.Gross, "Power System Analysis," Wiley India, 2011.

	Pre	pared by	Approved by		
Signature	flet.	Out	K.S. Shart		
Name	S.g. Bhana	losidoson, V-Mohanra	F Dr. KR. SANTHA		
Designation	ASP/EEE	APLIE	PROFESSOIR & HEAD		
Date	19.6.2020		19.06.2020		
plan, same lesson plan is fullowed for this semaster (Aug 2021 - Dec 2021) Remarks *: KR. Sant KR. Sant					
Remarks *: SAN CAR 25/7/21		DHEEBON SS	Dr. KR. SANTHA		
* 10 4	ritte	APIEVE	VP, Prof 2 HOD/EEE		
and signed	by the Faculty and t	he HOD	a la her her followed		
R, Ale	APIEE	Ann andom	Sart 8.22		

The same lesson plan has been followed for academic year

2023-2024

R. Den Dy 1 2001, Dr. R. Kannedosan 2001,

Ann

(APICEC)

MY, ARUN ABHISHEKI

(APIEEC)

KR. Sand 7.23 Dr KR Santina

HODLEEE NP, Protessor

