

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

		LP: Sub Code
Department of Information Technology		Rev. No: 00
B.E/B.Tech/M.E/M.Tech : Information Technology	Regulation: R2022	Date: 20.01.2025
PG Specialisation : NA		
Sub. Code / Sub. Name : IT22602-Natural Language Processing and Understanding		
Unit : 1		

Unit Syllabus: FINITE AUTOMATA & LEXICAL ANALYSIS

Introduction- Basic Mathematical Notation and techniques- Finite Automaton – DFA & NDFA – Finite Automaton with €- moves – Regular Languages- RegularExpression – Equivalence of NFA and DFA – Lexical Analysis-language processors -The Phases of Compiler-Errors Encountered in Different Phases-compiler Construction Tools

Objective: Students will learn the automata theory and tools of the compiler

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction- Basic Mathematical Notation and techniques	1- Ch 1; pg 28-31	BB/PPT
2	Finite Automaton – DFA	1- Ch 2; pg 45-54	BB/PPT
3	Finite Automaton – NDFA	1- Ch 2; pg 55- 60	BB/PPT
4	Finite Automaton with €- moves	1- Ch 2; pg 72- 80	BB/PPT
5	Equivalence of NFA and DFA	1- Ch 2; pg 60- 65	BB/PPT
6	Regular Languages- Regular Expression	1- Ch 3; pg 83-108	BB/PPT
7	Lexical Analysis-language processors	R1- Ch 1; pg 1 -4	BB/PPT
8	The Phases of Compiler	R1- Ch 1; pg 4 -11	BB/PPT
9	Errors Encountered in Different Phases-compiler Construction Tools	R1- Ch 1; pg 12	BB/PPT
Content be	yond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: IT22602-Natural Language Processing and Understanding

Unit : III

Unit Syllabus: WORD LEVEL ANALYSIS

Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing - Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.

Objective: Students will learn how to represent sentence using grammar

Session No *	Topics to be covered	Ref	Teaching Aids
10	Context-Free Grammars, Grammar rules for English	1- Ch 5; pg:169-180 2- Ch 12; pg:389-408	BB/PPT
11	Parse Trees, Treebanks	1- Ch 5; pg 181-190 2- Ch 12; pg:408-415	BB/PPT
12	Normal Forms for grammar, Dependency Grammar	2- Ch 12; pg:415-416 2- Ch 12; pg:418-421	BB/PPT
13	Syntactic Parsing	2- Ch 12; pg:431-454	BB/PPT
14	Unsmoothed N-grams, Evaluating N-grams	2- Ch 4; pg:83-91	BB/PPT
15	Interpolation and Backoff	2- Ch 4; pg:103-107	BB/PPT
16	Word Classes, Part-of-Speech Tagging	2- Ch 5; pg:124-136	BB/PPT
17	Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging	2- Ch 5; pg:136-153	BB/PPT
18	Hidden Markov and Maximum Entropy models.	2- Ch 6; pg:173-207	BB/PPT
Content bey	yond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: IT22602-Natural Language Processing and Understanding

Unit: IV

Unit Syllabus: SEMANTICS AND PRAGMATICS

Semantic Analysis: Meaning Representation-Lexical Semantics- Ambiguity-Word Sense Disambiguation. Requirements for representation, First-Order Logic, Description Logics – Semantic analysis, Word Senses, Relations between Senses, Thematic Roles, Selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.

Objective: Students will learn word syntax and semantic analysis

Session No *	Topics to be covered	Ref	Teaching Aids
19	Semantic Analysis: Meaning Representation	2- Ch 17; pg:553- 560	BB/PPT
20	Lexical Semantics - Word Sense Disambiguation	2- Ch 20; pg:650	BB/PPT
21	Requirements for representation, First-Order Logic, Description	2- Ch 17; pg:563- 588	BB/PPT
22	Logics – Semantic analysis	2- Ch 18; pg:593- 602	BB/PPT
23	Word Senses, Relations between Senses	2- Ch 19; pg:627- 633	BB/PPT
24	Thematic Roles Selectional restrictions	2- Ch 19; pg:635- 645	BB/PPT
25	WSD using Supervised methods	2- Ch 20; pg:655- 660	BB/PPT
26	WSD using Dictionary & Thesaurus, Bootstrapping methods	2- Ch 20; pg:662- 666	BB/PPT
27	Word Similarity using Thesaurus and Distributional methods.	2- Ch 20; pg:668- 684	BB/PPT
Content b	beyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: IT22602-Natural Language Processing and Understanding

Unit: V

Unit Syllabus: DISCOURSE ANALYSIS Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm - Coreference Resolution - applications

Objective: Students will learn pragmatics and discourse analysis.

Session No *	Topics to be covered	Ref	Teaching Aids
28	Discourse segmentation	2- Ch 21; pg:697-705	РРТ
29	Text Coherence	2- Ch 21; pg: 705-711	РРТ
30	Reference Phenomena	2- Ch 21; pg: 714-720	PPT
31,32	Anaphora Resolution using Hobbs algorithm	2- Ch 21; pg: 720-722	РРТ
33	Centering Algorithm	2- Ch 21; pg: 722-724	РРТ
34	Co-reference Resolution	2- Ch 21; pg: 724-728	РРТ
35,36	Applications	2- Ch 22; pg: 743-750 2- Ch 23; pg: 805-819	РРТ
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: IT22602-Natural Language Processing and Understanding

Unit: II

Unit Syllabus: NATURAL LANGUAGE GENERATION

Natural Language Generation: Architecture of NLG Systems- Generation Tasks and Representations - Application of NLG. Machine Translation: Problems in Machine Translation- Characteristics of Indian Languages- Machine Translation Approaches Translation involving Indian Languages, Porter Stemmer, Lemmatizer

Objective: Students will learn the architecture of NLP systems and applications of natural language processing techniques

Session No *	Topics to be covered	Ref	Teaching Aids
37	Natural Language Generation: Architecture of NLG Systems	Internet: https://wisconsin.press books.pub/naturallang uage/chapter/natural- language-generation/	PPT
38	Generation Tasks and Representations	R4- Ch 6; pg: 126-140	PPT
39	Application of NLG	2- Ch 22; pg: 737-740	PPT
40	Machine Translation: Problems in Machine Translation	2- Ch 25; pg: 879-885	PPT
41	Characteristics of Indian Languages	Internet: https://www.w3.org/2 006/10/SSML/papers/ CHARACTERISTICS OF_INDIAN_LANG UAGES.pdf	PPT
42,43	Machine Translation Approaches	2- Ch 25; pg: 887-900	РРТ
44	Translation involving Indian Languages	Internet: https://anoopkunchuk uttan.gitlab.io/publicat ions/presentations/kiit indicnlp_talk_oct202 0.pdf	PPT
45	Porter Stemmer, Lemmatizer	2- Ch 3; pg: 68 3-Ch 3; pg: 107-108	PPT
Content bey	vond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

TEXT BOOKS:

- 1. John. E. Hopcroft, Rajiv Motwani and Jeffrey D Ullman, -Introduction to Automata Theory, Languages and Computationl, Third Edition, Pearson Education, 2014
- 2. Daniel Jurafsky, James H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014.
- 3. Steven Bird, Ewan Klein and Edward Loper, Natural Language Processing with Pythonl, First Edition, O_Reilly Media, 2009.

REFERENCES:

Faculty and the HOD

- 1. K. C. Louden, Compiler Construction Principles and Practice, Thomson Learning Inc. 1st Ed, 2007.
- 2. L. Breck Baldwin, -Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.
- 3. M. Richard M Reese, -Natural Language Processing with Java, OReilly Media, 2015.
- 4. Nitin Indurkhya and Fred J. Damerau, -Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.
- 5. Tanveer Siddiqui, U.S. Tiwary, -Natural Language Processing and Information Retrieval, Oxford University Press, 2008.

Prepared by	Approved by
Brink 2.	Part
Dr. V Vidhya / Mr. E Sivakumar	Dr V Vidhya
Professor / AP	Professor & HoD
20.01.2025	
	Prepared by Brite A. C. Sivakumar Dr. V Vidhya / Mr. E Sivakumar Professor / AP 20.01.2025