

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	LP: IT22043
Department of Information Technology	Rev. No: 00
B.E/B.Tech/M.E/M.Tech : INT Regulation:2022	Date: 21/01/2025
PG Specialisation :	
Sub. Code / Sub. Name : IT22043 DEEP LEARNING AND ITS APPLICATION	
Unit : I	

Unit Syllabus: Applied Math and Machine Learning Basics

Linear Algebra - Norms, Singular Value Decomposition, The Moore-Penrose Pseudoinverse, Probability and Information Theory, Machine Learning Basics, Pearson Correlation. Objective:

To understand the basics of linear algebra and machine learning.

Teaching Aids	Ref	Topics to be covered	Session No *
BB/PPT/Matlab/ Google colab	1-ch. 1; pg. 1-26	Introduction to deep learning - Historical trends	1
BB/PPT/Matlab/ Google colab	1-ch. 2; pg. 29-36	Linear Algebra - Scalars, Vectors, Matrices and Tensor	2
BB/PPT/Matlab/ Google colab	1-ch. 2; pg. 29-36	Linear Algebra - Linear Dependence and Span	3
BB/PPT/Matlab/ Google colab	1-ch. 2; pg. 36-50	Norms, Eigendecomposition, Singular Value Decomposition	4
BB/PPT/Matlab/ Google colab	1-ch. 2; pg. 36-50	Moore-Penrose Pseudoinverse, Trace Operator, Determinant	5
BB/PPT/Matlab/ Google colab	1-ch. 2; pg. 36-50	Example: Principal Components Analysis	6
BB/PPT/Matlab/ Google colab	1-ch.3; pg. 51-77	Probability and Information Theory - Marginal probability, Conditional probability, Expectation , Variance and Covariance	7
BB/PPT/Matlab/ Google colab	1-ch.5; pg. 96-	Machine Learning Basics	8
BB/PPT/Matlab/ Google colab	1-ch.3; pg. 51-77	Pearson Correlation	9
	,	Pearson Correlation eyond syllabus covered (if any):	

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: IT22043 DEEP LEARNING AND ITS APPLICATION

Unit : II

Unit Syllabus : Introduction To Deep Networks: Modern Practices

Deep Feedforward Networks, Regularization for Deep Learning, Optimization for Training Deep Models - Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates. Objective:

To learn feed forward deep networks

Session No *	Topics to be covered	Ref	Teaching Aids
10	Deep Feedforward Networks - Learning XOR	1-ch.6; pg. 164- 223	BB/PPT/Matlab/ Google colab
11	Gradient-Based Learning, Hidden Units, Architecture Design, Backpropogation	1-ch.6; pg. 164- 223	BB/PPT/Matlab/ Google colab
12	Regularization for Deep Learning- Parameter Norm Penalties, Dataset Augmentation	1-ch.7; pg. 224- 270	BB/PPT/Matlab/ Google colab
13	Semi-Supervised Learning, Multitask Learning, Early Stopping,	1-ch.7; pg. 224- 270	BB/PPT/Matlab/ Google colab
14	Parameter Tying and Parameter Sharing, Adversarial Training	1-ch.7; pg. 224- 270	BB/PPT/Matlab/ Google colab
15	Optimization for Training Deep Models	1-ch.8; pg. 271- 325	BB/PPT/Matlab/ Google colab
16	Challenges in Neural Network Optimization	1-ch.8; pg. 271- 325	BB/PPT/Matlab/ Google colab
17	Basic Algorithms, Parameter Initialization Strategies	1-ch.8; pg. 271- 325	BB/PPT/Matlab/ Google colab
18	Algorithms with Adaptive Learning Rates	1-ch.8; pg. 271- 325	BB/PPT/Matlab/ Google colab
Content be	yond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: IT22043 DEEP LEARNING AND ITS APPLICATION

Unit : III

Unit Syllabus : Modern Practices

Convolutional Networks, Sequence Modeling: Recurrent and Recursive Nets, Practical Methodology, Linear Factor Models, Autoencoders, Representation Learning, Monte Carlo methods, Confronting the Partition Function. Objective:

To understand convolutional networks and sequence modeling

To study probabilistic models and auto encoders

Session No *	Topics to be covered	Ref	Teaching Aids
19	Convolutional Networks - Convolution operation, pooling	1-ch.9; pg. 326- 366	BB/PPT/Matlab/ Google colab
20	Sequence Modeling: Recurrent and Recursive Nets	1-ch.9; pg. 367- 417	BB/PPT/Matlab/ Google colab
21	Linear Factor Models	1-ch.13; pg. 485- 498	BB/PPT/Matlab/ Google colab
22	Autoencoders	1-ch.14; pg. 499- 523	BB/PPT/Matlab/ Google colab
23	Representation Learning	1-ch.15; pg. 524- 554	BB/PPT/Matlab/ Google colab
24	Monte Carlo methods	1-ch.17; pg. 587- 602	BB/PPT/Matlab/ Google colab
25	Confronting the Partition Function	1-ch.17; pg. 603- 628	BB/PPT/Matlab/ Google colab
26	Demo on CNN, RNN		BB/PPT/Matlab/ Google colab
27	Demo on Autoencoders		BB/PPT/Matlab/ Google colab
Content be	yond syllabus covered (if any):		·

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: IT22043 DEEP LEARNING AND ITS APPLICATION

Unit : IV

Unit Syllabus : Introduction To Deep Generative Models

Approximate Inference, Deep Generative Models - Boltzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks, Deep Boltzmann Machines, Convolutional Boltzmann Machines, Back-Propagation through Random Operations, Directed Generative Nets, Generative Stochastic Networks, Evaluating Generative Models. Objective:

To expose the students to various deep generative models

No *	Topics to be covered		Teaching Aids
28	Approximate Inference	1-ch.20; pg. 693- 728	BB/PPT/Matlab/ Google colab
29	Deep Generative Models	1-ch.20; pg. 693- 728	BB/PPT/Matlab/ Google colab
30	Boltzmann Machines, Restricted Boltzmann Machines	1-ch.20; pg. 693- 728	BB/PPT/Matlab/ Google colab
31	Deep Belief Networks, Deep Boltzmann Machines, Convolutional Boltzmann Machines	1-ch.20; pg. 693- 728	BB/PPT/Matlab/ Google colab
32	Back-Propagation through Random Operations, Directed Generative	1-ch.20; pg. 693- 728	BB/PPT/Matlab Google colab
33	Generative Stochastic Networks, Evaluating Generative Models	1-ch.20; pg. 693- 728	BB/PPT/Matlab/ Google colab
34	Demo on Deep Generative Models	1-ch.20; pg. 693- 728	BB/PPT/Matlab/ Google colab
35	Demo on Boltzmann Machines		BB/PPT/Matlab/ Google colab
36	Demo on Deep Belief Networks		BB/PPT/Matlab/ Google colab

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: IT22043 DEEP LEARNING AND ITS APPLICATION

Unit : V

Unit Syllabus : Deep Learning Applications

Object Recognition and Computer Vision,Natural Language Processing, Deep Reinforcement Learning for Vision-Based Environments in Robotics Applications, Selected Applications in Information Retrieval Objective:

To implement the various applications of deep learning

Session No *	Topics to be covered	Ref	Teaching Aids
37	Object Recognition and Computer Vision	1-ch.12; pg. 438- 480	BB/PPT/Matlab Google colab
38	Object Recognition and Computer Vision	1-ch.12; pg. 438- 480	BB/PPT/Matlat Google colab
39	Natural Language Processing	1-ch.12; pg. 438- 480	BB/PPT/Matlat Google colab
40	Natural Language Processing	1-ch.12; pg. 438- 480	BB/PPT/Matlal Google colab
41	Deep Reinforcement Learning for Vision-Based Environments in Robotics Applications	1-ch.12; pg. 438- 480	BB/PPT/Matla Google colab
42	Deep Reinforcement Learning for Vision-Based Environments in Robotics Applications	1-ch.12; pg. 438- 480	BB/PPT/Matla Google colab
43	Deep Reinforcement Learning for Vision-Based Environments in Robotics Applications	1-ch.12; pg. 438- 480	BB/PPT/Matla Google colab
44	Selected Applications in Information Retrieval	1-ch.12; pg. 438- 480	BB/PPT/Matla Google colab
45	Selected Applications in Information Retrieval	1-ch.12; pg. 438- 480	BB/PPT/Matla Google colab

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: IT22043 DEEP LEARNING AND ITS APPLICATION

REFERENCES:

1. Ian Goodfellow, Yoshua Bengio and Aaron Courville, —Deep Learning^{II}, MIT Press, 2016.

2. Gopal M, —Deep Learning Core Concepts, Methods and Applications^{II}, 1st Edition, Pearson, 2022.

3. Li Deng, Dong Yu, —Deep Learning: Methods and Applications^{II}, Now publishers, 2014.

4. Special Issue on deep learning for speech and language processing, IEEE Transaction on Audio, Speech and Language Processing, vol. 20, iss. 1, pp. 7 – 54, 2012.

	Prepared by	Approved by
Signature	2. Perijajas	C ta in
Name	Dr.N.Devi	Dr.V.Vidhya
Designation	Associate Professor	HOD/INT
Date	21/01/25	21/01/25
temarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD