FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	Department of Automobile Engineering		LP: AE122302 Rev. No: 00
B.E/B.Tech/M.E/M.Tech	: Automobile Engineering	Regulation: 2018A	Date: 27.07.2023
PG Specialisation	: NA		
Sub. Code / Sub. Name	: AE22302 / FLUID MECHANICS AND HYDRAU	JLIC MACHINES	
Unit	: I		

Unit Syllabus:

FLUID PROPERTIES AND FLOW CHARACTERISTICS

Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, surface tension and capillarity. Pressure measurement devices - U- tube manometers, pressure gauges. Flow characteristics – concept of control volume - application of continuity equation, energy equation and momentum equation - venturi, airfoil, spoiler.

Objective: Students learn about the properties of fluids, pressure measurement and flow characteristics.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to the subject & syllabus contents, Units & Dimensions	1 - Ch.l; Pg.01 - 06	PPT, BB
2	Properties of fluids - Mass density, Specific weight, specific volume	1 - Ch.l; Pg.07 -08 5 - Ch.l; Pg.02 - 03	PPT, BB
3	Specific gravity, Viscosity, Compressibility, Vapour pressure, Surface tension and Capillarity	1 - Ch.1; Pg.08-14 1 - Ch.1; Pg.12 - 17 5 - Ch.1; Pg.02-23 5 - Ch.1; Pg.23 - 29	PPT, BB
4	Pressure measurement devices - U- tube manometers, Pressure gauges	5 - Ch.2; Pg.150-162	PPT, BB
5	Flow characteristics - Concept of control volume	1 - Ch.6; Pg.236 -246 5 - Ch.5; Pg.165 - 169	PPT, BB
6	Application of continuity equation	1 - Ch.7; Pg.288 -300 5 - Ch.6; Pg.261 -267	PPT, BB
7	Energy equation - Orifice-meter - Problems	1 - Ch.7; Pg.305 -317 5 - Ch.6; Pg.268 - 287	PPT, BB
8	Energy equation - Venturimeter and Pitot tube - Problems	1 - Ch.7; Pg.305 -317 5 - Ch.6; Pg.268 - 287	PPT, BB
9	Momentum equation - Venturi, Airfoil, Spoiler - Problems	1 - Ch.5; Pg.230 -246 5 - Ch.6; Pg.160 - 169	PPT, BB
Content beyond syllabus covered (if any):			

* Session duration: 50 minutes

09

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: AE22302 / FLUID MECHANICS AND HYDRAULIC MACHINES

Unit : II

Unit Syllabus:

FLOW THROUGH CIRCULAR CONDUITS AND BOUNDARY LAYER

09

Hydraulic and energy gradient, Laminar flow through circular conduits, Darcy Weisbach equation -friction factor, Moody diagram, series and parallel pipes - major losses and minor losses, Boundary layer concepts - types of boundary layer thickness, Drag and Lift.

Objective: Students learn about the types of flow, Boundary layer concepts and losses in pipes.

Session No *	Topics to be covered	Ref	Teaching Aids
10	Flow through pipes - Hydraulic and energy gradient, Laminar flow through circular conduits	2 - Ch.3; Pg.129 5 - Ch.11; Pg.491 5 - Ch.9; Pg.387 - 392 5 - Ch.9; Pg.397 - 401	PPT, BB
11	Major Losses - Darcy Weisbach equation - derivation	5 - Ch.11; Pg.465 - 471 5 - Ch.10; Pg.434 - 436	PPT, BB
12	Problems on Darcy Weisbach equation-friction factor - Moody diagram- commercial pipes	5 - Ch.11; Pg.467 - 469 2 - Ch.6; Pg.293 - 295	PPT, BB
13	Minor losses - Problems	5 - Ch. 11; Pg.471 - 474 5 - Ch. 11; Pg.483 - 486	PPT, BB
14	Flow through pipes in series - Problems	5 - Ch. 11; Pg.502 - 506 5 - Ch. 11; Pg.508 - 511	PPT, BB
15	Flow through pipes in parallel - Problems	5 - Ch.11; Pg.522 - 536	PPT, BB
16	Boundary layer concepts - Types of boundary layer thickness	2 - Ch.7; Pg.318 - 325 5 - Ch.13; Pg.611 - 616 5 - Ch.13; Pg.625 - 626	PPT, BB
17	Boundary Layer Concepts	5 - Ch.11; Pg.522 - 536	PPT, BB
18	Drag and Lift	5 - Ch.11; Pg.522 - 536	PPT, BB
Content beyond syllabus covered (if any): Flow of viscous fluid between two parallel plates, Problems on Boundary layer			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: AE22302 / FLUID MECHANICS AND HYDRAULIC MACHINES

Unit : III

Unit Syllabus:

DIMENSIONAL ANALYSIS

09

Need for dimensional analysis - methods of dimensional analysis - Similitude - types of similitude - Dimensionless parameters - application of dimensionless parameters - Model analysis - Similarity between Model and Prototype Vehicle.

Objective: Students gained adequate knowledge of Dimensional analysis and Model analysis.

Session No *	Topics to be covered	Ref	Teaching Aids
19	Introduction - Dimensional analysis, Fundamental dimensions and derived units	3 - Ch.7; Pg.386 - 389	PPT, BB
20	Methods of dimensional analysis - Rayleigh's method	3 - Ch.7; Pg.390 - 412	PPT, BB
21	Methods of dimensional analysis - Buckingham's П theorem	3 - Ch.7; pg.416 - 417	PPT, BB
22	Buckingham's Π theorem - Problems	3 - Ch.7; Pg.418 - 420	PPT, BB
23	Buckingham's Π theorem - Problems	3 - Ch.7; Pg.418 - 420	PPT, BB
24	Buckingham's Π theorem - Problems	3 - Ch.7; Pg.418 - 420	PPT, BB
25	Similitude - types of similarities - Geometric, Kinematic & Dynamic similarities	3 - Ch.7; Pg.420 - 428	PPT, BB
26	Dimensionless parameters - its significance	3 - Ch.7; Pg.431 - 449	PPT, BB
27	Similarity between Model and Prototype Vehicle - Problems	3 - Ch.7; Pg.431 - 449	PPT, BB
Content beyond syllabus covered (if any): NIL			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: AE22302 / FLUID MECHANICS AND HYDRAULIC MACHINES

Unit : IV

Unit Syllabus:

PUMPS

09

Theory of roto-dynamic machines - various efficiencies - velocity components at entry and exit of the rotor - velocity triangles - Centrifugal pumps - working principle - work done by the impeller - performance curves - Reciprocating pump working principle - Diaphragm pump - Rotary pump - Gear, Vane and Lobe types.

Objective: Students gains exposure to the various types of Pumps

Session No *	Topics to be covered	Ref	Teaching Aids
28	Theory of roto-dynamic machines - various efficiencies, velocity components at entry and exit of the rotor - velocity triangles	5 - Ch.19; Pg.948 - 950 4 - Ch.11; Pg.778 - 782	PPT, BB
29	Centrifugal pumps - Working principle, Derivation of work done by the impeller	5 - Ch.19; Pg.945 - 948	PPT, BB
30	Centrifugal pumps - Performance curves	4 - Ch.11; Pg.782 - 783	PPT, BB
31	Problems on Centrifugal pumps	5 - Ch.19; Pg.951 - 954	PPT, BB
32	Problems on Centrifugal pumps	5 - Ch.19; Pg.951 - 954	PPT, BB
33	Reciprocating pump- working principle	5 - Ch.20; Pg.993	PPT, BB
34	Reciprocating pump - Problems	5 - Ch.20; Pg.918 - 920	PPT, BB
35	Reciprocating pump - Problems	5 - Ch.20; Pg.918 - 920	PPT, BB
36	Diaphragm pump - Rotary pumps - Gear, Vane and Lobe types	4 - Ch.21; Pg.784 -798	PPT, BB
Content beyond syllabus covered (if any): Nil			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: AE22302 / FLUID MECHANICS AND HYDRAULIC MACHINES

Unit : \mathbf{V}

Unit Syllabus:

TURBINES

09

Classification of turbines - heads and efficiencies - velocity triangles. Axial, radial and mixed flow turbines, Pelton wheel turbine, Francis turbine and Kaplan turbines - working principles - work done by water on the runner, draft tube. Specific speed - unit quantities - performance curves for turbines.

Objective: Students gain knowledge about the constructional, working principle of different types of turbines and its characteristics.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Introduction to Hydraulic Turbines - Classification - Definition of heads and efficiencies, velocity triangles	3 - Ch.2; Pg.52 - 53, 3 - Ch.2; Pg.59 - 61, 3 - Ch.2; Pg.57 - 58	PPT, BB
38	Types of turbines - Axial, radial and mixed flow	3 - Ch.2; Pg.53 - 54	PPT, BB
39	Pelton wheel turbine, Francis turbine and Kaplan turbines - working principles	3 - Ch.2; Pg.55 - 56, 3 - Ch.2; Pg.81 - 82, 3 - Ch.2; Pg.122 - 124	PPT, BB
40	Problems on Pelton wheel	5 - Ch.18; Pg.862 - 865	PPT, BB
41	Problems on Francis turbine	5 - Ch.18; Pg.896 - 900	PPT, BB
42	Problems on Kaplan turbines	5 - Ch.18; Pg.905 - 908	PPT, BB
43	Draft tube	3 - Ch.2; Pg.57-59	PPT, BB
44	Specific speed - unit quantities	5 - Ch.18; Pg.920 - 922 5 - Ch.18; Pg.927 - 929	PPT, BB
45	Performance curves for turbines	5 - Ch.18; Pg.933 - 937	PPT, BB
Content beyond syllabus covered (if any): Nil			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: AE22302 / FLUID MECHANICS AND HYDRAULIC MACHINES

TEXTBOOKS:

- Bansal, R.K., "Fluid Mechanics and Hydraulics Machines", 5th edition, Laxmi Publications Pvt. Ltd, New Delhi, 2008.
- 2. Rajput, R. K., "Fluid Mechanics and Hydraulic Machines", 6th edition, S. Chand Pvt. Ltd, New Delhi, 2017.

REFERENCES:

- 1. Fox W.R. and McDonald A.T., "Introduction to Fluid Mechanics", John-Wiley and Sons, Singapore, 1995.
- 2. Jain A. K., "Fluid Mechanics", Khanna Publishers, 2010.
- 3. Roberson J.A and Crowe C.T., "Engineering Fluid Mechanics", Jaico Books Mumbai, 2000.
- 4. Streeter, V.L., and Wylie, E.B., "Fluid Mechanics", McGraw Hill, 2000.
- 5. White, F.M., "Fluid Mechanics", Tata McGraw Hill, 5th Edition, New Delhi, 2003.

	Prepared by	Approved by
Signature	k	of dem
Name	Mr. Ramanjaneyulu Kolla	Dr. J. Venkatesan
Designation	Assistant Professor	Professor & Head
Date	27.07.2023	27.07.2023
Remarks* : Remarks* :		
Remarks* :		
Remarks* :		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD