

COURSE DELIVERY PLAN - THEORY

Page 1 of 7

	Department of Biotechnolog	<u>zy</u>	LP: BT22034 Rev. No: 00
B.E/B.Tech/M.E/M.Tech	h : Biotechnology	Regulation:2022	Date: 11.06.2024
PG Specialisation	: NA		
Sub. Code / Sub. Name	: BT22034 / MOLECULAR MODELI	NG IN DRUG DISCOVERY	
Unit	: I		

Unit Syllabus:

Introduction to molecular modeling in drug discovery

Objective: Understand the principles and theoretical foundations of molecular modeling in drug discovery

Session No *	Topics to be covered	Ref	Teaching Aids
1	Overview of molecular modeling	TB1(21-23) ,TB2 (57-62) , VL	Blended Learning
2	Molecular modeling techniques	TB1 (35-43), TB3 (10-14), VL	Blended Learning
3	Molecular geometry and coordinate systems	TB3 (9-15), VL	Blended Learning
4	Potential energy surfaces	TB3 (148 -153), VL	Blended Learning
5	Introduction to quantum mechanics	TB3 (118, 148), VL	Blended Learning
6	Schrodinger wave equation - hydrogen molecule	RB1(3.1-3.8), IS2 VL	Blended Learning
7	Born-Oppenheimer approximation	RB1(10.1.1 -10.1.8), VL	Blended Learning
8	Role of computational methods in drug discovery	TB 1(118-126),TB 2 76-89), VL	Blended Learning
9	Introduction to molecular visualization software	IS 1, TB3 (179-185)	Blended Learning
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 2 of 7

Sub. Code / Sub. Name: BT22034 / MOLECULAR MODELING IN DRUG DISCOVERY

Unit : II

Unit Syllabus :Molecular mechanics and energy minimizationObjective:Learn about molecular mechanics, fore fields and energy minimization.

Session No *	Topics to be covered	Ref	Teaching Aids
10	Empirical force field models	TB3 (196-200), RB1 (1.1.2-1.1.4) VL	Blended Learning
11	Bond stretching, angle bending, torsional term	TB3 (39-41), RB1(6.2), VL	Blended Learning
12	Nonbonding interactions	TB3 (39-41), VL	Blended Learning
13	Thermodynamics properties using a forcefield, derived energy minimization method	TB3 (47-50), VL	Blended Learning
14	Thermodynamics properties using a forcefield, non-derived energy minimization method	TB3 (49-53), VL	Blended Learning
15	Simplex and sequential univariate method	TB4 (129-134), VL	Blended Learning
16	Steepest descent method	TB3 (27-29), VL	Blended Learning
17	Conjugate gradient method	TB3 (136-139), VL	Blended Learning
18	Newton-Rapson method	IS4, TB3(138-140), VL	Blended Learning
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 3 of 7

Sub. Code / Sub. Name: BT22034 / MOLECULAR MODELING IN DRUG DISCOVERY Unit : III

Unit Syllabus :Molecular dynamics and monte carlo simulationObjective:Gain knowledge of molecular dynamics simulations and their applications in drug design.

Session No *	Topics to be covered	Ref	Teaching Aids
19	Introduction to Molecular Dynamics	TB4 (264-266), TB3 (47- 68), VL	Blended Learning
20	Molecular dynamics by single model and time steps	TB4 (264-266), TB3 (47- 68), VL	Blended Learning
21	Multiple steps MD	TB3 (50- 56), VL	Blended Learning
22	Setting up MD	TB3 (41- 44), VL	Blended Learning
23	Energy conservation in MD Simulation	TB5 (4-9), VL	Blended Learning
24	MD Simulation platforms and examples	TB3 (46- 53), IS 1, VL	Blended Learning
25	Monte Carl simulations	TB3 (203- 206), TB4 (398-402), VL	Blended Learning
26	Random number generation in MD	IS3, VL	Blended Learning
27	Difference in Classical Monte Carlo (MC) and Classical Molecular Dynamics (MD)	TB3 (203- 212), VL	Blended Learning
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 4 of 7

Sub. Code / Sub. Name: BT22034 / MOLECULAR MODELING IN DRUG DISCOVERY

Unit : IV

Unit Syllabus : Insilico molecular modeling, structure activity relationship
 Objective: Learn computational methods for predicting molecular structures, properties of drug candidates and quantitative structure-activity relationship (QSAR) analysis for predicting drug activity and toxicity

Session No *	Topics to be covered	Ref	Teaching Aids
28	Basics of In-silico molecular modeling	TB4 (321-322), IS1, VL	Blended Learning
29	Homology Modeling, Threading and Abinitio modeling	TB4(111-127), VL	Blended Learning
30	Types of physicochemical parameters	TB4(231-240), VL	Blended Learning
31	Experimental and theoretical approaches for the determination of physicochemical parameters	TB4(240-251), VL	Blended Learning
32	3D QSAR applications and limitations	TB4 (112-126), VL	Blended Learning
33	Virtual Screening and Molecular Descriptors	TB4 (29-81), VL	Blended Learning
34	Free Wilson analysis, MFA, CoMFA and PLS Method	TB4(103-110), VL	Blended Learning
35	Non-Linear QSAR Methods	TB4(111-127), VL	Blended Learning
36	Descriptor Selection and Virtual Screening with QSAR.	TB4 (150-168), VL	Blended Learning
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 5 of 7

