

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Biotechnology		LP: BT 22031
B.E/B.Tech/M.E/M.Tech : Biotechnology	Regulation: 2022	Rev. No: 00
PG Specialisation : -NA-		Date: 08/07/2024
Sub. Code / Sub. Name : BT 22031 / Fundamen	tals of Algorithms for	
Biotechnologists (H&M)		
Unit : 1		

Unit Syllabus: INTRODUCTION TO ALGORITHMS

(9 h)

DNA computing: Motivation, DNA structure, processing and computational operations, steps involved in DNA computation, Filtering models: Adleman's experiment, Lipton's solution, Scope and Applications of DNA computing. Search Algorithms: Hill climbing, Simulated annealing:-introduction, Simulated annealing algorithm

Objective:

To learn the foundational understanding of algorithmic concepts like problemsolving strategies, data structures, and algorithm analysis

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Introduction to Algorithmic Concepts - Problem-Solving	T1(2-5)	GCR
2.	DNA Computing - Motivation and DNA Structure	T4(14)	GCR
3.	DNA Processing and Computational Operations	T5(13-16)	GCR
4.	Steps Involved in DNA Computation	T2(19-21)	GCR
5.	Filtering Models in DNA Computing - Adleman's Experiment	T3(23-31)	GCR
6.	Filtering Models in DNA Computing - Lipton's Solution	T3(34-41)	GCR
7.	Scope and Applications of DNA Computing	T3(32,33)	GCR
8.	Introduction to Search Algorithms - Hill Climbing	T3(32,33)	GCR
9.	Introduction to Search Algorithms - Simulated Annealing Algorithm	T1(62)	GCR
Content bey	vond syllabus covered (if any):		
NA			

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BT **22031** / Fundamentals of Algorithms for Biotechnologists (H&M) Unit : II

Unit Syllabus: GENETIC ALGORITHM (9 h)

Genetic Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Optimization using GAs; Applications of GA in bioinformatics

Objective:

To apply algorithmic thinking to solve problems related to sequence analysis, gene prediction, and protein structure analysis.

Session No *	Topics to be covered	Ref	Teaching Aids
10.	Introduction to Genetic Algorithms	T2(73-132)	GCR
11.	Core Concepts of Genetic Algorithms	R1(177-179)	GCR
12.	Reproduction in Genetic Algorithms	R2(365-387)	GCR
13.	Crossover in Genetic Algorithms	T2(333-363)	GCR
14.	Mutation Techniques in Genetic Algorithms	T1(138-145)	GCR
15.	Genetic Algorithms Cycle	T4(160-179)	GCR
16.	Fitness Value and Evaluation	T1(310-319)	GCR
17.	Optimization Using Genetic Algorithms	T2(543-568)	GCR
18.	Applications of Genetic Algorithms in Bioinformatics	T2(569-617)	GCR
Content bey NA	rond syllabus covered (if any):		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BT **22031** / Fundamentals of Algorithms for Biotechnologists (H&M) Unit: III

Unit Syllabus: HIDDEN MARKOV MODEL (9 h)

Markov processes and Markov Models, Hidden Markov Models. Forward and Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of proteins and for finding genes in the DNA.

Objective:

To analyze and interpret biological data using computational tools and algorithms.

Session No *	Topics to be covered	Ref	Teaching Aids
19.	Introduction to Markov Processes	T1(193-196)	GCR
20.	Introduction to Markov Models	T1(188-193)	GCR
21.	Building Markov Models	R3(188-190)	GCR
22.	Introduction to Hidden Markov Models	R4(212-215)	GCR
23.	Forward Algorithm for HMMs	R5(216-217)	GCR
24.	Backward Algorithm for HMMs	T2(171-195)	GCR
25.	Decoding Biological Sequences with HMMs	T2(196-226)	GCR
26.	Viterbi Algorithm	T2(196-226)	GCR
27.	Parameter Estimation for HMMs: Baum-Welch Algorithm	T2(618-641)	GCR
Content bey	ond syllabus covered (if any):		
NA			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BT **22031** / Fundamentals of Algorithms for Biotechnologists (H&M) Unit: IV

Unit Syllabus: SUPPORT VECTOR MACHINES

(9 h)

Introduction, hyperplane separation (maximum and soft margin hyperplanes), linear classifier, Kernel functions, Large Margin Classification, Optimization problem with SVM, Applications of SVM in bioinformatics. Bayesian network: Bayes Theorem, Inference and learning of Bayesian network, BN and Other Probabilistic Models.

Objective:

To develop basic algorithms for solving biological problems.

Session No *	Topics to be covered	Ref	Teaching Aids
28.	Applications of Profile HMMs for Multiple Alignment of Proteins	T2(469-487)	GCR
29.	Applications of HMMs for Finding Genes in DNA	T2(488-509)	GCR
30.	Hyperplane Separation	T2(687-702)	GCR
31.	Linear Classifiers and Kernel Functions	T2(510-527)	GCR
32.	Large Margin Classification & Optimization	T2(527)	GCR
33.	Implementing SVMs for Biological Data	T2(528)	GCR
34.	Bayes' Theorem	T2(531-532)	GCR
35.	Learning Bayesian Networks	T2 (789 – 822)	GCR
36.	Inference in Bayesian Networks	T3(1060-1086)	GCR
Content bey	rond syllabus covered (if any):	·	
NA			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY Page 5 of 6

Sub. Code / Sub. Name: BT **22031** / Fundamentals of Algorithms for Biotechnologists (H&M) Unit: V

Unit Syllabus: ARTIFICIAL NEURAL NETWORK

Artificial Neural Network: Historic evolution – Perceptron, characteristics of neural networks terminology, models of neuron Mc Culloch – Pitts model, Perceptron, Adaline model, Basic learning laws, Topology of neural network architecture, single layer ANN, multilayer perceptron, back propagation learning, input - hidden and output layer computation, back propagation algorithm, Applications of ANN.

Objective:

To evaluate the efficiency and effectiveness of different algorithmic approaches in biotechnology.

Session No *	Topics to be covered	Ref	Teaching Aids
37.	Introduction to Artificial Neural Networks	T3(978-979)	GCR
38.	Models of Neurons: McCulloch-Pitts Model and Perceptron	T5(979)	GCR
39.	Adaline Model and Basic Learning Laws	T1(820-825)	GCR
40.	Topology of Neural Network Architecture	T1(188-190)	GCR
41.	Single Layer Artificial Neural Networks	T1(207-12)	GCR
42.	Multilayer Perceptron and Backpropagation Learning	T1(207-12)	GCR
43.	Input, Hidden, and Output Layer Computation	T4(857)	GCR
44.	Backpropagation Algorithm	T1(231-33)	GCR
45.	Applications of Artificial Neural Networks in Biotechnology	T3(959-962)	GCR
Content bey	ond syllabus covered (if any):		
NA			

* Session duration: 50 mins

(9 h)

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BT 22031/ Fundamentals of Algorithms for Biotechnologists

Reference Books:

- 1. Sung, W. K. "Algorithms for Next-Generation Sequencing", First Edition, CRC Press, 2017.
- Rout, R. K., Umer, S., Sheikh, S. & Sangal, A. L. "Artificial Intelligence Technologies for Computational Biology", First Edition, CRC Press, 2022.
- Mäkinen, V., Belazzougui, D., Cunial, F. & Tomescu, A. I. "Genome-Scale Algorithm Design: Bioinformatics in the Era of High-Throughput Sequencing", First Edition, Cambridge University Press, 2023.
- Arabnia, H. R. & Tran, Q. N. "Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications", First Edition, Elsevier Science, 2016.
- Ismail, H. D. "Bioinformatics: A Practical Guide to NCBI Databases and Sequence Alignments", First Edition, CRC Press, 2022.

Text Books:

- T. Compeau, P. & Pevzner, P. "Bioinformatics Algorithms: An Active Learning Approach", Second Edition, Active Learning Publishers, 2018.
- Rocha, M. & Ferreira, P. G. "Bioinformatics Algorithms: Design and Implementation in Python", First Edition, Elsevier Science, 2018.
- 3. Gagniuc, P. A. "Algorithms in Bioinformatics: Theory and Implementation", First Edition, Wiley, 2021.
- Botwright, R. "Bioinformatics: Algorithms, Coding, Data Science And Biostatistics", First Edition, Rob Botwright, 2024.
- Sofi, M. Y., Shafi, A. & Masoodi, K. Z. "Bioinformatics for Everyone", First Edition, Elsevier Science, 2021.

SignatureSorSorJive sinizerNameMr. S. Naga VigneshProf. E. NakkeeranDesignationAssistant ProfessorHead of the DepartmentDate08/07/202408/07/2024
NameMr. S. Naga VigneshProf. E. NakkeeranDesignationAssistant ProfessorHead of the DepartmentDate08/07/202408/07/2024
Designation Assistant Professor Head of the Department Date 08/07/2024 08/07/2024
Date 08/07/2024 08/07/2024
Remarks *:
The same lesson plan will be followed in subsequent future