

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Information Technology

B.E/B.Tech/M.E/M.Tech: Information Technology

Regulation:2022

LP: Sub Code

Rev. No: 00 Date:

PG Specialisation

: NA

Sub. Code / Sub. Name : IT22408- Paradigms of Algorithm Design: Theory and Practices

Unit

Unit Syllabus: INTRODUCTION

6+6

Overview of Algorithms - Definition, characteristics, and types, real-world applications - Algorithm Analysis Basics - Time and space complexity - Asymptotic notations (Big O, Omega, Theta). Brute Force Algorithms - Exhaustive search techniques - Examples and applications

Suggested Activity (not limited to)

Implement on various input sizes (n) and plot a graph for n Vs time taken

- 1. Problems on linear and quadratic time complexities ex: Linear Search, matrix operations
- 2. Selection Sort
- 3. Insertion Sort
- 4. Bubble Sort

Objective: To analyze the algorithms for time/space complexity.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Overview of Algorithms – Definition, Characteristics	T-2.Ch-1,Pg.No:21-24	LCD/BB
2	Time and Space complexity	T-2.Ch-1,Pg.No:21-24	LCD/BB
3	Asymptotic Notations(Big O,Omega and Theta)	T-2.Ch-1,Pg.No:24-30	LCD/BB
4	Algorithm Analysis Basics	T-2.Ch-1,Pg.No:21-24	LCD/BB
5	Algorithm Analysis Basics	T-2.Ch-1,Pg.No:21-24	LCD/BB
6	Exhaustive Search Techniques - Brute Force approach	Ref.2 Ch-7,Pg.No-231-232	LCD/BB
7	Examples and Applications – Substring in a given string	Ref.2 Ch16,Pg.No:459-460	LCD/BB/ Experientia Learning
8	Linear search, Binary Search	Ref.2 Ch-7,Pg.No-232-236	Experiential Learning
9	Selection Sort, Bubble Sort	Ref.2 Ch-7,Pg.No-236-245	Experiential Learning
10	Insertion Sort	Ref.2 Ch-7,Pg:No-236-245	Experiential Learning
11	Matrix operations	1.Ch4,Pg.No:76-77	Experiential Learning
12	Prime number check using various methods	Analysis of Different Methods to find Prime Number in Python - GeeksforGeeks	Experiential Learning

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: IT22408- Paradigms of Algorithm Design: Theory and Practices

Unit: II

Unit Syllabus: Recursion and Backtracking

6+6

Recursive Functions-Recursion and Memory, Recursion vs Iteration, Recurrence Relation. Backtracking-Strategy, problems.

Suggested Activity (not limited to) Implement on various input sizes (n) and plot a graph for n Vs time taken

- 1. Checking for ascending order of array 2. Reversing a singly linked list 3. Heap sort.
- 4. kth smallest/largest element in Binary Search Tree 5. N-Queens Problem
- 6. Sum of Subsets

Objective: To learn to write algorithms for a given problem using recursion and backtracking

Session No *	Topics to be covered	Ref	Teaching Aids	
13	Recursion Functions - Introduction	T-2.Ch-3,Pg.No:61-68	LCD/BB	
14	Memory and recursion	T-2.Ch-3,Pg.No:68-70	LCD/BB	
15	Recursion vs Iteration	T-2.Ch-3,Pg.No:68-70	LCD/BB	
16	Recurrence Relation	T-2.Ch-3,Pg.No:76-79	LCD/BB	
17	Backtracking Strategy	T-2.Ch-3,Pg.No:99-101	LCD/BB	
18	Checking ascending order of array	T-2.Ch-3,Pg.No:75-76	LCD/BB	
19	Reversing a Singly Linked list	T-2.Ch-3,Pg.No:79-85	LCD/BB/ Experientia Learning	
20	Heapsort	T-1.Ch-6,Pg.No:151-162	Experiential Learning	
21	Kth smallest /Largest Problem in BST	T-2.Ch-3,Pg.No:79-85	Experiential Learning	
22	Hamiltonian Cycle	Ref.2 Ch14,Pg.No:531-534	Experiential Learning	
23	N- Queens Problem	Ref.2 Ch14,Pg.No:522-525	Experiential Learning	
24	Sum of subsets	Ref.2 Ch14,Pg.No:525-527	Experiential Learning	

^{*} Session duration: 50 mins

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: : IT22408- Paradigms of Algorithm Design: Theory and Practices

Unit: III

Unit III: Divide & Conquer and Greedy Approaches

6+6

Divide and Conquer Technique - Strategy -Recurrence equation for divide and conquer-Application. Greedy Algorithm- Strategy, problems

Suggested Activity (not limited to) Implement on various input sizes (n) and plot a graph for n Vs time taken

1. Binary Search 2. Merge Sort 3. Quick Sort 4. Pair wise multiplication of elements (Greedy) 5. Fractional Knapsack Problem (Greedy) 6. Minimal Spanning Tree

Objective: To learn about Divide and Conquer & Greedy design technique and their applications

Divide and Conquer Technique - Strategy	1.Ch15,Pg.No:65-68	LCD/DD
Decurrence equation for divide and	1.0115,1 g.110.05-06	LCD/BB
Recurrence equation for divide and conquer	1.Ch15,Pg.No:65-68	LCD/BB
Application.	1.Ch15,Pg.No:65-68	LCD/BB
Greedy Algorithm- Strategy, problems	Ref.2 Ch-11,Pg.No:372-375	LCD/BB
Binary Search, Quick sort	Ref.2 Ch- 8,Pg.No:269-275	LCD/BB
Merge Sort	Ref.2 Ch- 8,Pg.No:264-269	LCD/BB
Min max problem	Ref.2 Ch -8,Pg.No:277-280	LCD/BB/ Experiential Learning
Strassen multiplication	Ref.2 Ch- 8,Pg.No:382-384	Experiential Learning
Activity selection and SJF	Ref.2 Ch-11,Pg.No:382-384	Experiential Learning
Huffman Coding	Ref.2 Ch-11,Pg.No:393-398	Experiential Learning
Fractional Knapsack Problem	Ref.2 Ch-11,Pg.No:384-388	Experiential Learning
Minimal Spanning Tree	Ref.2 Ch-11,Pg.No:401-407	Experiential Learning
	Application. Greedy Algorithm- Strategy, problems Binary Search, Quick sort Merge Sort Min max problem Strassen multiplication Activity selection and SJF Huffman Coding Fractional Knapsack Problem	Application. 1.Ch15,Pg.No:65-68 Greedy Algorithm- Strategy, problems Ref.2 Ch-11,Pg.No:372-375 Binary Search, Quick sort Ref.2 Ch- 8,Pg.No:269-275 Merge Sort Ref.2 Ch- 8,Pg.No:264-269 Min max problem Ref.2 Ch- 8,Pg.No:277-280 Strassen multiplication Ref.2 Ch- 8,Pg.No:382-384 Activity selection and SJF Ref.2 Ch-11,Pg.No:382-384 Huffman Coding Ref.2 Ch-11,Pg.No:393-398 Fractional Knapsack Problem Ref.2 Ch-11,Pg.No:384-388 Minimal Spanning Tree Ref.2 Ch-11,Pg.No:401-407

Content beyond syllabus covered (if any):

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: : IT22408- Paradigms of Algorithm Design: Theory and Practices

Unit: IV

Unit Syllabus: Dynamic Programming

6+6

Introduction to Dynamic Programming - Principles and applications - Memoization and Tabulation -Techniques for optimization - Analysis of DP algorithms- Applications of Dynamic Programming.

Suggested Activity (not limited to) Implement on various input sizes (n) and plot a graph for n Vs time taken

1. Fibonacci sequence 2. Binomial Coefficient 3. Longest Common Subsequence 4. Matrix Chain Multiplication 5. Travelling Salesman problem 6. Hamiltonian cycles 7. 0/1 Knapsack Problem

Objective: To learn about dynamic programming design technique and its applications

Session No *	Topics to be covered	Ref	Teaching Aids	
37	Introduction to Dynamic Programming	1.Ch15,Pg.No:357-360	LCD/BB	
38	Principles and Applications	1.Ch15,Pg.No:357-360	LCD/BB	
39	Memoization and Tabulation Techniques	1.Ch15,Pg.No:357-360	LCD/BB	
40	Analysis of DP algorithms	1.Ch15,Pg.No:357-360	LCD/BB	
41	Applications	1.Ch15,Pg.No:357-360	LCD/BB	
42	Fibonacci sequence	Ref.2 Ch13,Pg.No:460-463	LCD/BB	
43	All pairs shortest path	1.Ch15,Pg.No:693-700	LCD/BB/ Experiential Learning	
44	Binomial coefficient	Ref.2 Ch13,Pg.No:463-466	Experiential Learning	
45	Longest common subsequence	1.Ch15,Pg.No:390-397	Experiential Learning	
46	Matrix Chain multiplication	1.Ch15,Pg.No:370-378	Experiential Learning	
47	Hamiltonian Cycles	Ref.2 Ch14,Pg.No:531-534	Experiential Learning	
48	0/1 Knapsack problem	Ref.2 Ch13,Pg.No:496-500	Experiential Learning	
Content l	Content beyond syllabus covered (if any):			

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: : IT22408- Paradigms of Algorithm Design: Theory and Practices

Unit: V

Unit Syllabus: NP Completeness

6+6

Understanding of Computational Complexity – Tractable and Intractable Problems - P, NP Hard, NP Complete problems – Bin Packing problem - Reducibility – Approximation algorithms - TSP – Randomized Algorithms - Randomized Quick Sort

Objective: To learn about computational complexity – P,NP problems.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Understanding of Computational Complexity	Ref.2 Ch18,Pg.No:638-647	LCD/BB
50	Tractable and Intractable Problems	Ref 1. Ch 9, Pg. No 346-350	LCD/BB
51	P problems	Ref.2 Ch18,Pg.No:647-648	LCD/BB
52	NP Hard problems	Ref.2 Ch18,Pg.No:647-648	LCD/BB
53	NP Complete Problems	Ref.2 Ch18,Pg.No:648-650	LCD/BB
54	Approximation algorithms	Ref. 1 Ch 9, Pg. No 370	LCD/BB
55	Bin Packing Problem	Ref. 2 Ch 9, Pg. No 374-378	LCD/BB/ Experientia Learning
56	Reducibility	Ref. 1 Ch 9, Pg. No 354-359	Experiential Learning
57	Approximation TSP	Ref.2 Ch18,Pg.No:648-650	Experiential Learning
58	Approximation TSP	Ref.2 Ch18,Pg.No:648-650	Experiential Learning
59	Randomized Quick sort	Ref.2 Ch18,Pg.No:675-678	Experiential Learning
60	Randomized Quick sort	Ref.2 Ch18,Pg.No:675-678	Experiential Learning

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

TEXT BOOKS:

- 1. T T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", PHI Learning Private Limited, 2012,
- 2. Narasima Karumanchi, "Algorithm Design Techniques: Recursion, Backtracking, Greedy, Divide and Conquer, and Dynamic Programming", CareerMonk Publications, 2018

REFERENCES:

- 1. Richard E Nepolitan., Foundations of Algorithms, Fifth Edition, Jones and Bartlett Publishers
- 2. Design and Analysis of Algorithms, S. Sridhar, Oxford Univ. Press, 2014

	Prepared by	Approved by
Signature	· Seemshi	What are
Name	Mr.Sivakumar.E, Ms.Meenakshi.P	Dr. V. Vidhya
Designation	Assistant Professor	Professor & HoD
Date	22/01/2024	22/01/2024
Remarks *:	,	3
Remarks *:	¥	10.

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

The same lesson plan to be followed for the academic year 2024-2025 (Fren).

1. Oleenst [MEENARSHI.P]
2. Steens.R)

Moder