Sub. Code / Sub. Name: BT22034 / MOLECULAR MODELING IN DRUG DISCOVERY Unit : V

Unit Syllabus:Informatics & methods in drug designObjective:Learn various tools used for molecular modelling in drug development.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Cheminformatics and their role in molecular designing and analysis	RB2 (2-9), VL	Blended Learning
38	ADME databases	TB4 (243 -260), TB3 (198-199), VL	Blended Learning
39	Chemical, Biochemical and Pharmaceutical databases	TB4 (243 -260), VL	Blended Learning
40	General approach to discovery of new drugs	TB4 (262 -268), VL	Blended Learning
41	Lead discovery and lead modification	IS5, VL	Blended Learning
42	Physiochemical principles of drug action	TB4 (243 -260), VL	Blended Learning
43	Drug stereo chemistry	RB (10.1.1 - 10.1.7), VL	Blended Learning
44	Drug action	TB4 (243 -260), VL	Blended Learning
45	Drug Discovery and Medicinal Chemistry	TB5 (26-48), TB4(260-271), VL	Blended Learning
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 6 of 7

Sub Code / Sub Name: BT22034 / MOLECULAR MODELING IN DRUG DISCOVERY

REFERENCES: TEXT BOOK(S)

- 1. Leach AR., "Introduction to Molecular Modeling", 1st Edition, Oxford University Press, 2001.
- 2. Voth G.A., "Principles of Molecular Modeling and Simulation: A Guide for Biomolecular Scientists", 1st Edition, Springer, 2018.
- 3. Rebecca C. Wade and Outi M. H. Salo-Ahen, "Molecular Modeling in Drug Design", 1st Edition, MDPI, 2019.
- 4. Tomasz P, Jerzy L, and Mark TC., "Recent Advances in QSAR Studies", 1st Edition, Springer, 2010.
- 5. Leach AR., "Molecular Modeling: Principles and Applications", 1st Edition, Pearson, 2001.

REFERENCE BOOK(S)

- 1. Zielinksi et al., "QUANTUM STATES OF ATOMS AND MOLECULES", 1st Edition ,Chemical Education Digital Library, Libretexts.org , 2024.
- 2. David S. Wishart, "Introduction to Cheminformatics", 1st, Edition Curr Protoc Bioinformatics, 2007.

INTERNET SOURCE(S)

- 1. <u>https://www.bioinformatics.org/gary/Lecture_3.4_Stucture_Tools_and_Visualization.pdf</u>
- <u>https://batch.libretexts.org/print/url=https://chem.libretexts.org/Courses/University_of_California</u> <u>Davis/Chem_107B%3A_Physical_Chemistry_for_Life_Scientists/Chapters/4%3A_Quantum_T</u> heory/4.10%3A_The_Schr%C3%B6dinger_Wave_Equation_for_the_Hydrogen_Atom.pdf
- 3. https://reference.wolfram.com/language/tutorial/RandomNumberGeneration.html
- 4. https://www.geeksforgeeks.org/newton-raphson-method/
- 5. https://lifesciences.danaher.com/us/en/library/lead-optimization-drug-discovery-guide.html

COURSE YOUTUBE LINK:

https://www.youtube.com/playlist?list=PLvDocy_6Jwl80E0dCIRiXGcjeQRDFcocO

COURSE DELIVERY PLAN - THEORY

Page 7 of 7

Sub Code / Sub Name: BT22034 / MOLECULAR MODELING IN DRUG DISCOVERY

REFERENCES: TEXT BOOK(S)

- 1. Leach AR., "Introduction to Molecular Modeling", 1st Edition, Oxford University Press, 2001.
- Voth G.A., "Principles of Molecular Modeling and Simulation: A Guide for Biomolecular Scientists", 1st Edition, Springer, 2018.
- Rebecca C. Wade and Outi M. H. Salo-Ahen, "Molecular Modeling in Drug Design", 1st Edition, MDPI, 2019.
- Tomasz P, Jerzy L, and Mark TC., "Recent Advances in QSAR Studies", 1st Edition, Springer, 2010.
- 5. Leach AR., "Molecular Modeling: Principles and Applications", 1st Edition, Pearson, 2001.

REFERENCE BOOK(S)

- Zielinksi et al., "QUANTUM STATES OF ATOMS AND MOLECULES", 1st Edition ,Chemical Education Digital Library, Libretexts.org, 2024.
- David S. Wishart, "Introduction to Cheminformatics", 1st, Edition Curr Protoc Bioinformatics, 2007.

INTERNET SOURCE(S)

- 1. https://www.bioinformatics.org/gary/Lecture_3.4_Stucture_Tools_and_Visualization.pdf
- <u>https://batch.libretexts.org/print/url=https://chem.libretexts.org/Courses/University_of_California_Davis/Chem_107B%3A_Physical_Chemistry_for_Life_Scientists/Chapters/4%3A_Quantum_T_heory/4.10%3A_The_Schr%C3%B6dinger_Wave_Equation_for_the_Hydrogen_Atom.pdf
 </u>
- 3. https://reference.wolfram.com/language/tutorial/RandomNumberGeneration.html
- 4. https://www.geeksforgeeks.org/newton-raphson-method/
- 5. https://lifesciences.danaher.com/us/en/library/lead-optimization-drug-discovery-guide.html

COURSE YOUTUBE LINK:

https://www.youtube.com/playlist?list=PLvDocy_6Jwl80E0dCIRiXGcjeQRDFcocO

	Prepared by	Approved by
Signature	of kinder.	Smarrel.
Name	Dr M Nareshkumar	Dr E Nakkeeran
Designation	Assistant Professor	Professor & HOD
Date	08/07/2024	08/07/2024
Remarks *:		
Pamarla #		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD