

#### **COURSE DELIVERY PLAN - THEORY**

Page 1 of 6

# **Department of Automobile Engineering**

B.E/B.Tech/M.E/M.Tech : B.E Automobile Engineering Regulation: 2018A

PG Specialisation : NA

Sub. Code / Sub. Name : AE 18601 / AUTOMOTIVE COMPONENTS DESIGN

Unit : III

LP: **AE18601** 

Rev. No: 00

Date: 19.07.2021

# **Unit Syllabus:**

## DESIGN OF CLUTCH AND GEAR BOX

12

Design of single plate, multi-plate and cone clutch.

Layout of different types of gearbox, gear train calculation, bearing load calculation and selection of bearings, Design of three speed and four speed gearboxes.

**Objective:** To impart the knowledge to the students about the various automotive chassis components.

| Session<br>No * | Topics to be covered                               | Ref                   | Teaching<br>Aids |
|-----------------|----------------------------------------------------|-----------------------|------------------|
| 1               | Design of single plate clutch                      | 2,Ch.8, Pg. 24 -30    | PPT & BB         |
| 2               | Solving design problem in single plate clutch      | 2,Ch.8, Pg. 30 - 38   | PPT & BB         |
| 3               | Design of multi plate clutch                       | 2,Ch.8, Pg. 30 - 38   | PPT & BB         |
| 4               | Solving design problem in multi plate clutch       | 2,Ch.8, Pg. 30 - 38   | PPT & BB         |
| 5               | Design of cone clutch                              | 2,Ch.8, Pg. 30 - 38   | PPT & BB         |
| 6               | Solving design problem in cone clutch              | 2,Ch.8, Pg. 30 - 38   | PPT & BB         |
| 7               | Layout of different types of gearbox               | 2,Ch.8, Pg. 30 - 38   | PPT & BB         |
| 8               | Gear train calculation                             | 2,Ch.8, Pg. 119 - 127 | PPT & BB         |
| 9               | Solving design problem in gear box                 | 2,Ch.8, Pg. 334 - 354 | PPT & BB         |
| 10              | Bearing load calculation and selection of bearings | 2,Ch.8, Pg. 385 - 388 | PPT & BB         |
| 11              | Design of three speed gearbox                      | 2,Ch.8, Pg. 389 - 392 | PPT & BB         |
| 12              | Design of four speed gearbox                       | 2,Ch.8, Pg. 389 - 392 | PPT & BB         |
| Content be      | eyond syllabus covered (if any):                   | 1                     |                  |

<sup>\*</sup> Session duration: 50 minutes



## COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: AE 18601 / AUTOMOTIVE COMPONENTS DESIGN

 $Unit: \boldsymbol{V}$ 

# **Unit Syllabus:**

# VEHICLE FRAME AND SUSPENSION

12

Study of loads, moments and stresses on frame members. Design of frame for passenger and commercial vehicle, design of leaf springs, coil springs and torsion bar springs.

Objective: To know the various frames and Suspension systems, selection of frames and springs

| Session<br>No * | Topics to be covered                                         | Ref                    | Teaching<br>Aids |
|-----------------|--------------------------------------------------------------|------------------------|------------------|
| 13              | Study of loads on frame members                              | 2,Ch.10, Pg. 32 - 36   | PPT & BB         |
| 14              | Solving problem on frame members                             | 2 Ch.10, Pg. 180 - 183 | PPT & BB         |
| 15              | Solving problem on frame members                             | 2 Ch.10, Pg. 180 - 183 | PPT & BB         |
| 16              | Study of moments and stresses on frame members               | 2,Ch.10 Pg. 152 - 163  | PPT & BB         |
| 17              | Solving problem on moments and stresses on the frame members | 2,Ch.10, Pg. 167 - 175 | PPT & BB         |
| 18              | Solving problem on moments and stresses on the frame members | 2,Ch.10, Pg. 167 - 175 | PPT & BB         |
| 19              | Design of frame for passenger vehicle                        | 2,Ch.10, Pg. 199 - 221 | PPT & BB         |
| 20              | Design of frame for commercial vehicle                       | 2,Ch.10, Pg. 213       | PPT & BB         |
| 21              | Design of leaf springs                                       | 2,Ch.10, Pg. 316 - 322 | PPT & BB         |
| 22              | Design of coil springs                                       | 2,Ch.10, Pg. 322 - 325 | PPT & BB         |
| 23              | Design of torsion bar springs                                | 2,Ch.10, Pg. 325 - 328 | PPT & BB         |
| 24              | Solving design problem in springs                            | 2,Ch.10, Pg. 328 - 331 | PPT & BB         |

# Content beyond syllabus covered (if any):

<sup>\*</sup> Session duration: 50 mins



### COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: AE 18601 / AUTOMOTIVE COMPONENTS DESIGN

 $Unit: \boldsymbol{I}$ 

# **Unit Syllabus:**

# DESIGN OF CYLINDER, PISTON AND CONNECTING ROD

12

Fundamental of engineering design, choice of material for cylinder and piston, design of cylinder, piston. material for connecting rod, determining minimum length of connecting rod, small end design, shank design, design of big end cap bolts.

**Objective:** To make the students understand the design concept and principles of various engine components.

| Session<br>No * | Topics to be covered                       | Ref                    | Teaching<br>Aids |
|-----------------|--------------------------------------------|------------------------|------------------|
| 25              | Fundamental of engineering design          | 2,Ch.11, Pg. 35 - 36   | PPT & BB         |
| 26              | Choice of material for cylinder and piston | 2,Ch.11, Pg. 226 - 241 | PPT & BB         |
| 27              | Design of cylinder                         | 2,Ch.11, Pg. 230 - 231 | PPT & BB         |
| 28              | Problem solving on cylinder design         | 2,Ch.11, Pg. 232 - 234 | PPT & BB         |
| 29              | Design of piston                           | 2,Ch.11, Pg. 343 - 345 | PPT & BB         |
| 30              | Problem solving on piston design           | 2,Ch.11, Pg. 226 - 241 | PPT & BB         |
| 31              | Material for connecting rod and design     | 2,Ch.11, Pg. 250 - 253 | PPT & BB         |
| 32              | Design of connecting rod small end         | 2,Ch.11, Pg. 254 - 260 | PPT & BB         |
| 33              | Design of connecting rod shank             | 2,Ch.11, Pg. 186 - 196 | PPT & BB         |
| 34              | Design of connecting rod big end caps bolt | 2,Ch.11, Pg. 196 - 198 | PPT & BB         |
| 35              | Problem solving on connecting rod          | 2,Ch.11, Pg. 198 - 200 | PPT & BB         |
| 36              | Problem solving on connecting rod          | 2,Ch.11, Pg. 200 - 202 | PPT & BB         |

Content beyond syllabus covered (if any):

<sup>\*</sup> Session duration: 50 mins



#### COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: AE 18601 / AUTOMOTIVE COMPONENTS DESIGN

Unit: II

# **Unit Syllabus:**

## DESIGN OF CRANKSHAFT AND FLYWHEEL

12

Balancing of Internal Combustion engines, significance of firing order, material for crankshaft, design of crankshaft under bending and twisting, balancing weight calculations, development of short and long crank arms.

Determination of engine flywheel mass for a given co- efficient of speed fluctuation, stresses on flywheel rim. Design of hubs and flywheel arm, turning moment diagram, flywheel materials.

**Objective:** To familiarize the various steps involved in the automotive engine components.

| Session<br>No * | Topics to be covered                                                               | Ref                    | Teaching<br>Aids |
|-----------------|------------------------------------------------------------------------------------|------------------------|------------------|
| 37              | Balancing of Internal Combustion engines                                           | 2,Ch.12, Pg. 340 - 343 | PPT & BB         |
| 38              | Significance of firing order                                                       | 2,Ch.12, Pg. 1 - 23    | PPT & BB         |
| 39              | Material for crankshaft and design consideration                                   | 2,Ch.12, Pg. 355 - 358 | PPT & BB         |
| 40              | Design of crankshaft under bending and twisting                                    | 2,Ch.12, Pg. 360 - 361 | PPT & BB         |
| 41              | Problem solving on design of crankshaft                                            | 2,Ch.12, Pg. 361 - 365 | PPT & BB         |
| 42              | Balancing weight calculations                                                      | 2,Ch.12, Pg. 367 - 372 | PPT & BB         |
| 43              | Development of short and long crank arms                                           | 2,Ch.12, Pg. 268 - 273 | PPT & BB         |
| 44              | Determination of engine flywheel mass for a given coefficient of speed fluctuation | 2,Ch.12, Pg. 268 - 273 | PPT & BB         |
| 45              | Stresses on flywheel rim                                                           | 2,Ch.12, Pg. 268 - 273 | PPT & BB         |
| 46              | Design of hubs and flywheel arm                                                    | 2,Ch.12, Pg. 268 - 273 | PPT & BB         |
| 47              | Turning moment diagram, flywheel materials                                         | 2,Ch.12, Pg. 268 - 273 | PPT & BB         |
| 48              | Solving design problem on flywheel                                                 | 2,Ch.12, Pg. 268 - 273 | PPT & BB         |
| Content be      | eyond syllabus covered (if any):                                                   |                        |                  |

<sup>\*</sup> Session duration: 50 mins



## COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: AE 18601 / AUTOMOTIVE COMPONENTS DESIGN

Unit: IV

# **Unit Syllabus:**

# DRIVE LINE AND REAR AXLE

12

Design of propeller shaft, final drive gearing, semi floating, three quarter floating, full floating and rear axle housings.

**Objective:** To impart a comprehensive knowledge of power train components.

| Session<br>No * | Topics to be covered                           | Ref                   | Teaching<br>Aids |
|-----------------|------------------------------------------------|-----------------------|------------------|
| 49              | Design of propeller shaft                      | 2,Ch.9, Pg. 61 - 64   | PPT & BB         |
| 50              | Solving problem in propeller shaft design      | 2,Ch.9, Pg. 66 - 70   | PPT & BB         |
| 51              | Solving problem in propeller shaft design      | 2,Ch.9, Pg. 66 - 70   | PPT & BB         |
| 52              | Design of final drive gearing                  | 2,Ch.9, Pg. 71 - 82   | PPT & BB         |
| 53              | Solving problem in final drive gearing         | 2,Ch.9, Pg. 301 - 307 | PPT & BB         |
| 54              | Solving problem in final drive gearing         | 2,Ch.9, Pg. 301 - 307 | PPT & BB         |
| 55              | Design of semi floating axle                   | 2,Ch.9, Pg. 301 - 307 | PPT & BB         |
| 56              | Problem solving in semi floating axle          | 2,Ch.9, Pg. 129 - 143 | PPT & BB         |
| 57              | Design of three quarter floating axle          | 2,Ch.9, Pg. 95 - 103  | PPT & BB         |
| 58              | Problem solving in three quarter floating axle | 2,Ch.9, Pg. 103 - 105 | PPT & BB         |
| 59              | Design of full floating axle                   | 2,Ch.9, Pg. 105 - 108 | PPT & BB         |
| 60              | Problem solving in full floating axle          | 2,Ch.9, Pg. 108 - 111 | PPT & BB         |

Content beyond syllabus covered (if any):

<sup>\*</sup> Session duration: 50 mins



#### **COURSE DELIVERY PLAN - THEORY**

Page 6 of 6

Sub Code / Sub Name: AE 18601 AUTOMOTIVE COMPONENTS DESIGN

### TEXTBOOKS:

- 1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2016.
- 2. U.C. Jindal, "Machine Design", Pearson Education, 2013.

## REFERENCES:

- 1. Richard G Budynas Richard Gordon Budynas, J.Keith Nisbett., "Shigley's Mechanical Engineering Design", 10<sup>th</sup> edition, Tata McGraw-Hill, 2015.
- 2. R.S. Khurmi& J. K. Guptha, "A Textbook of Machine Design, 34th edition", S. Chand publication, 2014.
- 3. Giri, N.K., "Automobile Mechanics", Khanna publishers", New Delhi, 2007.
- 4. Jain. R. K, "Machine Design", Khanna Publishers", New Delhi, 2005.
- 5. Dean Averns, "Automobile Chassis Design", Illife Book Co., 2001.
- 6. Heldt, P.M., "Automotive Chassis", Chilton Book Co., 1992.

| Signature        | K. 2/1/24               | Jam               |
|------------------|-------------------------|-------------------|
|                  |                         | P 4.              |
| Name             | Mr. Ramanjaneyulu Kolla | Dr. J. Venkatesan |
| Designation      | Assistant Professor     | Professor & Head  |
| Date             | 2/1/24                  | 02/01/2029        |
| Date  Remarks *: | 2/1/24                  | 02/01/2029        |

<sup>\*</sup> If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD