

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

DEPARTMENT OF CIVIL ENGINEERIN	ING	EER	GINE	EN	VIII.	CIV	OF	TV	RTMEN	DEPAR	
--------------------------------	-----	-----	------	----	-------	-----	----	----	-------	-------	--

B.E/B.Tech/M.E/M.Tech: Civil Engineering

Regulation:2018

LP: CE 18604

PG Specialisation

: NA

Rev. No: 00

Sub. Code / Sub. Name : CE 18604/ Advanced structural analysis

Date: 28.02.2022

Unit: I/ PLASTIC ANALYSIS OF STRUCTURES

Unit Syllabus:

Statically indeterminate axial problems - Beams in pure bending - Plastic moment of resistance -Plastic modulus - Shape factor - Load factor - Plastic hinge and mechanism - Plastic analysis of indeterminate beams and frames - Upper and lower bound theorems

Objective: Understand the concept of Plastic analysis and the method of analyzing beams and rigid frames

Ref	Teaching Aids
h-2, Pg.101-102	BB/PPT
h-2, Pg.101-102	BB/PPT
h-2, Pg.101-102	BB/PPT
h-2, Pg.105	BB/PPT
h-2, Pg.107-110	BB/PPT
h-2, Pg.116-118	BB/PPT
n-2, Pg.111-114	BB/PPT
n-2, Pg.122-125	BB/PPT
n-2, Pg.108-110	BB/PPT
n-2, Pg.115-122	BB/PPT
	h-2, Pg.115-122

^{*} Session duration: 50 minutes

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: CE 18604/ Advanced structural analysis

Unit: II / FINITE ELEMENT

Unit Syllabus: Introduction - Discretisation of a structure - Displacement functions - Truss element - Beam element - One dimensional elements

Objective: Analyze the structure using finite element method

Session	Topics to be covered	Ref	Teaching Aids
No *	Introduction	T2-Ch-11, Pg.452-453	PPT
14	Discretisation of a structure	T2-Ch-11, Pg.454-470	PPT
15	• Problems	T2-Ch-11, Pg.454-470	PPT
16	Problems	T2-Ch-11, Pg.454-470	PPT
17	Displacement functions	T2-Ch-11, Pg.472-484	PPT
18	Problems	T2-Ch-11, Pg.472-484	BB/PPT
19	Problems	T2-Ch-11, Pg.472-484	BB/PPT
20	Truss element	T2-Ch-11, Pg.486-490	PPT
21	Beam element	T2-Ch-11, Pg.491-492	PPT
22	Problems	T2-Ch-11, Pg.491-492	BB/PPT
23	One dimensional elements	T2-Ch-11, Pg.492-496	PPT
24	Problems	T2-Ch-11, Pg.492-496	BB/PPT

^{*} Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: CE 18604/ Advanced structural analysis

Unit: III/ MOVING LOADS AND INFLUENCE LINES

Unit Syllabus: Influence lines for reactions in statically determinate structures – influence lines for member forces in pin- jointed frames – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads. Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures – Beggs deformeter

Objective: Understand the concept of influence lines for structures due to moving loads

Session No *	Topics to be covered	Ref	Teaching Aids
25	Influence lines for reactions in statically determinate structures	T2-Ch-7, Pg.256-264	PPT
26	Influence lines for reactions in statically determinate structures	T2-Ch-7, Pg.256-264	BB/PPT
27	Influence lines for member forces in pin- jointed frames	T2-Ch-7, Pg.323-333	BB/PPT
28	Influence lines for shear force and bending moment in beam sections	T2-Ch-7, Pg.264	BB/PPT
29	Influence lines for shear force and bending moment in beam sections	T2-Ch-7, Pg.264	BB/PPT
30	Calculation of critical stress resultants due to concentrated	T2-Ch-7, Pg.295-323	PPT
31	Calculation of critical stress resultants due to distributed moving loads	T2-Ch-7, Pg.266-291	PPT
32	Muller Breslau's principle	T2-Ch-7, Pg.102-103	PPT
33	Influence lines for continuous beams	T2-Ch-7, Pg.119-121	PPT
34	Influence lines for continuous beams	T2-Ch-7, Pg.119-121	PPT
35	Indirect model analysis for influence lines of indeterminate structures	T2-Ch-7, Pg.119-121	PPT
36	Beggs deformeter	T2-Ch-7, Pg.144-145	PPT

^{*} Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: CE 18604/ Advanced structural analysis

Unit: IV/ ARCHES

Unit Syllabus: Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged and two hinged, parabolic and circular arches – Settlement and temperature effects

Objective: Analyze arches for given loading

Session No *	Topics to be covered	Ref	Teaching Aids
37	Arches as structural forms	T1-Ch-5, Pg.123-124	PPT
38	Examples of arch structures	T1-Ch-5, Pg.125-127	PPT
39	Problems	T1-Ch-5, Pg.125-127	BB/PPT
40	Analysis of two hinged parabolic arch	T1-Ch-5, Pg.153-158	PPT
41	Problems	T1-Ch-5, Pg.153-158	BB/PPT
42	Analysis of two hinged circular arch	T1-Ch-5, Pg.172-178	PPT
43	Problems	T1-Ch-5, Pg.172-178	BB/PPT
44 Analysis of three hinged circular arch		T1-Ch-5, Pg.127-136	PPT
45 Problems		T1-Ch-5, Pg.127-136	BB/PPT
46 Settlement		T1-Ch-5, Pg.168-172	PPT
48	Temperature effects	T1-Ch-5, Pg.168-172	PPT

^{*} Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. name: CE18604/ Advanced Structural Analysis

Unit: V / SPACE FRAMES AND CABLE STRUCTURES

Unit Syllabus:

Analysis of Space trusses using method of tension coefficients - Beams curved in plan Suspension cables suspension bridges with two and three hinged stiffening girders

Objective: Analyze the space frames and cable structures

Session No *	Topics to be covered	Ref	Teaching Aids	
49				
50	Analysis of Space trusses using method of tension coefficients	T-2,Ch10, Pg.272-299	BB/PPT	
51	·			
52				
53	Beams curved in plan Suspension cables	T-2,Ch10, Pg.253-270	BB/PPT	
54				
55				
56	Suspension bridges with two hinged stiffening girders	T-2,Ch10, Pg. 245-251	BB/PPT	
57	gitters			
58				
59	Suspension bridges with three hinged stiffening girders	T-2,Ch10, Pg. 238-244	BB/PPT	
60	Surrening gracers			

Content beyond syllabus covered (if any): Rapid and Approximate Analysis of Building Frames.

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: CE 18604/ Advanced structural analysis

TEXTBOOKS:

- Bhavikatti,S.S, Structural Analysis,Vol.1 & 2, Vikas Publishing House Pvt.Ltd., NewDelhi-4, 2014.
- Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, Theory of structures, Laxmi, Publications, 2004.

REFERENCES:

- 1. Negi.L.S and Jangid R.S., Structural Analysis, Tata McGraw-Hill Publishers, 2004.
- 2. Reddy C.S., Basic Structural Analysis, Tata McGraw Hill Publishing Co.Ltd.2002.
- 3. Gambhir.M.L., Fundamentals of Structural Mechanics and Analysis, PHIL earning Pvt. Ltd.,2011.
- 4. Vazrani.V.N And Ratwani, M.M, Analysis of Structures, Vol.II, Khanna Publishers, 2015.

	Prepared by	Approved(by)
Signature	his	00
Name	Dr.R.Sathia	Dr.R.Kumutha
Designation	Associate Professor	Professor & Head of the Department
Date	28.02.2022	1/03/2022
Remarks *: Same	lesson plan is followed as in AY	2020-2021
Remarks *:		