FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

. .

	Department of Civi	il Engineering	LP: CE18703 Rev. No: 00
B.E/B.Tech/M.E/M.Tech : B.E. Regulation		Regulation: R2018	Date: 27/07/2022
PG Specialisation Sub. Code / Sub. Name	: Not Applicable : CE18703 STRUCTURAL	DYNAMICS AND EARTHQUAKE ENGG.	
Unit	:1		

Unit syllabus: THEORY OF VIBRATIONS

Difference between static loading and dynamic loading – Degree of freedom – idealisation of structure as single degree of freedom system – Formulation of Equations of motion of SDOF system - D"Alemberts principles – effect of damping – free and forced vibration of damped and undamped structures – Response to harmonic and periodic forces.

Objective: To introduce dynamic loading and dynamic performance of a structure with idealization of structure as single degree of freedom.

Session No *	Topics to be covered	Ref	Aids
01	An overview of the course – Basic concepts of vibration- Difference between static loading and dynamic loading	4 – Ch.1; Pg.1 to 4	PPT
02	Degree of freedom – Idealisation of structure as single degree of freedom system	2- ch.6; pg.112-114 3-ch.1; pg.4&5 4-Ch.1; Pg.7 to 9 Ch.2;16, 17,18	PPT
03	Formulation of Equations of motion of SDOF system - D"Alemberts principles	3- Ch.1: pg. 10-12 4 - Ch.2; Pg.18-23	PPT & BB
04	Undamped free vibration of SDOF structures	3 – Ch.1;pg.3-23 4 – Ch.2; Pg.23-40	PPT & BB
05	Effect of damping – free vibration of damped	2- ch.7; pg.116-120 3 - Ch.2;pg.31-45 4 - Ch 3: Pg 42-64	PPT & BB
06	structures	4 - 61.3, 1 5.12 0 1	
07	Bernanse to Harmonic forces	2-ch.7; pg.120-122 3 - Ch.3;pg.49-96 4 - Ch 4: Pg 65-97	PPT & BB
08	Response to Harmonic forces	Cii.+, 1 <u>5</u> .03-97	
09	Response to periodic forces.	4 - Ch.5; Pg.98-108	PPT & BB
Content	beyond syllabus covered (if any): Nil		

* Session duration: 50 minutes

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

Page 2 of 6

COURSE DELIVERY PLAN - THEORY

Sub. Code / Sub. Name: CE18703 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING Unit : II

Unit Syllabus: MULTIPLE DEGREE OF FREEDOM SYSTEM Two degree of freedom system – modes of vibrations – formulation of equations of motion of multi degree of freedom (MDOF) system - Eigen values and Eigen vectors - Response to free and forced vibrations - damped and undamped MDOF system – Modal superposition methods.

Objective: To impart the knowledge on multiple degree of freedom system and to determine the response to free

and forced vibrations.

Session No *	Topics to be covered	Ref	Teaching Aids
10	Two degree of freedom system - modes of vibrations – Free vibration of undamped system	2-ch.11; pg.159-161 4 - Ch.7; Pg.126 - 131, 137-154	PPT & BE
11	- Eigen values and Eigen vectors	1- Ch.9: pg.381-393	PPT & BB
12	Response to free vibration of damped system	4 – Ch.7; Pg.132 – 134,	
13	Response to forced vibration of undamped and damped	1- Ch.9: pg. 393-406 4 – Ch.7; Pg.134 – 137, 154-157	PPT & BE
14			
15	Formulation of equations of motion of multi degree of freedom (MDOF) system – Free	1-Ch.18; pg.725-775 2-ch.11; pg.162-169 4 - Ch.8; Pg.158 - 163	PPT & BE
16	vibration analysis- undamped and damped		
17	Model superposition - Formulation of equations of motion of multi degree of freedom (MDOF)	2-ch.11,pg.169-177 4 – Ch.8; Pg.163 – 174	PPT & BE
18	system – Forced vibration analysis		

* Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: CE18703 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

Unit : III

Unit Syllabus : UNIT III INTRODUCTION TO EARTHQUAKE ENGINEERING

Elements of Engineering Seismology - Causes of Earthquake – Plate Tectonic theory – Elastic rebound Theory – Characteristic of earthquake – Estimation of earthquake parameters - Magnitude and intensity of earthquakes – Spectral Acceleration.

Objective: To study the elements of engineering seismology and theories pertaining to earthquake

Session No *	Topics to be covered	Ref	Teaching Aids
19	Elements of Engineering Seismology - Causes of	2 - Ch 1: ng 3-9	
20	Earthquake – Plate Tectonic theory - Elastic rebound Theory	4 – Ch.9; Pg.175 – 181	PPT
21		к	
22			
23	Characteristic of earthquake – Estimation of earthquake parameters	2- Ch.5; pg.88-107 4 – Ch.9; Pg.184 – 188	PPT
24			
25			
26	Magnitude of intensity of earthquakes – Spectral Acceleration	4 – Ch.9; Pg.188 – 198	PPT
27			
Content be	yond syllabus covered (if any): Nil		

* Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: CE18703 - STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING Unit : IV

Unit Syllabus : RESPONSE OF STRUCTURES TO EARTHQUAKE

Effect of earthquake on different type of structures - Behaviour of Reinforced Cement Concrete, Steel and Prestressed Concrete Structure under earthquake loading - Pinching effect - Bouchinger Effects -Liquefaction of soil - Evaluation of earthquake forces as per IS:1893 - 2016 - Response Spectra -Lessons learnt from past earthquakes.

Objective: To impart knowledge on effect of earthquake loading to different type of structures like RCC, Steel and Prestressed.

Session No*	Topics to be covered	Ref	Teaching Method
28	Effect of earthquake on different type of structures - Behaviour of steel under earthquake loading	5-Ch.10; 337-367	PPT & BB
29	Behaviour of Reinforced Cement Concrete under		
30	Effects	5-Ch.10; 367-399	PPT & BB
31	Behaviour of Prestressed Concrete Structure under earthquake loading	5-Ch.10; 410-416	PPT & BB
32	Liquefaction of soil	5- Ch:5;pg.147-149 5-Ch:6; pg: 241-242 4- Ch.12; pg.216-223	PPT & BB
33	Evaluation of contheurles for a 1000	2-ch.16; pg.251-280	
34	2016	4 – Ch.14; Pg.234 – 252	PPT & BB
35	Response Spectra – Lessons learnt from past	1 - Ch.6; pg.233-281	
36	earthquakes	4 - Cn.10; Pg.199 - 210 4 - Ch.9; Pg.195 - 198	PPT & BB
Content be	eyond syllabus covered (if any): NIL		

* Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING FT/GN/68/01/23.01.16

COURSE DELIVERY PLAN - THEORY

Page 5 of 6 Sub. Code / Sub. Name: CE18703-STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

Unit Syllabus: CONCEPTS OF EARTHQUAKE RESISTANT DESIGN

Causes of damage – Planning considerations / Architectural concepts as per IS:4326 – 2013 – Guidelines for Earthquake resistant design - Earthquake resistant design for masonry and Reinforced Cement Concrete buildings – Later load analysis – Design and detailing as per IS:13920 – 2016.

Objective: To impart knowledge on Aseismic design methodology for masonry and concrete structures.

Session	Topics to be covered		
No *		Ref	Teaching Method
37	Causes of damage – Planning considerations /	2-ch.15:pg.239-248	
38	Architectural concepts as per IS:4326 – 2013	4 - Ch.13; Pg.224 - 233	PPT & BB
39	Guidelines for Full		
40	Earthquake resistant design for masonry buildings	2 – Ch.24; Pg.427 – 460	PPT & BB
41			
42	Earthquake resistant design for Reinforced Cement Concrete buildings	2-ch.12; pg.191-205 2-ch.13; pg.207-224 2-ch.20:pg 341-370	DDT 0 DD
43		4 – Ch.15; Pg.253 – 302	FF1 & BB
44	Lateral load applysic Design 1 to 10		
45	per IS:13920 – 2016	2 – Ch.26; Pg.463 – 485	PPT & BB
f Base-Isol	yond syllabus covered (if any): Earthquake Dynamics ated buildings	1 - Ch 20: pg 777 801	PPT & PD
* Sess	ion duration: 50 mins		11 a BB

FT/GN/68/01/23.01.16 SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: CE 18703- STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

REFERENCES:

1. Chopra, A.K., "Dynamics of Structures – Theory and Applications to Earthquake Engineering", 4th Edition, Pearson Education, 2011.

2. Agarwal. P and Shrikhande. M., "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. 2010

3. Paz, M. and Leigh.W. "Structural Dynamics – Theory & Computation", 5th Edition, Springer (India) Private Ltd., New Delhi, 2004.

4. Damodarasamy, S.R. and Kavitha, S. "Basics of Structural dynamics and Aseismic design", PHI Learning Pvt. Ltd., 2012

5. Dowrick, D.J., "Earthquake resistant design", 2nd edition, John Wiley & sons, London, 2009

	Prepared by	Approved by
Signature	PA	Q. And D.
Name	Dr. P. Venkateswara Rao	Dr. R. Kumutha
Designation	Professor / Civil	Professor & HOD / Civil
Data	27 / 07 /2022	

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD