

: I

Unit

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Information Technology

B.E/B.Tech/M.E/M.Tech: Information Technology

PG Specialisation : NA

Sub. Code / Sub. Name : IT22609 / Information Security : Theory And Practices

Unit Syllabus: INTRODUCTION TO SECURITY AND CRYPTOGRAPHY

Overview of Security Parameters: Confidentiality, integrity and availability; Security violation and threats; Security policy and procedure; Assumptions and Trust; Security Assurance, Implementation and Operational Issues; Security Life Cycle. Foundations of Cryptography- Classical Encryption Techniques-Substitution Ciphers - Transposition ciphers - Crypt analysis.

Suggested Activity: Implement the following SUBSTITUTION & TRANSPOSITION TECHNIQUES concepts: a) Caesar Cipher b) Playfair Cipher c) Hill Cipher d) Vigenere Cipher e) Rail fence – row & Column Transformation

Objective: To study and practice fundamental techniques in developing secure applications

Session No *	Topics to be covered	Ref	Teaching Aids
1	Overview of Security Parameters: Confidentiality, integrity and availability	2-Ch.1; Pg.3-6	BB/ PPT
2	Security violation and threats, Security policy and procedure	2-Ch.1; Pg.6-11	BB/ PPT
3	Assumptions and Trust, Security Assurance, Implementation and Operational Issues	2-Ch.1; Pg.11-20	BB/ PPT
4	Security Life Cycle	3-Ch.1; Pg.25-37	BB/ PPT
5	Foundations of Cryptography- Classical Encryption Techniques-Substitution Ciphers	1-Ch.3; Pg.85-106 2-Ch.10; Pg.292-299	BB/ PPT
6	Transposition ciphers - Cryptanalysis.	1-Ch.3; Pg.107-117 2-Ch.10; Pg.290-292	BB/ PPT
7,8	Implement SUBSTITUTION Techniques a) Caesar Cipher, b) Playfair Cipher	1-Ch.3; Pg.85-106 2-Ch.10; Pg.292-299	Experiential Learning
9,10	Implement SUBSTITUTION Techniques c) Hill Cipher d) Vigenere Cipher	1-Ch.3; Pg.85-106 2-Ch.10; Pg.292-299	Experiential Learning
11,12	Implement TRANSPOSITION Techniques e) Rail fence – row & Column Transformation	1-Ch.3; Pg.107-117 2-Ch.10; Pg.290-292	Experiential Learning

Content beyond syllabus covered (if any): Practice on problems related to Vignere Cipher, Hill cipher, Single columnar and double columnar Transposition techniques

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: IT22609 / Information Security: Theory And Practices

Unit: II

Unit Syllabus: SYMMETRIC AND ASYMMETRIC TECHNIQUES

Block Ciphers and the Data Encryption Standard, Advanced Encryption Standard, Introduction to Number Theory - The Euclidean Algorithm - Greatest Common Divisor, Modular Arithmetic - Euclidean Algorithm Revisited - The Extended Euclidean Algorithm, Public Key Cryptography and RSA, Other Public Key Cryptosystems - Diffie-Hellman Key Exchange - Elgamal Cryptographic Systems - Elliptic Curve Cryptography.

Suggested Activity: Implement the following algorithms a) DES b) RSA Algorithm c) Diffiee-Hellman

Objective: To Learn to implement the symmetric and asymmetric cryptographic algorithms

Session No *	Topics to be covered	Ref	Teaching Aids
13	Block Ciphers and the Data Encryption Standard	1-Ch.4; Pg.118-140 2-Ch.10; Pg.299-302	BB/ PPT
14	Advanced Encryption Standard	1-Ch.6; Pg.171-206 2-Ch.10; Pg.303-306	BB/ PPT
15	Introduction to Number Theory - The Euclidean Algorithm - Greatest Common Divisor, Modular Arithmetic - Euclidean Algorithm Revisited - The Extended Euclidean Algorithm	1-Ch.2; Pg.46-61	BB/ PPT
16	Public Key Cryptography and RSA	1-Ch.9; Pg.283-312 2-Ch.10; Pg.306-312	BB/ PPT
17	Other Public Key Cryptosystems - Diffie-Hellman Key Exchange	1-Ch.10; Pg.313-318	BB/ PPT
18	Elgamal Cryptographic Systems - Elliptic Curve Cryptography.	1-Ch.10; Pg.318-333 2-Ch.10; Pg.307-314	BB/ PPT
19,20	Implement DES	1-Ch.4; Pg.118-140 2-Ch.10; Pg.299-302	Experiential Learning
21,22	Implement RSA Algorithm	1-Ch.9; Pg.283-312 2-Ch.10; Pg.306-312	Experiential Learning
23,24	Implement Diffiee-Hellman	1-Ch.10; Pg.313-318	Experiential Learning
Content beyond syllabus covered (if any): Nil			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: IT22609 / Information Security: Theory And Practices

Unit: III

Unit Syllabus: DIGITAL SIGNATURE AND KEY MANAGEMENT

Digital Signatures, Key Management - Session and Interchange Keys - Key Exchange - Symmetric Cryptographic Key Exchange - Kerberos - Public Key Cryptographic Key Exchange and Authentication - Key Generation - Storing and Revoking Key.

Suggested Activity: Implementation of Encryption and Decryption using Kelopatra tool. Implement of Authentication and Digital Signature using Kelopatra tool.

Objective: To learn about secure coding practices.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Digital Signatures	2-Ch.10; Pg.318-323	BB/ PPT
26	Key Management - Session and Interchange Keys - Key Exchange - Symmetric Cryptographic Key Exchange	2-Ch.11; Pg.331-337	BB/ PPT
27	Kerberos	2-Ch.11; Pg.337-338	BB/ PPT
28	Public Key Cryptographic Key Exchange and Authentication	2-Ch.11; Pg.338-341	BB/ PPT
29	Key Generation	2-Ch.11; Pg.341-342	BB/ PPT
30	Storing and Revoking Key	2-Ch.11; Pg.353-359	BB/ PPT
31,32	Implementation of Encryption and Decryption using Kelopatra tool	Internet	Experiential Learning
33,34	Implement of Authentication using Kelopatra tool.	Internet	Experiential Learning
35,36	Implement of Digital Signature using Kelopatra tool.	Internet	Experiential Learning

Content beyond syllabus covered (if any): Nil

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: IT22609 / Information Security: Theory And Practices

Unit: IV

Unit Syllabus: SECURITY TECHNOLOGY

Introduction- Access control- firewall, firewall using IP tables, protecting remote connections- Intrusion Detection and Prevention system -Honey pots, Honey Nets and Padded cell systems, scanning and analysis tools, Digital forensics.

Suggested Activity: Implement IDS using Snort tool

Objective: To learn techniques specific to mitigating the occurrence of common software vulnerabilities.

Session No *	Topics to be covered	Ref	Teaching Aids
37	Introduction- Access control- firewall, firewall using IP tables	3-Ch.6; Pg.325-371	BB/ PPT
38	protecting remote connections	3-Ch.6; Pg.371-379	BB/ PPT
39	. Intrusion Detection and Prevention system	, - g	BB/ PP1
		3-Ch.7; Pg.385-424	BB/ PPT
40	Honey pots, Honey Nets and Padded cell systems	3-Ch.7; Pg.424-428	BB/ PPT
41	scanning and analysis tools	3-Ch.7; Pg.428-443	
42	Digital forensics		BB/ PPT
12 11	Implement IDC 1 - 2	3-Ch.12; Pg.677-686	BB/ PPT
43,44	Implement IDS using Snort tool	Internet	Experientia Learning
45,46	Study of Network Firewall Visualization Tool	Internet	Experientia
47,48	Automated Attack and Penetration Tools Exploring N-Stalker,		Learning
	a Vulnerability Assessment Tool ond syllabus covered (if any): Study of Network Firewall Viscos	Internet	Experiential Learning

Content beyond syllabus covered (if any): Study of Network Firewall Visualization Tool, Automated Attack and Penetration Tools Exploring N-Stalker, a Vulnerability Assessment Tool

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: IT22609 / Information Security: Theory And Practices

Unit: V

Unit Syllabus: BLOCK CHAIN AND BEYOND

Hashing – SHA – MD5 – Block chain: Basics – Contents of a Block – Hashchain to Blockchain - Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions, Privacy - Basic consensus mechanisms Requirements for the consensus protocols, Proof of Work (PoW) – Crypto Currency.

Suggested Activity: Implement SHA, MD5, Secure File Management

Objective: To implement security controls.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Hashing – SHA – MD5	Internet	BB/ PPT
50	Block chain: Basics - Contents of a Block - Hashchain to Blockchain	Internet	BB/ PPT
51	Digital Money to Distributed Ledgers	Internet	BB/ PPT
52	Design Primitives: Protocols, Security, Consensus, Permissions,	Internet	BB/ PPT
53	Privacy - Basic consensus mechanisms	Internet	BB/ PPT
54	Requirements for the consensus protocols, Proof of Work (PoW) - Crypto Currency.	Internet	BB/ PPT
55,56	Implement SHA	Internet	Experiential Learning
57,58	Implement MD5	Internet	Experiential Learning
59,60	Demo on login creation and Access Control yound syllabus covered (if any): Nil	Internet	Experiential Learning

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: IT22609 / Information Security: Theory And Practices

REFERENCES:

- 1. Stallings William. Cryptography and Network Security: Principles and Practice, Seventh Edition, Pearson/PrenticeHal; 2018.
- 2. Matt Bishop, "Computer Security art and science", Second Edition, Pearson Education.
- 3. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", Vikas Publishing House, New Delhi, fifth edition, Cengage learning, 2015.
- 4. Melanie Swa, "Block chain: Blueprint for a new economy", First edition, O'Reilly, 2015
- 5. Charles P. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth Edition, Prentice Hall, 2007.
- 6. Mark Rhodes- Ousley, "Information Security: The complete Reference", Second Edition Mcgraw Hill, 2013.

	Prepared by	Approved by
Signature	don-	The last
Name	Dr. A. Indumathi, Ms. N. Uma	Dr. V. Vidhya
Designation	Associate Professor, Assistant Professor	HoD/INT
Date	20/01/2025	20/01/2025
Remarks *:		
Remarks *:		

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD