#### FT/GN/68/01/23.01.16

### SRI VENKATESWARA COLLEGE OF ENGINEERING

### COURSE DELIVERY PLAN - THEORY

Page 1 of 6

| 1                                                     |                  |
|-------------------------------------------------------|------------------|
| Department of CHE, CVE, EEE, MAR & MEC                | LP: MA18451      |
|                                                       | Rev. No: 0       |
| B.E/B.Tech: UG                                        | D / 02/02/2022   |
| Regulation: 2018                                      | Date: 02/03/2022 |
| Sub. Code / Sub. Name : MA18451 COMPUTATIONAL METHODS |                  |
| Unit : I                                              |                  |

# Unit syllabus: Solution of Equations and Eigen value problems

Solution of Equation- Newton's method -Solution of linear system by Gaussian elimination method and Gauss Jordan methods - Iterative methods of Gauss Jacobi and Gauss-seidel method- Inverse of a matrix by Gauss jordan method-Eigen value of a matrix by Power method.

**Objective:** To know how to Solve the given algebraic or transcendental equation.

| Sessio<br>n<br>No                         | Topics to be covered                                           | Ref        | Teaching<br>Method |  |
|-------------------------------------------|----------------------------------------------------------------|------------|--------------------|--|
| 1                                         | Introduction of the syllabus and Unit I                        | TB -1&2    | BB/PPT             |  |
| 2                                         | Newton Raphson method and problems                             | Pg 38-44   | BB/PPT             |  |
| 3                                         | Newton Raphson method and problems                             | Pg 38-44   | BB/PPT             |  |
| 4                                         | Solution to linear system of equation Gauss elimination method | Pg 80-82   | BB/PPT             |  |
| 5                                         | Gauss Jordan method                                            | Pg 83-85   | BB/PPT             |  |
| 6                                         | Gauss Jacobi method- problems                                  | Pg 93-97   | BB/PPT             |  |
| 7                                         | Gauss Seidel method- problems                                  | Pg 93-97   | BB/PPT             |  |
| 8                                         | Inverse of a matrix by Gauss jordan method                     | Pg 106-108 | BB/PPT             |  |
| 9                                         | Eigen value problems – Power method                            | Pg 117-120 | BB/PPT             |  |
| 10                                        | Eigen value problems – Power method                            | Pg 117-120 | BB/PPT             |  |
| 11                                        | Tutorial                                                       |            | BB/PPT             |  |
| 12                                        | Summarization of unit I                                        |            | BB/PPT             |  |
| Content beyond syllabus covered (if any): |                                                                |            |                    |  |



#### COURSE DELIVERY PLAN - THEORY

Page 2 of 6

### Sub. Code / Sub. Name: MA18451 COMPUTATIONAL METHODS

Unit : II

### Unit syllabus: Interpolation and Approximation

Interpolation with unequal intervals-Lagrange's Interpolation – Newton's divided difference interpolation – Interpolation with equal intervals -Newton's forward and back ward difference formulae, Curve fitting by principle of least square-Fitting a Straight line and a Second degree curve

| Session<br>No |                                          | Ref                 | Teaching<br>Method |
|---------------|------------------------------------------|---------------------|--------------------|
|               | Topics to be covered                     |                     |                    |
| 13            | Introduction of the syllabus and Unit II | TB.1 & Ref.4        | BB/PPT             |
| 14            | Lagrangian polynomial method             | Ref 4<br>Pg 110-113 | BB/PPT             |
| 15            | Lagrangian polynomial method             | Ref 4<br>Pg 110-113 | BB/PPT             |
| 16            | Divided differences method               | Ref 4<br>Pg 113-118 | BB/PPT             |
| 17            | Divided differences method               | Ref 4<br>Pg 113-118 | BB/PPT             |
| 18            | Divided differences methods and problems | Ref 4<br>Pg 113-118 | BB/PPT             |
| 19            | Tutorial                                 |                     | BB/PPT             |
| 20            | CAT I                                    |                     |                    |
| 21            | Newton's Forward differences method      | TB 1<br>Pg 232-238  | BB/PPT             |
| 22            | Newton's backward differences method     | TB 1<br>Pg 232-238  | BB/PPT             |
| 23            | Tutorial                                 |                     | BB/PPT             |
| 24            | Summarization of the Unit II             |                     |                    |
| Content       | beyond syllabus covered (if any):        | I                   | 1                  |

**Objective:** To Know how to interpolate or extrapolate with the data available.



### COURSE DELIVERY PLAN - THEORY

Page 3 of 6

### Sub. Code / Sub. Name: MA18451 COMPUTATIONAL METHODS

Unit : III

### Unit syllabus: Numerical Differentiation and Integration.

Approximation of derivatives using interpolation polynomials– Numerical integration by Trapezoidal, Simpson's 1/3 - Two and three point Guassian quadrature formulae – Double integrals using Trapezoidal and simpson's 1/3rules.

| Objective ' | To aco | mire t | he knov  | vledge | of fir | ndino | numerical | values | of dif | ferentiations | and in | tegrations |
|-------------|--------|--------|----------|--------|--------|-------|-----------|--------|--------|---------------|--------|------------|
| Objective.  | 10 acq | une u  | IIC KHOV | Nicuge | or m   | lung  | numerical | values | or un  | iciciliations | and m  | icgranons. |

| Sessio  |                                                               | -                    | Teaching |
|---------|---------------------------------------------------------------|----------------------|----------|
| n<br>N- |                                                               | Ref                  | Method   |
| NO      | Topics to be covered                                          |                      |          |
| 25      | Introduction of the syllabus and Unit III                     | TB1 & Ref. 4         | BB/PPT   |
| 26      | Approximation of derivation using interpolation polynomial    | TB 2<br>Pg 212-214   | BB/PPT   |
| 27      | Approximation of derivation using interpolation polynomial    | TB 2<br>Pg 212-214   | BB/PPT   |
| 28      | Numerical Integration by Trapezoidal rule and problems        | Ref. 4<br>Pg 156-159 | BB/PPT   |
| 29      | Simpson's 1/3 rule and problems                               | Ref. 4<br>Pg 156-159 | BB/PPT   |
| 30      | Two and three point Gaussian quadrature formulas and problems | TB 1<br>Pg 265-270   | BB/PPT   |
| 31      | Double integration by Trapezoidal method and Problems         | Ref 4<br>Pg 161-163  | BB/PPT   |
| 32      | Double integration by Trapezoidal method and Problems         | Ref 4<br>Pg 161-163  | BB/PPT   |
| 33      | Double integration by Simpson's 1/3rules and Problems         | Ref 4<br>Pg 161-163  | BB/PPT   |
| 34      | Double integration by Simpson's 1/3rules and Problems         | Ref 4<br>Pg 161-163  | BB/PPT   |
| 35      | CAT II                                                        |                      |          |
| Content | beyond syllabus covered (if any):                             |                      |          |



#### COURSE DELIVERY PLAN - THEORY

Page 4 of 6

## Sub. Code / Sub. Name: MA18451 COMPUTATIONAL METHODS

Unit : IV

### Unit syllabus: Initial value problems for ODE.

.

\_ .

Single step Methods - Taylor's series method- Modified Euler's Method - Fourth order Runge - Kutta method for solving first, second order and simultaneous first order equations - Multistep methods - Milne's and Adams-Bash forth Predicator and corrector methods for solving first order equations.

...

| Objective | : To know | how to sol | lve the given | ODE, numerically. | • |
|-----------|-----------|------------|---------------|-------------------|---|
| ~         |           |            |               |                   |   |

| Session<br>No | Topics to be covered                                               | Ref                 | Teaching<br>Method |
|---------------|--------------------------------------------------------------------|---------------------|--------------------|
| 36            | Introduction of the syllabus and Unit IV                           | Ref. 7              | BB/PPT             |
| 37            | Taylor's series method and Problems                                | Ref.7<br>Pg 352-362 | BB/PPT             |
| 38            | Modified Euler method and problems                                 | Ref.7<br>Pg 371-376 | BB/PPT             |
| 39            | Modified Euler method and problems                                 | Ref.7<br>Pg 371-376 | BB/PPT             |
| 40            | Fourth order Runge Kutta method for solving first order equations. | Ref.7<br>Pg 383-393 | BB/PPT             |
| 41            | Fourth order Runge Kutta method for solving second order equations | Ref.7<br>Pg 383-393 | BB/PPT             |
| 42            | Fourth order Runge Kutta method for solving simultaneous equations | Ref.7<br>Pg 383-393 | BB/PPT             |
| 43            | Multi step method -Miline's method and problems                    | Ref.7<br>Pg 395-404 | BB/PPT             |
| 44            | Multi step method -Miline's method and problems                    | Ref.7<br>Pg 395-404 | BB/PPT             |
| 45            | Adam's method and problems                                         | Ref.7<br>Pg 404-408 | BB/PPT             |
| 46            | Adam's method and problems                                         | Ref.7<br>Pg 404-408 | BB/PPT             |
| 47            | Summarization of the unit IV                                       |                     |                    |
| 48            | Tutorial                                                           |                     |                    |
| Content be    | yond syllabus covered (if any):                                    |                     |                    |



#### COURSE DELIVERY PLAN - THEORY

Page 5 of 6

### Sub. Code / Sub. Name: MA18451 COMPUTATIONAL METHODS

Unit : V

### Unit syllabus: Boundary value problems in partial differential equations.

Finite difference techniques for the solution of two dimensional Laplace's and poisson's equations on rectangular domain-One dimensional heat flow equation by explicit and implicit (Crank Nicholson)methods-One dimensional wave equation by explicit method.

**Objective:** To know how to solve the boundary value problems numerically.

| Session<br>No |                                                                       | Ref                 | Teaching<br>Method |
|---------------|-----------------------------------------------------------------------|---------------------|--------------------|
|               | Topics to be covered                                                  |                     |                    |
| 49            | Introduction of the syllabus and Unit V                               | TB 1 & Ref.7        | BB/PPT             |
| 50            | Two dimensional Laplace equation – problems                           | TB 1<br>Pg 351-356  | BB/PPT             |
| 51            | Two dimensional Laplace equation – problems                           | TB 1<br>Pg 351-356  | BB/PPT             |
| 52            | Two dimensional Poisson equation – problems                           | TB 1<br>Pg 356-360  | BB/PPT             |
| 53            | Two dimensional Poisson equation – problems                           | TB 1<br>Pg 356-360  | BB/PPT             |
| 54            | One dimensional heat flow equation by explicit method                 | Ref.7<br>Pg 441-446 | BB/PPT             |
| 55            | One dimensional heat flow equation by explicit method                 | Ref.7<br>Pg 441-446 | BB/PPT             |
| 56            | One dimensional heat flow equation by implicit(Crank-Nicholson)method | Ref.7<br>Pg 446-451 | BB/PPT             |
| 57            | One dimensional wave equation by explicit method                      | Ref.7<br>Pg 452-459 | BB/PPT             |
| 58            | Tutorial                                                              |                     | BB/PPT             |
| 59            | Summarizing the unit V                                                |                     |                    |
| 60            | CAT-III                                                               |                     |                    |
| Content b     | eyond syllabus covered (if any):                                      |                     |                    |



#### COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: MA18451 COMPUTATIONAL METHODS

#### TEXT BOOKS:

- Grewal.B.S., and Grewal.J.S., Numerical methods in Engineering AND Science, Khanna Publishers, 9th Edition, New Delhi, 2007
- Iyenger.S.R.K., and Jain.R.K,Numerical methods, New Age International Publishers,New Delhi,2012.
- William Embleton OBE and Leslie Jackson, Reed's Mathematics for Engineers, Adlard Coles Nautical, London, 2011. (for Marine Engineers)

#### **REFERENCES:**

1. Erwin Kreyszig, Advanced Engineering Mathematics, 7thEdition, Wiley, India, 2007.

- Chapra. S.C., and Canale.R.P., Numerical methods for Engineers, Tata McGrae Hill,5<sup>th</sup> Edition, New Delhi,2007.
- Brian Braide. A friendly introduction to Numerical Analysis, Pearson Education, Asia, New Delhi, 2007.

4.Sankara Rao,K.Numerical methods for Scientists and Engineers Prentice Hall of India Private,3rd edition,New Delhi,2007.

5.Gerald.C.F and Wheatley ,P.O.Applied Numerical analysis, Pearson education, Asia, 6th edition, New Delhi, 2006.

6.Venkataraman, M.K.Numerical methods in Science and Engineering, National Publishers, 1995.

7.Kandasamy,K,Thilagavathy K,and Gunavathy,K., Numerical Methods, S.Chand & Company Ltd., New Delhi,2008.

|                                       | Prepared by                      | Approved by                                 |
|---------------------------------------|----------------------------------|---------------------------------------------|
| Signature                             | A fat of zore                    | 1 Inter                                     |
| Name                                  | Dr.R.SURESH                      | Dr.R.MUTHUCUMARASWAMY                       |
| Designation                           | ASSISTANT PROFESSOR              | HEAD AND DEAN                               |
| Date                                  | 02/03/2022                       | 02/03/2022                                  |
| Remarks *:<br>The same L<br>semester. | esson Plan may be used for MA18- | 451 Computational Methods in the subsequent |
| Remarks *:                            |                                  |                                             |