

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Automobile Engineering

LP: AE18604

B.E/B.Tech/M.E/M.Tech: BE- Automobile Engineering

Regulation:2018

Rev. No: 00

PG Specialisation

: NA

Date: 11-01-2021

Sub. Code / Sub. Name : AE18604- VEHICLE DESIGN DATA CHARACTERISTICS

Unit

: I

Unit Syllabus: INTRODUCTION

Assumptions to be made in designing a vehicle Range of values for Gross Vehicle Weight, Frontal Area, maximum speed, maximum acceleration, gradability in different gears, Basics of Automobile Design. Design variables and operating variables affecting performance and emission.

Objective:

Students have to collect important technical specifications of an automobile from Automobile Journals and keeping this, as a guide.

Session	Topics to be covered	Ref	Teaching
No *	Topies to be covered	1.01	Aids
1	Assumptions to be made in designing a vehicle	ions to be made in designing a vehicle 1-Ch.20; Pg.854	
2	Range of values for Gross Vehicle Weight	1-Ch.20; Pg.854	PPT
3	Frontal Area calculation	1-Ch.4; Pg.854 PF	
4	Maximum speed Calculation	1-Ch.20; Pg.854-859 PP7	
5	Maximum acceleration calculation	1-Ch.20; Pg.854-859	PPT
6	Gradability in different gears	1-Ch.20; Pg.854-859	PPT
7	Tutorial	1-Ch.20; Pg.854-859	PPT
8.	Basics of Automobile Design	1-Ch.1; Pg.19	PPT
9	Design variables affecting performance and emission	1-Ch 3; Pg.183-185	PPT
		3-Ch 16; Pg.499-512	
10	Operating variables affecting performance and emission	1-Ch 3; Pg.183-185	PPT
11	Tutorial	1-Ch 3; Pg.183-185	PPT
12	Tutorial	3-Ch 16; Pg.521	PPT

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: AE18604 - VEHICLE DESIGN DATA CHARACTERISTICS

Unit: II

Unit Syllabus: RESISTANCE TO VEHICLE MOTION

Calculation, Tabulation and Plotting of Curves for Air and Rolling Resistances at various vehicles speeds, Calculation and Plotting of Driving force, Power requirement for different loads and acceleration, Maximum Power calculation.

Objective:

Students have to collect important technical specifications of an automobile from Automobile Journals and keeping this, as a guide, they have to calculate and tabulate various vehicle air Resistances Rolling Resistances and to calculate, Maximum Power calculation

Session No *	Topics to be covered	Ref	Teaching Aids
13	Calculation of Air Resistances at various vehicle speeds 1-Ch.20; Pg.855-859		PPT
14	Tabulation and Plotting of Curves for Air Resistances at various vehicle speeds	1-Ch.20; Pg.855-859	PPT
15	Tutorial 1-Ch.20; Pg.		
16	Calculation of Rolling Resistances at various vehicle speeds 1-Ch.20; Pg.856		PPT
17	Tabulation and Plotting of Curves for Rolling Resistances at various vehicle speeds	1-Ch.3; Pg.178	PPT
18	Tutorial	1-Ch.3; Pg.179	PPT
19	Calculation and Plotting of Driving force	1-Ch.3; Pg.179	PPT
20	Calculation and Plotting Power requirement for different loads	1-Ch.20; Pg.856-858	PPT
21	Calculation and Plotting of Power requirement for different acceleration	1-Ch.20; Pg.856-858	PPT
22	Maximum Power calculation	1-Ch.20; Pg.856-858	PPT
23	Tutorial	1-Ch.20; Pg.856-858	PPT
24	Tractive and Braking Properties of Tyres, Air flow over the vehicle	1-Ch.20; Pg.860-873	PPT

Content beyond syllabus covered (if any): Tractive and Braking Properties of Tyres, Air flow over the vehicle.

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: AE18604 - VEHICLE DESIGN DATA CHARACTERISTICS

Unit: III

Unit Syllabus: PERFORMANCE CURVES - I

Calculation, Tabulation and Plotting of Torque and Mechanical Efficiency for different vehicle speeds, Interpolation of Pressure – Volume diagram, Calculation of frictional Mean Effective Pressure, Calculation of Engine Cubic Capacity, Bore and Stroke Length, Calculation of Power and torque curve.

Objective:

Students have to collect important technical specifications of an automobile from Automobile Journals and keeping this, as a guide, they have to calculate and tabulate various vehicle performance parameters and design parameters and to draw curves using these data.

Session No *	Topics to be covered	Ref	Teaching	
INO ·			Aids	
25	Calculation of Torque for different vehicle speeds	1-Ch.3; Pg.167-181	PPT	
		3-Ch 16; Pg.499-512	rr i	
26	Tabulation and Plotting of Torque for different vehicle	1-Ch.3; Pg.167-181	DDT	
20	speeds		PPT	
27	Calculation, Tabulation and Plotting of Torque and	1-Ch.3; Pg.167-181	222	
21	Mechanical Efficiency for different vehicle speeds,	3-Ch 1; Pg.22-25	PPT	
28	Interpolation of Pressure – Volume diagram	1-Ch.3; Pg.167-181	PPT	
20		3-Ch 2; Pg.52-55		
29	Calculation of frictional Mean Effective Pressure,	1-Ch.3; Pg.167-181	PPT	
29		3-Ch 2; Pg.52-55		
30	Calculation of Engine Cubic Capacity	1-Ch.3; Pg.167-181	DDT	
50	Calculation of Engine Cubic Capacity	3-Ch 1; Pg.21-30	PPT	
31	Tutorial	1-Ch.3; Pg.167-181	DDT	
31	Tutoriai	3-Ch 1; Pg.21-30	PPT	
32	Calculation of Bore and Stroke Length	1-Ch.3; Pg.167-181	PPT	
33	Calculation of Power and torque curve.	1-Ch.3; Pg.167-181	PPT	
34	Calculation of maximum acceleration, maximum Tractive	1-Ch.3; Pg.167-181	225	
	effort		PPT	
35	Tutorial	1-Ch.3; Pg.183-189	PPT	
36	Tutorial	1-Ch.3; Pg.183-189	PPT	

Content beyond syllabus covered (if any): Calculation of maximum Acceleration, maximum Tractive Effort

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: AE18604 - VEHICLE DESIGN DATA CHARACTERISTICS

Unit: IV

Unit Syllabus: PERFORMANCE CURVES - II

Connecting rod length to Crank Radius Ratio, Plotting of Piston Velocity and Acceleration against Crank Angle, Plotting Gas force, inertia force and Resultant force against Crank Angle, Turning Moment and Side Thrust against Crank Angle.

Objective:

Students have to collect important technical specifications of an automobile from Automobile Journals and keeping this, as a guide, they have to calculate and tabulate various vehicle performance parameters and design parameters and to draw curves using these data.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Connecting rod length to Crank Radius Ratio	1-Ch.2; Pg.30	PPT
38	Plotting of Piston Velocity against Crank Angle 1-Ch.2; Pg.31		PPT
39	Plotting of Piston Acceleration against Crank Angle 1-Ch.2; Pg.31		PPT
40	Plotting Gas force against Crank Angle	1-Ch.2; Pg.34	PPT
41	Tutorial	1-Ch.2; Pg.34	PPT
42	Plotting inertia force against Crank Angle	1-Ch.2; Pg.35	PPT
43	Plotting Resultant force against Crank Angle	1-Ch.2; Pg.35	PPT
44	Turning Moment against Crank Angle	1-Ch.2; Pg.35	PPT
45	Side Thrust against Crank Angle	1-Ch.2; Pg.30-49	PPT
46	Tutorial	1-Ch.2; Pg.30-49	PPT
47	Tutorial	1-Ch.2; Pg.30-49	PPT
48	Multi-Cylinder Engines-The cyclic-torque and the flywheel Effect	1-Ch.2; Pg.30-49	PPT

Content beyond syllabus covered (if any): Multi-Cylinder Engines-The cyclic-torque and the flywheel Effect

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: AE18604 - VEHICLE DESIGN DATA CHARACTERISTICS

Unit: V

Unit Syllabus: GEAR RATIOS

Requirements of Gear box, Determination of Gear Ratios, Acceleration and Gradability, Typical Problems on Vehicle performance.

Objective:

Students have to collect important technical specifications of an automobile from Automobile Journals and keeping this, as a guide, they have to Determination of Gear Ratios, and Plotting Gear Ratios on Vehicle performance

Session	Topics to be covered	Ref	Teaching
No *		Kei	Aids
49	Requirements of Gear box	1-Ch.15; Pg.597	PPT
		6-Ch.13; Pg.208-210	111
50	Determination of Gear Ratios for sliding mesh gear train	1-Ch.15; Pg.597 – 598	PPT
		6-Ch.13; Pg.208-210	FFI
51	Determination of Gear Ratios for constant mesh gear train	1-Ch.15; Pg.597 - 598	PPT
52	Determination of Acceleration	1-Ch.15; Pg.597 - 598	PPT
32		1-Ch.20; Pg854859	
53	Determination of Gradability	1-Ch.15; Pg.597 - 598	DDT
33		1-Ch.20; Pg854859	PPT
54	Typical Problems on Vehicle performance 1-Ch.20; Pg854859		PPT
55	Typical Problems on Vehicle performance	1-Ch.15; Pg.597 - 598	DDT
		1-Ch.20; Pg854859	PPT
56	Plotting Gear Ratios on Vehicle performance 1-Ch.15; Pg.608- 61		PPT
57	Epicyclic or planetery Gear train.	1-Ch.15; Pg.608- 611	PPT
58	Tutorial	1-Ch.15; Pg.608- 611	PPT
59	Tutorial	1-Ch.15; Pg.608- 611	PPT
60	Tutorial	1-Ch.15; Pg.608- 611	PPT

^{*} Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: AE18604 - VEHICLE DESIGN DATA CHARACTERISTICS

REFERENCES:

- 1. Giri. N. K., "Automotive Mechanics", Khanna Publishers, New Delhi, 2008.
- 2. Heldt, P.M., "High Speed Combustion Engines", Oxford and I.B.H. Publishing Co., Kolkata, 2002.
- 3. Ganesan V., "Internal Combustion Engines", Fourth Edition, Tata McGraw Hill, 2017.
- 4. Gupta. R.B., "Automobile Engineering", Sathya Prakashan, 1st edition, 2016.
- 5. Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 3rd edition, 2009.
- 6. Jain K.K. and Asthana .R.B, "Automobile Engineering", Tata McGraw Hill Publishers, 2002.

	Prepared by	Approved by
Signature	Rahe	Som
Name	SAKTHIVEL.R	Dr. J. Venkatesan
Designation	ASSISTANT PROFESSOR	Professor 2 HOD/AUT
Date	11-01-2024	11-01-2021
year 202		- followed for this Academie John 28/2/2022
Remarks *:	ne Some lesson plans com	be followed for this Academia
Yeom	2022-23 Plane	John

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and The same Lesson plan can be followed for this
year 2023-24 [Even semester]

Plan signed by the Faculty and the HOD