

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

LP:AE18503 **Department of Automobile Engineering** Rev. No: 00

B.E/B.Tech : Automobile Engineering

Regulation: 2018A

Date: 12.07.2023

PG Specialisation

: Not applicable

Sub. Code / Sub. Name: AE18503 DESIGN OF MACHINE ELEMENTS AND TRANSMISSION

Unit

Unit Syllabus:

UNIT I STEADY STRESSES AND VARIABLE STRESSES IN MACHINE **MEMBERS**

Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers, fits and tolerances - Direct, Bending and torsional stress equations - Impact and shock loading - calculation of principle stresses for various load combinations, eccentric loading - curved beams - Factor of safety - theories of failure - Design based on strength and stiffness - stress concentration - Design for variable loading.

Objective: To understand the various stresses acting in machine members.

Introduction to the design process Factors influencing machine design Selection of materials based on mechanical properties	1 – Ch.1; Pg.01 - 09 1 – Ch.1; Pg.50	Aids PPT, BB PPT, BB
Selection of materials based on mechanical		PPT, BB
Selection of materials based on mechanical properties		
	2– Ch.2; Pg.23	PPT, BB
Preferred numbers	2 – Ch.1; Pg.11	PPT, BB
Fits and tolerances	2- Ch.3 Pg.66 - 70	PPT, BB
Direct, Bending and torsional stress equations	1 – Ch.15; Pg.791	PPT, BB
Impact and shock loading	2 - Ch.10; Pg.402	PPT, BB
Calculation of principal stresses for various load combinations	1 – Ch.5; Pg.145	PPT, BB
Eccentric loading – curved beams	2 – Ch.4; Pg.130	PPT, BB
Factor of safety - theories of failure	2 – Ch.4; Pg.77	PPT, BB
Design based on strength and stiffness	2- Ch.2; Pg.24	PPT, BB
Stress concentration – Design for variable loading	2- Ch.5; Pg.141	PPT, BB
	Direct, Bending and torsional stress equations Impact and shock loading Calculation of principal stresses for various load ombinations Eccentric loading – curved beams Cactor of safety - theories of failure Design based on strength and stiffness	Fits and tolerances 2- Ch.3 Pg.66 - 70 Direct, Bending and torsional stress equations 1 - Ch.15; Pg.791 mpact and shock loading 2- Ch.10; Pg.402 Calculation of principal stresses for various load ombinations 1- Ch.5; Pg.145 Eccentric loading - curved beams 2- Ch.4; Pg.130 actor of safety - theories of failure 2- Ch.4; Pg.77 Design based on strength and stiffness tress concentration - Design for variable loading 2- Ch.5; Pg.141

^{*} Session duration: 50 minutes

Page 2 of 6

Sub. Code / Sub. Name: AE18503 DESIGN OF MACHINE ELEMENTS AND TRANSMISSION

SYSTEMS

Unit: II

Unit Syllabus:

UNIT II SHAFTS AND COUPLINGS

12

Design of solid and hollow shafts based on strength, rigidity and critical speed - Keys, keyways -Rigid and flexible couplings.

Objective: To understand the design of shafts, keys and couplings.

Session No *	Topics to be covered	Ref	Teaching Aids
13	Introduction to shafts	2 – Ch.9; Pg.330	PPT, BE
14	Strength, rigidity and critical speed	2 - Ch.9; Pg.331,332	PPT, BB
15	Design of solid and hollow shafts based on strength, rigidity and critical speed - Procedure	2 – Ch.9; Pg.333-344	PPT, BB
16	Design of solid shafts based on strength, rigidity and critical speed - Problems	2 - Ch.9; Pg.333-344	PPT, BB
17	Design of hollow shafts based on strength, rigidity and critical speed - Problems	2 - Ch.9; Pg.333-344	PPT, BB
18	Design of keys and keyways - Procedure	2 – Ch.9; Pg.346– 352	PPT, BB
19	Design of keys and keyways - Problems	2 - Ch.9; Pg.346-352	PPT, BB
20	Couplings - Introduction	2- Ch.9; Pg.356	PPT, BB
21	Rigid couplings – Design Procedure	2- Ch.9; Pg.356 - 367	PPT, BB
22	Rigid couplings – Problems	2- Ch.9; Pg.356 - 367	PPT, BB
23	Flexible couplings - Design Procedure	2- Ch.9; Pg.368-375	PPT, BB
24	Flexible couplings Problems	2- Ch.9; Pg.368-375	PPT, BB

^{*} Session duration: 50 mins

Page 3 of 6

Sub. Code / Sub. Name: AE18503 DESIGN OF MACHINE ELEMENTS AND TRANSMISSION

SYSTEMS

Unit: III

Unit syllabus:

UNIT III MECHANICAL JOINTS AND BEARINGS

12

Threaded fasteners - Bolted joints - Welded joints, riveted joints for structures. Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, Selection of Rolling Contact bearings.

Objective

To have an adequate knowledge on Mechanical joints and Bearings

Session No *	Topics to be covered	Ref	Teaching Aids
25	Introduction - Mechanical Joints, Bolted joints	3- Ch.6; Pg.6.1,6.2	PPT, BB
26	Welded joints, riveted joints for structures - Procedure	3- Ch.6; Pg.7.1-7.18, Pg.6.3-6.15	PPT, BB
27	Welded joints for structures - Problems	3- Ch.7; Pg.7.1-7.18	PPT, BB
28	Riveted joints for structures - Problems	3- Ch.6; Pg.6.3-6.15	PPT, BB
29	Design of Sliding contact bearings - Procedure	3- Ch.17; Pg.17.1-17.12	PPT, BB
30	Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs	3- Ch.17; Pg.17.1-17.12	PPT, BB
31,32	Design of Sliding contact bearings - Problems	3-Ch.17; Pg.17.32-17.33	PPT, BB
33	Design of Rolling contact bearings - Procedure	3- Ch.17; Pg.17.12-17.32	PPT, BB
34,35	Design of Rolling contact bearings - Problems	3- Ch.17; Pg.17.33-17.35	PPT, BB
36	Selection of Rolling Contact bearings	3- Ch.17; Pg.17.28-17.29	PPT, BB

Page 4 of 6

Sub. Code / Sub. Name: AE18503 DESIGN OF MACHINE ELEMENTS AND TRANSMISSION

SYSTEMS

Unit: IV

Unit syllabus:

SPUR GEARS AND PARALLEL AXIS HELICAL GEARS **UNIT IV**

Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects - Fatigue strength - Factor of safety - Gear materials - Design of straight tooth spur & helical gears based on strength and wear considerations - Pressure angle in the normal and transverse plane-Equivalent number of teeth-forces for helical gears.

Objective

To understand the design of spur and helical gears

Session No *	Topics to be covered	Ref	Teaching Aids
37	Introduction to gears	5 - Ch.1; Pg.1.1-1.2	PPT, BB
38,39	Speed ratios and number of teeth-Force analysis	5 – Ch.1; Pg.1.1-1.36	PPT, BB
40	Tooth stresses - Dynamic effects	5 – Ch.1; Pg.1.1-1.36	PPT, BB
41	Fatigue strength - Factor of safety	5 – Ch.1; Pg.1.1-1.36	PPT, BB
42	Gear materials	5 – Ch.1; Pg.1.1-1.36	PPT, BB
43	Design of straight tooth spur gears based on strength and wear considerations - Procedure	5 – Ch.1; Pg.1.1-1.36	PPT, BB
44	Design of straight tooth spur gears based on strength and wear considerations - Problems	5 – Ch.1; Pg.1.1-1.36	PPT, BB
45	Design of helical gears based on strength and wear considerations- Procedure	5 – Ch.2; Pg.2.1-2.15	PPT, BB
46	Design of helical gears based on strength and wear considerations - Problems	5 – Ch.2; Pg.2.1-2.15	PPT, BB
47	Pressure angle in the normal and transverse plane	5 – Ch.2; Pg.2.1-2.15	PPT, BB
48	Equivalent number of teeth-forces for helical gears.	5 – Ch.2; Pg.2.1-2.15	PPT, BB

Page 5 of 6

Sub. Code / Sub. Name: AE18503 DESIGN OF MACHINE ELEMENTS AND TRANSMISSION

Unit: V

UNIT V GEAR BOXES AND BRAKES

12

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi-speed gear box for machine tool applications -Constant mesh gear box, Speed reducer unit. Variable speed gear box, Design of disc brakes

Objective

To understand the design of Gear box and Brakes.

Session No *	Topics to be covered	Ref	Teaching
49	Introduction to gear box	5- Ch.6; Pg.6.1- 6.25	Aids PPT, BB
50	Geometric progression - Standard step ratio	5- Ch.6; Pg.6.1- 6.25	PPT, BB
51	Ray diagram	5– Ch.6; Pg.6.1- 6.25	PPT, BB
52	Kinematics layout	5- Ch.6; Pg.6.1- 6.25	PPT, BB
53,54	Design of sliding mesh gear box	5– Ch.6; Pg.6.1- 6.25	PPT, BB
55,56	Design of multi-speed gear box for machine tool applications	5- Ch.6; Pg.6.1- 6.25	PPT, BB
57	Design of Constant mesh gear box	5- Ch.6; Pg.6.1- 6.25	PPT, BB
58	Speed reducer unit	5- Ch.5; Pg.5.1 - 5.4	PPT, BB
59	Variable speed gear box	5- Ch.6; Pg.6.1- 6.25	PPT, BB
60	Design of disc brakes	5 - Ch. 13; Pg. 13.1 – 13.3	PPT, BB

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

REFERENCES:

- 1. Bhandari. V, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill BookCo, 2016.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett, Mechanical Engineering Design", 10th Edition, Tata McGraw-Hill, 2015.
- 3. Sundararajamoorthy. T.V, Shanmugam.N, "Machine Design, Anuradha Publications, Chennai, 2003.
- 4. Khurmi R S., "A Text Book of Machine Design", 14th Edition, S Chand Publishing.
- 5. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.

	Prepared by	Approved by
Signature	J. Haralial	of Green -
Name	J. Dhanabal	Dr. J. Venkatesan
Designation	Assistant Professor	Professor & Head
Date	12.07.2023	12.07.2023

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD