

SRI VENKATESWARA COLLEGE OF ENGINEERING (An Autonomous Institution, Affiliated to Anna University, Chennai – 600 025)

B.E. Mechanical and Automation Engineering

CURRICULUM AND SYLLABUS

REGULATION – 2022 CHOICE BASED CREDIT SYSTEM

Curriculum Revision No.	00	Board of Studies recommendation date	06.10.2022 & 12.04.2023	Academic Council Approved date	08.10.2022 & 21.04.2023
	15	N	ot Applicable -	- New Program	
	2			AN IN	
Salient Points of the revision	3		U)		
	4-			120	
	5	4 12/3		2/2/	
	1	2 6	2		
		्विद्या र	म देवे	1	

SRI VENKATESWARA COLLEGE OF ENGINEERING (An Autonomous Institution, Affiliated to Anna University, Chennai – 600 025) REGULATIONS 2022

CHOICE BASED CREDIT SYSTEM

B.E. MECHANICAL AND AUTOMATION ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- 1. Secure professional career in mechanical industries, government, and defense sectors.
- 2. Offer solutions to problems associated with robotics and automation systems by effectively employing computational and analytical tools.
- 3. Advance their professional knowledge and expertise by pursuing higher education and lifelong learning.
- 4. Become job creators and global contributors by taking up entrepreneurship in the field of mechanical and automation engineering.

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 9. **Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- 1. Apply domain knowledge of mathematics and mechanical engineering concepts to provide solutions for current industrial challenges.
- 2. Model, programme and build robotics and automation systems that are cost effective, environment friendly and productive to solve industrial and societal problems using advanced tools and techniques.

SRI VENKATESWARA COLLEGE OF ENGINEERING (An Autonomous Institution, Affiliated to Anna University, Chennai – 600 025) REGULATIONS 2022 CHOICE BASED CREDIT SYSTEM

B.E. MECHANICAL AND AUTOMATION ENGINEERING

CURRICULUM

SEMESTER I

			Y	P	PER PER V	IODS VEEI	K	RS	TE	
SL. NO.	SL. COURSE CO	COURSE TITLE OLL	CATEGOR	E	T	Р	С	TOTAL HOU	PREREQUI	NOILISOd
1.	IP22151	Induction Program (Common to all Branches)	- []		$\langle \cdot \rangle$	3	-	-	-	-
Theor	y Courses	12 00	1	2		6	1			
2.	HS22151	Tamil Language and Heritage of Ancient Tamil Society (Common to all Branches)	HS	1	0	0	1	1	Nil	F
3.	HS22152	Communicative English (Common to all Branches)	HS	3	0	0	3	3	Nil	F
4.	MA22151	Applied Mathematics – I (Common to all Branches except MR)	BS	3	1	0	4	4	Nil	F
5.	PH22152	Engineering Physics (Common to AE, CE, ME, MN, MR)	BS	3	0	0	3	3	Nil	F
6.	CY22152	Engineering Chemistry (Common to AE, ME, MN)	BS	3	0	0	3	3	Nil	F
7.	CS22151	Programming in C (Common to ME and MN)	ES	3	0	0	3	3	Nil	F
8.	ME22101	Engineering drawing (Common to ME, MN, MR)	ES	2	1	0	3	4	Nil	F
Practi	ical Course	5								
9.	PH22161	Physics Laboratory (Common to all Branches except BT)	BS	0	0	2	1	2	Nil	F
10.	CY22161	Chemistry Laboratory (Common to all Branches except AD, CS, IT)	BS	0	0	2	1	2	Nil	F
11.	CS22161	Programming in C Laboratory (Common to ME and MN)	ES	0	0	3	1.5	3	Nil	F
		Total		18	1	9	23.5	28		_

SEMESTER II

			Y	F	PERI PER V	IODS VEEI	K	JRS	ITE	7
SL. NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	POSITION
Theor	ry Courses									
1.	HS22251	Science and Technology in Ancient Tamil Society (Common to all Branches)	HS	2	0	0	2	2	Nil	F
2.	HS22252	Technical English (Common to all Branches)	HS	3	0	0	3	3	Nil	F
3.	MA22251	Applied Mathematics – II (Common to all Branches except MR)	BS	3		0	4	4	Nil	F
4.	PH22253	Engineering Materials (Common to AE, ME, MN)	BS	3	0	0	3	3	Nil	F
5.	ME22201	Engineering Mechanics (Common to ME, MN, MR)	ES	2	1	0	3	3	Nil	F
6.	EE22151	Basic Electrical and Electronics Engineering (Common to all Branches except CH, EE, EC)	ES	3	0	0	3	3	Nil	F
Practi	ical Courses			3	1.	SI				
7.	ME22211	Production Drawing Laboratory (Common to ME and MN)	ES	0	0	4	2	4	Nil	F
8.	EE22111	Basic Electrical and Electronics Engineering Laboratory (Common to all Branches except EC)	ES	0	0	2	1	2	Nil	F
	Total				2	6	21	24		

SEMESTER III

			Y	I	PER PER V	IODS VEEI	K	IRS	ITE		
SL. NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	OITISOA	
Theor	ry Courses										
1.	MA22355	Partial Differential Equations and Numerical Methods (Common to AE, BT and MN)	BS	3	1	0	4	4	Nil	F	
2.	MN22301	Introduction to Industrial Automation	PC	3	0	0	3	3	Nil	F	
3.	ME22302	Mechanics of Materials (Common to ME and MN)	PC	2	O,	0	3	4	Nil	F	
4.	MN22302	Theory of Machines	PC	3	1	0	4	4	Nil	F	
5.	MN22303	Manufacturing Technology	PC	3	0	0	3	3	Nil	F	
6.	EE22359	Electrical Drives and Controls: Theory and Practices (Common to ME and MN)	ES	2	0	2	3	4	Nil	F	
Pract	ical Course	SZ STILL	")			1 TT	1				
7.	ME22313	Manufacturing Technology Laboratory	PC	0	0	3	1.5	3	Nil	F	
8.	ME22314	Material Testing Laboratory	PC	0	0	3	1.5	3	Nil	F	
		Total		16	3	8	23	30			
विद्या परा देवता -											

SEMESTER IV

		JRSE COURSE TITLE	X	I	PER PER V	IODS VEEI	X	JRS	ITE	7		
SL. NO.	COURSE CODE		CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	DITISOT		
Theor	ry Courses											
1	GE22451	Environmental Science & Sustainability (Common to all branches)	BS	3	0	0	3	3	Nil	F		
2	MN22401	Design of Machine Elements	PC	3	1	0	4	4	Nil	F		
3	MN22402	Fluid Mechanics and Thermal Science	PC	3	1	0	4	4	Nil	F		
4.	MN22403	Operations Research and Management (Common to ME and MN)	ES	2	1	0	3	4	Nil	F		
5.	MN22408	Hydraulics and Pneumatics for Automation: Theory and Practices (Common to ME and MN)	PC	2	0	2	3	3	Nil	F		
6.	MN22409	Metrology and Instrumentation: Theory and Practices	PC	2	0	2	3	4	Nil	F		
Pract	ical Courses		11	U.		IT	1					
7.	ME22411	Computer Aided Modelling Laboratory (Common to ME and MN)	PC	0	0	3	1.5	3	Nil	F		
8.	ME22412	Fluid and Thermal Engineering Laboratory (Common to ME and MN)	PC	0	0	3	1.5	3	Nil	F		
Total 17 3 11 23 31												
	वह्या परा देवल											

SEMESTER V

			X	ł	PER PER V	IODS VEEI	K	JRS	ITE	7
SL. NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	POITISO
Theor	ry Courses									
1.	MN22501	Industrial Robotics: Theories for Implementation	PC	3	0	0	3	3	Nil	F
2.	MN22502	Modern Manufacturing Processes	PC	3	0	0	3	3	Nil	F
3.	ME22403	Thermal Engineering (Common to ME and MN)	PC	2	1	0	3	3	Nil	F
3.	MN22509	Controllers for Automation: Theory and Practices (Common to MN and ME)	PC	2	0	2	3	4	Nil	F
4.	ME22709	Computer Aided Engineering: Theory and Practices (Common tom ME and MN)	PC	N.	0	4	3	4	Nil	F
5.		PE-I	PE	3	0	0	3	3	Nil	F
6.		Open elective – I	OE	3	0	0	3	3	Nil	F
7.		Mandatory Course	MC	3	0	0	0	3	Nil	М
8.		Value added Course-I	VD	2	0	0	2*	2	Nil	М
Pract	ical Course	s (%)		1	9	1	0			
9.	MN22511	Modern Manufacturing Processes Laboratory	PC	0	0	3	1.5	4	Nil	F
10.	MN22512	Robotics Laboratory	PC	0	0	3	1.5	4	Nil	F
			Total	22	0	10	24	32		
* Cre	dits earned i	through the Value-Added Courses shall i	be over	r and	above	the to	otal cr	edit r	equire	ment

SEMESTER VI

			Υ	F	PER PER V	IODS VEEI	K	JRS	ITE	7			
SL. NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	POSITION			
Theor	y Courses												
1.	MN22601	Modern Material Handling Systems (Common to MN and ME)	PC	3	0	0	3	3	Nil	F			
2.	MN22608	Industrial Internet of Things: Theory and Practices (Common to MN and ME)	PC	2	0	2	3	4	Nil	F			
3.	MN22609	Programming and Modelling in Industrial Automation: Theory and Practices	PC	1	0	4	3	5	Nil	F			
4.		PE-II	PE	3	0	0	3	3	Nil	F			
5.		PE-III	PE	3	0	0	3	3	Nil	F			
6.		Open Elective-II	OE	3	0	0	3	3	Nil	F			
7.		Value added Course-II	VD	2	0	0	2*	2	Nil	М			
Practi	ical Courses		-	1	1	2	/						
8.	MN22611	Factory Simulation Laboratory	PC	0	0	3	1.5	4	Nil	F			
9.	HS22511	Interview and Career Skills Laboratory	EEC	0	0	3	2	3	Nil	F			
	Total 17 0 13 21.5 30												
* Cre	dits earned t	through the Value-Added Courses shall	be over	r and	above	the to	otal cre	edit re	equire	ment			

SEMESTER VII

		OURSE CODE COURSE TITLE	Y	ł	PER PER V	IODS VEEI	X	JRS	ITE	7
SL. NO.	COURSE CODE		CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUI	VOITISO
Theor	y Courses									
1.	ME22701	Engineering Ethics and Human Values (Common to ME and MN)	HS	3	0	0	3	3	Nil	F
2.	MN22701	AI and ML for Automation (Common to MN and ME)	PC	3	0	0	3	3	Nil	F
3.	MN22709	Data Science for Industrial Automation: Theory and Practices (Common to MN and ME)	PC	2	0	2	3	3	Nil	F
4.		PE-IV	PE	3	0	0	3	3	Nil	М
5.		PE-V	PE	3	0	0	3	3	Nil	М
6.		PE-VI	PE	3	0	0	3	3	Nil	М
Practi	ical Courses		//	9.	2-	m	1		_	
8.	MN22711	Comprehension	EEC	0	0	2	1	2	Nil	F
9.	MN22712	Industrial Training/Internship	EEC	0	0	0	2	0	Nil	М
		12/0	Total	16	0	6	21	21		
		विद्या परा	\$0	2	/					

SEMESTER VIII

			Y	I	PER PER V	IODS WEE	S K	URS	ITE	7
SL. NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HO	PREREQUIS	IOILISOd
Theor	ry Courses									
1.	MN22811	Project Work	EEC	0	0	20	10	20	All the courses	F
		C.011	Total	0	0	20	10	20		

VERTICAL 1 SPECIAL ELECTIVE

			Y	P	PER 'ER V	IOD WEF	S ZK	JRS	ITE	7
SL. NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	POILISO
1.	SE22001	Financial Statement Analysis (Common to All branches)	PE	3	0	0	3	3	Nil	-
2.	SE22002	Introduction to Securities Market (Common to All branches)	PE	3	0	0	3	3	Nil	-
3.	SE22003	Option Trading Strategies (Common to All branches)	PE	3	0	0	3	3	Nil	-
4.	SE22004	Corporate Finance (Common to All branches)	PE	3	0	0	3	3	Nil	-
5.	SE22005	Managerial Economics (Common to All branches)	PE	3	0	0	3	3	Nil	-
6.	SE22006	Project Management (Common to All branches)	PE	3	0	0	3	3	Nil	-
7.	SE22007	Mathematics for AI & ML (Common to All branches)	PE	3	0	0	3	3	Nil	-

ह मा मा हवता ह

VERTICAL 2
PRODUCT AND PROCESS DEVELOPMENT

			Y] P	PER ER V	IOD WEF	S EK	URS	ITE	7
SL. NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HO	PREREQUIS	POSITIO
Theor	ry Courses									
1.	ME22021	Design for Manufacturing, Assembly and Environment (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
2.	ME22022	Failure Modes and Effects Analysis (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
3.	ME22023	New Product Development (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
4.	ME22024	Product Life Cycle Management (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
5.	ME22025	Quality and Financial Concepts in Product Development (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
6.	ME22026	System Design for Sustainability (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
7.	ME22027	Value Engineering and Process Planning (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
Practi	ical Courses	I a la			1	0	-/			
8	ME22020	Product Life Cycle Management Laboratory (Common to ME and MN)	PE	0	0	4	2	4	Nil	-
		्या पर	Total	18	0	0	23	25		

VERTICAL 3 DIGITAL AND GREEN MANUFACTURING

			X	P	PER 'ER '	IOD WEF	S EK	JRS	ITE	7
SL. C NO.	COURSE CODE	COURSE TITLE	CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUI	POITION
Theor	ry Courses									
1.	ME22031	Digital Manufacturing and Internet of Things (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
2.	ME22032	Sustainable Manufacturing (Common to ME and MN)	PE	3	0	0	3	3	Nil	_
3.	ME22033	Environmental Impact and Assessment (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
4.	ME22034	Green Manufacturing Design and Practices (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
5.	ME22035	Green Supply Chain Management (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
6.	ME22036	Lean Manufacturing (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
7.	ME22037	Statistical and Quality Techniques for Manufacturing (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
Practi	ical Courses	A LACE T			1	0	-/			
8	ME22030	Digital Manufacturing and IoT Laboratory (Common to ME and MN)	PE	0	0	4	2	4	Nil	-
		्या पर	Total	18	0	0	23	25		

VERTICAL 4
LOGISTICS AND SUPPLY CHAIN MANAGEMENT

	COURSE CODE	COURSE TITLE	X	P	PER ER V	IOD WEF	S EK	URS	ITE	Ζ		
SL. NO.			CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUI	POSITION		
Theor	Theory Courses											
1.	ME22041	Business Analytics for Management Decision (Common to ME and MN)	PE	3	0	0	3	3	Nil	-		
2.	ME22042	Enterprise Resource Planning (Common to ME and MN)	PE	3	0	0	3	3	Nil	-		
3.	ME22043	Industrial Engineering and Management (Common to ME and MN)	PE	3	0	0	3	3	Nil	-		
4.	ME22044	Logistics in Manufacturing, Supply Chain and Distribution (Common to ME and MN)	PE	3	0	0	3	3	Nil	-		
5.	ME22045	Sustainable Supply Chain Management (Common to ME and MN)	PE	3	0	0	3	3	Nil	-		
6.	ME22046	Total Quality Management (Common to ME and MN)	PE	3	0	0	3	3	Nil	-		
7.	ME22047	Warehousing Automation (Common to ME and MN)	PE	3	0	0	3	3	Nil	-		
Practi	ical Courses	A CALL		10	1	0	-/					
8	ME22040	Project Management Laboratory (Common to ME and MN)	PE	0	0	4	2	4	Nil	-		
		CIT TEP	Total	18	0	0	23	25				
]		

VERTICAL 5 CLEAN AND GREEN ENERGY TECHNOLOGIES

		URSE COURSE TITLE	Y	P	PER 'ER '	IOD WEF	S CK	JRS	ITE	7
SL. NO.	COURSE CODE		CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	IOITISOA
Theor	y Courses				•					
1.	ME22051	Biomass Conversion and Bio- refinery (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
2.	ME22052	Carbon Footprint Estimation and Reduction Techniques (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
3.	ME22053	Energy Conservation and Waste Heat Recovery (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
4.	ME22054	Energy Efficient Buildings (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
5.	ME22055	Energy Storage Devices (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
6.	ME22056	Hydrogen Energy: Production, Storage, Transportation and Safety (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
7.	CH22041	Renewable Energy Resources (Common to CH, ME,MN and MR)	PE	3	0	0	3	3	Nil	-
8.	ME22050	Energy Auditing: Case Study (Common to ME and MN)	PE	0	0	4	2	4	Nil	-
		्या पर	16	>						

VERTICAL 6 SMART MANUFACTURING

		COURSE TITLE	Y	P	PER 'ER V	IOD WEF	S EK	JRS	ITE	
SL. NO.	COURSE CODE		CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUI	POSITION
Theor	ry Courses									
1.	MN22061	Digital Twin and Industry 5.0 (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
2.	MN22062	Drone Technologies (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
3.	MN22063	Industrial Network and Protocol (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
4.	MN22064	Intelligent Physical Systems (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
5.	MN22065	Machine vision and Image processing (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
6.	MN22066	Robot Operating Systems (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
7.	MN22067	Robotics for Smart Manufacturing (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
8.	MN22060	Mini Project** (Common to ME and MN)	PE	0	0	4	2	4	Nil	-
	<u>.</u>	ावेगा पर	100	ar	13	/	/			

••

VERTICAL 7 DIVERSIFIED GROUP-1

(Only for MN)

		E COURSE TITLE	Y	P	PER 'ER '	IOD WEF	S EK	JRS	ITE	
SL. NO.	COURSE CODE		CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUIS	POSITION
Theor	ry Courses									
1.	MN22071	Computational Fluid dynamics: Theory and Practices	PE	2	0	2	3	4	Nil	-
2.	AE22602	Electric and Hybrid Vehicles (Common to AE, ME and MN)	PE	3	0	0	3	3	Nil	-
3.	MN22072	Nanotechnology	PE	3	0	0	3	3	Nil	-
4.	MN22073	Non-Destructive Testing	PE	3	0	0	3	3	Nil	-
5.	MN22074	Production Planning and Control	PE	3	0	0	3	3	Nil	-
6.	MN22075	Smart and Bio Materials (Common to MN and ME)	PE	3	0	0	3	3	Nil	-
7.	MN22076	Welding Technology	PE	3	0	0	3	3	Nil	-
8.	MN22077	Introduction to Heat Transfer	PE	2	1	0	3	3	Nil	-
		हिंद्र मिला पर	100	ad	3/11/	100	In			

VERTICAL 8

DIVERSIFIED GROUP-2

(Common to ME & MN)

	COURSE CODE	COURSE TITLE	Y	P	PER 'ER '	IOD WEF	S CK	JRS	ITE	7
SL. NO.			CATEGOR	L	Т	Р	С	TOTAL HOU	PREREQUI	VOITISO
Theor	ry Courses	AA UUU	LE	GA		1				
1.	ME22081	Automobile Engineering (Common to ME and MN)	PE	3	0	0	3	3	Nil	_
2.	ME22082	Composite Materials and Mechanics (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
3.	ME22083	Heating, Ventilation and Air- Conditioning Systems (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
4.	ME22084	Industrial Safety Engineering (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
5.	ME22085	Instrumentation and Control Systems (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
6.	ME22086	Power Plant Engineering (Common to ME and MN)	PE	3	0	0	3	3	Nil	-
7.	ME22087	Principles of Management (Common to ME, AE, EE, IT and MN)	PE	3	0	0	3	3	Nil	-
8.	ME22088	Vibrations and Noise Control (Common to ME and MN)	PE	3	0	0	3	3	Nil	-

OPEN ELECTIVE COURSES (OFFERED BY THE MECHANICAL DEPARTMENT DURING ODD SEMESTER)

	COURSE CODE	COURSE COURSE TITLE C		F	PERI PER V	IODS VEEI	X	TOTAL
				L	Т	Р	С	HOUKS
1.	OE22002	3D Printing and Design: Theory and Practices	OE	2	0	2	3	4
2.	OE22003	Lean Six Sigma	OE	3	0	0	3	3

OPEN ELECTIVE COURSES (OFFERED BY THE MECHANICAL DEPARTMENT DURING ODD SEMESTER)

	COURSE CODE	OURSE CODE COURSE TITLE	CATEGORY	G	PER PER V	TOTAL		
		151	1. 1. 1.	L	Т	Р	С	HUUKS
3.	OE22004	Robotics and Programming: Theory and Practices	OE	2	0	2	3	4
4.	OE22001	Green Manufacturing	OE	3	0	0	3	3

MANDATORY COURSES

	COURSE	COURSE TITLE	CATEGORY	a I	PERIODS PER WEEK			TOTAL	
	CODE	131	1	L	Т	Р	С	HOURS	
1.	MC22001	Indian Constitution (Common to all Branches except MR)	MC	3	0	0	0	3	
2.	MC22002	Essence of Indian Traditional Knowledge (Common to all branches)	MC	3	0	0	0	3	
3	MC22003	Gender Sensitization (Common to all branches)	MC	3	0	0	0	3	
4	GN22001	Introduction to NCC for Engineers (Common to all branches)	MC	2	0	2	0	2	
5	GN22002	Yoga and Physical Culture (Common to all branches)	MC	0	0	2	0	2	
6	GN22003	Introduction to Fine Arts (Common to all branches)	MC	2	0	0	0	2	

	COURSE	COURSE COURSE TITLE	CATEGORY	I P	PER ER V	IOD VEE	S K	TOTAL	
	CODE		CHILGORI	L	Т	Р	C	HOURS	
1.	VD22001	Advanced Gear Manufacturing Concepts	VA	2	0	0	0	2	
2.	VD22002	Condition Monitoring of Machine Tools	VA	2	0	0	0	2	
3.	VD22003	Design and Development of Press Tools	VA	2	0	0	0	2	
4.	VD22004	Engine Instrumentation and Testing	VA	2	0	0	0	2	
5.	VD22005	Geometrical Dimensioning and Tolerance	VA	2	0	0	0	2	
6.	VD22006	Kaizen and its Applications	VA	2	0	0	0	2	
7.	VD22007	Kinematic Analysis of Mechanical Links	VA	2	0	0	0	2	
8.	VC22001	Basics of Entrepreneurship Development (Common toAll Branches)	VA	2	0	0	0	2	
9.	VC22002	Advances in Entrepreneurship Development (Common toAll Branches)	VA	2	0	0	0	2	
10.	VC22003	Communicative German (Common to all Branches except MR)	VA	2	0	0	0	2	
11.	VC22004	Communicative Hindi (Common to all Branches except MR)	VA	2	0	0	0	2	
12.	VC22005	Communicative Japanese (Common to all Branches except MR)	VA	2	0	0	0	2	
13.	VC22006	Design Thinking and Prototyping Laboratory (Common to All Branches)	VA	2	0	0	0	2	

Value Added Courses (To be completed between III and VI Semesters)

SUMMERY

SL.	CATECODY		(CRED	ITS I	IN SE	EMES	TER		Total
NO.	CATEGORI	Ι	II	III	IV	V	VI	VII	VIII	Credits
1	Humanities and Social Sciences including Management courses (HS)	4	5					3		12
2	Basic Science courses (BS)	12	7	4						23
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc., (ES)	7.5	9	3	3					22.5
4	Professional Core courses (PC)			16	20	13	12	9		69
5	Professional Elective courses relevant to chosen specialization/branch (PE)		1			6	6	6		18
6	Open Elective subjects - Electives from other technical and /or emerging subjects (OE)	LL	E	24	1	3	3			6
7	Project work, seminar, and internship in industry or elsewhere (EEC)	1.2	1	1	0	1	1.5	3	10	14.5
8	Mandatory Courses (MC)	5			1	0				
	Semester wise Total	23.5	21	23	23	24	21.5	21	10	167

SEMESTER I

		தமிழ் மொழியும் தமிழர் மரபும்	L	Т	Р	С								
HS	22151	Tamil Language and Heritage of Ancient Tamil Society (Common to all Branches)	1	0	0	1								
பா	டத்தி	ன் நோக்கங்கள்:												
1	தமிழ்	் மொழியின் தோற்றம் பற்றியும், திணை கருத்துக்	கள்	வா	ധിல	ாக								
1.	வாழ்வியல் முறைகளை பற்றியும் கற்றுக் கொள்வார்கள்.													
	இந்திய தேசிய சுதந்திர இயக்கத்தில் தமிழர்களின் பங்களிப்பு மற்றும்													
2.	தமிழ	ற்களின் மேலாண்மை முறைகளை பற்றி	ியும்)	கற்ப	றக்								
	கொ	ள்வார்கள்.												
ക്ര	லகு 1	தமிழுக்கும் தொழில் நுட்ப கல்விக்கும் உள்ள தொ	ாடர்	4		3								
மெ	ாழி ப	ற்றும் பாரம்பரியம் : இந்தியாவில் உள்ள மொழிக்	குடு	ிம்ப	ங்க	ள் -								
திர	ாவிட	மொழிகள் - தமிழ் ஒரு செம்மொழி - தமிழி	່ນ 🤅	ிசம்	மெ	⊤ழி								

இலக்கியம் - உ.வே. சுவாமிநாத ஐயர்., ஆறுமுக நாவலர் ஆகியோரின் பங்களிப்பு - தொழில் நட்ப கல்வியில் தமிழ் மொழிக் கல்வியின் முக்கியத்துவம்.

LANGUAGE AND HERITAGE: Language families in India – Dravidan Languages – Tamil as a Classical language – Classical Literature in Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – Importance of Tamil language in technical education.

அலகு 2 திணை கருத்துக்கள்

திணை கருத்துக்கள்: ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள், கடவுள்கள், தொழில்கள் , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்றும் சங்க இலக்கியங்களில் இருந்து அகம் மற்றும் புறம் கருத்து - தமிழ் அறம் கருத்து - சங்க காலத்தில் கல்வி மற்றும் எழுத்தறிவு - பண்டைய நகரங்கள் மற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி - சோழ மன்னர்களின் வெளிநாட்டு வெற்றிகள்.

THINAI CONCEPTS: Five types of lands, animals, Gods, occupation, life styles, music, dance, food style, Floara and Fauna of Tamils - Agam and puram concept from Tholkappiyam and Sangam Literature – Aram concept of Tamil – Education and Literacy during Sangam Age – Ancient cities and Ports of Sangam Age – Export and Import during Sangam Age - Overseas Conquest of Choloas.

அலகு 3 | தமிழரின் மரபு

இந்திய தேசிய சுதந்திர இயக்கம் மற்றும் இந்திய கலாச்சாரத்திற்கு தமிழர்களின் பங்களிப்பு: சுப்ரமணிய பாரதி, வாஞ்சிநாதன், சுப்பிரமணிய சிவா, வீரபாண்டிய கட்டபொம்மன், வா, ஊ சிதம்பரம் பிள்ளை, தீரன் சின்னமலை, மருது பாண்டிய சகோதரர்கள், பூலி தேவர், திருப்பூர் குமரன், வீர மங்கை வேலுநாச்சியார் - தமிழர் இலக்கியங்களில் மேலாண்மை கருத்துக்கள் (கி. மு. 500 முதல் கி. பி 200 வரை) – அகநானுறு, புறநானுறு,

3

9

திருக்குறள் ஆகியவற்றில் மேலாண்மைக் கருத்துகள்

CONTRIBUTION OF TAMILS TO INDIAN NATIONAL FREEDOM MOVEMENT AND INDIAN CULTURE: Contributions of Subramanya Bharathi, Vanchinathan, Subramaniya Siva, Veerapandiya Kattabomman, V O Chidambaram Pillai, Dheeran Chinnamalai, The Maruthu Pandiyar, Puli Thevar, Tiruppur Kumaran, Veera Mangai Velunachiyar.

மொத்தம்: 15 காலங்கள்

பா .வெ . எண்	பாட திட்டத்தின் வெளிப்பாடு
CO1	மாணவர்கள் தமிழ் மொழி தோற்றம் பற்றி தெரிந்து கொள்வார்கள்
CO2	தமிழர்களின் வாழ்வியல் முறைகளை தெரிந்து கொள்வார்கள்
CO3	தமிழர்களின் சுதந்திர போராட்ட வீரர்களை பற்றியும், மேலாண்மை முறைகளை பற்றியும் தெரிந்து கொள்வார்கள்
	(SP)

பாட நூல்கள்:

1.	பொன் முத்துகுமாரன் (2002), "தமிழ் மரபு", காந்தளகம், 68, அண்ணா சாலை சென்னை 600 002.
2.	பி டி ஸீனிவாச ஐயங்கார் (<i>தமிழக்கமும் திறனாய்வும்</i>) புலவர் கா கோவிந்தன் (1988), " தமிழர் வரலாறு (முதல் பகுதி) ", திருநெல்வேலி தென்னிந்திய சைவ சித்தாந்த நூற்பதிப்பு கழகம் ,154, TTK சாலை, சென்னை 18.
3.	டாக்டர் கே கே பிள்ளை (2009), "தமிழக வரலாறு மக்களும் பண்பாடும் ", உலக தமிழாராய்ச்சி நிறுவனம், தரமணி , சென்னை 600113.
4.	முனைவர் ச இராஜேந்திரன் (2004), " தமிழில் சொல்லாக்கம் ", தஞ்சாவூர் தமிழ் பல்கலைக் கழகம் வெளியீடு
	विद्या परा देवता -

11000150	COMMUNICATIVE ENGLISH	L	Т	Р	C
П522152	(Common to all Branches)	3	0	0	3
COURS	C OBJECTIVES:				
1. Enab	le learners to interact fluently on everyday social contexts.				
2. Train	learners to engage in conversations in an academic/scholarly setting.				
3. Insti	confidence in learners to overcome public speaking barriers.				
4. Deve	lop learners' ability to take notes and in the process, improve their listen	ing ski	lls		
5. Enha	nce learners' reading skill through reading text passages for mplation.	com	prehen	sion	and
6. Impr gene	ove learners' skills to write on topics of general interest and drafting al purposes	g corr	espond	lences	for
UNIT I					9
Speaking situations comprehe sentences questions	- several ways of introducing oneself at several situations, introduction, inviting people for several occasions, describing people and their provision passages - making inferences, critical analysis. Writing - compression - developing hints from the given information. Grammar - Why-Que - Parts of speech. Vocabulary development - prefixes - suffixes - one nouns	cing c laces. oleting stions article	thers Reading the in and Y es - co	at sev ng - s ncomp Yes or ountab	reral hort blete No ble /
uncounta		1			
UNIT II		1			9
Listening	- customer care voice files, short narratives - identifying problems and	deve	oping	telepł	one
informati the headl writing - phrases, c	ve videos, inquiring about a concept/activity, describing a concept/activ nes on news magazines - slogans and taglines from advertisements. W headlines, slogans and taglines individual inspirations. Grammar - uotes. Vocabulary development - guessing the meanings of words in vari	vity. R Vriting conju ous di	eading - free nction	s, idic	ding ng - oms, xts
		1			<u>9</u>
Listening Speaking opinions, manuals structure sentences Vocabula	- courtroom scenes from movies, debates and talks from news cl - language and tone for arguments, discussion, deliberation, cont reacting to different situations in an alien country. Reading - langua of household appliances, cookery and other basic instructions. Writi of texts - use of reference words, discourse markers-coherence, rea . Grammar - adjectives - degrees of comparison, framing direct as ry development - concise approach, single word substitution.	empla ge use ng- ur rrangi nd inc	s, not tion, e ed in i ndersta ng the lirect	es tak xpress nstruc inding e juml questi	ing. sing tion the bled ons.
LINIT IV					9
Listening promotin system; Present a antonyms	- Sports commentaries, advertisements with users' criticisms; Speaking g a concept, negotiating and bargaining; Reading - review of a product, Vriting - writing for advertisements, selling a product; Grammar - 7 nd Future, Continuous - Past, Present and Future; Vocabulary Deve and phrasal verbs.	- for s movie Fenses lopme	ocial o , move - Sir ent - s	causes ement nple F synony	, for or a Past, /ms,
UNIT V					9
Listening	- video lectures, video demonstration of a concept: Speaking - prese	nting	papers	/conce	epts.
delivering	short speeches, discourses on health, suggesting natural home remed	lies, c	leanlir	iess, c	ivic

sense and responsibilities; Reading - columns and articles on home science; Writing - correspondences of requests, basic enquiry/observation and basic complaints; Grammar - modal verbs, perfect tenses - Vocabulary development - collocations.

TOTAL: 45 PERIODS															
СО	No.				(COURS	SE OU'	гсом	ES					RBT Level	
At th	e end	of the co	urse, st	udents	will be	able to:									
C	D1	Acquir	e adequ	ate voc	abulary	for eff	ective (commu	nicatio	n				3	
C)2	Listen	to for	nal an	id info	rmal c	ommui	nication	and	read a	rticles	and int	fer	3	
	-	meaning	gs from	specifi	c conte	xts from	n maga	izines a	nd new	spapers	S.	1 1		4	
C)3	and thei	pate ef r friend	s and e	ly in ii express	nformal opinior	l/casual	conve glish.	rsation	s; intro	duce t	hemselv	ves	4	
C	04	Compre	ehend o	convers	ations a	and sho	rt talks	deliver	ed in E	nglish.				6	
C)5	Write s	hort wr	ite-ups	and per	rsonal l	etters a	nd ema	ils in E	nglish				6	
				- 12	-	C	UL	LE	2	2					
REF	REFERENCES:														
1.	1. Department of English, Anna University, "Mindscapes: English for Technologists and Engineers". Orient Black Swan, Chennai, 2017.														
	Downes, Colm, "Cambridge English for Job-hunting", Cambridge University Press, New Delhi.														
2.	2008.	es, Coin	n, "Can	ibridge	e Englis	sh for J	ob-nun	ting , C	ambri	age Un	iversity	Press,	New .	Deini.	
3.	Murphy, Raymond, "Intermediate English Grammar with Answers", Cambridge University Press 2000.														
4.	4. Thomson, A.J., "Practical English Grammar 1 & 2", Oxford, 1986.														
E-R	ESOU	RCES:	Z		10	1	14	7			m				
1.	http://	www.usi	ngengli	sh.com	1	0			1.80	~	m				
2.	http://	www.uef	fap.com	3	i.			/_	-		20/				
3.	https:/	/owl.eng	lish.pu	due.ed	u/owl/		10		12	13	5/				
4.	www.	learneng	lishfeel	good.co	om/esl-j	printabl	es-worl	ksheets.	html	0	/				
				10	1	1	Y	~	~	6/					
SOF	TWA	RE:		1	19	ETT		- 21	20,	/					
1.	Face2	Face Ad	vance –	Camb	ridge U	niversi	ty Press	5, 2014	/						
2.	Englis	sh Advan	nce Voc	abulary	/- Camł	oridge U	Jnivers	ity Pres	SS						
3.	IELTS	S test pre	paratio	n – Car	nbridge	Unive	rsity Pr	ess 201	7						
4.	Offici	al Guide	to the 7	FOEFL	Test W	ith CD	-ROM,	, 4th Ed	ition						
5.	CAM	BRIDGE	E Prepai	ation f	or the T	OEFL	TEST-	Cambri	idge Ur	niversit	y Press,	2017			
I															
COU	COURSE ARTICULATION MATRIX:														
<i>c</i>	POs											PS	PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1										3					

2										3				
3										3				
4										3				
5										3				
1: Slig	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)													

MA	2215	APPLIED MATHEMATICS I	L	Т	Р	С
	1	(Common to all Branches except MR)	3	1	0	4
COU	JRSE (OBJECTIVES:	· · ·			<u>.</u>
1.	Comp quadra	ute Eigen values and Eigen vectors and use in diagonalization and atic forms.	in cl	assify	/ing	real
2.	Study	differential calculus and its applications to relevant Engineering problems.				
3.	Comp	ute derivatives using the chain rule or total differentials.				
4.	Under	stand the rotation of two-dimensional geometry using definite integrals.				
5.	Acqua	aint with the Mathematical tools needed in evaluating multiple integrals and t	their u	sage.		
UNI	ΤI	MATRICES				12
Eige	n value	es and Eigen vectors of a real matrix - Characteristic equation - Properties	of Eig	gen va	alues	and
Eige	n vecto	ors - Statement and Applications of Cayley-Hamilton Theorem - Diagonali	zation	of n	natric	es -
Redu	uction	of a quadratic form into canonical form by orthogonal transformation -	Nature	e of	quadı	ratic
form	s.					
UNI	TII	APPLICATION OF DIFFERENTIAL CALCULUS				12
Curv	ature a	nd radius of Curvature - Centre curvature - Circle of curvature - Evolutes -	Envel	opes	- Evo	lute
as Ei	nvelope	e of Normals.				
UNI	T III	DIFFERENTIAL CALCULUS FOR SEVERAL VARIABLES				12
Limi	ts and	Continuity - Partial derivatives - Total derivatives - Differentiation of	implic	cit fu	nctio	ns -
Jaco	bians a	nd properties - Taylor's series for functions of two variables - Maxima and I	Minim	na of :	funct	ions
of tw	o varia	bles - Lagrange's method of undetermined multipliers.				
UNI	T IV	APPLICATION OF DEFINTE INTEGRALS				12
Integ	gration	by Parts - Bernoulli's formula for integration - Definite integrals and its P	ropert	ies -	Solid	s of
Revo	olution	- Disk Method - Washer Method- Rotation about both x and y axis and Shell	meth	od.		
UNI	ΤV	MULTIPLE INTEGRALS				12
Doul	ble inte	egrals in Cartesian and polar coordinates - Change of order of integration	- Are	a enc	losec	l by
plane	e curve	s - Change of variables in double integrals - Triple integrals - Volume of soli	ids.			
		TO	ΓAL:	60 Pl	ERIC)DS
CO	No.	COURSE OUTCOMES			RJ	BT
					Le	vel
At th	$\frac{1}{2}$ end $\frac{1}{2}$	of the course, students will be able to:				2
U	UI	Solve the Eigen value problems in matrices.				<u> </u>
C	02	Apply the basic notion of calculus in Engineering problems and to tackle in geometries	or airre	erent	•	3
C	03	Perform calculus for more than one variable and its applications in Engineering p	roblem	IS.		3
C	04	Apply definite integrals for design of three-dimensional components				3
C	05	Evaluate multiple integral in Cartesian and polar coordinates				3
					•	-
TEX	TBOO	DKS:				
1.	Grew	al B.S., "Higher Engineering Mathematics", 44 th Edition, Khanna Publishers	. New	Delh	ni. 20	18.
2.	Krev	szig E, "Advanced Engineering Mathematics", 10 th Edition. John Wiley. New	w Dell	ni, Inc	$\frac{1}{1}$	018

1.	Publication	ns Pvt. L	td., 201	4.				<u>,, ", "</u>						10
2.	Glyn Jame	s, "Adva	inced N	lodern	Engine	ering N	Aathem	atics",	4th Edit	tion, Pe	arson I	Educati	on, 20	16.
3.	Ramana B Delhi, 201	.V, "Hig 3.	her Eng	ineerin	ig Math	nematic	es", Tata	a McGr	aw Hill	l Publis	hing C	ompan	y, New	/
E-RE	SOURCES	:												
1.	https://hon	ne.iitk.ac	e.in/~pe	eyush/1	102A/I	Lecture	-notes.p	odf						
2.	https://ww entre/integ	w.sydne ration-de	y.edu.a efinite-i	u/conte ntegral	nt/dam .pdf	n/studer	nts/docu	iments/	mathen	natics-le	earning	g-		
3.	https://hon	ne.iitk.ac	e.in/~pe	eyush/1	102A/I	Lecture	-notes.p	odf	1					
			/	28	r	_	-	- 4	5.2	1				
COU	RSE ARTI	CULAT	ION M	ATRE	X:	1000	1.00		0	10				
	POs													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	12	21	2	- /	0	0	11		10	1			
2	3	2	21	2	1			1	1.25	1 =	- 1			
3	3	2		2	1		7	1-1-		- 2	-			
4	3	15	11	51.	11	-		1	P. C.	15	1			
5	3	1 -	21	2			1	-		12	1			
		1	1			- 3	20. 11		21	1	/			
1. 61	ght (Low), 2	2: Mode	rate (M	ledium), 3: S	ubstan	tial (Hi	igh)	1	51	0			
1: 21			1 1		.,			0 /	/	94				

יזמ	1001 50	ENGINEERING PHYSICS	L	Т	Р	С
РН	122152	(Common to AE, CE, ME, MN, MR)	3	0	0	3
CO	URSE	OBJECTIVES:				
1.	To er Engir	hance the fundamental knowledge in Physics and its applications re eering.	elevan	t to S	trean	ns of
TINI	тт	MECHANICS				0
Mor	nent of	inertia (MI) - Radius of gyration - Theorems of MI - MI of circula	r disc	solid	l cyli	9 nder
holle	ow cvli	nder, solid sphere and hollow sphere - K.E of a rotating body - M.I of a	diato	mic m	olecu	ile
- Ro	otation	al energy state of a rigid diatomic molecule - centre of mass - co	onser	vation	of 1	inear
mon	nentum	- Relation between Torque and angular momentum - Torsional pendulu	ım.			
UNI	II TI	PROPERTIES OF MATTER AND THERMAL PHYSICS				9
Flui	d - def	inition, distinction between solid and fluid - Units and dimensions -	Prope	erties (of flu	ids -
dens	sity, sp	ecific weight, specific volume, specific gravity, viscosity, compressibi	lity, v	vapour	r pres	sure,
capi	llarity	and surface tension - Fluid statics: concept of fluid static pressure,	abso	olute a	and g	auge
pres	sures -	pressure measurements by manometers-forces on planes - centre of pre	essure	- buo	yancy	y and
float	tation.	Modes of heat transfer - thermal conductivity - Newton's law of coolin	g - Li	near h	ieat fl	low -
Lee	s disc	method - Radial heat flow - Rubber tube method - conduction throu	igh c	ompou	ind n	nedia
(seri	es and	parallel).				
TINI	тш	ACOUSTICS AND HI TRASONICS	-			0
	sificati	on of Sound decidel Weber Fechner law Schine's formula derivat	ion 11	sing g	rowth	y and
deca	w meth	od - Absorption Coefficient and its determination -factors affecting A		tics of	build	lings
and	their re	medies. Production of Ultrasonics by Magnetostriction and Piezoelectri	ic me	thods.	- Aco	ustic
grati	ing - N	on-Destructive Testing - pulse echo system through transmission and re	flecti	on mo	des -	A. B
and	C - sca	n displays, medical applications - Sonogram.	1			,
			1			
UNI	TIV	PHOTONICS AND FIBER OPTICS	1			9
Phot	tonics:	population of energy levels, Einstein's A and B coefficients derivati	on -	resona	ant ca	avity,
optio	cal amp	blification (qualitative) - Nd-YAG laser - CO2 Laser - Applications. F	iber o	ptics:	princ	ciple,
num	erical a	perture and acceptance angle - types of optical fibres (material, refractive	ve inc	lex, ar	nd mo	ode) -
losse	es asso	ciated with optical fibers - Fiber optic communication - fibre optic s	senso	rs: pre	essure	e and
disp	laceme	nt- Endoscope.				
		41 421 4				
UNI	TV	CRYSTAL PHYSICS				9
Sing	gle crys	talline, polycrystalline and amorphous materials - single crystals: unit	cell,	crysta	l syst	tems,
Brav	ais lat	tices, directions and planes in a crystal, Miller indices - interplanar dis	stance	s - co	ordin	ation
num	ber an	d packing factor for SC, BCC, FCC, HCP and diamond structure (qualit	tative)	- ci	ystal
ımpe	ertectic	ns: point defects, line defects - Burger vectors, stacking fault.				
		ТС	JTAL	.: 45 ł	EKI -	
CO	No.	COURSE OUTCOMES			L L	RBT .evel
At th	ne end	of the course, students will be able to:			1	
C	01	Gain knowledge in Mechanics				2
C	02	Evaluate the concepts of properties of matter and thermal physics.				3
C	03	Learn to solve the issues related to defects in the buildings due to acous	stic de	sign		3
-		and the significance of ultrasonic waves.				

CC)4	Deve	lop an	unders	standing	about	photor	nics and	Fiber	Optic	commu	inicatio	on system	n.	2
CC)5	Class	ify and	demo	nstrate	the fun	damen	tals of	crystal	s and the	heir de	fects.	-		3
TEX	TBO	OKS:													
1.	Gau	r R.K.	and Gu	ipta S.	L, "Eng	ineerin	g Phys	<u>sics", D</u>	hanput	t Public	ations,	, 2015.			
2.	Shat	endra S	Sharma	$\frac{1}{2}$ and J	yotsna S	Sharma	i, "Eng	ineerin	g Phys	$\frac{1}{1}$	earson,	2006.			
<i>3</i> .	Raje	ndran	$V, ^{-}Ei$	Iginee	ring Phy	/S1CS [*] ,	Tata M	lcGraw	Hill, 4	$\frac{2009}{2001}$	5				
4.	Alui	nugan	I IVI , I	viateri		nce, I	Anurac	illa Fuo	incatio	118, 201	5				
DEE		ICES													
KEF			; · 1		D 1	T 1	XX 7 11	"D '	• 1	(DI	• 11 1		·.·		015
1.	Davi	id Hall	iday, F	Cobert	Resnick	k, Jearl	walke	er, "Prin	ciples	of Phy	SICS [*] , 1	10 th Ed	ition, v	viley,2	015.
2.	Peter	Peter Atkins and Julio De Paula, "Physical Chemistry", 10 th Edition, Oxford University Press 2014													
	Press	<u>s,2014</u>		11.4	N 1 .	·	CI	11 0	"0	-	<u>C 1 4</u>	1 DI	• ,,	ath r 1	••
3.	Arth McC	Thur Beiser, Shobhit Mahajan, Rai Choudhury S, "Concepts of Modern Physics", /" Edition, Graw Hill Education, 2017													
4	Rag	MCGIAW HIII Education, 2017. Raghavan V. "Materials Science and Engineering" PHI Learning Pyt. Ltd. 2010													
4.	Tugi		, 1.10				ingine	, . 			2.1				
				1.5	5/		\$2.50	31-	3		0				
COU	RSE	ARTI	CULA	TION	I MATI	RIX:			1	- 0	10	11			
			1	21	1 in	Ş	POs	5	< 17	N	13	21		PS	Os
COs		1	2 <	3	4	5	6	7	8	9	10	11	12	1	2
1		3	2	<	2		300	1		AX	1	2		3	2
2		3	2 2	2	2	11	1.1	16	"		1	111	2	2	2
3		3	10	2	2.5	3	2	1	1	12000	1				
4		3	1	2		3	2	1	2	6.4	1	01	2	2	2
5		3	2	2			12	10	1	2		1		1	
			3	17	19		14	Da		/	9	1			

(0/

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

		ENCINEEDING CHEMISTDV	T	Т	D	C
CY2	22152	(Common to AF MF MN)	3	1	1	3
COI	IRSE	OBIECTIVES:		U	<u> </u>	5
1	Tom	ake the students to understand the importance of electrochemistry				
$\frac{1}{2}$	To ar	preciate the concepts of photochemistry and spectroscopy				
2.	To in	pretrate the concepts of photoenemistry and spectroscopy.				
<u>э</u> . Л	Tour	derstand the applications of angineering materials				
- . 5	To fo	miliarize the monufacture of fuels				
5.	101a	initialize the manufacture of fuels.				
T INII'	тт	FIECTROCHEMISTRY				0
Elect	trodes	and electrochemical calls electrode potential standard electrode pot	antial	singl	م مامد	trode
noter	ntial a	and electrochemical cens - electrode potential, standard electrode pot ad its determination, types of electrodes - calomel, quinhydrone and (rlace	, singi electro	ode N	Iornet
poter	tion	determination of pH of a solution by using quinbydrone and glass alog	siass (troda	Flact	roche	mical
cqua	c and i	ts applications. Batteries - Primary (dry battery) and secondary batterie	c (I a	ad - ac	rid sto	rage)
serie	s and i	is applications. Dateries - I milary (dry battery) and secondary batterie	<u>s (LC</u>	au - ac	iu sto	rage)
UNI	тп	PHOTOCHEMISTRY				0
	s of	hotochemistry - Grotthuss-Draner law Stark-Finstein law and I	amh	ert R	oor I	<u> </u>
deter	minat	on iron by spectrophotometer. Quantum efficiency - Photo physica	l nro		$\frac{1}{2}$ = inf	aw - ternal
conv	ersion	inter-system crossing fluorescence phosphorescence and photo-sense	itizat	ion-au	ienchi	ng of
fluor	escen	e and its kinetics. Stern-Volmer relationship. Applications of photoche	mistr	v		ing of
nuor	CSCCIN	e and its kinetics, stern vonner relationship. Applications of photoene	<u>misu</u>	y.		
LINI'	тш	NANOCHEMISTRY	1			9
Basi	rs and	scale of nanotechnology different classes of nanomaterials Distinction	on het	ween	molec	
nano	nartic	es and hulk materials: size-dependent properties. Synthesis of nano	omate	rials	fabric	vation
(lithe	oranh	y) and its applications - Basics of nanophotonics and quantum confi	ned n	nateria	ale (en	rface
nlasr	non re	sonance)	neu n	inaterite	115 (50	inace
piusi	101110	sonance).				
UNI	TIV	ENGINEERING MATERIALS	1			9
Abro		definition classification grinding wheel abrasive paper and eleth P	ofraci	toriog	dafin	ition
char	isives.	tics classification properties refractorings and RIU dimension	nol c	tabilit	ucilli v the	armal
chall	ing t	hermal expansion porosity: Manufacture of alumina magnesite	and	silico	y, und y	rhida
Jubr	ing, i	classification, properties and applications. Basics of composite ma	anu	sinco	n cai	s and
appli	ication	- classification, properties and applications. Basics of composite ma	lienai	s, pro	pernes	s anu
appn	cation					
TINIT	T X 7					
UNI	I V	FUELS AND COMBUSTION	:f:			9
Fuel	: Intro	duction - classification of fuels- calorific value - night and lower calo	orninc	values	s - ana	arysis
01 CC	bai (pr	oximate and ultimate) - carbonization - manufacture of metallurgical	соке		HOIII	mann
meth	lod) -	petroleum - refining - manufacture of synthetic petrol (Bergius proces	3S)- K		1g - 0	ctane
num	ber - d	lesel oil - cetane number - natural gas - compressed natural gas (CNG)) - 11q	uemed	petro	leum
gases	s (LPC	b) - producer gas - water gas. Combustion of fuels: introduction - the	oretic	cal cal	culati	on of
calor	111C V8	lue - calculation of stoicniometry of fuel and air ratio - flue gas analys	18 (U	KSAI	Meth	iod) -
Uses	or cat	aryuc converters.	0.5	• / -	DEET	
		T	υτά	L: 45	PERI	ODS
CO	No.	COURSE OUTCOMES			ŀ	XBT
	- 101					Jevel
At th	e end	of the course, students will be able to:				
C	D1	Identify electrochemical cells, corrosion and fundamental aspects of ba	tterie	S		2
C)2	Interpret the photochemical reactions and make use of spectro	scopi	с		2

CC)3	Realiz	Realize the structures, properties and applications of nanoparticles.												2
CC)4	Acqui applic	ire kn ations	owledg	ge on	the ba	isic pr	opertie	s of e	enginee	ering 1	naterial	s and it	5	2
CC)5	Illustr	ate the	e variou	is mate	rials th	at are ir	nporta	nt both	in indu	ustry ar	nd dome	estic		3
TEX	TBO	OKS:													
1.	P.C. Editi	Jain a on, 20	and M 18.	onica	Jain, "I	Engine	ering (Chemis	try", I	Dhanpe	et Rai	& Sons	s, New E	elhi	, 17 th
2.	2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008														
REFERENCES:															
1.	Ozin Publ	G. A. ishing,	and A 2005.	rsenau	lt A. C	., "Nar	ochem	istry: A	A Cher	nical A	pproac	ch to Na	anomateri	als",	RSC
2.	B.R. Publ	R. Puri, L.R. Sharma, M.S. Pathania., "Principles of Physical Chemistry", 47 th edition, Vishal blishing C., Jalandhar 2018.													
3.	P.L. Sony and H.M.Chawla, "Text Book of Organic Chemistry", Sultan Chand and Sons Publishers, New Delhi, 2000.														
			1	5	1		2.1	No.6	1.1			11			
COU	RSE	ARTI	CULA	TION		RIX:	-	_		15	1.	21			
			11	57		7	DO		1	1	- 1	51		D	200
COs			15	T					-		-1	61		IK	505
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3	3	2	3	11		11	11			m	3		
2		3	3	14	57.	1	3	3		25	-1	m	3		
3		3	3	2	- 1E	-	3	3	3			201	3		
4		3	3	1	3			3	3	E.	12	5/	3		
5		3	3	18	3		3	Da	3	/	9	/	3		
				1		2		Y	2	1	-/				
1: Sli	ght (l	Low), ź	2: Mo	derate	(Medi	um), 3	: Subst	antial	(High)	/				
							1 1	1.5	8	/					

CS22151		PROGRAMMING IN C	L	Т	Р	С			
		(Common to ME and MN)	3	0	0	3			
COU	JRSE (DBJECTIVES:							
1.	Learn	the basics of computers.							
2.	Learn	the different ways of stating algorithms - step-form, Pseudocode and	l flow	chart	[
3.	Learn	the logical operators and expressions to solve problems in engineerin	ng and	l real-	time				
4.	Learn	about decision type and looping type control constructs in C							
5. Understand to store, manipulate and retrieve data in a single and multidimensional array									
6.	Under	stand about function and its benefits.							
7.	Learn	to use arrays, strings, functions, pointers, structures, unions and files	in C.						
UNI	ΤΙ	INTRODUCTION				9			
Num	ber Sys	tem Conversion, Computer, Evolution of Computers, Anatomy of C	ompu	iter -	Hardy	ware			
- Sof	ftware	- Data Representation, Memory Unit, Operating Systems, Comput	er Ne	twork	:s - B	lasic			
elem	ents -	Data Transmission mode – Data Transmission Media - Network	l'opol	ogy	Netv	vork			
Dev1	ces - C	ommunication Networks (LAN, WAN, MAN), Internet – Uses – Adva	intage	$s - L_1$	imitat	ions			
- Ser	vices (l	Email, FTP, Telnet), Introduction to Programming, Algorithms and F	low C	hart.					
			1						
UNI	ΤII	C PROGRAMMING BASICS	1			9			
Intro	Introduction to 'C' programming – Developing program in C, A Simple C Program, Structure of a C								
prog	program, Concept of a Variable, Data Types in C, Tokens, Operators and Expressions, Type								
Conversions, Input and Output functions, Control Statements – Conditional Execution and Selection									

- Iterative and Repetitive Execution – Nested Loops, Solving simple scientific and statistical problems.

UNIT III ARRAYS AND STRINGS

One dimensional Array – Declaration - Initialization of Integer Elements - Accessing Array Elements, Searching and Sorting of array elements, Two dimensional arrays – Declaration - Initialization of Integer Elements - Accessing Array Elements, Addition, Subtraction and Multiplication of two dimensional integer elements, Strings, Arrays of strings, Solve problems with and without using string functions.

UNIT IV FUNCTIONS AND USER DEFINED DATA TYPES

Concept of Function, Using Functions, Mechanism - Call by value, Call by reference, Recursion, - Structures, Unions, Enumerators.

UNIT V POINTERS AND FILES

Understanding Memory Address, Address Operator, Pointers, void Pointer, NULL Pointer, Arrays and Pointers, Pointers arithmetic, Double Pointers, Using Files in C, Working with Text Files, Sequential and Random Access to Files.

CO No.	COURSE OUTCOMES	RBT Level
At the end	of the course, students will be able to:	
CO1	Apply various problem-solving techniques and represent solutions in the form of algorithms and flow charts.	2

9

TOTAL: 45 PERIODS

9

9

CO2	Able to write C programs using the control statements of C language for simple	2
CO3	Develop programs using of array and string operations to solve problems.	2
CO4	Create user-defined functions, structures and unions to perform a task.	2
CO5	Use file operations to store and retrieve data	1

TEXTBOOKS:

1. Pradip Dey, Manas Ghosh, "Programming in C", First Edition, Oxford University Press, 2018.

REFERENCES:

1.	Ashok N Kamthane, "Programming in C", Third Edition, Pearson, 2015
2.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2015.
3.	Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.
4.	Paul J Deitel, Dr. Harvey M. Deitel, "C How to Program", Seventh Edition, Pearson Education 2016

COURSE ARTICULATION MATRIX:

COs	POs										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	3	3	1	1		1	-			41			
2	1	Ě	2	41	1	1):		<u>h</u> ~		N			
3	1	4	2	1	11		16	//	U-,		m			
4	1	15	2	1	1			/		1	51			
5	1	1	2	1		1	30.0	4	2	1:	21			
		1	de la	13		1	Ť.			5	2/			

परा देवती

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

विहा

ME22101	ENGINEERING DRAWING	L	Т	Р	C									
WIE22101	(Common to ME, MN, MR)	2	0	2	3									
COURSE	OBJECTIVES:													
1. This positi	course will introduce students to build their ability to read drawin on and form of simple geometries.	gs an	d into	erpret	t the									
CONCEPT	S AND CONVENTIONS AND GEOMETRIC CONSTRUCTION	N												
(Not for Ex	$z_{\text{ominotion}}$	<u> </u>												
Importance	of drawing in engineering applications - Use of drafting instrument	ts - R	IS co	nvent	tions									
and specifi	cations - Size layout and folding of drawing sheets - Lettering	and	dime	ensior	ning									
Geometric	construction - to draw perpendiculars, parallel lines, divide a line	and	circle	to c	draw									
equilateral (riangle, square, regular polygons.			,										
1	CVCLOIDAL CURVES INVOLUTE AND PROJECTIONS OF	F PO'	INTS		<u> </u>									
UNIT I	LINES			,	12									
Basic const	ruction of cycloid, epicycloid and hypocycloid - Drawing of tangen	ts and	l norr	nal to	the the									
above curv	es. Construction of involutes of square, pentagon and circle - Draw	ving c	of tan	gents	and									
normal to th	ne above involutes.													
Orthograph	ic projection – Introduction to Principal Planes of projections - Fir	st ang	gle pr	ojecti	on -									
projection (of points. Projections of straight lines (only First angle projections)		ned to) boti	1 the									
principal pl	anes - Determination of true lengths and true inclinations by rotating l	ine m	nethoc	1.										
					10									
	PROJECTIONS OF PLANES AND PROJECTIONS OF SOLI	<u>, s</u>	• 1	1	12									
rotating obj Projections the principa	ect method. of regular solids like prisms, pyramids, cylinder, cone when the axis I planes and parallel to the other by rotating object method.	is inc	lined	to or	ne of									
	SECTIONS OF SOLIDS AND DEVELOPMENT OF SUBFACI	FS			12									
	SECTIONS OF SOLIDS AND DEVELOT MENT OF SONFACE	1	• • • • •	1										
section plan sectional fro Developme	the is inclined to one of the principal planes and perpendicular to the point and top views and true shape of section. Int of surfaces of simple and sectioned solids - prisms, pyramids cyline	ti pos othe ders a	r - D nd co	wner rawin nes.	i the									
UNIT IV	ISOMETRIC PROJECTION AND INTERSECTION OF SURF	ACE	S		12									
Introduction	n to Pictorial Projection - Principles of isometric projection - Isomet	tric sc	cale -	lsom	etric									
projection of	of regular solids (prisms, pyramids, cylinder, cone), truncated solids as	nd the	eir coi	nbina	ation									
in vertical p	position.													
Line of inte	ersection - Determining the line of intersection between surfaces of	two i	nterp	enetra	ating									
solids with	axes of the solids intersecting each other perpendicularly, using line r	netho	d - In	tersed	ction									
of two squa	re prisms and Intersection of two cylinders are only to be considered.													
UNIT V	FREE-HAND SKETCHING				12									
Free-hand s	sketching – Sketching procedures – Steps in sketching - Orthograph	nic vi	ews (front	, top									
and side viet	ews) of simple blocks from their Isometric view, Isometric view of graphic views (front top and side views)	simp	le blo	ocks f	from									
	TO	TAL:	60 P	ERIC	ODS									
CO N	I o.				COL	JRSE	OUTC	OME	S				I	RBT Level
--------	---	------------------------	-------------------	--------------------	---------------	-------------------	---------------------	------------------	-------------------	-------------------	--------------------	-----------------------	-------	--
At the	end of th	ne course	e, stude	nts wi	ll be ab	le to:								
CO	Cons draw	struct Er ving stan	ngineer dards	ing cu	rves an	nd sket	ch the	orthog	graphic	views	of li	nes as pe	r	3
CO	2 Drav posit	v orthog tions	graphic	projec	ctions of	of pla	ne surf	faces a	and sin	nple so	olids	in variou	5	3
CO.	B Drav simp	v the va	rious v s.	views (of secti	oned	solids a	and de	evelop	the lat	eral s	surfaces o	f	3
CO	1 Drav	v isome ographic	tric projec	ojectio tion of	ns of the int	simple ersecti	e solid ion of s	s and surface	their s of sir	combir nple so	nation olids.	is and the)	3
CO	5 Sket using	ch the o g free ha	orthogra nd.	aphic]	project	ions o	f a giv	ven iso	ometric	view	and	vice vers	ì	3
					/	20								
TEX	FBOOKS	5:		/	A	CC)LL	Ec						rd
1.	Bhatt N. Edition, 2	D. and 2019.	Panch	al V.N	И., "Ei	nginee	ring D	rawing	g", Ch	arotar	Publ	ishing Ho	ouse,	, 53 rd
2.	Venugop	al K. an	d Prabl	1u Raja	a V., "I	Engine	ering I	Drawin	g Auto	CAD"	, New	v Age Inte	rnati	ional
		/	6	/		2.1	S	1.1	-		1			
REFE	ERENCE	S:	41		6.1	100	_	÷.	17	12	21	<u>.</u>		
1.	1. Basant Agarwal and Agarwal C, "Engineering Drawing", McGraw Hill, 2 nd Edition, 2019.													
2.	Parthasa Delhi, 20	rathy N. 015.	S. and	Vela	Murali	, "Eng	ineerin	g Grap	phics",	Oxfor	d Uni	versity, P	ress,	New
3.	Shah M	, and Ra	ina B.C	C., "En	gineeri	ing Dr	awing'	', Pear	son Ec	lucatio	n, 2 nd	^d Edition,	2009).
4.	Natrajan 2018.	K.V., "	A Tex	t Book	of En	gineer	ing Gra	aphics'	", Dha	nalaksł	nmi P	ublishers,	Che	ennai,
		1	$\langle \rangle$		1.15	-	_		1	1:	2			
E-RE	SOURC	ES:	1			1	<u>89</u>	-	13	12	5/			
1.	https://nj	otel.ac.in	/course	es/1121	05294	- 020	1		/	9	1			
2.	https://nj	otel.ac.in	/course	es/1121	03019	1	V	1	12	_/				
				21	25	_	-	42	21	/				
COU	RSE AR	FICUL	TION	MAT	'RIX:	/ τ	121	60	/					
~~						POs	5	_					PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	1	2							1		1		
2	3	1	2							2		1		
3	3	1	2							2		1		
4	3	1	2							3		1		
5	3	1	2							3		1		
			1	•	1	1					<u> </u>	I		<u>. </u>
1: Sli	ght (Low), 2: Mo	derate	(Med	ium). 3	3: Sub	stantia	l (Hig	h)					

DU	22161	PHYSICS LABORATORY	L	Т	Р	С
1 11.	22101	(Common to all Branches except BT)	0	0	2	1
CO	URSI	E OBJECTIVES:				
1.	To i opti	ntroduce different experiments to test basic understanding of physics conce cs, thermal physics and properties of matter.	epts a	pplie	d in	
		LIST OF EXPERIMENTS (Any EIGHT experiments)				
1.	a) [] b) []	Determination of Wavelength, and particle size using Laser. Determination of acceptance angle in an optical fiber.				
2.	Det	ermination of velocity of sound and compressibility of liquid - Ultrasonic I	nterfe	erome	eter.	
3.	Det	ermination of wavelength of mercury spectrum - spectrometer grating.				
4.	Det	ermination of thermal conductivity of a bad conductor - Lee's Disc method.				
5.	Det	ermination of Young's modulus by Non uniform bending method.				
6.	Det	ermination of specific resistance of a given coil of wire - Carey Foster's Bri	dge.			
7.	Det	ermination of Rigidity modulus of a given wire - Torsional Pendulum				
8.	Ene	rgy band gap of a Semiconductor				
9.	Det	ermine the Hysteresis loss of a given Specimen	8			
10.	Cali	bration of Voltmeter & Ammeter using potentiometer.				
CO	No	COURSE OUTCOMES			R L	BT evel
At t	he en	d of the course, students will be able to:	1			
CO	01	Analyze the physical principle involved in the various instruments; also rela principle to new application.	ate the	2		4
CO	02	Comprehend the Experiments in the areas of optics, mechanics and the physics to nurture the concepts in all branches of Engineering.	ierma	1		3
CO	03	Apply the basic concepts of Physical Science to think innovatively and improve the creative skills that are essential for engineering.	1 also)		3
CO	D4	Evaluate the process and outcomes of an experiment quantitatively qualitatively.	y and	1		3
CO	05	Extend the scope of an investigation whether results come out as expected.				3
DE						
	rekr	Diverses Laboratory practical manual 1 st Davised Edition by Eaculty mem	borg	2018		
	•	i nysies Laboratory practical manual, i Kevised Edition by Faculty mem	UCIS,	2018	•	

CO -		POs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	3	2				3	1		2	1	1	
2	3	3		3		2			3	1		2	1	1	
3	3	3	2	3	2	2			3	1		2	1	1	
4	3	3		3					3	1		2	1	1	
5	3	3		3	2				3	1		2	1	1	

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

CY	22161	CHEMISTRY LABORATORY	L	Т	Р	С
011		(Common to all Branches except AD, CS, IT)	0	0	2	1
COU	URSE	COBJECTIVES:				
1.	To a duri	cquaint the students with the basic phenomenon/concepts of chemistry, then ng course of their study in the industry and engineering field.	e stuc	lent f	ace	
2.	To a use.	ppreciate the need and importance of water quality parameters for industr	ial and	d don	nestio	2
3.	To g mea	ain the knowledge on electrochemical instrumentation techniques like pot suring used in electrochemistry applications	tential	and	curre	nt
4.	To i	mpart knowledge on separation of components using paper chromatograph	hy.			
5.	Тое	enhance the thinking capability about polymer and properties like molecul	ar wei	ght.		
		AUDILLEGA				
		LIST OF EXPERIMENTS (Minimum EIGHT experiments))			
1.	Dete	ermination of DO content of water sample by Winkler's method.				
2.	Dete	ermination of strength of given hydrochloric acid using pH meter				
3.	Dete	ermination of strength of acids in a mixture using conductivity meter				
4.	Esti (phe	mation of iron content of the water sample using spectrophotometer nanthroline/thiocyanate method)				
5.	Dete	ermination of total, temporary & permanent hardness of water by EDTA M	lethod	•		
6.	Esti	mation of iron content of the given solution using potentiometer.				
7.	Dete	ermination of alkalinity in water sample.				
8.	Dete	ermination of Single electrode potential.				
9.	Sep	aration of components from a mixture of red and blue inks using Paper cha	romate	ograp	hy.	
10.	Dete	ermination of molecular weight of polymer by using Ostwald's/Ubbelohde	visco	neter		
со	No	COURSE OUTCOMES			R L	'BT evel
At th	he end	l of the course, students will be able to:				
CC	01	Distinguish hard and soft water, solve the related numerical problems on purification and its significance in industry and daily life.	water	,		4
CC	02	Interpret the knowledge of instruments to measure potential and current r parameters.	elated			3
CC)3	Demonstrate the basic principle for separation of components using paper chromatography.	r			3
CC)4	Evaluate the molecular weight of polymer using Ostwald's/Ubbelohde vis	scome	ter.		3
TEX	XTB (OOKS:				
1.	Furn	iss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel"s Textbo nic chemistry" LBS Singapore 1994	ok of j	practi	ical	
	5150					

2.	Jeffery G.l chemical a	H., Bas malysis	sett J., s", ELB	Mendh S 5th E	am J. an Edn. Loi	nd Den ngman,	ny Vog Singap	el's R. ore pu	C, "Tez blishers	xt book s, Singa	of qua pore, 1	ntitativ 996.	ve ana	lysis
REF	ERENCE	S:												
1.	Daniel R.	Pallero	s, "Exp	erimen	tal orga	nic che	mistry'	' John '	Wiley &	& Sons,	Inc., N	lew Yo	ork 20	01.
2.	Kolthoff I.	M., Sa	ndell E	.B. et a	l. "Qua	ntitativ	e chem	ical ana	alysis",	Mcmil	lan, Ma	adras 1	980	
COL	RSE ART	TICUL	ATIO	N MAT	'RIX:									
CO						PO	S						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2				3	3	3	1		1	2		
2	3	2	1			3	3	3						
3	3			10	A	3	3	EG,	5			2		
4	3		/	P	/	3	3	3	0					
			15	1		č si	3.		1	~ /				
1: Sl	ight (Low)), 2: M	oderate	e (Medi	ium), 3	: Subst	tantial	(High)		31	/			
			21	1 il 1	8.	/		3	X	12	- /			
		LIS	T OF I	EQUIP	MENT	'S FOR	A BA	ТСН (OF 30 S	STUDE	NTS			
SI.N)	1	<	· 6	Iten	n Desci	ription		ЪŇ	15	2		Qt	у.
1.	Commo	on appa	ratus: I	Pipette,	Burette	e, conic	al flask	, porce	lain tile	e, dropp	er		30 nos	s each
2.	Iodine f	lask	11	$\mathcal{T}_{\mathcal{T}}$	1	0	-	/	S. 10-	-11	11		30)
3.	pH met	er	21	s IŪ	100	-	/		1	13	7/		5	
4.	Conduc	tivity r	neter	1		- 4	90 - 14 T		21	2	/		5	
5.	Spectro	photon	neter	0/		1	D.		/	9/			5	
6.	Oswald	/Ubbel	ohdeVi	scomet	er	1	2	/	10	/			30)
				1	(BP	7 τ	য	\$d	/	50		1		

CS2	22161	PROGRAMMING IN C LABORATORY	L	Т	Р	С
		(Common to ME and MN)	0	0	3	1.5
COL		C OBJECTIVES:				
1.	Bee	exposed to the syntax of C.				
2.	Be f	amiliar with programming in C.				
3.	Lea	rn to use arrays, strings, functions, pointers, structures and unions in C.				
		LIST OF FXPERIMENTS				
	Pro	$\frac{1}{101}$ or EXTERNIE(11)	nrintf() get	s() n	uts()
1.	For	nat specifier separated with space/comma, input through terminal	printi), get	s(), p	uts(),
2.	Prog Bitv	grams to evaluate the expression using operators in C – Arithmetic vise, conditional and sizeof() operators	e, Log	gical,	Relati	onal,
3.	Scie num num of C	ntific problem solving using decision making and looping – Find l bers, Even or Odd number, Factorial, Krishnamurthy number, Arm ber or not, Grade of students based on marks, Leap year or Not, Fibona cometric series	argest strong acci se	/small num ries a	est ar ber, F nd the	nong rime sum
4.	Sim Rep	ple programming for one-dimensional and two-dimensional arrays lacing and Two-dimensional Matrix Operations	– Sea	urching	g, Soi	rting,
5.	Solv	ring problems using Strings – Palindrome, Cipher a string and Sorting the	ne nan	nes		
6.	Prog num arra	gramming using user-defined functions (Pass by value and Pass by rubers, Convert a temperature from F to C, Average of marks by passing v.	eferer g n suł	nce) – oject n	Swap narks	ping in an
7.	Prog Con	gramming using Recursion – Find factorial, sum of N numbers, version using recursion	sum	of x	^{y,} Nu	mber
8.	Prog poir	gramming using Pointers – Swapping three numbers without tempo tters	orary	variab	ole, do	ouble
9.	Prog	gramming using structures and union				
10.	Prog	gramming using enumerated data types				
11.	Prog	gramming using macros - #define, #ifdef, #if, #else and #endif				
12.	Prog	gramming using Files – Display the content of file and Copy from one f	ile to	other		
со	No	COURSE OUTCOMES			I I	₹BT .evel
At th	he en	d of the course, learners will be able to:				
CC)1	Use various arithmetic and logic operators in C				1
CC)2	Implement control statements of C language to solve scientific problem	IS			2
CC)3	Develop programs using array and string operations to solve pro	blems	•		3
CC)4	Create user-defined functions to perform a task.				3
CC)5	Develop programs using file operations to store and retrieve data				3

REFI	ERENCES:
1.	Pradip Dey, Manas Ghosh, "Programming in C", First Edition, Oxford University Press, 2018
2.	Ashok N Kamthane, "Programming in C", Third Edition, Pearson, 2015

COURSE ARTICULATION MATRIX:

AV 192 AG

COa						PO	S						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1		2	2										
2	2	1	2	2	1			_						
3	1		2	V	-	сO	LL	FO	1					
4	1	1	2	2	F			10	5	1				
			1:	N			1.92		0	12				
1: Slig	ht (Low)	, 2: Mo	oderate	e (Medi	ium), 3	: Subst	antial	(High)	1					
		1	41	0.5	6	50.5	_	1	10	10	1			

	LIST OF EQUIPMENT FOR A BATCH OF 30 STU	DENTS	
Sl.No	Item Description	121	Qty.
1.	Standalone desktops with C compiler or Server with C compiler.	Z	30

प्रा देवता - अ

SEMESTER II

ПС	22251	அறிவியல் மற்றும் தொழில் நுட்பத்தில் தமிழ் Science and Tackinghensis Americant Tacrit Consider	L	Т	Р	C
п5.	44431	(Common to all Branches)	2	0	0	2
ЦΠ	டத்தி	ன் நோக்கங்கள்:				
1.	அறி	வியலில் தமிழின் பயன்பாடு பற்றி தெரிந்து கொள்வ	ார்க	ள்.		
2.	தொ கொ	ழில்நுட்பத்தில் தமிழ் பாரம்பரியத்தின் தாக்கம் ள்வார்கள்.	ப்	ന്റി	அறி	ந்து
୬୦	லகு 1	அறிவியல் தமிழ்				3
கர	ബി உ	ருவாக்கம் - ஆராய்ச்சி மேம்பாடு - கல்வி வளர்ச்சி -	அறி	ഖിധ	ல் த	பிழ்
செ	ாற்கள்	ா உருவாக்கம்.				
Scientific Tamil : Tool Development - Research Development - Educational Development -						
Scie	ntific T	amil words Creation.				
ച	லகு 2	தொழில் நுட்பத்தில் தமிழ்				12
ഖ്യ	പ്പഞ	பப்பு மற்றும் கட்டுமான தொழில்நுட்பம் : ச	ங்க	கா	ஸத்	தில்
கட்	டுமா	னப் பொருட்கள் - சோழர்களின் பெரிய கோவில்க	கள்	மற்	வம்	பிற
ഖൃ	பாட்	டு தலங்கள் - பல்லவர்களின் சிற்பங்கள் மற்ற	مە	கோ	வில்	கள்
(மா	ாமல்வ	்பாம்) - நாயக்கன் கால் கோவில்கள் (மதுரை மீ	னாட	_்சு	அம்ப	பன்
கே	ாவில்	. திருமலை நாயக்கர் மறைல், செட்டி நாட்டு வீடுகள்	z. 1.			
		, <u>p</u> .e, <u>p</u> e, <u>p</u> , <u>p</u> e, <u>p</u> e, <u>p</u> e, <u>p</u> e				
Desi	ign and	I Construction Technology : Building materials in Sangam age	e – G	reat t	emple	es of
Cho	las and	other workship places - Sculptures and Temples of Pallavas (Mama	allapu	ram)	– Ten	ples
of N	Jayakas	period (Madurai Meenakshi Amman temple), Thirumalai Nayakan	r Mah	al, C	hetti I	Vadu
Hou	ses.		1			
	-	I CLA T				
~ ~	$\cdots - \square$		G			<u>.</u>

உற்பத்தி தொழில்நட்பம் : கப்பல் கட்டும் கலை, உலோகவியல் ஆய்வுகள், தங்கம், தாமிரம், இரும்பு பற்றிய அறிவு - தொல்பொருள் சான்றுகள் – சுட்டக் களிமண் மணிகள், சங்கு மணிகள், எலும்பு மணிகள்.

Manufacturing Technology : Art of Ship building, Metallurgical studies, Knowledge about Gold, Copper, Iron – Archeological evidences – Terracotta beads, Shell beads, Bone beads.

விவசாயம் மற்றும் நீர்ப்பாசன தொழில்நுட்பம் : அணைகள், ஏரிகள், குளங்கள், மதகுகள், சோழர் கால குமுழி தூம்பு ஆகியவற்றின் முக்கியத்துவம் - கால்நடை பராமரிப்பு, கால்நடைகளின் பயன்பாட்டிற்காக வடிவமைக்கப்பட்ட கிணறுகள். விவசாயம் மற்றும் வேளாண் செயலாக்கம் -கடல் பற்றிய அறிவு - மீன்பிடித்தல், முத்து குளித்தல், சங்கு சேகரித்தல்.

Agriculture and Irrigation Technology: Dams, Tank, ponds, sluice, Significance of Kumuzhi Thoompu of Cholas period- Animal Husbandry, Wells designed for cattle use. Agriculture and Agro processing, - Knowledge about Sea – Fisheries, Pearl, Conche diving.

தமிழ் கணினி: அறிவியல் தமிழ் வளர்ச்சி - தமிழ் கணினி, தமிழ் புத்தகங்களின் டிஜிட்டல் மயமாக்கல், தமிழ் டிஜிட்டல் நூலகம், தமிழ் மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அகாடமி - சொற்குவை திட்டம்.

Tamil Computing : Development of Scientific Tamil – Tamil Computing, Digitization of Tamil books, Tamil Digital Library, Development of Tamil Softwares – Tamil virtual Academy – Sorkuvai project.

தமிழின் எதிர்காலமும் தகவல் தொழில்நட்பமும்- உலகமயமாக்கலும் தகவல் தொழில் நட்பமும் - கணினிக்கு தமிழ் கற்று கொடுத்தல் - தமிழ் மொழித் தொழில் நட்பத்தில் வளங்கள்.

Future of Tamil and Information Technology- Globalization and Information Technology-Teaching Tamil for Computer-Resources in Tamil Language Technology.

	L D UULLEGA
	மொத்தம்: 15 காலங்கள்
பா.வெ. எண்	பாடத்திட்டத்தின் வெளிப்பாடு
CO1	அறிவியலில் தமிழ் மொழியின் பயன்பாடு பற்றி தெரிந்து கொள்வார்கள்
CO2	பல்வேறு தொழில்நுட்பத்தில் தமிழ் மொழியின் தாக்கம் பற்றி அறிந்து கொள்வார்கள்
பாட நூல்	்கள்:
1.	டாக்டர், வா.செ .குழந்தைசாமி (1985), '' அறிவியல் தமிழ் " , பாரதி
	பதிப்பகம், ^{126/108,} உஸ்மான் சாலை, தியாகராய நகர் , சென்னை 600017.
2.	சுப திண்ணப்பன் , (1995), "கணினியும் தமிழ் கற்பித்தலும்",
	புலமை வெளியீடு, ^{38-B} மண்ணத்நதோட்டத் தெரு, ஆழ்வார்பேட்,
	சென்னை 600018.
3.	மு. பொன்னவைக்கோ , (2003), "வளர் தமிழில் அறிவியல் –
	இணையத்தமிழ்", அனைத்திந்திய அறிவியல் தமிழ்க்கழகம்,
	தஞ்சாவூர் ⁶¹⁵⁰⁰⁵
4.	துரை. மணிகண்டன் , (2008), "இணையமும் தமிழும்", நல் நிலம்
	பதிப்பகம், 7-3, சிமேட்லி சாலை, தியாகராய நகர், சென்னை 600017.

TECHNICAL ENGLISH	Τ	Р	С
(Common to all Branches) 3	0	0	3
COURSE OBJECTIVES:			
1. Enable learners to define and understand technical communication and scientific	writi	ng	
2. Expose learners to the technicalities of seminar presentation, group discussion, a speaking	nd pu	ıblic	
3. Develop learners' writing skills for scientific and documenting purposes			
4. Improve learners' ability to draft correspondences for business purposes			
5. Cultivate learners' ability to holistically understand the nuances of job inter- recruiting process	views	and	
UNIT I			9
Listening – AV files pertaining to manufacturing processes of products, scientific of Speaking- syllable division and word stress, intonation, sharing opinions; Reading - related to science and technology; Writing – definitions, instruction, recomm interpretation, resume; Grammar – tenses and their aspects, sentence connecto markers, sequential words, active and passive voice, subject-verb agreement.	docun – new endat rs -	nenta vs arti ion, disco	ries; icles data urse
			9
 taking, sharing opinions; conducting and attending a meeting, understanding the nual communication among internal audience and external audience,; Reading - analytic descriptive documents; Writing - fliers, brochures, resume- letter of applications. UNIT III Listening – AV related to how to use components, scientific description, Speaking motivation and initiation, speaking at a seminar presentation; Reading – scientific jo Writing – Technical descriptions – process description, purpose and function, Powe forms, user manuals; Grammar - phrasal verbs, prepositions, technical and scientific a 	nces o cal do on, c - spe urnal rPoin uffixes	aking s, pap t, Go	oken ents, ists; 9 g for pers; ogle
			0
Listening - scientific debates, crisis management; Speaking - handling conflicts, spea loss of benefits, progress or decline of business, identifying the connotative meani documented evidences of uses and functions of a product, review of a product, Wri follow-up letters, reports - proposal, project, progress reports, sales reports, report visits, executive summary. Grammar - reported speech and tag questions, senter comparative, imperative, cause and effect, infinitive of result.	iking ngs, 1 ting - s on ace st	abou Read – mer indus ructu	t the ing- nos, strial re –
			9
Listening – AV of Group discussions, panel discussions, face to face interviews for purposes; Speaking- speaking at group discussions, interviewing a personality, and interviews; Reading – WebPages of topnotch engineering companies, Writing - blog letter of complaint, minutes of the meeting ; Grammar - one word substitution, coll- word/sentence substitution (rephrasing the content/improvising ideas).	or rec werin ging, ocatio	ruitm ng at e-mai ons, b	ent the ils, etter
TOTAL:	45 P	ERI	DDS

CON	No.	COURSE OUTCOMES (5 Cos)													BT evel
At the	e end	of the	e cours	e, stude	ents wil	l be ab	le to:								
CO	1 U	Jnder	stand t	he nuar	nces of	technic	cal com	munica	ation ar	nd scier	ntific w	riting			3
CO	2 P	reser	nt pape	rs and g	give ser	ninars									6
CO	3 D	Discus	ss in gr	oups ar	nd brain	nstorm									6
CO	4 [Draft l	busines	ss corre	sponde	ences ai	nd writ	e for do	ocumen	nting pu	irposes				6
CO	5 F	ace j	ob inte	rviews	with co	onfiden	ce								6
REF	EREN	ICES	5:												
1.	Orie	nt Bla	ackswa	in, Chei	nnai. 20	012									
2.	Dow 2008	nes, (Colm,	Cambri	dge En	glish fo	or Job-l	nunting	, Camb	oridge I	Univers	ity Pre	ss, Ne	w De	lhi.
3.	Murp 2000	ohy, I	Raymo	nd, Inte	ermedia	te Eng	lish Gr	ammar	with A	nswers	s, Camł	oridge I	Unive	rsity I	ress
4.	Thor	nson,	A.J. P	ractical	l Englis	sh Gran	nmar 1	& 2 Ox	ford 19	986.	1				
5.	Herb	ert A	J, The	Struct	ure of 7	Technic	al Eng	lish Lo	ngman	, 1965	1	0			
		44.0													
E-RF	ESOURCES:														
1.	http://www.usingenglish.com														
2.	http://www.uefap.com3														
3.	https	://ow	l.englis	sh.purd	ue.edu/	owl/		\cup	1	J. al	15	21			
4.	WWW	lear.	nenglis	shfeelgo	od.con	n/esl-pr	rintable	s-work	sheets.l	html	15	1			
			1	~	10		33	10		21	15	/			
SOF	FWA]	RE:	1	3	13		1		-6	1	51				
1.	Face	2Fac	e Adva	ince – C	Cambri	dge Un	iversity	Press,	2014		1				
2.	Engl	ish A	dvance	e Vocał	oulary-	Cambr	idge U	niversi	ty Pres	s	/				
3.	IELT	TS tes	st prepa	aration	– Caml	oridge	Univers	sity Pre	ss 2017	7					
4.	Offic	cial G	uide to	the TO	DEFL 1	est Wi	th CD-	ROM,	4th Edi	ition					
5.	CAN	1BRI	DGE I	Preparat	tion for	the TC	DEFL T	EST- C	Cambri	dge Un	iversity	y Press,	, 2017		
COU	RSE .	ART	ICUL	ATION	I MAT	'RIX:									
СО				1			POs	1	1	<u> </u>	<u> </u>			PS	Os
S	1		2	3	4	5	6	7	8	9	10 2	11	12	1	2
1											2				
2											3				
3											3				

4										3				
5										3				
1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)														

MA22251 APPLIED MATHEMATICS - II L T P C											
		(Common to all except MR)	3	1	0	4					
COL	J RSE (DBJECTIVES:									
1.	Acqui comp	re the concepts of vector calculus needed for problems in all eng ute different types of integrals using Green's, Stokes' and Diverger	ineering ince the	ng dise eorem:	cipline s.	es and					
2.	Skille proble	d at the techniques of solving ordinary differential equations	that n	nodel	engin	eering					
3.	Exten handle	d their ability of using Laplace transforms to create a new domain the problem that is being investigated.	ı in w	hich it	t is ea	sier to					
4.	Expla	in geometry of a complex plane and state properties of analytic fun	ctions	•							
5.	Under confic electri	rstand the standard techniques of complex variable theory so lence in application areas such as heat conduction, elasticity, fluid ic current.	as to d dyna	apply amics	them and fl	with ow of					
	тт					10					
UNI	<u> </u>	VECTOR CALCULUS	<u> </u>			12					
vecto integ	ient, di or fields ral - G fs) – Ve	vergence and curl - Directional derivative - Vector identities – Irr s - Line integral over a plane curve – Surface integral - Area of a c breen's theorem in a plane, Gauss divergence theorem and Stok perification and application in evaluating line, surface and volume in	otatio urved es' th tegral	nal and surfaction leorem	d sole ce - V n (exc)	noidal olume luding					
UNIT II ORDINARY DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS 12											
Diffe High paran with circu	erential er ord neters consta it – De	equations of first order – Equations of the first order and first degree er linear differential equations with constant coefficients - N - Cauchy's and Legendre's linear equations - Simultaneous first nt coefficients – Applications of Linear differential equations flection of beams.	ree – I Iethoo t orde – Oso	Linear 1 of v r linea cillator	equat variati ar equ ry ele	on of ations ctrical					
			• /								
UNI	T III	LAPLACE TRANSFORM	1			12					
Conc impu funct perio linea	litions Ilse fun tions - dic fur r ODE	for existence - Transform of elementary functions - Transforms of ctions – Basic properties – Shifting theorems - Transforms of der Derivatives and integrals of transforms - Initial and final value the actions. Inverse Laplace transforms - Convolution theorem – Ap of second order with constant coefficients using Laplace transform	f unit ivative neorer oplicat ation	step f es and ns - T ion to techni	iunctio integr ransfo solut ques.	on and rals of orm of ion of					
TINIT	T TX7					12					
UNI	1 1 V	ANALYIIUFUNUIIUNS				12					
Anal analy Map	ytic fun /tic fun ping by	actions - Necessary and sufficient conditions (Cauchy-Riemann economic conjugates - Construction of analytic functions functions $W = Z + C$, CZ, 1/Z, Z2 – Joukowski's transformation-	juatio - Con Biline	ns) - F forma ar trar	roper l mapp sform	ties of ping – lation.					
TINTE	T X7				I	10					
UNI	1 V	COMPLEX INTEGRATION				12					

Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's series expansions - Singular points - Residues - Cauchy's Residue theorem – Application of residue theorem for evaluation of real integrals – Use of circular contour and semi-circular contour.

TOTAL: 60 PERIODS

СО	No.		COURSE OUTCOMES												
At th	ne end	of the	course	e, stude	ents wil	ll be ab	le to:								
C	01	Interp surfac	ret the	funda volume	amenta e integr	ls of v als usin	vector ng Gau	calcul iss, Sto	us and okes an	exect d Gree	ute eva en's the	aluatic eorem	on of line, s.		3
C	02	Solve solution	first on met	order hod to	linear, solve s	homo econd	geneo order (us dif differe	ferentia ntial ec	al equ quation	ations 1s.	and	use series		3
C	03	Detern and In	nine th verse	ne met Laplace	hods to e transi	o solve forms.	differ	ential	equation	ons usi	ng Laj	place	transforms		3
C	04	Expla	in Ana	lytic fu	inction	s and C	Catego	rize tra	nsform	ations	•				3
C	05	Perfor integra	m Cor al theo	mplex rem an	integra d Cauc	ation to hy's re	o evalue t	uate re theorer	eal def n	inite i	ntegral	s usir	ng Cauchy		3
						1	-								
TEX	ТВО	OKS:			1	-	CU	$) \square$	Er	-	<u> </u>				
1.	Erwi Math	n Kr Iematic	eyszin s", 10 ^t	g, Ho ^h Editio	erbert on, Joh	Krey n Wile	szing, y, (201	Edw 15).	vard	Normi	nton,	"Adv	anced En	igine	ering
2.	Grev Delh	val .B.9 i, (201	S, Grev 5).	wal .J.S	S "Hig	her En	gineer	ing Ma	athema	tics",4	-3 rd Edi	tion,	Khanna Puł	olica	tions,
			1	12	/	10	166	erni.		1-0	1	01	0		
REF	REFERENCES:														
1.	1. Dass, H.K., and Rajnish Verma, "Higher Engineering Mathematics", S.Chand Private Ltd., 2011.														
2.	2. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2013).														
3.	Bali Publi	N. P a cation	nd Ma (p) Ltc	anish (1., 2014	Goyal, 4.	"А Те	ext boo	ok of 1	Engine	ering	Mathe	matics	", 9 th editio	on, L	axmi
			1		9	1.17	-	_	_			~	/		
E-R	ESOU	JRCES	5: 🛝	12	$\langle \rangle$	C 11	1	200	-		15	2/			
1.	https	://npte	l.ac.in/	course	s/111/2	105/11	110513	34/	2	/	9	/			
2.	https	://npte	l.ac.in/	course	s/111/1	105/11	110512	21/	/	1	0/				
				-	1	dr.	77 .		30	10.	/				
COU	URSE	ARTI	CULA	TION	MAT	'RIX:	1	4-(1	4	/					
С							POs							PS	Os
Os		1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3	3										3		
2	,	3	3	2									3		
3		3	3	2									3		
4		3	3										3		
5	,	3	3										3	_	
			•				- ~ -								
1: S	light (Low),	2: Mo	derate	(Med	ium), 3	8: Sub	stantia	al (Hig	h)					

PH2	22253 ENGINEERING MATERIALS (Common to AE_ME_MN)		T 0	P 0	C 3
COU	JRSE OBJECTIVES:		U		5
1.	To impart the knowledge about the properties of engineering and censulated students.	ramic	mater	ials to	the
	To enhance the knowledge about the electron behaviour in the semico	nducto	or and	l diele	ectric

2. To enhance the knowledge about the electron behaviour in the semiconductor and dielectric materials.

UNIT I PHASE DIAGRAMS AND NON-FERRROUS ALLOYS

Solid solutions - Hume Rothery's rules – Phase rule - single component system - one- component system of Iron - binary phase diagrams - Isomorphous systems - Tie-line rule - the Lever rule - application to Isomorphous system - Cu - Ni system - Eutectic phase diagram - Peritectic phase diagram - other invariant reactions - Cu - Zn system - Microstructural change during cooling.

UNIT II FERROUS ALLOYS AND HEAT TREATMENT

Fe-C equilibrium diagram : phases, invariant reactions - microstructure of slowly cooled steels - Eutectoid steel, hypo and hypereutectoid steels - effect of alloying elements on the Fe-C system - Diffusion in solids: Fick's laws - phase transformations - T-T-T-diagram for eutectoid steel - Pearlite, Baintic and Martensitic transformations - tempering of Martensitic - Heat treatment of steels : Annealing - Normalizing - Quenching and Tempering - Case hardening - Induction, Flame and Laser hardening - Carburizing, Cyaniding, Carbonitriding and Nitriding.

UNIT III SEMICONDUCTING MATERIALS

Introduction - classification of materials based on band theory (metals, semiconductors and insulators) - intrinsic and extrinsic semiconductors - carrier concentration in intrinsic semiconductor (derivation) - effect of temperature on Fermi level - compound semiconductors - variation of electrical conductivity in intrinsic semiconductors with temperature - Band gap determination of intrinsic semiconductor (derivation and experiment) - Hall effect (derivation and experiment).

UNIT IV DIELECTRIC, MAGNETIC AND SUPERCONDUCTING MATERIALS 10

Dielectric materials - Dielectric constant - Polarization of dielectric materials - Types of Polarization (Polarisability) - Equation of internal fields in solid (One- Dimensional) (Derivation) - Claussius-Mosotti Relation for elemental dielectric materials - Dielectric Breakdown - Frequency dependence of dielectric constant, Dielectric Losses - Important applications of dielectric material.

Magnetic Materials: Dia, Para and Ferro magnetic material - Domain theory for Ferro magnetic materials - Phenomena of Hysteresis and its applications - Ferrites and its structures.

Introduction to Superconductivity : Meissner effect - Properties of superconductors - Type I and Type II superconductors - BCS theory (Qualitative) - Low Tc and High Tc (alloy) superconductors - Ceramic superconductors (oxide superconductors) - Applications of Superconductors.

UNIT V CERAMIC AND NEW MATERIALS

Ceramics : types and applications, **Composites:** Ceramic Fibres - Fibre reinforced Plastics - Fibre reinforced Metal - **Metallic glasses**: preparation, Properties and applications.

Shape memory alloys : shape memory effect, phases, pseudo elastic effect, NiTi alloy, Properties and applications.

Nanomaterials: preparation, properties and applications.

TOTAL: 45 PERIODS

8

8

10

9

3
3
2
3
3
3
2
tion, PHI
-

REFERENCES:1.Gaur. R.K and Gupta. S.L, "Engineering Physics", Dhanpat Publications, 2015.2.Avadhnaulu. M.N and Kshirsagar, "A Text book of Engineering Physics", S. Chand & Co.
2006.3.Kittlel. C, "Introduction to Solid State Physics", 7th Edition, Wiley Eastern Ltd., 2004.4.Azaroff. L.V and Brophy. J.J, "Electronic Processes in Materials", McGraw Hill., 1963.

320

COURSE ARTICULA	ATION MATRIX:
------------------------	---------------

COs		POs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3	2	2	2	10	-		30	91	1		2				
2	3	2	2	2	2	2	51	6	2	1		2				
3	3					2				1		2				
4	3		2			2				1		2				
5	3	2	2	2	2	2			2	1		2				
1: Slig	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)															

MF2	2201 ENGINEERING MECHANICS L T P C												
	2201	(Common to ME, MN, MR)	2	1	0	3							
COU	RSE (DBJECTIVES:											
1.	To un	derstand the concept of equilibrium of particles.											
2.	To un	derstand the concept of equilibrium of rigid bodies.											
3.	To un	derstand the concept of first and second moment of area.											
4.	To un	derstand the concept of various types of frictions and applications.											
5.	To un	derstand the principle of work energy method, Newton's law and im	pact	of elas	stic bo	dies.							
UNI	гт	BASICS AND STATICS OF PARTICLES				9							
Introduction - Units and Dimensions - Laws of Mechanics - Principle of transmissibility - Parallelogram and triangular Law of forces - Vectorial representation of forces - Vector operations of forces - additions, subtraction, dot product, cross product - Coplanar Forces - rectangular components - Equilibrium of a particle - Lami's theorem - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces.UNIT IISTATICS OF RIGID BODIES AND ANALYSIS OF STRUCTURES9STATICS OF RIGID BODIES: External, Internal forces - moment of a force - Varignon's theorem - moment of a couple - resolution of a force into a force and a couple - reduction of a system of forces - reactions at supports and connections - equilibrium of a two and three force bodies - case studies.ANALYSIS OF STRUCTURES: Simple trusses - Method of joints, method of sections - joints under special loading conditions - space trusses - analysis of frames.													
UNI	ГШ	CENTROID, CENTRE OF GRAVITY AND MOMENT OF IN	ERT	IA		9							
Centr axis t polar	oid of heorer mome	areas, composite areas, Centre of Gravity- Theorems of Pappus a n and perpendicular axis theorem - determination of moment of in nt of inertia-radius of gyration - mass moment of inertia of simple se	nd G ertia olids.	uldinu of pla	ıs- Pa ne fig	rallel ures,							
UNI	ΓΙ	FRICTION				9							
Laws conta conta	of dry ct frict ct frict	/ friction - angles of friction-coefficient of static and kinetic friction ion - belt friction - journal bearings - axle friction - thrust bearings ion - wheel friction - rolling resistance - case studies.	on - v - dise	vedge c frict	s - su ion - 1	rface Point							
UNIT	ΓV	DVNAMICS OF PARTICI FS				9							

UNIT V DYNAMICS OF PARTICLES

KINEMATICS: Introduction-plane, rectilinear and rotary motion-time dependent motion rectangular coordinates - projectile motion.

KINETICS: Newton's II law - D'Alembert's principle - Energy - potential energy - kinetic energy conservation of energy - work done by a force - work energy method.

IMPULSE AND MOMENTUM: Concept of conservation of momentum - Impulse-Momentum principle - Impact - Direct central impact, oblique central impact, impact of a moving train on the springboard.

TOTAL: 45 PERIODS

CON	lo.	COURSE OUTCOMES												RBT Level
At the	end of th	e cours	e, stude	nts wi	ll be ab	le to:								20101
CO	1 Un and	lerstand its equi	and and librium	nalyze acting	the va	arious a	method in 2D	ls to d and 3I	letermi D.	ne th	e resu	ltant fo	orces	2
CO	2 Uno sup	derstand port sys	and and terms with	nalyze ith rigi	the co d bodie	oncept es in 2I	of read D and 3	ction fo BD in e	orces a quilibr	ind m ium.	omen	t of va	rious	2
CO.	3 Eva sec	luate ce tion of a	entroid, ny strue	Area 1 ctural 1	nomen nembe	t of In r.	ertia a	nd Ma	ss mor	nent (of Iner	tia of o	cross	3
CO	4 Con and	relate t acceler	he engi ation ec	neerin Juation	g prob s	lems d	lealing	with	force,	displa	aceme	nt, vel	ocity	3
CO	5 Eva	luate th	e proble	ems in	friction	n and r	igid bo	dy dyr	namics					3
ТЕХТ	BOOK	5:			~			-						
1.	 Beer Ferdinand P, Russel Johnston Jr., David F Mazurek, Philip J Cornwell, Sanjeev Sanghi, Vector Mechanics for Engineers: Statics and Dynamics, McGraw Higher Education., 11th Edition, 2017. Vela Murali, "Engineering Mechanics-Statics and Dynamics", Oxford University Press, 2018. 													
2.	Vela Mu	ali, "Er	gineeri	ng Me	chanics	s-Static	s and l	Dynam	nics", C	Dxfor	l Univ	ersity I	Press, 2	2018.
3.	3. Rajasekaran S and Sankarasubramanian G, "Engineering Mechanics Statics and Dynamics", 3 rd edition, Vikas Publishing House Pvt. Ltd., 2005.													
DEEE	DENG	a / /	41	1.1	<u>.</u>	/				1	2	\		
REFE		<u>S:</u>	2.	<u> </u>	-/	N 1		1	1.D		0	0	1	
1.	Boresi P 2008.	and Sch	imidt J,	Engin	eering	Mecha	nics: S		and Dy	mami	cs, 1/e	e, Ceng		arning,
2.	Hibbelle edition, I	r, R.C., Prentice	Engine Hall, 20	ering N 013.	1echan	ics: Sta	atics, a	nd Eng	gineeri	ng M	echani	ics: Dy	namic	s, 13th
3.	Irving H 4thEditic	. Shame	es, Kris son Edu	hna M	ohana Asia P	Rao G vt. Ltd	, Engir , 2005	neering 5.	g Mech	anics	– Sta	tics an	d Dyn	amics,
4.	Meriam Dynamic	J L and s, 7 th ed	l Kraig ition, V	e L G Viley s	, Engir tudent	neering edition	, Mech	anics:	Static	s and	Engi	neering	g Mecl	nanics:
5.	Timoshe Edition.	nko S, McGrav	Young Hill H	; D H ligher l	l, Rao Educati	J V ion. 20	and S 13.	ukuma	ar Pati	, Eng	gineeri	ing Me	echani	cs, 5^{th}
			1		0		101		1	2/				
E-RE	SOURC	ES:	8	1	9ET	7 -		20	0.	/				
1.	https://np	tel.ac.ir	n/course	es/1121	03108	1	1.51	Y	/					
COUI	RSE AR'	FICUL	ATION	MAT	'RIX:									
COs				1		POs	1	1			1		PS	SOs
005	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	1	2								2	
2	3	2	2	1	2								2	
3	3	2	3	1	3								2	
4	3	2	3	1	3								2	
5	3	2	3	1	3								2	
1.01			1. 4				4 4 •	1 /170 1						
1: Shg	gnt (Low), 2: MC	<u>)aerate</u>	(Nied)	um), 3	s: Subs	stantia	ı (Higi	n)					

	BASIC ELECTRICAL AND L T P											
EE22	151	ELECTRONICS ENGINEERING	3	0	Δ	3						
		(Common to all Branches except CH, EE, EC)	3	U	U	3						
COU	RSE (OBJECTIVES:										
1.	To u	nderstand the basic theorems used in Electrical circuits.										
2.	To e	ducate on the different concepts and functions of electrical machin	es.									
3.	To in	ntroduce electron devices and its applications.										
4.	To e	xplain the principles of digital electronics.										
5.	To i	mpart knowledge on the principles of measuring instruments.										
UNIT	Ι	ELECTRICAL CIRCUITS				9						
Ohm's	s Lav	v – Kirchhoff's Laws - Steady State Solution of DC Circuits	using	Mesh	and N	Vodal						
Analy	sis -I	ntroduction to AC Circuits - Waveforms and RMS Value - Pov	wer a	nd Pow	er fac	ctor -						
Single	Phas	e and Three Phase AC Balanced Circuits.										
0		C.01150										
UNIT	Π	ELECTRICAL MACHINES				9						
Const	ructio	n. Principle of Operation, Basic Equations and Applications	of DO] Gene	rators	. DC						
Motor	s. Sin	gle phase induction Motor. Single Phase Transformer.				, 20						
	s, 211	<u>g., human manager intervent</u>										
	TTT	GENERONDUCTOR DEVECTOR AND ADDUCATIONS										
UNIT	UNIT III SEMICONDUCTOR DEVICES AND APPLICATIONS 9											
Chara	Characteristics of PN Junction Diode - Zener Effect - Zener Diode - LED, Photo diode and its											
Chara	Characteristics-Half Wave and Full Wave Rectifiers-Voltage Regulation. Bipolar Junction											
Transi	stor-	Common Emitter Configuration, Characteristics and CE as	an A	mplifie	r - 1	Photo						
transistors.												
UNIT	IV	DIGITAL ELECTRONICS	m			9						
Numb	er Sy	stem Conversion Methods–Simplification of Boolean Expression	using	K-Map	– Hal	f and						
Full A	Adders	s – Flip-Flops – Shift Registers - SISO, SIPO, PISO, PIPO and	4-bit	Synchi	onou	s and						
Async	hrono	bus UP Counters.	1									
		101- 10	1									
UNIT	V	MEASURING INSTRUMENTS	2			9						
Types	of Si	gnals: Analog and Digital Signals- Construction and working Pr	rincip	e of M	oving	Coil						
and M	Iovin	g Iron Instruments (Ammeters and Voltmeters), Dynamometer	type	Watt r	neters	and						
Energ	y met	ters. Instrumentation Amplifier, – R-2R ladder Type D/A Conv	verter	- Flash	Type	e and						
Succe	ssive	Approximation Type A/D Converter.										
			ΤΟΤ	AL: 45	PERI	ODS						
					T	RT						
	No.	COURSE OUTCOMES			T	evel						
At the	end o	of the course students will be able to:										
	1	Compute the electric circuit parameters for simple problems				1						
	2	Understand the construction and characteristics of different electr	ical m	achina	,	4						
	4	Describe the fundamental behavior of different comission dusts	r da			4						
CO	3	circuite		ices al	u	4						
	4	Design basis digital aircrite using Logic Cates and Elin Flore			-+							
		Analyze the operating principle and working of we wait				4						
	5	Analyze the operating principle and working of measuring instruction	nents			4						
TEXT	BOC	DKS:										
1.	Kotł	nari DP and I.J Nagrath, "Basic Electrical and Electronics Engine	ering	", Seco	nd Ed	ition,						

	McGraw H	Hill Ed	ucation	n, 2020).									
2.	SedhaR.S.	, "A Te	ext Bo	ok of A	Applied	d Elect	ronics	", S.Cl	hand &	z Co., 2	2014			
REFE	CRENCES:													
1.	Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics Engineering", Tata McGraw Hill, 2013. MahtaVK "Bringiples of Electronics", S. Chond & Companyl to 2010.													
2.	MehtaVK,	"Princ	iples o	of Elect	ronics	", S. C	hand &	&Comj	panyLt	d, 201	0.			
3.	M. Morris Mano, "Digital Logic & Computer Engineering", Prentice Hall of India, 2004.													
4.	4. Mahmood Nahvi and Joseph A.Edminister,"Electric Circuits", Schaum' Outline Series, McGraw Hill, Fourth Edition, 2007.													
					~			_						
COUI	RSE ARTI	CULA	TION	MAT	RIX:	CC)LL	Fr	1	-				
COa			1	28	E	PO	S	1	36	1			PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3			2	8			~	2		
2	3	3	3	3			2		Nº.		51	2		
3	3	3	3	3	- /		2	1	K		6	2		
4	3	3	3	3	1	1	2	=)	week.	25	115	2		
5	3	3	3	3	1.1	1	2		E-	S	1	2		

परा

111

7

9

U-

हेवता

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

125 - 175

М		PRODUCTION DRAWING LABORATORY	L	Т	Р	С
NE		(Common to ME and MN)	0	0	4	2
CO	URSE	OBJECTIVES:				
1.	To in	troduce the concept of 2D drafting using CAD packages.				
2.	To in manu	nprove communications through documentation, and to promote awar facturing.	reness	for		
3.	To in	troduce students to understand standards of drawing in mechanical engin	eering			
4.	To ac	quire knowledge in Coordinate Measuring machine (CMM) for geometry	ic feat	ures		
		LIST OF EXPERIMENTS				
	INTI	RODUCTION TO COMPUTER AIDED DRAFTING				
1.	Intro	duction to Computer Aided Drafting hardware – Overview of application	ı softw	vare – 2	2D	
	drafti	ng commands like Layers, Block, Insert (Auto CAD) for simple objects	– Dim	ensior	ning.	
	EXP	ERIENTIAL LEARNING ON LIMITS, FITS AND TOLERANCE T	THRC	DUGH		
2.	MA(CHINE ELEMENTS a of Limita fits and Tolorongs Identification of types of fits by simple	00000	hluo	- maak	ino
	Basic	s of Limits, fits, and Tolerance – Identification of types of fits. Demonstr	assen	ibiy oi	macr	nne
	CEO	METRIC DIMENSIONING	anon			
3	Basic	s of Geometric Dimensioning and Tolerance – Measuring of Machine co	mnon	ents u	sino	
5.	CMN	I - Experiment on cylindricity, circularity, parallelism and perpendicular	itv.	ento u	51115	
	PRA	CTICE ON ASSEMBLY DRAWINGS				
4.	Cotte	r joint, knuckle joint, flange coupling, universal coupling, footstep bearing	ng, Plu	ımmer	block	ζ,
	conne	ecting rod ends, screw jack (any four)	1			
NO	TE:	7	/			
1.	Expos	e to CMM for the measurement of Geometric dimensioning is Mandator	у			
2.	Any ty	vo assembly drawing should be practiced manually by the student.				
		T CONTRACTOR OF T	OTA	L: 45	PERI	ODS
						DT
CO	No	COURSE OUTCOMES				evel
At t	he enc	of the course, students will be able to:				
C	01	The students will be able to read and interpret the production drawings				3
C	02	The students will be able to understand proper fits and tolerances.				5
C	03	The students will generate assembly drawings for various mechanic	cal pro	ducts		5
C	D4	The students will acquire skill to measure the machine components geor using CMM	netry			4
	FERE	NCES:	12			
1.	Gop	alakrishna K.R., "Machine Drawing", Subhas Publishers, Bangalore, 201	13.			
2.	Gill	P.S, "Machine Drawing", S.K. Kataria & Sons Publications, 2013				
3.	Bha	tt.N.D, "Machine Drawing", Chorotar Publishing House, 2011.				

4.	Sham Tio Edition, 2	Sham Tickoo, "AutoCAD 2017: A Problem-Solving Approach, Basic and Intermedia Edition, 2017												
5.	James D. Educatio	Bethune n, 2005.	e Bostor	n Unive	ersity, "	Engine	ering C	Graphics	s with A	AutoCA	D 200	2", Pe	arson	
6.	6. Alan Kalameja, "AutoCAD 2008: A tutor for Engineering Graphics", Auto Desk Press													
7.	7. https://thesourcecad.com/autocad-tutorials/													
COU	RSE AR	TICULA	TION	MATI	RIX:									
						POs	5						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3				3					2		3	2	
2 3 3 2 3												3	2	
3 3 1 3 2 3												3	2	
4	4 3 3 1 3												2	
5 3 3 2 3													2	
1: Sli	ight (Low	y), 2: Mo	derate	(Mediu	ım), 3:	Subst	antial (High)	2	12	1			
			TI	+17	- /	-	0	70	100	10	21			
		LIS	T OF I	EQUIP	MENT	IS FOR	R A BA	ТСН (OF 30 S	STUDE	NTS			
Sl. N	No	2	2	11	Ite	m Des	cription	i]-		Î			Qty	у.
HAR	DWARE	10	11	5%	1		\sim	1	A. W.	-/ n	11			
1.	Com	puter Se	rver	. E			1	(12	1		1	
2.	Com	puter no orked to	des or s the ser	ystems ver	(High	end CF	'U with	atleast	1 GB n	nain me	emory)		30)
3.	A3 s	ize plotte	er	1	-	ιĘ.	19			0/			1	
4.	Lase	r Printer	1	0)	0		~		10	/			1	
SOF	TWARE		2	1	98]	7 т	DT	20,	/					
5. Licensed software for Drafting and Modeling 30												30 lice	enses	
6.	Lice	nsed ope	rating s	ystem									Adeq	uate

		BA	SIC E	LECT	RICAI	L AND	ELEC	TRON	ICS E	NGINI	EERIN	GL	,]	C	Р	С
EE2	22111					LAB	ORAT	ORY				0			2	1
				(0	commo	n to all	branc	hes exc	ept EO	C)				,		
COU	JRSE	OBJ	ECTIV	/ES:												
1.	To pr wirin	ovide g con	e expos nection	ure to t n and m	he stud leasure	ents wi ments.	th hand	ls on ex	perienc	ce in ba	isic of I	Electric	al and	Ele	ctron	nics
2.	To in	trodu	ce the	student	s to Ele	ectrical	Machir	nes and	basic la	aws of	Electric	cal Circ	uits.			
						LIST	OFE	XPERI	MENI	٢S						
1.	Wirin	g - R	Residen	tial hou	ise wir	ing and	Stair c	ase wir	ing.							
2.	(a) A using (b) St	C Ana RLC udy c	alysis- 2. of three	Measu phase	rement system	of elec	trical q	uantitie	s–volta	ige, cur	rent, po	ower, ai	nd pov	ver f	facto	r
3.	Energ	y con lamp	nservat	ion - M	leasure	ment ar	nd comp	parison	of ener	gy for	incande	escent l	amp a	nd		
4.	(a) Id practi (b) Si signal	Identification of circuit components (Resistor, Capacitor, Diode and BJT) and soldering actice. Signal Measurement- Measurement of peak to peak, RMS, average, period, frequency of mals using CRO.														
5.	(a) V (b) D	VI Characteristics of Solar photovoltaic panel. Design of Solar PV Array and Battery sizing for Residential solar PV system.														
6.	Desig	n a 5	V/12V	Regula	ated P	ower S	upply u	ising H	FWR ar	nd IC78	305 / IC	7812.				
7.	DC A	nalys	sis-Ve	rificatio	on of Ol	hm's La	aw and	Kirchh	off's La	aws.	11					
8.	Study	of T	ransfo	rmer an	d moto	r chara	cteristic	s.		A. W.	-11	n l				
			1.	21			-	1	/		12	51				
CO	No		1	12	1	CO	URSE	OUTC	OMES	3/	2	/			R L	ABT evel
At th	ne end	of the	e cours	e, learn	ers wil	l be abl	e to:	2.5		1	9/					
CC	D1 V	Viring	g of ba	sic elec	trical s	ystem a	and mea	sureme	ent of e	lectrica	ıl paran	neters.				4
CC	D2 \	/erify	the ba	sic law	s of Ele	ectric ci	ircuits a	and sele	ect vario	ous Ele	ctrical	Machin	es.			4
CC) 3 (Consti	ruct ele	ectronic	circuit	s and d	esign s	olar ph	otovolta	aic syst	tem.					4
CC)4 A	Apply	the co	ncept o	f three-	phase s	ystem.	-								4
CC) 5 (Consti	ruct a f	ixed vo	ltage re	egulate	d powe	r supply	/.							4
REF	FEREN	ICES	5:								- ~			~		
1.	Mitt Edit	le V.I ion, 2	N, Arv 2013.	ind Mit	tal, "Ba	asic Ele	ctrical	Engine	ering",	Tata M	Ic Graw	v Hill (I	ndia),	Sec	cond	
2.	Sedł	na R.S	S., "A'	Textbo	ok of A	pplied	Electro	nics", S	. Chan	d & Co	0., 2014	•				
COU	URSE	ART	ICUL	ATION	N MAT	RIX:										
~~~							РО	s							<b>PS</b> (	Ds
	S	1	2	3	4	5	6	7	8	9	10	11	12	1	1	2
1		3	3	3	3					2			2			

2	3	3	3	3					2			2		
3	3	3	3	3					2			2		
4	3	3	3	3					2			2		
5	3	3	3	3					2			2		
1: Slig	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)													



# SEMESTER III

	PARTIAL DIFFERENTIAL EQUATIONS	L	Т	Р	С
MA2235	5 AND NUMERICAL METHODS (Common to AE, BT, MN)	3	1	0	4
COURS	E OBJECTIVES:				
1. Skil	ed at the techniques of solving partial differential equations.				
2. Und	erstand the application of partial differential equations in heat transfer pro	blems	•		
3. Lear	n the solution of algebraic, transcendental equations, system of linear equa	ations.			
4. Und	erstand the concept of interpolation and approximation.				
5. Und	erstand how to solve initial and boundary value problems in differential ec	luation	18.		
UNIT I	PARTIAL DIFFERENTIAL EQUATIONS				12
Formatio	n of partial differential equations - Singular integrals - Solutions of stand	ard ty	pes of	first	order
partial d	fferential equations - Lagrange's linear equation - Linear homogeneous of second and higher order with constant coefficients.	ous pa	artial o	liffere	ential
UNIT II	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS				12
Classific	tion of partial differential equations – Fourier series – Half range Fourier	sine	and co	sine s	series
- Solutio	ns of one dimensional wave equation - One dimensional equation of hea	at con	duction	$1 - S^{\dagger}$	teady
state solu	tion of two dimensional equation of heat conduction in Cartesian forr	n (exc	cluding	; insu	lated
edges) –	Steady state solution two dimensional heat equation in polar form (circ	cular,	semici	rcula	c and
quadrant	plate).	-			
UNIT II	SOLUTION OF FOUNTIONS AND FIGENVALUE PROBLEMS	2			12
Solution	of algebraic and transcendental equations: Newton Raphson method - So	, lution	of lin	ear sy	ustem
of equation	ons - Gauss elimination method – Pivoting - Gauss Jordan method –	Gauss	s Seide	el Iter	ative
methods	Matrix Inversion by Gauss Jordan method - Eigen values of a matrix by	Power	metho	od.	
		/			
UNIT IV	INTERPOLATION AND APPROXIMATION				12
Interpola	ion with unequal intervals - Lagrange's interpolation – Method-Newto	n's di	ivided	diffe	rence
interpola	ion - Finite difference operators and its relations - Interpolation with equ	al inte	ervals -	New	ton's
forward a	nd backward difference formulae.				
			•		
UNIT V	INITIAL AND BOUNDARY VALUE PROBLEMS IN DIFFERE. EQUATIONS	NTIA	L		12
Finite dif	ference solution of ordinary differential equations - Finite difference tech	nique	s for th	ne sol	ution
of two-d	mensional Laplace's and Poisson's equations on rectangular domain -	One	dimens	ional	heat
flow equ	ation by explicit and implicit (Crank Nicholson) methods – One dimensi	onal v	vave e	quatio	on by
explicit r	nethod.				
	T	OTA	L: 60 ]	PERI	ODS
	T				
CO No	COURSE OUTCOMES			F	BT
At the en	d of the course, students will be able to:				evel
	<b>Express</b> proficiency in handling higher order partial differential equation	ns			3
	<b>Develop</b> skills in classification, formulation solution and interpretation	on of	partia	1	
CO2	differential equations model		raina	-	4
i					

CO	)3	Have the	e fun linear	dament system	al kno	owledg	e of s	solving	g an a	algebra	ic or	transce	endenta	1	3
CO	)4	Annreci	ate the	numer	ical tec	chnique	es of in	ternola	tion in	variou	s interv	vals			3
	)5	Solve bo	undarv	value	proble	ms usir	ng finite	e diffe	rence m	nethod	is meet	uib			3
			<u></u>		<u>r</u>		0								-
TEX	TBO	OKS:													
1.	Grev Nev	wal .B.S, v Delhi, 20	Grewa )15.	1 .J.S '	'Highe	r Engir	neering	Math	ematics	s", 43 rd	¹ Editic	on, Kha	anna Pu	blicat	ions,
2.	Kan Edit	dasamy. I	P, Thil and &	agavatl Comp	ny. K a any ltd	and Gu , New l	navath Delhi, 2	y. K., 2008.	"Engir	neering	g Mathe	ematics	s Volun	ne III ⁹	", 4 th
3.	Grev Pub	wal. B.S. lishers, 11	and th Edit	Grewa ion, Ne	l. J.S. w Dell	, Num hi, 201'	nerical 7.	metho	ods in	Engiı	neering	and	Science	e, Kh	anna
REF	ERE	NCES:				/	-	_	-						
1.	Erw 10 th	in Kreysz Edition, J	ing, H ohn W	erbert ] iley, 20	Kreysz 015.	ing, Ec	lward ]	Normi	nton, ".	Advan	ced En	gineeri	ng Mat	hemat	tics",
2.	Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", 9 th edition, Laxmi Publications (P) Ltd., 2014.														
3.	Sankara Rao. K., Numerical methods for Scientists and Engineers, Prentice Hall of India Private, 3 rd Edition, New Delhi, 2007.														
4.	Ven	kataramai	1. M.K	. Nume	erical N	/lethods	s in Sci	ence a	nd Eng	ineerin	ng, Nati	ional P	ublishe	rs, 20	01.
	•		15	1	4.4	1	-	0	AV.	-	12	-1			
E-RI	ESOU	JRCES: (	includi	ing NP	TEL c	course)	$\supset$	1	()	1.20	1	51			
1.	http	s://nptel.a	c.in/co	urses/1	11107	111	1	1				2			
2.	http	s://nptel.a	c.in/co	urses/1	11/107	7/11110	)7105/	$\smile$	1	1.35	-17	11			
3.	http	s://nptel.a	c.in/co	urses/1	11/107	7/11110	07063/	1	· · · ·		12	51			
			1	1			30	1.15		-	15	1			
COU	IRSE	ARTICU	JLATI	ON M	ATRE	X:	1	1	-6	-/	5	/			
CC				0.		1	PO	6	1	5	1			PS	Os
u	<b>J</b> 8	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3	3	2	2	191	T	AL I	6as	/					
2	,	3	3	2	2										
3		3	3	2	2										
4		3	3	2	2										
5		3	3	2	2										

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

MN223	01 INTRODUCTION TO INDUSTRIAL AUTOMATION L T	P 0	C
COURS	E OBJECTIVES:	U	5
1. To	emphasize the need and role of automation in industries		
2. To	impart knowledge on different types of devices used in automation		
3. To	gain awareness on the concepts and applications of automation		
UNIT I	ELEMENTS OF AUTOMATION		10
Principl	es and Strategies of Automation, Basic Elements of an Automated System, A	١dva	nced
Automa	ion Functions, Automation in Production System, Production Economics, (	Cost	s in
Manufa	turing, Break Even Analysis, Unit cost of production, Cost of Manufacturing Lead	time	and
WORK-IR	-process.		•
	SENSORS AND TRANSDUCERS		9
Optical	- Classification, Static and Dynamic characteristics, Types - Proximity, Inductive, Ca	apac	nive,
sensor	Displacement, Temperature, Inflated, Offasonic, KITD. Optical encoder & Magneto	Sur	cuve
Transdu	pers – IVDT Strain Gauge Piezoelectric Diaphragm Capsule and Bellows	Pre	ssure
transduc	ers	110	55010
UNIT I	I MICROCONTROLLER AND EMBEDDED SYSTEM		9
Introduc	tion to Microprocessors and Microcontrollers. Architecture of 8085, 8051 and Pl	IC N	/icro
Control	ers. Addressing modes, Instruction set Timing diagram. Applications in automation sy	stem	IS.
UNIT I	LEVELS OF AUTOMATION AND MATERIAL HANDLING TECHNIQUE	S	9
Levels of	f Automations, Automated Flow lines, Methods of Work part Transport, Transfer Me	char	iism,
Buffer S	torage, Control Functions, and Automation for Machining Operations.		
Materia	handling systems - Conveyors, Automated Guided Vehicle, Automatic tool and pallet	char	nger,
Overhea	d Hoist,		
UNIT V	APPLICATION AND INTEGRATION		8
Design	and Fabrication Considerations. Automated Flow Lines - Concepts, Partial Automa	tion,	, and
Simulat	on.	1 T	
Interfact	ng Handling and Storage with Manufacturing. Product identification system: Barcoo	le, F	(FID
and QR		CDI	005
	IOTAL: 45 F	ERI	005
	AS THE TOP	F	RT
CO No	COURSE OUTCOMES	L	evel
At the e	d of the course, the students will be able to:		
CO1	Appraise the role of various elements available in automation process		2
CO2	<b>Describe</b> the working of sensors and transducers used in automation		2
CO2	Explain the architecture of various microcontrollers and embedded systems used in		$\mathbf{r}$
COS	automation		Ζ
<b>CO4</b>	Categorize the different levels of automation and material handling systems		2
CO5	Describe the integration of various elements of automation in real time applications		2
TEXTB	OOKS:		
1. A	hkaj Gupta, "Fundamentals of Microprocessors and Embedded Systems"S.K. Kataria	1& S	Sons,
20			• ••
2.	ikell P.Groover, "Automation, Production Systems, and Computer-integrated Manuf	actu	rıng"
	burth edition, Pearson 2016		

REF	ERENCES:
1	Beno Benhabib, "Manufacturing: Design, Production, Automation, and Integration", CRC Press,
1.	First edition, 2003
r	R.Thomas Wright, "Manufacturing and Automation Technology", Goodheart-Wilcox Publisher,
Ζ.	2004
2	Roger W Bolz, "Manufacturing Automation Management: A Productivity Handbook", Springer
5.	Publications, 2011
1	B.K. Ghosh, Ning Xi and T.J.Tarn, "Control in Robotics and Automation: Sensor Based
4.	Integration, Academic Press Inc. 2000
E-RF	ESOURCES:

- 1. https://nptel.ac.in/courses/108108147
- 2. https://nptel.ac.in/courses/106105193
- 3. https://nptel.ac.in/courses/108105088

# COURSE ARTICULATION MATRIX:

COs			1.2	1	100	Р	Os	1	10	11	0/		PSOs		
COS	1	2	3	4	5	6	7	8	9	10	211	12	1	2	
1	3	2	V		1		10	1	1	1	01	1	1	2	
2	3	1	×	· 6.	1	1	2		h.	2.1	Z	1	1	2	
3	3	1	Zı	6.0	1		24	]]]			m	1	1	2	
4	3	2	11	1					208	1	m	1	1	2	
5	3	3	3	2	1	1	_	2	Č.	1	01	1	1	3	
			12		1	. 8	200		1	13	2/				
1. Slight		2. M	Inderat	o (Modi	um)	3. Subs	tantial	(High		0	1				

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

МГ	<b>วว</b> 20ว	MECHANICS OF MATERIALS	L	Т	Р	С
NIC.	22302	(Common to ME and MN)	2	1	0	3
COU	JRSE	OBJECTIVES:				
1.	To un in the	derstand the relationship between the forces, internal stresses and the dependence non-rigid bodies.	eform	ations	nduo	ced
2	To fa	miliarize the student in calculating shear force, bending moment, deflec	tion, a	and slo	pes i	n
۷.	vario	us types of beams for different loading conditions.				
3.	To so	lve industrial problems related to springs and shafts.				
4.	To ui	iderstand the concepts of thin cylinder and applications related to biaxia	1 stres	sses.		
UNI	ТІ	STRESS AND STRAIN				9
Defi	nition	of stress and strain, tension, compression, shear stress and strain	n – S	tress a	nd	strain
relat	ionshi	o, Hooke's law, Poisson's ratio, Elastic constants and their relation	ons, 1	therma	str	esses.
Com	posite	bars for static load condition.				
	•	I A GE				
UNI	TII	MEMBERS SUBJECTED TO FLEXURAL LOADS				9
Туре	es - Ti	ansverse Loading in Beams - Shear Force and Bending Moment in I	Beam	s – Ca	ntile	vers -
Simp	oly Su	pported and Overhanging Beams - Point of contraflexure. Stresses	in Be	eams: '	Гheo	ry of
Simp	ole Be	nding – Analysis of Stress due to bending - Load carrying capacity of Be	eams.			
		14/10 21/2	1			
UNI	T III	DEFLECTION OF BEAMS AND COLUMNS	1			9
Gove	erning	differential equation - Double Integration Method - Macaulay's met	hod –	Comp	utati	on of
slope	es and	deflections in beams. Columns: End Condition - Equivalent Length	of C	olumn	- E	uler's
Equa	tion –	Slenderness Ratio –Rankine's Formula for Columns.				
1						
UNI	TIV	TORSION OF SHAFTS AND SPRINGS	1			9
Tors	$\frac{1}{100}$	formulation of stresses, deformation in circular and hollow shafts. Ster	pped s	hafts.	Defle	ection
in sh	afts fo	r different end conditions - Stresses in helical springs - Deflection of he	lical	springs	subj	ected
to ter	nsion,	and leaf springs.		1 0	5	
UNI	ΤV	ANALYSIS OF STATE OF STRESS				9
Biax	ial Sta	te of Stress – Thin Cylinders– Deformation in Thin Cylinders. Biaxial	Stres	ses: St	esse	s at a
Poin	t on Ii	clined Planes - Principal Planes and Stresses - Mohr's Circle for Bia	xial S	tress-	Maxi	mum
Shea	r Stres	SS.				
		Т	OTA	L: 45 I	ERI	ODS
CO	No	COURSE OUTCOMES			] I	RBT Level
At th	e end	of the course, students will be able to:				
CO	01 I	Predict the behavior of the materials for different loading and support co	onditio	ons		3
CO	2	select suitable cross sections for the beams under different loading cond	itions			4
CO	$3 \begin{vmatrix} \mathbf{I} \\ 1 \end{vmatrix}$	<b>dentify</b> the methodology to find the deflections occurred in beams ur bading conditions	nder d	ifferen	t	3
CO	94 S	<b>elect</b> suitable dimensional parameters for the shafts under torsion prings based on calculated stresses, deflection under different condition	al loa s	ids and	l	4
CO	05 C	Calculate safe dimension for a Pressure vessel based on the par onditions	amete	ers and	l	4

TEXTBOOKS:														
1.	Bansal, H	R.K., "A	A Textb	book of	Streng	gth of M	lateria	ls", Lax	mi Pul	olicatio	ns (P) L	.td., 201	8	
2.	Jindal U	.C., "St	trength	of Mate	rials",	Asian	Books	Pvt. Lt	d., Nev	v Delhi	i, 2009.			
REF	ERENCE	S:												
I.         Hibbeler, R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2017           Ferdinand P. Beer, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", McGraw														
<ol> <li>Perdinand P. Beer, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", McGraw Hill Education,8th edition, 2019</li> <li>Pattan "Strength of Materials" McGraw Hill Education, 2rd Edition, 2017</li> </ol>														
3. Rattan, "Strength of Materials", McGraw Hill Education, 3rd Edition, 2017														
4.	4.   Egor. P.Popov "Engineering Mechanics of Solids" Pearson, 2010													
E-RESOURCES:														
1. https://nptel.ac.in/courses/112107146														
2. https://nptel.ac.in/courses/112106141														
3. https://archive.nptel.ac.in/courses/105/105/105105108/														
			10	1		21	1.80	18 a	6		~/			
COU	RSE AR	ГІСUI	LATIO	N MAT	'RIX:	1	_	3.1	15	1	21			
COa		1	21	( ¥	÷.	PC	s	0/1	N/	1	6	k	PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	5	1	- 1	1	1		-[-]-	1.00 m	2		3	
2	3	3	Tu l	2	2				Ų.,	×	E		3	
3	3	3	7			1		/			20/		3	
4	3	3	1	2			332	1		1:	5/		3	
5	3	3	10	6			T	-	0	0	1		3	
			1	2	-	1	V	1	/		1			
1: Sli	ght (Low	), 2: M	oderat	e (Medi	ium),	3: Subs	stantia	l (High	ı)	1				
					10	11	परा	6,	/	8				

MN	2230	2 THEORY OF MACHINES	L 3	T 1	P 0	C 4
COI	JRSI	E OBJECTIVES:	5	<u> </u>	U	-
1.	Тот	inderstand formation of mechanisms and their kinematics.				
2.	Точ	understand the fundamentals of gears and gear trains.				
3.	To a	nalyze the forces acting on simple mechanical systems.				
4.	Toj	perform balancing of masses.				
5.	Точ	inderstand the fundamentals of vibrations.				
						r
UNI	TI	KINEMATICS OF MECHANISMS				14
Mec	hanis	ms – Kinematics concepts and definitions – Degree of freedom	– Ku	itzbach	crit	erion,
Grue	ebler	's criterion – Grashof''s Law, Kinematic inversions of Four-bar c	hain	and SI	ider	crank
chair	1S - A	Analysis of simple mechanisms - Graphical method using relative ve	locity	•		
TINIT	тп					10
		GLARS AND GEAR I RAINS	v C	loor to	oth a	12
inter	gea ferer	ce and undercutting Gear trains - Enjoyolic gear trains and their app	y - C licatio	ne_ In	trodu	action
to na	ralle	l axis gears trains and differential gear trains	neath	JII5- II	uou	letion
10 pu	inune	and gours dums and anterendul gour dums.	1			
UNI	TII	DYNAMIC FORCE ANALYSIS	1.			12
Dvna	amic	force analysis – Inertia force and Inertia torque– D'Alembert's prin	ciple	– Dvn	amic	force
analy	ysis i	n I.C. Engines. Flywheel- Applications in punching and riveting mac	hines	)		
	/		2			
UNI	T IV	BALANCING OF MASSES AND GYROSCOPIC MOTION	-			10
Bala	ncing	g of rotating masses under single and several planes-Introduc	tion	to bal	ancii	ng of
recip	oroca	ting masses. Principles of gyroscopic motion- Determination of gyr	oscop	oic cou	ple-	Ships
and A	Airpl	ane.	71			1
			1			
UNI	ΤV	VIBRATIONS	-			12
Degi	ees	of freedom – Single degree of freedom, Free vibration –Natural	frequ	iency -	– Da	mped
vibra	tion	- Types of Damping–vibration isolation materials – Critical speeds	s of st	naft. In	trodu	iction
to Fo	orcea	vibrations.				
		Val RI 4	<b>UIA</b>	L: 60 I	PER	
						DDT
CO	No	<b>COURSE OUTCOMES</b>				RBT
A t th		d of the source. Students will be able to:				Level
Atu		Analyze the binemetics of given mechanism by relative velocity me	414 a d			4
	21	Analyze the kinematics of given mechanism by relative velocity me	thoa		6	4
CO	2	Calculate the characteristics parameters of various gears and pe	erform	nance	of	3
<u> </u>	2	Evaluate the dynamic forces acting on the elements of slider areals	maah	niama		2
		<b>Analyze</b> and solve the unbalancing forces in masses rotating in diffe	rent +	unsins Janes	•  -	<u> </u>
		<b>Calculate</b> the natural frequency of vibrating hodies under vari		vibrato	rv	4
CO	95	motions.	Jus V	101410	L y	3
<u> </u>					I	

TEX	TBOOKS	5:												
1.	. Rattan S.S., "Theory of Machines", Tata McGraw-Hill, New Delhi, 2017.													
2.	Shigley J Universit	.E., Po y Pres	ennock s, 2015	G.R a	and Ui	cker J	.J., "Th	eory o	of Mac	hines a	nd Me	chanis	ms", O	xford
REFERENCES:														
1.	Kao J.S. and Dukkipati, "Mechanism and Machine Theory", Wiley- Eastern Ltd., New Delhi, 2015.													
2.	John Joseph Uicker, Gordon Pennock, Joseph E. Shigley, "Theory of Machines and Mechanisms", 5 th Edition, Oxford University Press, 2017.													
3.	Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2017.													
4.	Sadhu Singh, "Theory of Machines: Kinematics & Dynamics", Pearson Education India, 3 rd Edition, 2016.													
5.	Ghosh A. and Mallick A.K., "Theory of Mechanisms and Machines", Affiliated East West Pvt. Ltd, New Delhi, 2008.													West
AA GE														
E-RESOURCES:														
1.	1. https://nptel.ac.in/courses/112104121													
2.	https://nptel.ac.in/courses/112106270													
3.	https://np	tel.ac.	in/cour	ses/11	21041	14		1	R		5			
COURSE ARTICULATION MATRIX:														
COa		14		13	1	PC	)s	]]	. U	2	10		PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	1		1 1			3(3)	5	A.	3	SI		3	
2	3	2	(F	1			T.		j.	2	5/		3	
3	3	2	10	2. 7	1		1		/	2	/		3	
4	3		)	(a)	12			-	2	3	311		3	
5	3	2		_	YE	17	(R)	6	~	2			3	
	·		· · · · · · · · · · · · · · · · · · ·					_		·				
1: Sli	ght (Low	), 2: M	lodera	te (Me	edium)	, 3: Sı	ıbstant	ial (H	igh)					

MN22303 MANUFACTURING TECHNOLOGY					С								
1111122505													
COURSE OBJECTIVES:													
1. To ma	1. To make the students understand fundamentals of casting and special casting processes.												
2. To imp	part fundamentals of gas welding, arc welding and advanced welding pr	rocess	es.										
3. To imp	part knowledge on bulk, sheet metal forming and Powder metallurgy.												
4. To tea	ch the students about the various operations that can be performed in va	arious	mach	nine t	ools.								
_ To ma	ke the students to realize the importance of nontraditional machining pr	cocess	es in	prese	ent								
3. manuf	in manufacturing scenario.												
UNIT I	METAL CASTING PROCESSES				9								
Sand Castin	g – Green Sand Mould – Type of patterns - Pattern Materials –	Patter	rn all	owar	nces –								
Moulding sa	and Properties and testing – Cores – Types and applications – Princi	ple of	f spec	cial c	asting								
processes- S	hell, investment – Pressure die casting – Centrifugal Casting – Cont	inuou	is cas	ting	- Stir								
casting – Ba	sic defects in Sand casting.			U									
UNIT II	METAL JOINING PROCESSES				9								
Fusion weld	ing processes – Type of Gas welding – Flame characteristics – Arc	weld	ling.	Elect	rodes.								
Polarities –	Shielded Metal arc welding -Gas metal arc welding – Submerged arc y	veldi	1g – E	Electr	o slag								
welding – C	as Tungsten arc welding – Principle and application of special weldir	ig pro	cesse	s – P	lasma								
arc welding	arc welding – Thermit Welding – Friction welding – Friction stir welding - Resistance welding processes – Hasha												
- spot and so	- spot and seam welding - Brazing and soldering												
UNIT III METAL FORMING PROCESSES AND POWDER METALLURGY 10													
Bulk Deformation Processes- Hot working and cold working of metals – Forging processes – Typical													
forging oper	forging operations – Rolling of metals – Types of Rolling – Flat strip rolling – shape rolling operations												
Principle of	rod and wire drawing – Tube drawing – Principles of Extrusion			P • • • •	10115								
Sheet Meta	Deformation Processes - Typical shearing bending and drawing	oper	ations	- 5	Stretch								
forming one	erations – Metal spinning – Introduction of Explosive forming ma	gnetic	puls	e foi	ming								
Super plastic	c forming – Incremental forming	B	Puis										
Powder met	allurgy – Principal steps involved advantages, disadvantages and l	imita	ions	of p	owder								
metallurgy.	metallurov												
	dan tac												
UNIT IV	METAL MACHINING PROCESSES				10								
Classificatio	n of machining processes and machine tools Tool's materials diffe	erent	types	of	utting								
tools tool a	eometry and nomenclature of single point cutting tool tool life MR	R Co	ncent	of	utting								
speed feed	and depth of cut	iii, 00	neept	01 0	utting								
General prin	spece, need and deput of cut. General principles (with schematic diagrams only) of working and commonly performed operations in												
the followi	ng machines. Lathe Shaper Planer Horizontal milling machin	e di	illing	ma	chine								
Cylindrical	prinding machine Canstan and Turret lathe	ie, ui		ma	ennie,								
UNIT V	NON TRADITIONAL MACHINING PROCESSES				7								
General priv	ciples and applications of the following processes: Abrasive jet r	nachi	nina	I Iltr	, asonic								
machining	Electric discharge machining. Electro chemical machining. Plasma ar		hinin.	$\alpha$ El	actron								
heam machi	ning and I aser beam machining.			<u></u> , сп									
	ning and Laser beam machilling.		. 15	DFD	IUDG								
		JIAI	J: 43	rĽK	1002								

CON	No	COURSE OUTCOMES											I	RBT .evel	
At the end of the course, students will be able to:															
CO	1	Class for a g	<b>ify</b> the given a	differer pplicati	nt types	s of cas	ting pro	ocess a	nd sele	<b>ct</b> a su	itable c	asting	proces	S	3
CO	2	Categ suitab	gorize le welc	welding ling pro	g proce ocess fo	esses ac or a suit	cordin able m	g to w aterial	velding	princip	ple and	will a	apply	a	3
CO	3	Select applic	t a sui ation	table of	deform	ation a	nd po	wder 1	metallu	rgy pr	ocesses	for a	a give	n	3
CO	Analyze the tool life, MRR during machining and will develop a process planning sheet for a given component											g	3		
CO	<b>CO5</b> Select a proper Non Traditional Machining method for a given component													3	
TEVTDOOVS.															
TEXTBOOKS:															
1.	I.         P. C. Sharma, "A Textbook of Production Technology", S.Chand Publications, 2022           2         R. K. Bainut, "A Textbook of Manufacturing Technology", Lawrin Publications, 2023														
2.	2. K. K. Rajput, "A Textbook of Manufacturing Technology", Laxmi Publications, 2023														
REFE	REFERENCES														
1.	Mikell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", Wiley Publications, 7 th Edition. 2019.														
2.	Serope Kalpakjian & Steven Schmid, "Manufacturing Engineering & Technology", Pearson education, 2022.														
3.	3. J. T. Black, Ronald A. Kohser, "De Garmo's Materials and Processes in Manufacturing", 13 th Edition, 2019.														
			2	1 1	3.20	11		7	0.1-1	-		-			
E-RES	SOU	RCES	15	1	1	11		$\cup$	1	lac.	12	21			
1.	http	s://arch	ive.npt	el.ac.ir	n/course	es/112/1	107/112	210721	19/		12	1			
2.	https	s://npte	el.ac.in/	course	s/11210	)5127	33	10		21	5	/			
3.	http	s://arch	ive.npt	el.ac.ir	n/course	es/112/2	105/112	210512	26/	1	51	6			
				(0,	1	3	E	2	1	67	1				
COUI	RSE A	ARTIC	CULAT	TION N	MATR	IX:		-	1	( 0	/				
~ ~					10	IETT	POs	TT	290	/				PS	Os
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3	2	1			2								
2		3	2	1			2								
3		3	2	1			2								
4		3	2	1			2								
5		3	2	1			2								
1. Slie	bt (T	(JW) )	· Mod	erate ()	Mediur	n) 3. 6	luhetar	ntial (I	High)	1		<u> </u>	. I		
1.018	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)														

IHLORY AND PRACTICES (Common to ME and MN)       2       0       2       3         COURSE OBJECTIVES:										
1.       To understand the basic concepts of electrical machines and their performance.         2.       To obtain an overview of different dc and ac motors and special electrical machines.         3.       To apply various speed control techniques for DC motor drives, AC motor drives         UNIT I INTRODUCTION         Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – classes of duty – Preventive maintenance of electrical drive systems.         UNIT II DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES         12       DC motors: principle, classification, characteristics, merits & demerits, applications–AC motors: principle, classification, characteristics, merits & demerits, applications–AC motors: Experiments:         1.       Load test on DC Shunt & DC Series motor.         2.       Load test on 1Ø & 3Ø squirrel cage Induction Motor.         UNIT II         CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES         DR motor, Servo motor.         Experiments:         1. Load test on 1Ø & 3Ø squirrel cage Induction Motor.         UNIT III DRIVES         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.         Experiments:         1. Characteristics of DC and AC servo motors.										
1. To bit different dc and ac motors and special electrical machines.         2. To obtain an overview of different dc and ac motors and special electrical machines.         3. To apply various speed control techniques for DC motor drives, AC motor drives         UNIT I INTRODUCTION 12         Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – classes of duty – Preventive maintenance of electrical drive systems.         UNIT II DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES 12         DC motors: principle, classification, characteristics, merits & demerits, applications–AC motors: principle, classification, characteristics, merits & demerits, applications.       12         Experiments:         1. Load test on DC Shunt & DC Series motor.       2. Load test on 10 & 30 squirrel cage Induction Motor.         UNIT II CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES         DRIVES         12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.         Experiments:         1. Characteristics of DC and AC servo motors.       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.         UNIT II         DC MOTOR CHARACTERISTICS										
2.       To opply various speed control techniques for DC motor drives, AC motor drives         3.       To apply various speed control techniques for DC motor drives, AC motor drives         UNIT I INTRODUCTION         Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – classes of duty – Preventive maintenance of electrical drive systems.         UNIT II       DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES       12         DC motors: principle, classification, characteristics, merits & demerits, applications–AC motors: principle, classification, characteristics, merits & demerits, applications.       12         DC motors: principle, classification, characteristics, merits & demerits, applications.       12         DC motors: principle, classification, characteristics, merits & demerits, applications.       12         DC motors: principle, classification, characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Principle, classification developments:       12         1. Characteristics of DC and AC servo motors.       12         NIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12										
1       100 apply various speed control techniques for DE motor drives, Ac motor drives         UNIT I       INTRODUCTION       12         Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – classes of duty – Preventive maintenance of electrical drive systems.       12         UNIT II       DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES       12         DC motors: principle, classification, characteristics, merits & demerits, applications–AC motors: principle, classification, characteristics, merits & demerits, applications.       12         L. Load test on DC Shunt & DC Series motor.       2.       Load test on 10 & 30 squirrel cage Induction Motor.       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         NIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Speed control of DC shunt motor (Armature, Field control).       2.       2.										
UNIT I       INTRODUCTION       12         Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – classes of duty – Preventive maintenance of electrical drive systems.       12         UNIT II       DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES       12         DC motors: principle, classification, characteristics, merits & demerits, applications–AC motors: principle, classification, characteristics, merits & demerits, applications.       12         L. Load test on DC Shunt & DC Series motor.       2.       2.         Load test on 10 & 30 squirrel cage Induction Motor.       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Principle, classification of DC and AC servo motors.       12         I. Characteristics of DC and AC servo motors.       12         I. Characteristics of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Speed control of DC shuft with controlled converter.       2.       Speed control of DC shunt motor (Armature, Field control).										
Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – classes of duty – Preventive maintenance of electrical drive systems.       12         UNIT II       DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES       12         DC motors: principle, classification, characteristics, merits & demerits, applications–AC motors: principle, classification, characteristics, merits, applications.       12         Experiments:       1       12         1. Load test on DC Shunt & DC Series motor.       2       2         2. Load test on 1Ø & 3Ø squirrel cage Induction Motor.       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Speed control of DC shunt motor (Armature, Field control).       12										
and cooling curves – classes of duty – Preventive maintenance of electrical drive systems.           UNIT II         DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES         12           DC motors: principle, classification, characteristics, merits & demerits, applications–AC motors:         principle, classification, characteristics, merits & demerits, applications.         Experiments:           1. Load test on DC Shunt & DC Series motor.         2.         Load test on 10 & 30 squirrel cage Induction Motor.         12           VNIT III         CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES         12           Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.         12           Principle, classification of DC and AC servo motors.         12           Interacteristics of DC and AC servo motors.         12           Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.         12           Experiments:         1. AC to DC half & fully controlled converter.         12           Speed control of DC shunt motor (Armature, Field control).         12										
UNIT II       DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES       12         DC motors: principle, classification, characteristics, merits & demerits, applications.       Accentrial applications.       Accentrial applications.         Experiments:       1. Load test on DC Shunt & DC Series motor.       2. Load test on 10 & 30 squirrel cage Induction Motor.       12         UNIT III       CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         VINIT IV       DC MOTOR CHARACTERISTICS       12         UNIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Speed control of DC shunt motor (Armature, Field control).       12										
UNIT II       DRIVE MOTOR CHARACTERISTICS & SPECIAL MACHINES       12         DC motors: principle, classification, characteristics, merits & demerits, applications. AC motors:       principle, classification, characteristics, merits & demerits, applications.       Experiments:         1. Load test on DC Shunt & DC Series motor.       2. Load test on 1Ø & 3Ø squirrel cage Induction Motor.       12         UNIT III       CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Principle, classification of DC and AC servo motors.       12         UNIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Experiments:       1       AC to DC half & fully controlled converter.       12         1. AC to DC half & fully controlled converter.       2. Speed control of DC shunt motor (Armature, Field control).       12										
DC motors: principle, classification, characteristics, merits & demerits, applications. AC motors:         principle, classification, characteristics, merits & demerits, applications.         Experiments:         1. Load test on DC Shunt & DC Series motor.         2. Load test on 1Ø & 3Ø squirrel cage Induction Motor.         Interviewent of the test on 10 & 3Ø squirrel cage Induction Motor.         UNIT III         CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.         Experiments:         1. Characteristics of DC and AC servo motors.         UNIT IV       DC MOTOR CHARACTERISTICS         12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.         Experiments:         1. AC to DC half & fully controlled converter.         2. Speed control of DC shunt motor (Armature, Field control).										
principle, classification, characteristics, merits & demerits, applications. Experiments: 1. Load test on DC Shunt & DC Series motor. 2. Load test on 1Ø & 3Ø squirrel cage Induction Motor. UNIT III CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES 12 Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor. Experiments: 1. Characteristics of DC and AC servo motors. UNIT IV DC MOTOR CHARACTERISTICS 12 Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers. Experiments: 1. AC to DC half & fully controlled converter. 2. Speed control of DC shunt motor (Armature, Field control).										
Experiments:         1. Load test on DC Shunt & DC Series motor.         2. Load test on 1Ø & 3Ø squirrel cage Induction Motor.         UNIT III         CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Experiments:       1.         1. Characteristics of DC and AC servo motors.       12         UNIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system -Using controlled rectifiers and DC choppers.       12         Experiments:       1.         AC to DC half & fully controlled converter.       2.         Speed control of DC shunt motor (Armature, Field control).       12										
1. Load test on DC Shuft & DC Series motor.       12         2. Load test on 1Ø & 3Ø squirrel cage Induction Motor.       12         UNIT III         CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.         Experiments:         1. Characteristics of DC and AC servo motors.         UNIT IV DC MOTOR CHARACTERISTICS         12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.         Experiments:         1. AC to DC half & fully controlled converter.         2. Speed control of DC shunt motor (Armature, Field control).										
2. Edd test on Fore 3.5 square cage induction words.       12         UNIT III       CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Experiments:       1       12         1. Characteristics of DC and AC servo motors.       12         UNIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Experiments:       1       AC to DC half & fully controlled converter.         2. Speed control of DC shunt motor (Armature, Field control).       12										
UNIT III       CONVENTIONAL AND SOLIDSTATESPEEDCONTROL OF DC AND AC DRIVES       12         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       12         Experiments:       1.       12         1. Characteristics of DC and AC servo motors.       12         VINIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Experiments:       1.       AC to DC half & fully controlled converter.       2.         Speed control of DC shunt motor (Armature, Field control).       12										
DRIVES       DRIVES         Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor.       BLDC motor, Servo motor.         Experiments:       1. Characteristics of DC and AC servo motors.       12         UNIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Experiments:       1. AC to DC half & fully controlled converter.       2. Speed control of DC shunt motor (Armature, Field control).										
Principle, classification, construction, and characteristics of stepper motor, Switched reluctance motor, BLDC motor, Servo motor. Experiments: 1. Characteristics of DC and AC servo motors. UNIT IV DC MOTOR CHARACTERISTICS 12 Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers. Experiments: 1. AC to DC half & fully controlled converter. 2. Speed control of DC shunt motor (Armature, Field control).										
BLDC motor, Servo motor.         Experiments:         1. Characteristics of DC and AC servo motors.         UNIT IV       DC MOTOR CHARACTERISTICS         12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system -         Using controlled rectifiers and DC choppers.         Experiments:         1. AC to DC half & fully controlled converter.         2. Speed control of DC shunt motor (Armature, Field control).										
1. Characteristics of DC and AC servo motors.         1. Characteristics of DC and AC servo motors.         UNIT IV       DC MOTOR CHARACTERISTICS         12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.         Experiments:         1. AC to DC half & fully controlled converter.         2. Speed control of DC shunt motor (Armature, Field control).										
It characteristics of DC and AC serve motors.         UNIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       12         Experiments:       1. AC to DC half & fully controlled converter.       2. Speed control of DC shunt motor (Armature, Field control).										
UNIT IV       DC MOTOR CHARACTERISTICS       12         Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.       Experiments:         1. AC to DC half & fully controlled converter.       2. Speed control of DC shunt motor (Armature, Field control).										
<ul> <li>Speed control of DC series and shunt motors – Armature and field control, Ward Leonard control system - Using controlled rectifiers and DC choppers.</li> <li>Experiments:</li> <li>1. AC to DC half &amp; fully controlled converter.</li> <li>2. Speed control of DC shunt motor (Armature, Field control).</li> </ul>										
Using controlled rectifiers and DC choppers. Experiments: 1. AC to DC half & fully controlled converter. 2. Speed control of DC shunt motor (Armature, Field control).										
Experiments: 1. AC to DC half & fully controlled converter. 2. Speed control of DC shunt motor (Armature, Field control).										
<ol> <li>AC to DC half &amp; fully controlled converter.</li> <li>Speed control of DC shunt motor (Armature, Field control).</li> </ol>										
2. Speed control of DC shunt motor (Armature, Field control).										
$\mathbf{U}\mathbf{N}\mathbf{T}\mathbf{V} = \mathbf{A}\mathbf{C}\mathbf{M}\mathbf{O}\mathbf{T}\mathbf{O}\mathbf{D}\mathbf{C}\mathbf{U}\mathbf{A}\mathbf{D}\mathbf{A}\mathbf{C}\mathbf{T}\mathbf{F}\mathbf{D}\mathbf{I}\mathbf{C}\mathbf{T}\mathbf{I}\mathbf{O}\mathbf{C}$										
UNIT V AC MOTOR CHARACTERISTICS 12										
scheme										
Experiments:										
1. Speed control of three phase slip ring Induction Motor.										
2. V/F control of three-phase induction motor using Power Electronic Drive.										
TOTAL: 60 PERIODS										
LABORATORY COMPONENT										
OBJECTIVES:										
1 To validate the principles studied in theory by performing experiments in the laboratory										
1. To variate the principles studied in theory by performing experiments in the laboratory.										
LIST OF EXPERIMENTS										
1. Load test on DC Shunt & DC Series motor										
2. AC to DC half & fully controlled converter.										
3. Speed control of DC motor using Power Electronic Drive										

4.	4. Characteristics of DC and AC servo motors														
5.	Load test on three phase squirrel cage Induction motor.														
6.	Speed control of three phase slip ring Induction Motor														
7.	. Load test on single phase Induction Motor.														
8.	. V/F control of three-phase induction motor using Power Electronic Drive.														
9. AC to DC half & fully controlled converter.															
<b>CO</b> ]	CO No COURSE OUTCOMES												I I	kBT ⊿evel	
At th	e end	l of th	e cours	se, lear	ners wi	ill be al	ble to:		1.	1 •	1 •	•	1	1	2
	CO1 Describe the structure of electric drive systems and their role in various applications.													3	
	<b>UU2</b> Select DU and AU motor for practical applications based on its characteristics. <b>Understand</b> the operation of converters choppers inverters and ac voltage													3	
CO	controllers for DC and AC drives.													3	
CO	)4	Perfo	rm spe	eed cha	racteri	stics of	differ	ent elec	trical	machin	ie.	25			3
CO	)5	Analy	ze the	perfor	mance	of AC,	DC m	notor us	ing po	wer ele	ectronic	c drive.			3
TEXTBOOKS:															
1.	1. Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House, 2001														
2. 3	2. Vedam Subrahmaniam, "Electric Drives (concepts and applications)", Tata McGraw-Hill, 2017.												•		
3.   Nagrath I.J. & Kothari .D.P, "Electrical Machines", Tata McGraw-Hill, 1998.															
REFERENCES:															
1.	1. Pillai.S.K, "A first course on Electric drives", Wiley Eastern Limited, 1998														
2.	Sing	gh.M.I	). K.B	.Khanc	handar	ii, "Pov	wer El	ectronic	cs", Ta	ta McC	Graw-H	[ill, 199	83.		
3.	Parta	ab. H.	, "Art :	and Sc	ience a	nd Util	isatior	n of Ele	ctrical	Energy	y", Dha	inpat R	ai and Sons, 1	994	•
4.	Phili	ip Kia	ameh "	Electri	cal Eq	uipmer	nt Han	dbook:	Troub	leshoo	ting &	Mainte	enance", McC	iraw	'-Hill,
F_PI	2003 FSOI	). LIDCE	27	14	15	10		10		-	9/-	3/			
1 1	httns	s·//arc	hive ni	ntel ac	in/com	ses/10	8/104/	108104	140/	- /	1.9				
2.	https	s://npt	el.ac.ii	n/cours	es/108	108077	7	100101	110/	/	Gene .	/			
3.	https	s://npt	el.ac.ii	n/cours	es/108	104011	-			20	1				
	1	1				1	91	R	19	~					
COU	JRSE	E ART	TCUL	ATIO	N MA'	TRIX			_						
COs							Р	Os						PS	Os
CUS		1	2	3	4	5	6	7	8	9	10	11	12 1	L	2
1		3	1	1	2		1						2 2	2	1
2		3	1	1	2					1			2 2	2	1
3		3	1	1	2								2 2	2	1
4		3	1	1	2					2			2 2	2	1
5		3	1	1	2					2			2 2	2	1
1: SI	ight (	(Low)	, 2: M	oderat	e (Med	lium).	3: Sul	ostantia	al (Hig	(h)			I		
	8 - (	、 - ·· <b>)</b>	,		、	-,,			ςε	, /					
	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS														
---------	----------------------------------------------------------------------------------------------------------------------------------------------	-----	--	--	--	--	--	--	--	--					
Sl. No.	Description of Equipment	Qty													
1.	DC Shunt Motor with loading arrangement	3													
2.	DC Series Motor with loading arrangement	1													
3.	Three Phase cage Induction Motor with loading arrangement	4													
4.	Three phase slip ring Induction Motor with loading arrangement	2													
5.	Single Phase Induction Motor with loading arrangement	2													
6.	Single phase SCR based half controlled converter and fully controlled converter along with built-in/separate/firing circuit/module and meter	2													
7.	AC drive for speed control of Induction Motor	1													



MF	22313	MANUFACTURING TECHNOLOGY LABORATORY	L	Т	Р	С
	22313		0	0	3	1.5
COL	JRSE C	BJECTIVES:				
1.	To im	part the practical knowledge in casting and joining Processes				
2	To im	part the basic machining skills in lathe and to equip with the practical	knowl	edge 1	equir	ed in
2.	the con	re industries				
3.	To im	part machining skills in gear manufacturing and grinding process.				
LIST	<b>FOFE</b>	XPERIMENTS				
CAS	TING					
1.	Prepar	ation of green sand mould for single piece pattern				
2.	Prepar	ation of green sand mould for split patterns				
WEI	LDING					
3.	Butt jo	int using arc welding				
4.	Lap jo	int using arc welding				
5.	Tee jo	int using arc welding				
6.	Corner	joint using arc welding				
LAT	HE, G	RINDING AND SHAPING MACHINE TOOLS	)			
7.	Plain t	urning, Facing, Step turning				
8.	Groov	ing, Knurling, Taper turning	1			
9.	Extern	al thread cutting (Single start)	1			
10.	Spur g	ear cutting using Universal Milling Machine				
11.	Cylind	rical grinding				
12.	Gear C	Generation – Hobbing and Shaper				
		Tel St. Tel	OTAL	.: 45 1	PERI	ODS
CO	No	COURSE OUTCOMES	1	R	PRT I	evel

CO	No	COURSE OUTCOMES	<b>RBT Level</b>						
At tl	he en	d of the course, students will be able to:							
CC	)1	Make a green sand mould using different patterns.	3						
CC	)2	Select the suitable welding parameters to make weld joints using arc welding.							
CO3		<b>Identify</b> and <b>perform</b> the operations in a lathe machine.	3						
CC	)4	Perform gear generation operation in gear shaper.	3						
CO5		<b>Perform</b> grinding operation on the given cylindrical workpiece to achieve required surface finish.							
REI	FER	ENCES:							
1	Sere	ope Kalpak Jian& Steven R. Schmid, "Manufacturing Engineering and Technology"	', Pearson						
1.	Indi	a Education Services Pvt. Ltd, 7th edition, 2018							
2.	HM	T, Production technology, Mc-Graw Hill, 2017							
2	P N	Rao, "Manufacturing Technology: Metal Cutting and Machine Tools", Mc-Graw H	lill, Volume						
5.	2, 4	h Edition, 2018							
4	Haj	ra Choudhury, "Elements of Workshop Technology", Vol.I: Manufacturing Process	es., Media						
4.	Pro	moters & Publishers Pvt Ltd, 15th edition, 2012.							

E-R	RESOURCES: (including NPTEL course)
1.	https://archive.nptel.ac.in/courses/112/105/112105219/
2.	https://archive.nptel.ac.in/courses/112/107/112107219/
3.	https://archive.nptel.ac.in/courses/112/105/112105233/

# COURSE ARTICULATION MATRIX:

COs	POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3								3							
2	3							1	3							
3	3			/	2	CC	) L L	EC	3	5						
4	3		1	2	25			1	3	1						
5	3		1	25			1.1	100	3	2	0					
	151 1-101															

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

	LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS
1.	Centre lathes 7 Nos.
2.	Arc welding machine 5 Nos.
3.	Gear shaper 1 No.
4.	Cylindrical grinding machine 1 No.
5.	Universal milling machine 1 No.
6.	Arc Welding setup
7.	Mould preparation tool sets
	्या परा ७०

ME	22314	MATERIAL TESTING LAB	L	T 0	P 3	C					
COI	IRSE	OBJECTIVES:	U	U	5	1.5					
	To su	pplement the theoretical knowledge gained in Mechanics of Solids and N	Aateria	ղ							
1.	Chara	acterization and Metallurgy subjects.									
2.	Evalı	ate the mechanical properties of metallic materials by practical testing									
3.	Anal	yze the microstructure of ferrous and non-ferrous materials using metallu	rgical	micro	scope						
	1										
		LIST OF EXPERIMENTS									
1.	Tension test on a mild steel rod										
2.	Double shear test on Mild steel and Aluminum rods.										
3.	Torsion test on mild steel rod.										
4.	Impa	ct test on metal specimen (Charpy & Izod)									
5.	Hardness test on metals – Vickers Micro-hardness, Brinell and Rockwell Hardness Number.										
6.	Defle	ection test on beams (Simply supported and Cantilever)									
7.	Compression test on helical springs										
8.	Strain Measurement using Rosette strain gauge										
9.	Comparison of Mechanical properties of steel – using impact & hardness tests										
10	i. Un	hardened specimen ii. Quenched Specimen and iii. Quenched and temper	red spe	cimer	1						
10.	Mıcr	oscopic Examination of 1. Hardened samples and 11. Hardened and tempe	red sar	nples							
			-		П	DT					
CO	No	COURSE OUTCOMES			K	.B I evel					
At t	ne end	of the course, students will be able to:	+								
110 01		<b>Determine</b> the various mechanical properties of steel and non-ferrous r	nateria	ls like							
CC	)1	ardness, tensile strength and impact strength using Rockwell & Brir	nell ha	rdness		3					
	t	ester, universal testing machine and impact testing machine respectively.									
		Evaluate Young's modulus of steel & aluminum using simply su	pporte	d and	1						
CC	)2	cantilever method	11			5					
CC	)3 ]	Evaluate stiffness and spring index of alloy spring steel using compression	on test			5					
CC		Analyze the microstructure of various heat treated steel, copper alloy an	nd alur	ninum	l I	1					
	<b>)4</b>	lloy using optical microscope				4					
CC	)5	Analyze the medium carbon steel hardenability using Jomni end quench	testing			4					
REF	FERE	NCES:									
1		Strength of materials laboratory manual, Anna University, Chennai - 600	025.								
2		Strength of materials laboratory manual, IITM.									
	ECOT	DODO									
E-R	ESOU	KUES:									
1	. \	VLABS - https://sm-nitk.vlabs.ac.in/									

COUR	SE ART	TCUL	ATIO	N MAT	'RIX:									
COs						PC	)s						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3								3					
2	3								3					
3	3								3					
4	3								3					
5	3								3					
					/	00	11	-	-					
1: Slig	ht (Low)	, 2: Mo	oderat	e (Medi	ium), 3	: Subst	antial	(High)	15					
			1	A,	-	-	a		20	1.0				
		L	IST OI	FEQU	IPMEN	NT FOI	RABA	TCH	OF 30	STUD	ENTS			
Sl.No			14		10	Item D	escript	ion	10	10	11			Qty.
1.	Univers	al Tens	sile Tes	sting ma	achine	with do	uble sh	ear atta	chmen	t (40 To	on Cap	acity)		1
2.	Torsion	Testin	g Macł	nine (60	Nm C	apacity		-1.		1	0	à.		1
3.	Impact '	Testing	Mach	ine (300	) Nm C	Capacity	')		14.8	2.1	2			1
4.	Brinell	Hardne	ss Test	ing Ma	chine	1	MA	11		. 1	m			1
5.	Rockwe	ell Hard	lness T	esting I	Machin	e	9 4		203	1	m			1
6.	Spring 7	Festing	Machi	ne for t	ensile	and con	npressi	ve load	s (2500	) N)	01			1
7.	Muffle	Furnace	e (8000	)°C)	10	. 8	20	-	÷,	13	/			1
8.	Vickers	Micro	-hardne	ess Test	er	1	Pa	2	/	9	/			1
9.	Deflecti	on (Be	am) tes	sting set	tup – S	imply s	upport	ed & Ca	antilev	er				1
10.	10. Metallurgical Microscopes										2			
11.	11. Metallurgical specimen polishing machine										1			
12.	. Rosette strain gauge setup									1				
13.	Jomni End Quench Test setup									1				

### SEMESTER IV

GE	GE22451	ENVIRONMENTAL SCIENCES AND SUSTAINABILITY	L	Т	Р	С				
		(Common to all Branches)	3	0	0	3				
COL	JRSE O	BJECTIVES:								
1.	To stud	y the nature and facts about environment, energy flow in an ecosystem	1 and	biodiv	versity	<b>.</b>				
2.	To stue problem	dy the various types, causes of pollution, its control and solutions.	ons to	o envi	ironm	ental				
3.	To stud	y and understand the various types of renewable sources of energy and	1 its a	pplica	tions.					
4.	To kno	w the importance of sustainability management and practices								
5.	5. To learn the importance of zero waste concept and green engineering for environmental management.									
	COLLEO									
UNI	TI	ENVIRONMENT AND BIODIVERSITY				9				
flow- gener spots huma situ a	flow- food chains, food webs and ecological pyramids, ecological succession. Biodiversity- types- genetic, species and ecosystem diversity- values of biodiversity, India as a mega-diversity nation – hot- spots of biodiversity – threats to biodiversity: fragmentation and habitat loss, poaching of wildlife, human-wildlife conflicts – endangered and endemic species of India –conservation of biodiversity: In- situ and ex-situ.									
			1							
UNI	ΓIΙ	ENVIRONMENTAL POLLUTION				9				
pollu meas in pr mana categ	ation, ca ation - o sures. Di eventior agement gorizatio	auses, effects and preventive measures of air, water and soil pollution causes, effects and control measures. Nuclear pollution- Sources sposal of radioactive wastes (Nuclear hazards). Pollution case studies. a of pollution. Solid, hazardous and E-waste management. Occupation system (OHASMS). Environmental protection, Environment n of spices according to IUCN.	s. Ma , effe Role onal l tal J	of an or	nd the nd co indivi and s tion	ntrol idual afety acts,				
		1.01								
UNI	T III	RENEWABLE SOURCES OF ENERGY				9				
Energenergenergenergenergenergenergenerg	gy resou conserva gy sourc urces, Ti ridual in	arces: Growing energy needs, Nonrenewable resources – types, uses ation - New energy sources, Need of new sources - geo suitability of e es, different type's new energy sources. Applications of hydrogen dal energy conversion. Concept, origin and power plants of geothern conservation of energy.	Ener stabli energ nal en	rgy ma shing y, oce ergy.	anage renew an en Role (	ment vable lergy of an				
TINIT		ΩΓΙΩΤ Α ΙΝΙΑ DIL ΙΤΧΥ Α ΝΙΣ ΜΑΝΙΑ Ο ΕΜΕΝΤ			r	0				
Deve susta Susta chem studi Envir	elopmen inability inable histry, C es - Re ronment	t, GDP, Sustainability concept, needs and challenges-economic, s p-from unsustainability to sustainability-millennium development Development Goals-targets, indicators and intervention areas - limate change- Global, Regional and local environmental issues and p ole of non-governmental organization, Concept of carbon credit al management in industry-A case study	social goals, Prine oossib	and and ciples le solu bon f	aspec proto of g itions	y ts of cols, green -case int -				

UNIT VSUSTAINABILITY PRACTICES9Zero waste and R concept, circular economy, ISO 18000 series, material life cycle assessment,

environmental impact assessment. Wasteland reclamation, Sustainable habitat: green buildings, green materials, energy efficiency and energy audit, sustainable transports. Energy cycles, carbon cycle, emission and sequestration, Green engineering: sustainable urbanization- socio-economical and technological change. Rain water harvesting, watershed management environmental ethics: Issues and possible solutions.

## **TOTAL : 45 PERIODS**

CON	Io. COURSE OUTCOMES	RBT Level						
At the	e end of the course, students will be able to:							
CO	<b>Describe</b> the importance of ecosystems, biodiversity and its conservation.	3						
CO	2 <b>Classify</b> the different types of pollution, their effects and control measures.	4						
CO	3 Implement the energy management and conservation.	4						
CO	4 <b>Describe</b> the sustainable development, its importance and social issues like climate change	3						
CO	<b>Recognize</b> the importance of zero waste concept, circular economy, EIA and Green engineering for environmental management.	4						
	41 6							
TEX	TBOOKS:							
1.	Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 7 th NewAge International Publishers, 2022.	Edition,						
2.	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi,	2016.						
3.	Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2 nd edition, Pearson Education, 2004.							
4.	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.							
5.	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable des development, Cengage learning.	sign and						
6.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.							
7.	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.							
DEE								
KEF	<b>EKENCES:</b> RK Trivedi 'Handbook of Environmental Laws Rules Guidelines Compliances and							
1.	Standards', Vol. I and II, Enviro Media. 38							
2.	Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ Mumbai, 2001.	., House,						
3.	Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi	i, 2007.						
4.	Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 3 2015.	rd edition,						
5.	Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 3 rd edition, 2021.							
I								

COUR	COURSE ARTICULATION MATRIX:													
COs			PSOs											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3					3	3							
2	3					3	3							
3	3	1	1			3	3							
4	3					3	3	3				1		
5	3					3	3	3				1		
		•			•									

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)



Μ	N22401	DESIGN OF MACHINE ELEMENTS AND TRANSMISSION SYSTEMS	L 3	T 1	P 0	C 4				
COU	URSE O	BJECTIVES:	•	-	•					
1.	To impa	rt the knowledge on the design for static and fatigue strength of vario	us ma	chine	elem	ents.				
2.	To mak	the students to understand the design principles of bearings and cou	olings							
3.	To fami	liarize the design and analysis of welded joints and bolted joints.								
4.	To prov	ide knowledge on the principles and procedures for the design of flex	ible d	rive sy	stem	s.				
5.	To fami	liarize the standard procedure for design of cylindrical and non-cylindrical	lrical	gear n	airs.					
				0 r						
UNI		DESIGN FOR STATIC AND FATIGUE STRENGTH				14				
Type Fatig prefe	es of desi gue phene erred nun	gn - design process – Types of stresses, Principal stresses, Theories omenon theories. Introduction to Shaft – types of shaft - design of s ibers.	of Fai shaft.	lures- Stand	prob ardiz	lems, ation,				
Type	es of be	arings – Nomenclature – selection of rolling contact bearings for	or dif	ferent	indu	Istrial				
appli coup	applications. Couplings - Types of couplings - Design of rigid flange coupling - Design of flexible coupling.									
UNIT III DESIGN OF WELDING JOINT AND FASTENERS										
Types of welded joints, Nomenclature - Design of welded joint for circumference weld works -										
ecce	ntrically	oaded welded structures. Design of bolted joint for axial and eccentri	cal lo	aded o	condi	tions.				
Code	es and sta	ndards for soldering process.	_							
TINI	TIVI	NESICN OF ELEVIRI E DRIVES	-			10				
Flex	ible drive	systems - types of flexible drives - design of V- Belt drives design of	of cha	in driv	ves	10				
1 10/1		systems types of newble arres accient of v Der arres, accient			05.					
UNI	TV I	DESIGN OF GEAR DRIVES				14				
Gear desig	rs - types gn of bev	of gears - nomenclature - classification of gear drives – design of el gear drive. Speed reducer - Design of worm gear drive.	f helio	cal ge	ar dri	ives -				
		T	OTAI	L: 60 ]	PERI	ODS				
		1951 TTT 201								
CO	No	COURSE OUTCOMES			l I	RBT Level				
At th	ne end of	the course, students will be able to:								
CO	01 Ana stat	<b>lyze</b> the stresses induced in simple machine elements and shafts c and fatigue loading.	subje	cted t	0	4				
CO	Sele     app	<b>Select</b> and design the required rolling contact bearing to support the given application.								
CO	03 Des	ign the permanent and temporary joints subjected to direct and ecce ditions.	ntric 1	oadin	g	4				
CO	04 Ap	bly procedures to design the transmission elements like belt and chain	drive	s.		3				
CO	<b>5</b> Approx	bly the design procedure for helical, bevel and worm gear drives ver.	to ti	ansmi	it	3				

TEX	ГBOOKS	:												
1	Bhandari. V.B," Design of Machine Elements ", Fifth Edition McGraw Hill Education (India)													
1.	Private L	imited	, , Noid	a 2020	).									
2.	Richard edition,	G. Bu McGra	dynas w Hill,	and F 2020.	Keith J.	Nisb	ett "S	higley'	s Mecl	hanical	Engine	eering	Desigr	n",11 th
2	Sharma	P.C an	d D.K	Sharm	na, "Ma	achine	Design	n", Ag	rawal ·	- Katari	a and	Sons	Publica	ations.
5.	NewDell	ni, 2014	4.											
REF	ERENCE	<u>S:</u>	11 1	<b>x</b> 1 <b>x x</b>	<b>D</b>						11 7			
1.	Dexter S	Kimba	$\frac{11}{1}$ and $\frac{1}{1}$	John H	$\frac{\text{Barr}}{\text{Barr}}$	Eleme	nts of N	lachin	e Desig	$\frac{gn'', Max}{Gl}$	well H	ress,2	022.	
2.	Khurmi I	$\frac{X.S., "}{C}$	A Text	book Of	t Mach	ne Des	sign ", 2	$\frac{25^{\text{m}} \text{ ed}}{1}$	$\frac{1}{C}$	Chand,	<u>2020.</u>	( <b>1</b> 1)		r 1'
3.	Robert	C. Ju	vinall,	Kurt 1	M. Ma	arshek,	, Mac	chine	Compo	onent I	Jesign	", W	illey	Indian
Δ	Robert L	Norte	n "Ma	chine I	Design '	• 5 th F	dition I	Pearson	India	2018				
	Itooen L	. 1 (0110	, iii, iiiu		Jesign	<u>,,,,,</u>		cursor	I India	,2010.				
		70	-	1	2P	9		(	31					
E-RE	SOURCE	28:	1	.0	0			-	5	10				
1.	http://ww	w.npte	elvideo	s.com/c	course.p	hp?id	=791&	http://r	ptel.ac	.in/cour	ses/112	210512	25	
2.	https://w	ww.exj	presslib	orary.m	heduca	tion.co	m/prod	uct/des	sign-ma	achine-e	lement	ts5016	1125	
3.	https://w	ww.ma	chined	esign.c	om > ba	sics-de	esign > l	nydrod	ynamic	e-bearing	gs			
4.	https://fa	c.ksu.e	du.sa >	sites >	default	> files	> mecha	anical-	design-	shigley.	01			
5.	https://w	ww.tea	cheron	.com/d	esign_c	of_mac	hine_el	ements	s-tutors		11			
			3	- 27	20	100	V				5			
COU	RSE ART	TICUL	ATIO	N MAT	<b>FRIX:</b>	6	10	11	. U-3	8-1	11			
		1	31			PC	)s	/			51	1	PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	10	6			T.	-	2	2	/	3	3	1
2	3	2	1	0.1	1		1		1	1	0	2	3	
3	3	2	1	0	TA	_	-	30	2	1		1	3	1
4	3	2	1		40	17	431	6	/			1	3	
5	3	1	1						1			1	3	
	1	1	1	1	I		<u>ı                                    </u>		1					
1: Sli	ght (Low)	), 2: M	oderat	e (Med	lium), 3	B: Sub	stantial	(High	ı)					

MN22	2402	FLUID MECHANICS AND THERMAL SCIENCE	L 3	T 1	P	C 4
COUR	RSE (	OBJECTIVES:	3	I	0	
1. 7	To in	npart the basic knowledge of fluids in static, kinematic and dynamic equi	libriur	n cond	itions	
2. 7	To ga	ain the knowledge of the applicability of physical laws in addressing the	proble	ms of f	luid f	low.
2 ]	To er	hable the students for analyzing the various energy transferring / transfo	rming	equipr	nent	using
3. f	first l	aw of thermodynamics	U			U
	To fa	miliarize the students to understand the fundamentals of thermodynamic	cs usin	g the s	econ	d law
ч. а	and t	o perform thermal analysis.				
5	To i	mpart the knowledge of primary techniques for cooling electronic	devi	ces an	d the	ermal
r	mana	gement of equipment.				
	<b>T</b>				<u> </u>	10
UNIT	l	FLOW CHARACTERISTICS	Flore			12
Concor	icuo nt of	n to Fluid Mechanics. Pressure measurement using U-lube manometers.	. Flow	charac		llcs -
equation	pt of on an	d momentum equation Applications. Orifice meter and Venturimeter	munty	equano	л, ei	leigy
cquant	JII all	a momentum equation – Applications- Office meter and Venturmeter.				
UNIT	Π	FLOW THROUGH CIRCULAR CONDUITS				12
Hydran		and energy gradient - Laminar flow through circular conduits and cir	cular	annuli	Bou	ndarv
laver c	once	pts – types of boundary layer thickness – Maior and minor losses - Darc	v Wei	sbach	equat	ion –
friction	n fact	tor- Moody diagram- Commercial pipes – Flow through pipes in series an	nd para	allel.	1	
			1			
UNIT	III	FIRST LAW OF THERMODYNAMICS				12
Basic of	conc	epts, System and their types, reversible and irreversible processes, H	eat ar	nd wor	s trai	nsfer,
Zeroth	law	v of thermodynamics- Concept of temperature and thermal equi	libriur	n. Firs	t lav	w of
thermo	odyna	amics-application to non-flow and steady flow processes -unsteady flow	v proce	esses (a	lescri	ptive
only).			1			
		171 17	/		<u> </u>	
UNIT	IV	SECOND LAW AND PROPERTIES OF PURE SUBSTANCE				12
Heat re	eserv	oirs - Heat Engine, refrigerator and heat pump. Statements of second l	aw an	d its co	rolla	ries -
Clausi	us in	equality. Concept of entropy, T-S diagram, T ds equations. Entropy c	change	tor 1d	eal g	ases-
	nt pr T T	w T a h a diagrama DVT surface. Use of Steam Table and Mollier Che	moay	namic ]	prope	rties,
	$\frac{1, 1}{V}$	-v, 1-s, il-s diagrams - F v 1 surface. Use of Steam Table and Womer Cha	111.		<u> </u>	12
Basic	Con	cents of Conduction Convection and Radiation Thermal managem	ont ir	Flect	ronic	and
Mecha	nical	devices Thermoelectric cooling and its principles - Applications in elec	etronic	system	ionic is - P	eltier
effect	of c	ooling in semiconductors - Cooling of automotive electronic device	s - T	rends i	n the	ermal
manage	emer	nt - Heat Pipe.	5 1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		יייייי ר	ОТА	L: 60 I	'ERI	ODS
			~ • • • •			
					T	RBT
CO No	0.	COURSE OUTCOMES			I	evel.
At the	end	of the course, students will be able to:				
C01	1	Acquire a basic knowledge of fluids in static, kinematic and dynamic equ	ilibriu	m.	<u> </u>	3
	(	Gain the knowledge of the applicability of physical laws in fluid flow th	rough	circula	r	
CO2	0	conduits.	8-			3
003	I	Analyze various Energy Transferring / transforming equipment using	First	law c	f	2
003	t	hermodynamics				3

СО	CO4Analyze various Energy Transferring / transforming equipment using Second law of thermodynamics and able to analyze the properties of steam with the help of steam table and charts.4													
CO	5	Gain the K methods, 7	nowled Thermos	lge of n electric	ecessity cooling	of coo	oling of ples, ap	electro plicatio	onic con ons in el	nponen ectroni	ts and h cs syste	neat trar ems.	nsfer	3
TEV	TRO	OKS.												
ILA	Mod	i P N and	Seth S	5 M "F	Ivdrauli	cs and	Fluid M	Mechar	ics" St	andard	Book	House	New D	elhi
1.	2019	)	Setti, i	5.111. 1	ryaraan	co una	1 1010 1	vicentai	nes , st	unuuru	DOOR	110050,		enn,
2.	Whi	te, F.M., H	enry X	ue "Flu	id Mech	anics"	, Tata N	1cGrav	v Hill, 9	th Editi	on, Nev	w Delhi	, 2022.	
3.	Nag	P.K "Engi	neering	Therm	odynam	ics" 5 ^t	th Editio	n, Tata	McGra	w-Hill,	, New I	Delhi 20	)13	
4.	Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi,3 rd edition 2011													
DEE														
1 <b>KEF</b>	Loin	$\frac{\text{NCES:}}{\Lambda K = \text{"Elu}}$	id Mool	honios"	Khonn	o Dubl	ichora (	010	-					
1.	Yun	$\frac{\mathbf{A} \cdot \mathbf{K}}{\mathbf{1s} \mathbf{A} \cdot \mathbf{Ceno}}$	rel and	Michae	1 A Bole	a r uon	ermodvi	amics	Engine	ering a	nnroach	" 8 th E	dition 7	Fata
2.	McC	raw hill P	ublicati	ons. 20	14 14	.5 110	ermouyi	lannes	Lingine	ering uj	pprode	г, о <b>н</b>	annon	l ata
3.	Rajp	ut R.K., "	Therma	l Engin	eering"	, Laksl	hmi Pub	lication	ns, Tent	h Editi	on, 201	7		
4.	You	nes Shabar	iy, Heat	t Transf	er: The	mal M	lanagen	nent of	Electro	nics, Cl	RC Pres	ss; 2010	)	
			11	21	-	12	100		1-0	10	01			
E-RI	ESOU	RCES:	12	1	6.85	1	_	~	N	1	21			
1.	<u>https</u>	://nptel.ac.	in/cour	<u>ses/112</u>	<u>104118</u>	14	7.	0/	IIV S		01			
2.	https	://archive.	nptel.ac	.in/cou	rses/112	2/105/1	121051	71/	126.0	0.1	3			
3.	https	://onlineco	ourses.n	ptel.ac.	in/noc2.	3_me3	1/previe	ew			m			
	-	-	ILI I	1 8	2.			1	193	-1	ml			
COU	RSE	ARTICU	LATIO	N MA'	TRIX:	1	_	/			271	11		
			Y.	~	1.3	P	Os	R	0-9	1:	5/		PS	Os
COs	1	2	3	4	5	6	7	- 8	9	10	11	12	1	2
1	3		1	0.			0		1		1		1	2
2	3	2	1	0	13			-	AV	9/			1	1
	5	2	1		19	11	100	- 20	1.				1	1
3	3	2	1			-	1.01	-					2	1
4	3	2	1										2	1
5	3		1										1	1
1: Sli	ight (l	Low), 2: N	Iodera	te (Med	lium), 3	: Subs	stantial	(High)	)					

#### **OPERATIONS RESEARCH AND MANAGEMENT** L Т Р С **MN22403** (Common to ME & MN) 2 1 0

### **COURSE OBJECTIVES:**

- To provide knowledge and training in using optimization techniques under limited resources for 1. engineering and business problems.
- To apply the concept of inventory and project management. 2.
- To judge the suitable decision models for Industrial problems. 3.

### **UNIT I** LINEAR MODELS

Phases of OR - Model - Definition - Types - Linear model Formulation - Graphical Solution Method -Branch and Bound Technique - Simplex Method - Two variable problems.

### **UNIT II** LOGISTICS AND ASSIGNMENT MODELS

Transportation model - Initial solution - Balanced and unbalanced models - Basic feasible Solution -North West corner method - Least Cost method - VAM - Optimality test - MODI method. Assignment model – formulation – Types.

### UNIT III **PRODUCTION SCHEDULING AND NETWORK ANALYSIS**

Flow shop scheduling - Johnson's algorithm processing n jobs through two machine problems - two jobs processed in 'm' machines - graphical method - Network models - Terminologies - EST - EFT - LST -LFT - Floats - Critical path method.

### **QUEUING THEORY AND INVENTORY CONTROL** UNIT IV

Queuing models - Queuing systems and structures - Notation parameter - Single server and multi-server models - M/M/1: FIFO/∞ - Inventory models - Economic order quantity models - Stochastic inventory models - Multi product models - Inventory control models in practice - Just in Time - Kanban systems bins in modern industries.

#### MAINTENANCE AND DECISION MODEL **UNIT V**

Types of Maintenance – Role of TPM – Depreciation – Replacement models – Items that deteriorate with time - When money value changes - Items that fail completely - Individual replacement and Group replacement - Game theory - Pure and mixed strategy - Dominance property - graphical method.

### **TOTAL: 45 PERIODS**

41

3

9

9

9

9

9

CO No	COURSE OUTCOMES	RBT Level								
At the e	end of the course, students will be able to:									
CO1	Recognize, formulate, and appraise LP models to optimize solutions for industrial scenarios.	4								
CO2	Distinguish and apply the appropriate methodology for addressing real-time problems in the transshipment process	4								
CO3	Appraise and select suitable methodologies for analyzing network problems.	4								
<b>CO4</b>	Utilize and implement suitable techniques for solving production queuing problems.	3								
CO5	Analyze a situation and propose appropriate decisions for replacement.	4								
TEXT	BOOKS:									
1.	Panneerselvam. R., "Operation Research", Prentice Hall of India Pvt Ltd, 2016									
2.	Taha H.A., "Operations Research", Tenth Edition, Prentice Hall of India, 2016									

REFI	ERENCE	S:														
1.	Rama M	urthy R	l, "Ope	rations	Resear	ch",Sec	ond ed	ition, N	lew Ag	e Intern	ational	Publisl	her, 20	07		
2.	Hira and	l Gupta	"Probl	ems in	Operat	ions Res	search"	', S.Cha	and and	Co.200	8					
3.	Wagner,	"Opera	ations F	Researc	h", Pre	ntice Ha	all of Ir	ndia, 20	00.							
E-RESOURCES: (including NPTEL course)																
1.	https://n	ptel.ac.i	n/cour	ses/110	/106/1	1010606	52/									
2.	https://n	ptel.ac.i	n/cour	ses/112	/106/1	1210613	34/									
COU	RSE AR	<b>FICUL</b>	ATION	N MAT	RIX:											
COa				- 2	/	PO	S	E	1				PSOs			
COS	1	2	2	1		6	-	-0-	0	10	11	10	1	2		
	-	2	3	173	-	U		8	9	10	11	14	I	4		
1.	3	3	<b>3</b>	P	2	0	/	8	50	20	11	12	2	1		
1. 2.	3 3	2 3 2	3 1 1	P P	2		1 1 1 1 1 1	8	20			12 1 1	1 2 2	1 1		
1. 2. 3.	3 3 3	2 3 2 2	3 1 1 1	1 1	1			8		20		12 1 1 1	1 2 2 2	1 1 1		
1.           2.           3.           4.	3 3 3 3 3	2 3 2 2 2	3 1 1 1 1	1 1 1 1	1			8		20		12 1 1 1 1	1 2 2 2 2 2	2 1 1 1 1		
1.         2.         3.         4.         5.	3 3 3 3 3 3	2 3 2 2 2 2 2 2	3 1 1 1 1 1	1 1 1 1 1	1			8		20		12 1 1 1 1 1 1	2 2 2 2 2 2 2	1 1 1 1 1 1		
1.         2.         3.         4.         5.	3 3 3 3 3 3	2 3 2 2 2 2 2	3 1 1 1 1 1	1 1 1 1 1	1			8				12 1 1 1 1 1	1 2 2 2 2 2 2 2 2	2 1 1 1 1 1 1		

प्रा देवता-

ŧΠ

AN 185 STAT

UU

	HVDRAULICS AND PNFUMATICS	ł	-	-	~
MN224	68 FOR AUTOMATION: THEORY AND PRACTICES	L	T	Р	C
	(Common to MN, ME)	2	0	2	3
COUR	SE OBJECTIVES:				
1. T	o understand the fundamental principles and operations of hydraulic and pr	neuma	tic co	mpone	ents.
2. T	b design fluid power circuits for industrial automation.				
UNIT	HYDRAULIC SYSTEM COMPONENTS				11
Fluid p	ower systems - hydraulic fluids - Pascal's law - Darcy's equation – Losses	in val	ves an	d fitti	ngs.
Hydrau	lic power source - pumping theory – pumps classification - construction,	work	ing an	d sele	ction.
Gontro	actuators – linear & rotary. Performance evaluation of hydraulic components	ruotio	s.	rotion	and
applica	tions	lucio	n, ope		anu
appilea					
UNIT	I PNEUMATIC SYSTEM COMPONENTS				7
Compr	essors - types and working principle. Filter, Regulator, Lubricator, Muff	ler, A	ir con	trol va	alves,
Quick of	xhaust valves, Pneumatic actuators, Servo valves. Fluid power ANSI syml	bol.			
		÷			
UNIT	II FLUID POWER ACCESSORIES AND MAINTENANCE				9
Access	pries - Accumulators and their applications, Pressure intensifier, Pressu	ire sw	vitches	, Elec	trical
switche	s, Limit switches, Relays. Air-over oil system, Hydrostatic transmiss	ion.–I	Fault f	finding	g and
mainter	lance of fluid power systems.	- 1-			
TINIT	<b>W</b> DESIGN OF FLUID POWER CIRCUITS	2			0
Design	of hydraulic and pneumatic circuits - Sequencing - Synchronization -	Reger	herativ	e - D	ouble
pump (	ircuit with unloading valve - Reciprocation of linear actuators. Speed con	trol- r	neter-i	n & n	neter-
out circ	uits. Sequential circuit design using cascade method.	1			
	I I I I I I I I I I I I I I I I I I I	1			
UNIT	V LOW-COST AUTOMATION				9
Electro	nics in low-cost automation - PLC and Micro controller. Electro-h	nydrau	ilic ai	nd Ele	ectro-
pneum	tic circuits. Servo systems. Automation of drilling, shaping, punc	ching,	press	ing/fo	rging
operation	ons, and materials handling systems using fluid power systems.		T 47	DEDI	
	VET THE ZON	ΟΤΑ	1:45	PH'RI	ODO
				ILN	ODS
	मा परा र				ODS
CO No	COURSE OUTCOMES				CODS RBT
CO No	COURSE OUTCOMES				ODS RBT Level
CO No At the o	COURSE OUTCOMES and of the course, students will be able to:				RBT Level
CO No At the o CO1	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic colspan="2">COURSE OUTCOMES         Describe the working and calculate the performance of the hydraulic colspan="2">COURSE OUTCOMES	ompor	nents.		CODS     RBT     Level     2     2
CO No At the o CO1 CO2	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic cole         Explain the working of components used in pneumatic systems.         Describe the working of components used in pneumatic systems.	ompor	nents.		CODS RBT Level
CO No At the o CO1 CO2 CO3	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic co         Explain the working of components used in pneumatic systems.         Describe the working of accessories used in fluid power system.         Describe the working of accessories used in fluid power system.	ompor	nents.		CODS RBT Level
CO No At the o CO1 CO2 CO3 CO4	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic colspan="2">Explain the working and calculate the performance of the hydraulic colspan="2">Explain the working of components used in pneumatic systems.         Describe the working of components used in pneumatic systems.       Describe the working of accessories used in fluid power system.         Design a sequential circuit for given operation using Cascade method.       Design a block of the hydraulic colspan="2">Describe the working of accessories used in fluid power system.	ompor	nents.		CODS RBT Level 2 2 2 3 2
CO No At the o CO1 CO2 CO3 CO4 CO5	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic co         Explain the working of components used in pneumatic systems.         Describe the working of accessories used in fluid power system.         Design a sequential circuit for given operation using Cascade method.         Design fluid power circuits for automation of different industrial operation	ompor ions.	nents.		ODS           RBT           zevel           2           2           3
CO No At the o CO1 CO2 CO3 CO4 CO5	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic colspan="2">Explain the working of components used in pneumatic systems.         Describe the working of components used in pneumatic systems.         Describe the working of accessories used in fluid power system.         Design a sequential circuit for given operation using Cascade method.         Design fluid power circuits for automation of different industrial operation	ompor	nents.		ODS           RBT           zevel           2           2           2           3
CO No At the o CO1 CO2 CO3 CO4 CO5	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic cole         Explain the working of components used in pneumatic systems.         Describe the working of accessories used in fluid power system.         Design a sequential circuit for given operation using Cascade method.         Design fluid power circuits for automation of different industrial operation         BOOKS:	ompor ions.	nents.		ODS           RBT           2           2           2           3
CO No         At the o         CO1         CO2         CO3         CO4         CO5	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic colspan="2">Explain the working of components used in pneumatic systems.         Describe the working of accessories used in fluid power system.         Design a sequential circuit for given operation using Cascade method.         Design fluid power circuits for automation of different industrial operation         BOOKS:         Anthony Esposito, Fluid Power with Applications, Pearson Education, 7th ended	ompor ions.	n, 2009	1 EKI 1 1	ODS           RBT           2           2           2           3
CO No         At the o         CO1         CO2         CO3         CO4         CO5         TEXT         1.       4         2.       J	COURSE OUTCOMES         end of the course, students will be able to:         Describe the working and calculate the performance of the hydraulic cole         Explain the working of components used in pneumatic systems.         Describe the working of accessories used in fluid power system.         Design a sequential circuit for given operation using Cascade method.         Design fluid power circuits for automation of different industrial operation         SOOKS:         Anthony Esposito, Fluid Power with Applications, Pearson Education, 7th eames L. Johnson, Introduction to Fluid Power, Delmar Thomson Learning.	ompor ions. edition , 2002	n, 2009	1 EK 1 1 1 1 1 1 1 1 1 1 1 1 1	ODS           RBT           2           2           2           3

DEE														
KEF	ERENCE	S: (mii	n 3, ma	ax 5)										
1.	Dudelyt,	A Peas	se and .	John J.I	Pippeng	ger, Bas	sic Flui	d Powe	er, Pren	tice Ha	ll, 1987	7.		
2.	Majumda	ar, S.R.	, Oil H	[ydrauli	cs Syst	ems-Pr	rinciple	s and M	lainter	nance, T	'ata Mc	GrawH	[ill, 200	)1
3.	Majumda	ar, S.R.	, Pneur	matic S	ystems	-Princi	ples and	l Main	tenance	e, Tata I	McGrav	w-Hill,	2007.	
4.	Micheal	J, Pincl	hes and	l Ashby	, J.G.,	Power	Hydrau	lics, Pr	rentice	Hall, 19	989.			
5.	Shanmug	gaSund	aram, H	K.,Hydr	aulic a	nd Pne	umatic	control	s, S. C	hand lii	nited, 2	2006.		
E-RE	SOURCI	ES: (in	cluding	g NPTI	EL cou	rse)								
1.	NPTEL	Course	- https	://nptel.	.ac.in/c	ourses/	112105	046/						
COU	RSE AR	ГICUL	ATIO	N MAT	<b>FRIX:</b>	-		_						
COa														Os
1.1.15														
005	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1 3	<b>2</b> 1	3	4	5	6	7	8	9	10	11	12	<b>1</b> 2	<b>2</b> 3
1 2	1 3 3	<b>2</b> 1	3	4	5	6	7	8	9	10	11	12	<b>1</b> 2	2 3 3
1 2 3	1 3 3 3	2 1	3	4	5	6	7	8	9	10	11	12	<b>1</b> 2	2 3 3 3
1 2 3 4	1 3 3 3 3 3	2 1	3	4	5	6	7	8	9	<b>10</b>	11	12	1 2 3	2 3 3 3 3
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $	1 3 3 3 3 3 3	2 1	3 3 3	4	5	6	7	8	9	10 3 3	11 NGIN	12	1 2 3 3	2 3 3 3 3 3 3

परा देवता - 5

٦

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

IN SET

Г

MN	122409	L	Т	Р	C	
		THEORY AND PRACTICES	2	0	2	3
	URSE C	BJECTIVES:				
1.	Recogn	the instrumentation required for measurements				
Ζ.	Device	the instrumentation required for measurement of various process particular the condition of measurement processes by using vario		rs.	<b>22</b> 0 0 0	unin a
3.	technic	ues.	us ad	vanced	measu	uring
4.	Apply	the principles of measurements for various industrial applications.				
<u> </u>						
UNI	TI	INTRODUCTION TO METROLOGY, LINEAR AND ANGUL MEASUREMENTS	AR			10
Intro	oduction	to Metrology - Need - Precision and Accuracy, Errors in Measured	iremer	its, Co	mparate	ors –
Mec	hanical,	Electrical & Optical. Interchangeability - limits, fits and tolerance	s, Lim	it gaug	ges, Tay	ylor's
princ	ciple of	gauge design. Calibration, Sensitivity, readability & repeatability.				
Line	ar meas	urement - Vernier calipers – Vernier height gauge- Vernier depth	gaug	e - Mi	cromete	ers –
Digi	tal calip	ers - Slip gauges.	C	••.1	1 0'	1
Ang	ular Mea	asurement - Angular measuring instruments – Types – Bevel protract	or, Sp	irit lev	els, Sin	e bar
- 511	ne cente	r – Sine table – Angle Dekkor - Autocollimator.	<u> </u>			
TINI	тп	FODM & DROCESS DADAMETERS MEASUREMENT	-			10
Eorr	$\mathbf{n} \mathbf{M}_{\mathbf{P}}$	rement - Measurement of surface finish Surf Tester Screw three	d me	ourem	ent N	10 Jinor
dian	neter &	Effective diameter – Two wire method Gear measurement - Gear	termi	nology	r = Frro	rs in
gear	s – Pitch	& Tooth thickness measurement - Parkinson's gear tester	term	nonogy	LIIU	/15 III
Mea	suremer	t of Force – Load cells – Hydraulic & Pneumatic load cells – LVI	DT. E	asics of	of Tora	ue &
Pow	er meas	urement. Flow measurement - Differential pressure flow meter,	Magn	etic fl	ow me	ter –
Ultra	asonic f	low meter. Temperature measurement - Thermocouples - Radiati	on py	romete	r – Inf	rared
temp	perature	sensor	51			
UNI	TII	ADVANCES IN METROLOGY	/			10
Inter	feromet	ry - Types of Interferometers - Michelson interferometer - NPL	, flatn	ess int	erferon	neter.
Lase	er metrol	ogy - Basic concept of lasers - Advantages of Laser - Laser Interf	erome	ters – '	Types -	- DC
and	AC lase	rs interferometer – Applications. Coordinate Measuring Machines	· Type	s of co	nstructi	ion –
Prob	bes. CNC	CMM, Machine vision system – Image acquisition & Image proces	sing.			
	IFOTIV	LABUKATUKY COMPONENT				
<b>UDJ</b>	To ann	LD: by the instruments to measure the physical dimensions and process p	arama	ore		
1.	10 app	Ty the instruments to measure the physical dimensions and process pa		.015		
		I IST OF FXPERIMENTS				
0	Calibra	tion of different instruments				
1	Linear	measurements using vernier caliper and micrometer				
2.	Measu	rement of bore diameter using bore dial gauge and telescopic gauge				
3.	Angle	measurement using bevel protector, sine bar and tool makers microsc	cope.			
4.	Measu	rement of gear features using gear tooth vernier caliber.	· r - •			
5.	Straigh	tness and Flatness measurement using autocollimator.				
6.	Linear	measurement using CMM.				
-	Angula	r measurement using CMM				

8. Measurement of force and torque using strain gauges and transducers.															
9. 10	Pres	sure n	neasure	ement u	sing tra	ansduce	er.	atmina	ata						
10.	Tem	iperati	ire mea	asureme	ent usin	ig unie	rent m	strumer	its.						
												TO	ГАL: 60 Р	ERI	ODS
CO	No					CO	DURSI	E OUT	COME	S				F L	<b>&amp;BT</b> ⊿evel
At th	e enc	l of th	e cours	se, stud	ents wi	ll be ab	ole to:								
CO	1	Unde	rstand	the wo	rking p	rincipl	es of li	near an	d angul	ar mea	suring	instrum	ents.		2
CO	2	Acqui for mo	i <b>re</b> an o ation at	overvie	w of m	echanic measur	cal mea ement	sureme	ent syste	ems an	d princi	iple of i	nstruments	5	2
CO	3	Select	the su	itable t	ransduc	cer to p	erform	the rea	l time r	neasur	ements.				3
CO	4	Calib	rate th	e meas	uring d	evices	suitable	e for in	dustrial	measu	rement	s.			4
CO	5	Use th	ne adva	nced sy	stems	for real	time a	nd indu	ustrial n	neasur	ements.				3
	.05 Ose the advanced systems for rear time and industrial measurements.														
TEX	TBC	OKS	:	1:	51	6 i i i	100	1181		1	1				
1.	Gup	$\frac{\text{ta. I.C}}{\mathbf{P} \mathbf{V}}$	., "Eng	gineerir	ng Metr	ology"	<u>, 7th</u> e	dition,	Dhanpa	trai Pu	blicatio	on, 2019	).		
Ζ.	Jain	K.K	Engine	ering r	vietroio	gy, K	nanna	Publish	lers, 1 ²²	eannon	, 2021.	21			
REF	ERE	NCE	S:	VI		1	10	75	2/1	0.0	1	01	Δ		
1.	A K Rai	Sawh	ney, "A	A Cour	se in El	ectrica	l and E	lectron	ic Meas	sureme	nts and	Instrur	nentation"	Dha	npat
2.	Becl	<u>kwith.</u>	Marag	., 2021 2016	ienhard	l, "Mec	hanica	1 Measu	urement	ts". Pe	arson E	ducatio	n. 6 th editi	on. 20	007.
3.	Mah	ajan N	<u>И, "Те</u> з	xtbook	of Met	rology'	', Dhan	pat Rai	i & Co	(p) Ltd	, 2012.	m	,	,	
4.	R.K	. Rajp	ut, "Me	etrolog	y and Iı	nstrum	entation	n", S.K	. Katari	a& So	ns, 2010	6			
5.	Rob	ert B.	Northr	op, "In	troduct	ion to l	nstrum	entatio	n and M	leasur	ements'	', CRC	Press, 201	8	
				10	0	-	- C.	c ho	÷.	1	9	1			
E-RI	ESO	URCE	ES:			-		Y	1	1	-/				
1.	http:	://hom	e.iitk.a	ic.in/~n	sinha/N	Aetrolo	gy.pdf		30	121	/				
2.	https	s://npt	el.ac.ir	n/course	es/1121	06179	-//	451	6	/	5				
3.	https	s://swa	ayampr	abha.g	ov.in/in	dex.ph	p/prog	ram_da	ta/flipN	/lore/N	174/11				
COL	JRSE	E ART	TICUL	ATIO	N MAT	<b>RIX:</b>									
							PO	Os						PSC	Os
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		2				2				2			2		
2		2	2	2		2	2				2			2	
3		2		2		2				2			2	2	2
4		3 2		$\frac{3}{2}$		3	3			3			2	3	3
3		4		<i>L</i>		5	2	1	<u> </u>	2	L			4	
1: Sl	ight	(Low)	, 2: M	oderat	e (Med	ium) <u>,</u> 3	8: Subs	stantial	(High)	)					

	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS	Qty.
1.	Micrometer	2
2.	Vernier Caliper	4
3.	Vernier Height Gauge	2
4.	Vernier Depth Gauge	2
5.	Slip Gauge Set	3
6.	Gear Tooth Vernier	2
7.	Sine Bar	2
8.	Floating Carriage Micrometer	1
9.	Profile Projector / Tool Makers Microscope	Each 1
10.	Mechanical / Electrical / Pneumatic Comparator	Each 1
11.	Autocollimator	1
12.	Temperature Measuring Setup	1
13.	Force Measuring Setup	1
14.	Torque Measuring Setup	1
15.	Coordinator Measuring Machine	1
16.	Surface finish measuring equipment	1
17.	Bore gauge	2 set
18.	Telescope gauge	2 set
	मिंग परा देवता -	

M	J <b>77</b> /11	COMPUTER AIDED MODELLING LABORATORY	L T	P	C
IVII	42411	(Common to ME & MN)	0 0	3	1.5
COU	RSE OB.	JECTIVES:		-	
1.	Create 3	D models of parts and assembly, and exploded views of assembly using the second	ng CAD so	oftware	2. CAD
2.	software	de knowledge on three-dimensional model of simple mechanism and	animation	using	CAD
3.	To expo software	se the knowledge to prepare the technical documents for the giv	en compo	nents	using
LIST	OF EXP	ERIMENTS			
1.	Introduct Sketch, S	ion to modeling software and Study of Drawing Sheet Layout and Di Solid modeling- Extrude, Revolve, Sweep.	awing Sta	ndards	<b>.</b>
2.	Solid mo	deling: Variational Sweep, Helical Sweep, Rotational Blend.			
3.	Solid mo	deling: Blend and Parametric modeling- conversion of STL format.			
4.	Surface r	nodeling: Extrude, Sweep, Trim, Mesh of curves and Free form.			
5.	Create a	surface model of Aero Foil / Blower upper housing / Bend Pipe with	flange.		
6.	Construc	t a three-dimensional assembly model of Screw Jack. **			
7.	Create a	three-dimensional assembly model of Flange / Universal Coupling ap	ply**		
8.	Create a modeling	three-dimensional assembly model of kinematic mechanism and aning software.	nate its wo	orking	using
9.	Introduct	ion to Generative Design for Weight Reduction of a support frame.	1		
10.	Generati	ve Design for Weight Reduction of cycle frame.			
** M	odelling o	of individual elements of the Mechanical equipment and assembli	ng the san	ne as j	per
given	standaro	l by applying concepts of fits, limits, and tolerances – as Team ex	ercises		
			/		
			'OTAL 45	PER	IODS
CO	No	COURSE OUTCOMES			RBT Level
At the	e end of th	ne course, learners will be able to:			
CO	1 Inter	pret the given 2D drawing and create a 3D part using 3D modeling so	oftware.		3
СО	2 Crea mod	te a 3D assembly in the assembly module using the 3D parts creat eling module.	ed in the p	part	3
CO	Gene	erate 2D detailed drawing for the given parts & assembly models.			3
CO	4 Ana	yze and interpret the kinematic links using 3D modeling software.			4
DFF	EDENICE	e.			
1	Creo Pa	s:			
1. 2	Creo Do	rametric 4.0 for Designers BV Sham Tickoo BDR Dublications 2019	2		
2.	Maahim	Drowing by K.D. Copologrichton, 2019	•		
J.	M	Drawing by K.K. Gopalakrishnan, 2018.			
4.	Machine	e Drawing by K. L. Narayana, New Age Publications, 2012.			

E-RE	SOURCE	S:												
1.	https://gr	abcad.c	com/tuto	orials/b	asic-cre	eo-tutor	rials							
2.	https://su eling/part	pport.p tmodeli	tc.com/ ng.htm	'help/cr l#	eo/creo	_pma/r	9.0/usa	scii/inc	lex.htm	nl#page	/part_n	nodeling	g/part_1	nod
3.	https://ww	ww.you	itube.co	om/wate	ch?v=b	YKbYI	Lfpk6k							
4.	https://ww	ww.you	itube.co	om/wate	ch?v=g	JLAM5	54Vf-w							
5.	5. https://youtu.be/lhq-O5w6STU													
COURSE ARTICULATION MATRIX:														
COs POs														Ds
COS         1         2         3         4         5         6         7         8         9         10         11         12														2
1.					3	00	111	1	2	2			2	
2.				/	3	00	LL	EG	2	2			3	
3.	2.     3.     3.     2.     2.       3.     3.     2.     2.													
4.			15	51	3	š. s	3	1	2	~			3	
	•	1	1,9	1	100	Test	- Naka	1	- 0	10	1			
1: Slig	ght (Low)	, 2: Mo	derate	(Medi	um), 3:	Subst	antial (	High)	N	12	21			
			V		1	1 Contraction of the second se	20	1.	pos.	1	0			
	Ι	LIST O	F EQU	IPME	NT FO	RAB.	АТСН	OF 30	STUD	DENTS	2		Q	ty.
1.	Desktop c	ompute	ers with	windo	ws, 64-	bit and	8GB	11			m		3	0
2.	PTC Creo	parame	etric	20		E	100		2-9	-	m		3	0
			N IS	10 2	100		म	at M	T	Con	R			

Image: Microsoft and the second se	<b>3</b> S.	1.5
COURSE OBJECTIVES:         1.       To gain the experimental knowledge in flow measurements using different devices.         2.       To study the various losses in pipes.	5.	
<ol> <li>To gain the experimental knowledge in flow measurements using different devices.</li> <li>To study the various losses in pipes.</li> </ol>	S.	
2. To study the various losses in pipes.	S.	
	S.	
5. 10 gain experimental knowledge in the performance characteristic of pumps and turbine		
4. To study the Performance of petrol, diesel engine and steam generator and refrigeration s	system	•
5. To Study the characteristics of fuels/Lubricants used in IC Engine, performance of comp	ressor	
LIST OF EXPERIMENTS		
1. Determination of the Coefficient of discharge of given Venturimeter and Orifice meter		
2. Determination of friction factor for a given set of pipes		
3. Conducting experiments and drawing the characteristic curves of centrifugal pump/ subm pump	nersibl	e
4. Conducting experiments and drawing the characteristic curves of reciprocating pump		
5. Conducting experiments and drawing the characteristic curves of Gear pump		
6. Conducting experiments and drawing the characteristic curves of Pelton wheel		
7. Determination of viscosity and flash & fire point of fuels/Lubricants.		
8. Heat balance/retardation test on diesel engine.		
9. Performance test on diesel engine		
10. Performance test on air compressor		
11. Performance test on refrigeration system		
12. Determination of heat transfer coefficients.		
TOTAL: 4	5 PER	IODS
CO No COURSE OUTCOMES	RBT	Level
At the end of the course, students will be able to:		
<b>CO1</b> Calculate the coefficient of discharge for the different flow measuring equipment.		3
CO2 Analyse the performance of various pumps and turbines.	4	1
<b>CO3</b> Analyse the performance of diesel engine, refrigeration and compressor.	4	4
<b>CO4</b> Determine the viscosity, flash and fire point of fuels/lubricants.		3
<b>REFERENCES:</b>	D.1	L :
1. Nodi P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", Standard Book House, Ne 2019.	w Del	nı,
2. Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery"	', 2011	
3. Rajupt. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017		
4.   Ganesan, V "Internal Combustion Engines", fourth Edition, Tata Mcgraw-Hill, 2012		
E-RESOURCES:		
1. https://fm-nitk.vlabs.ac.in/List%20of%20experiments.html		

COU	COURSE ARTICULATION MATRIX:													
CO.						PO	Os						PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3										3		3
2.	3	3										3		3
3.	3	3										3		3
4.	3	3										3		3
5.	3	3										3		3
1: Slig	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)													
LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS											ety.			
1.	Venturi meter setup and Orifice meter setup												1	
2.	Pipe F	low ana	alysis se	etup		- 23	2 \$	28 -	. `	1				1
3.	Centri	fugal pı	ump set	tup	3.	18			10	15	51		1	
4.	Recip	rocating	pump	setup	44	1		2	N	1	5			1
5.	Gear p	oump se	tup	1 5		/ 🖤	)	-	1	. 1	11			1
6.	Pelton	wheel	setup		5.1	1.1	5	-	自	1. Carlor	Z			1
7.	Appar	atus for	Flash a	and Fire	e Point	and vise	cometer	97	/ U.	a. 1	m	1		1
8.	4-strol	ce Diese	el Engii	ne with	hydrau	lic load	ing	1		1	21			1
9.	Single	cylinde	er Petro	l Engin	e	1	3735	E	1	1:	51			1
10.	0. Steam Boiler setup										1			
11. Air compressor											1			
12.	Refrig	eration	test rig	10	15			-	1 DE	1				1
				8	1	C/T	TT.	16	4	6			•	

### SEMESTER V

MN22501INDUSTRIAL ROBOTICS: THEORIES FORLTPCINDUE DEFINITATION2002											
COI	IDSE	IMPLEMENTATION ODJECTIVES:	3	0	0	3					
1	Unde	<b>ODJECTIVES:</b>									
2	Anal	vzing and implementing advanced robotic control strategies									
3.	Deve	loping skills in programming and integrating industrial robots into manufacturing	proce	esses.							
0.	2010		, p1000								
UNI	ΤI	FUNDAMENTALS OF ROBOT TECHNOLOGY				9					
Robo enve Drive	ot – E lope. 1 e syste	efinition - Need for robots - Classification based on coordinate system - Cor Robot motion – Types & joints, wrist – pitch, roll, yaw. Joint notation scheme m – Modeling and Control of a Single Joint Robot - Numerical Problems.	ntrol : , Rob	metho ot spe	d – V cifica	Vork tion.					
UNI	TII	ROBOT MOTION ANALYSIS AND CONTROL				9					
Man	ipulat	or Kinematics - Forward and Inverse - Denavit - Hartenberg (DH) parame	ters -	Hom	ogen	eous					
Transformations - Robot Kinematics - Manipulator path: types and control - Robot Dynamics -											
Configuration of a robot controller - Numerical Problems											
UNIT III END EFFECTORS 9 End Effectors Grippers Mechanical grippers Gripper mechanisms Magnetic gripper Vacuum gripper											
End Effectors – Grippers – Mechanical grippers – Gripper mechanisms, Magnetic gripper, Vacuum gripper – Inflatable gripper; Internal and External gripper; Gripper selection – Tool as end effectors – Gripper force analysis.											
UNIT IV ROBOT PROGRAMMING 9											
Metr langu – De	iods o lages fining	- Structure - Motion commands - Programming – Lead through – manual – Limita - Structure - Motion commands - Program control and subroutines - Robot program position in space – Reason for defining points – Speed control – Motion interpola	ations ram as ation.	– Tex s a pat	tual 1 th in s	pace					
UNI	ΤV	ROBOT CELL DESIGN AND APPLICATIONS				9					
Robo - Err - Ap	ot cell or de plicat	layouts - Multiple robots and machine interference - work cell design and ection and recovery - Robot cycle time analysis - Safety in robots - Traini ions of Industrial robots in Manufacturing, Material handling, painting and	l cont ng ar weld	rol - 1 Id ma ing.	Interle inten	ocks ance					
		TOT	TAL :	45 P	ERIC	<b>)DS</b>					
		14 12 62									
СО	No.	COURSE OUTCOMES			R L	BT evel					
At th	ne enc	of the course, students will be able to:									
CO	01	Describe the fundamental principles and theories underlying industrial robotics.				2					
CO	02	Analyze and implement advanced control strategies for industrial robots.				3					
CO	03	Describe the types of End effector for various applications				2					
CO	)4	Demonstrate proficiency in programming and simulating industrial robots.				3					
CO	05	Ensure the safety and proper maintenance of industrial robots in industrial setting	gs.			3					
L											
TEX	<b>(TBC</b>	OKS:	( <b>T</b> 1		<b>D</b> 1						
1.	Nic -Te	holas Odrey, Mitchell Weiss, Mikell Groover, Roger Nagel, Ashish Dutta chnology, Programming and Applications", 2nd Edition, 2017.	"Indu	strial	Robo	otics					

REF	EREN	CES:													
1.	Yoran	n Koren,	"Roboti	ics for H	Engine	ers", M	cGraw	-Hill, 1	1985.						
2.	Nikola	aus Corre	11, "Intr	oductio	on to A	utonom	nous Ro	obots",	, Nikola	aus Cor	rell, 20	16.			
3.	King-S Intelli	Sun Fu, gence", N	C.S. /IcGraw	George /-Hill E	E Lee, ducatio	Ralph on, 198	Gonza 7.	ılez, "	Roboti	es: Cor	ntrol, S	ensing	, Visio	n and	
E-RESOURCES:															
1.	https:/	/nptel.ac.	in/cour	rses/112	10531	<u>9</u>									
2.	https:/	/nptel.ac.	in/cour	rses/112	10429	<u>8</u>									
COU	RSE A	RTICUI	LATIO	N MA	<b>FRIX:</b>										
COs				- 22	/	PC	s	E		0			PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	JP.	$\mathbf{r}$		S. 3		1	0		1	2	2	
2	3	3	2	51/	1	ŝ.	\$	1		1	1	1	2	2	
3	3	3	2	1	2	5			10	1	12	1	2	2	
4	3	3	2	1	2	1		1	N	1	2	1	2	2	
5	3	3	2	1	2	1	)~	5		1	62	1	2	2	
1: Sli	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)														

m

परा देवता हो

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High) NI INS OTHET

MN	22502	MODERN MANUFACTURING PROCESSES	L 3	T 0	P 0	C 3
COU	JRSE O	BJECTIVES:	U	v	Ū	
1.	To imp standar CNC m	part CNC Programming skills in writing and interpreting CNC progr d programming languages like G-code and M-code, enabling them to pachines.	ams u o effe	ising ctivel	indus y cor	stry- ntrol
2.	To imp student manufa additive	art principles and fundamental concepts of additive manufacturing processes with the ability to select appropriate materials and processes for cturing applications and make them analyze manufacturing challen e manufacturing.	esses or sp ges a	and e ecific ssocia	addi addi ated	the tive with
3.	To ena machin	ble the students to acquire the knowledge and skills necessary to a ing processes and select the most suitable one for a given application.	ssess	diffe	rent l	aser
UNI	TI	MODERN CNC MACHINES				9
Intro moni Feed Cont	duction toring c drives rol pane	<ul> <li>Advantages of CNC Machines – CNC machining and turning center of on CNC Machines – Design of Modern CNC Machines – Machine structure – Spindle bearings – Measuring systems, Controls, Software, and user el for turning and machining center.</li> </ul>	levelo cture - interf	pmer – Gui ace C	nts — 7 dewa Baugii	Γool ys – 1g –
UNI	TII	PROGRAMMING AND OPERATIONS OF CNC MACHINES				9
Intro – Par -subr	duction t progra coutines	to part programming – Coordinate system – Dimensioning- Axes and r im structure – G codes and M codes – linear and circular interpolation – – canned cycles – Programming examples for machining and turning ce	notion - Tool enter.	n nom l com	encla pensa	ture tion
UNI	T III	INTRODUCTION TO ADDITIVE MANUFACTURING	1			9
Class manu Prod laser Powe	sificatio ufacturin uction ( sinterin der hand	n of AM processes – Materials for AM - Heat sources – AM standards ng – VAT photopolymerization – Approaches – Materials - Continue CLIP) Technology - Two-Photon Vat Photopolymerization – Powder be ng – Process parameters and analysis: Applied energy correlations a lling challenges, Systems – Powder recycling.	– Ste ous L ed fus and s	eps in iquid ion – can p	Addi Inter Selec	tive face tive ns –
TINIT	T 117	OTHED AM DDOCESSES				0
Wire paran Softw Direc	arc add neters – ware for ct Digita	itive manufacturing – Post process – Friction stir additive manufacturin Benefits and drawbacks of DED Technology – Hybrid AM – Mater AM – Manufacturing Vs Prototyping - Direct Digital Manufacturing I Manufacturing.	g (FS ial iss g – A	AM) sues i Applic	– Pro n AM cation	cess 1 - is of
UNI	ΤV	LASER MANUFACTURING				9
Lase weld	r drillin ing of p	g, piercing – Laser welding – process mechanism -operating cha lastics -Applications of laser welding –Laser safety – Dangers – Standar	racter ds.	istics	- La	ser
		TO		45 P	ERI(	JDS
CO	No.	COURSE OUTCOMES			R Le	BT evel
At th	e end of	the course, students will be able to:				
_			_	_	_	_

<b>CO1 Explain</b> constructional features and <b>operate</b> CNC machines, including machin												
datum setting, workpiece clamping, and machine calibration.				5								
<b>CO2</b> Analyze and interpret the given part diagram and write CNC	progran	ns using	g G-	5								
codes and M-codes.				5								
Explain the principles, fundamental concepts, challenges a	nd sele	ect suit	able	2								
<b>CO3</b> materials for photopolymerization and powder bed fusion add	tive ma	nufactu	ring	3								
Explain the principles and shapes suitable materials for wire are	friction	otin D	DM									
<b>CO4</b> and hybrid AM and select a process for the given application	, menor	I Sui, D	DNI	3								
<b>CO5</b> Select suitable laser machining process for the given application.				3								
COS Select surface haser machining process for the gryen appreation.				5								
TEXTBOOKS:												
Serope Kalpakijan & Steven R. Schmid, "Manufacturing Engineering and Technology"												
1. India Education Services Pvt. Ltd, 8e in SI units, 2023.	5		0, , -									
<ol> <li>HMT, "Mechatronics" McGrawHill, 2018.</li> </ol>												
3. SK Sinha, "CNC programming (FANUC control)", Galgotta, 2022.												
REFERENCES:												
Ian Gibson, David Rosen, brent stucker, Mahyar Khorasani, "Additive Manufacturing												
Technologies", Springer, 3rd edition, 2020.	Technologies", Springer, 3rd edition, 2020.											
2. Fanuc series oi-model F, Operator's Manual.		4.1	1	2010								
3. William M. Steen, Jyotirmoy Mazumder, "Laser Material Processing",	Springe	r, 4th ec	lition, 2	2010								
	2											
E-RESOURCES:	m	1										
1. https://archive.nptel.ac.in/courses/112/103/112103293/	17											
2. https://archive.nptel.ac.in/courses/112/105/112105211/	21											
3. https://archive.nptel.ac.in/courses/112/103/112103306/	2/											
	5/											
	/											
COURSE ARTICULATION MATRIX:	877											
POs			PS	Os								
COS         1         2         3         4         5         6         7         8         9         10	11	12	1	2								
<b>1</b> 3 3 1 1	$1  \begin{vmatrix} 3 \\ -1 \end{vmatrix}  \begin{vmatrix} 3 \\ -1 \end{vmatrix}  \begin{vmatrix} 1 \\ -1 \end{vmatrix}  \begin{vmatrix} 1 \\ -3 \end{vmatrix}$											
<b>2</b> 3 3 3 1 1 1		1		3								
<b>3</b> 3 3 1 1 1		1		3								
<b>4</b> 3 3 1 1 1		1		3								
5 2 1 1		1		3								
1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)												

ME22403 THERMAL ENGINEERING							
	6 /		2		0	3	
(Use	of stan	dard refrigerant property data book, Steam Tables, Mollier diagram and	Psyc	chrome	tric ch	ıart	
		BIECTIVES.					
	To int	agrate the concents laws and methodologies from the first course in the	orme	dynam	ice int		
1.	analys	is of cyclic processes.	51110	uynan	ics in	.0	
2.	To un	derstand the working principles of advanced IC Engines and evaluate its	s per	forman	ces.		
3.	To app turbine	bly the thermodynamic concepts into various thermal applications like S es, Compressors, Refrigeration and Air conditioning systems.	tean	n nozzle	es, Ste	am	
UNI	ΤI	FUNDAMENTALS OF IC ENGINES AND GAS POWER CYCL	ES			9	
Wor	king pri	nciples of IC engines. Classifications-Components and their functions.	Valv	e timir	ıg diaş	gram	
and p	port tim	ing diagram - actual and theoretical p-V diagram of four stroke and two	o stro	ke eng	ines. (	Otto,	
Dies	el, Dua	l, Brayton cycles - Calculation of mean effective pressure and air	sta	ndard	efficie	ncy,	
Com	parison	of cycles.					
		4					
UNI	T II	INTERNAL COMBUSTION ENGINES SYSTEM AND PERFOR	RMA	NCE		9	
Simp	ole Car	buretor, MPFI, Diesel pump and injector system, CRDI. Battery a	nd N	Magnet	o Ign	ition	
Syste	em - P	rinciples of Combustion and knocking in SI and CI Engines. Lub	ricat	ion an	d Coo	oling	
syste	ems. Pe	rformance calculations -Fuel consumption, Brake power, Indicated po	ower	, Fricti	on po	wer,	
Ther	mal eff	iciencies, and Heat Balance sheet.	1				
UNI	T III	STEAM NOZZLES AND TURBINES				9	
Flow	v of ste	eam through nozzles, shapes of nozzles, effect of friction, critical	pres	sure ra	itio, s	uper	
satur	rated flo	ow. Impulse and Reaction principles, compounding, velocity diagram	for s	imple	and m	ulti-	
stage	e turbine	es, speed regulations– Governors.					
UNI	T IV	AIR COMPRESSORS				9	
Clas	sificatio	on and working principle of reciprocating compressors - compression v	vork	with a	nd wit	hout	
clear	ance,	Volumetric efficiency, Isothermal efficiency and Isentropic efficie	ncy	of rec	iproca	ating	
com	pressors	s, Multistage air compressor and intercooling - work done. Working	Prin	ciple o	f diffe	erent	
types	s of rota	ry compressors (descriptive only).					
UNI	ΤV	<b>REFRIGERATION AND AIR CONDITIONING</b>				9	
Refr	igeratio	n -Vapour compression refrigeration cycle - Effect of super heating	ng a	nd sub	coolii	1g –	
Perfe	ormance	e calculations – working principle of Vapour absorption system, Amn	nonia	a–Wate	r, Lith	nium	
bron	nide–wa	ter systems (descriptive only). Air conditioning system - Processes,	Туţ	bes and	l Wor	king	
Princ	ciples –	Concept of RSHF, GSHF, ESHF- Cooling load estimation (descriptive	only	y). Refi	rigera	nts –	
desir	able pro	operties, refrigerants used in modern Refrigerators and Air conditioners					
				<b>-</b>		0.5.5	
		TO	ЈТА	L: 45 ]	PERI	JDS	

CO No       COURSE OUTCOMES       Ri         At the ent of the course, Students will be able to       Image: Compare the various system & components of IC engine and to analyze their performance of air standard cycles.       4         CO2       Understand the various system used in IC engine and to analyze their performance.       4         CO3       Distinguish the different types of nozzles and turbine, and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO5       Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:       7       7         I.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering" Fifth Edition, Dhanpat Rai & Sons,2002       7         RI       Arora. C.P., "Refrigeration and Air Conditioning",Tata McGraw-Hill Publishers, (Third Edition 2013.       7         2.       Ganesan.V., "Internal Combustion Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.       7         4.       Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.       7         5.       Sarkar. B.K. "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.       7         6.       Sarkar. B.K. "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.       7         7.       Sarkar. B.K. "Thermal Engin												
At the end of the course, Students will be able to         CO1       Compare the various system & components of IC engine and to analyze their performance of air standard cycles.       4         CO2       Understand the various system used in IC engine and to analyze their performance.       4         CO3       Distinguish the different types of nozzles and turbine, and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO5       Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:       7       7         I.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering" Fifth Edition, Dhanpat Rai & Sons,2002       2         Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.       7         REFERENCES:       7         2013.       2013.         2       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", CITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy, R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K. (Thermal Engineering", Tata McGraw-Hill Publishers, 2007.         6.       Antras. in/courses/112103262         3 <th>COI</th> <th>No COURSE OUTCOMES</th> <th>RBT</th>	COI	No COURSE OUTCOMES	RBT									
At the end of the course, Students will be able to       Conpare the various system & components of IC engine and to analyze their performance of air standard cycles.       4         CO2       Understand the various system used in IC engine and to analyze their performance.       4         CO3       Distinguish the different types of nozzles and turbine, and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO5       Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:       7       7         I       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering" Fifth Edition, Dhanpat Rai & Sons,2002       7         Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.       7         REFERENCES:       1       Arora. C.P., "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Editid 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.       7         3.       Ramalingam. K.K., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.       5         5.       Sarkar. B.K. "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.       7         6       Https://nptel.ac.in/courses/112106133       1         7       https://nptel.ac.in/courses/11210			Level									
COI       Compare the various system & components of IC engine and to analyze their performance of air standard cycles.       4         CO2       Understand the various system used in IC engine and to analyze their performance.       4         CO3       Distinguish the different types of nozzles and turbine, and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO5       Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:       T       4         CO5       Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.       4         REFERENCES:       1.       Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Editio 2013.       4         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.       3       8         3.       Ramalingam. K.K., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.       5       5         3.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.       5       5         4.       https://nptel.ac.in/courses/112/105/12       7       7         4.       https://nptel.	At th	e end of the course, Students will be able to	r									
erformance of air standard cycles.       4         CO2       Understand the various system used in IC engine and to analyze their performance.       4         Distinguish the different types of nozzles and turbine, and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         TEXTBOOKS:         TEXTBOOKS:         ***********************************	CO	1 Compare the various system & components of IC engine and to analyze their	4									
CO2       Understand the various system used in IC engine and to analyze their performance.       4         CO3       Distinguish the different types of nozzles and turbine, and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO5       Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:       4         I       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering" Fifth Edition, Dhanpat Rai & Sons,2002       2.         Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.       7         REFERENCES:       1         1.       Arora. C.P., "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Edition 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K. "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.         FERESOURCES:       1         1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112105/120/         3.       https://a		performance of air standard cycles.	4									
CO3       Distinguish the different types of nozzles and turbine, and to analyze their performance.       4         CO4       Distinguish the different types of air compressor and to analyze their performance.       4         CO5       Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:       4         1.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering" Fifth Edition, Dhanpat Rai & Sons,2002       7         2.       Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.       7         REFERENCES:       1.       Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Editio 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.       7         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy, R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.         E-RESOURCES:       1         1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://archive.nptel.ac.in/courses/112/105/112105/129/         COURSE ARTICULATION MATRIX:	<u> </u>	2 Understand the various system used in IC engine and to analyze their performance.	4									
CO4 Distinguish the different types of air compressor and to analyze their performance.       4         CO5 Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:         1.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering" Fifth Edition, Dhanpat Rai & Sons,2002       2.       Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.       7         REFERENCES:         1.       Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Edition 2013.       2.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.       3.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.       4.         4.       Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.       5.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.       E         FEESOURCES:       1.       https://nptel.ac.in/courses/112103262       1.         3.       https://nptel.ac.in/courses/112103262       3.       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	CO	3 Distinguish the different types of nozzles and turbine, and to analyze their performance.	4									
CO5 Analyze the performance of different air conditioning and Refrigeration system.       4         TEXTBOOKS:         1.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering"         Fifth Edition, Dhanpat Rai & Sons,2002       2.         2.       Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017. <b>REFERENCES:</b> 1.       Arora. C.P. "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Edition 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy, R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007. <b>E-RESOURCES:</b> 1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	CO	4 Distinguish the different types of air compressor and to analyze their performance.	4									
TEXTBOOKS:         1.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering" Fifth Edition, Dhanpat Rai & Sons,2002         2.       Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.         REFERENCES:         1.       Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Editio 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy, R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.         E-RESOURCES:         1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	CO	5 Analyze the performance of different air conditioning and Refrigeration system.	4									
TEXTBOOKS:         1.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering"         Fifth Edition, Dhanpat Rai & Sons,2002         2.       Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.         REFERENCES:         1.       Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Edition 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.         E-RESOURCES:       1         1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:												
1.       Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering"         1.       Fifth Edition, Dhanpat Rai & Sons,2002         2.       Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017. <b>REFERENCES:</b> 1.       Arora. C.P, "Refrigeration and Air Conditioning",Tata McGraw-Hill Publishers, (Third Edition, 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy, R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007. <b>E-RESOURCES:</b> 1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	TEX	TEXTBOOKS:										
<ol> <li>Fifth Edition, Dhanpat Rai &amp; Sons,2002</li> <li>Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.</li> <li>REFERENCES:         <ul> <li>Arora. C.P., "Refrigeration and Air Conditioning",Tata McGraw-Hill Publishers, (Third Editio 2013.</li> <li>Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.</li> <li>Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.</li> <li>Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.</li> <li>Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.</li> </ul> </li> <li>E-RESOURCES:         <ul> <li>https://nptel.ac.in/courses/112106133</li> <li>https://nptel.ac.in/courses/112103262</li> <li>https://www.youtube.com/watch?v=ZBfmj4PRoRA</li> <li>https://archive.nptel.ac.in/courses/112/105/112105129/</li> </ul> </li> <li>COURSE ARTICULATION MATRIX:</li> </ol>	1	Kothandaraman. C.P., Domkundwar. S, Domkundwar. A.V., "A course in Thermal Engineering",										
<ul> <li>2. Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.</li> <li><b>REFERENCES:</b> <ol> <li>Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Editio 2013.</li> </ol> </li> <li>2. Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.</li> <li>3. Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.</li> <li>4. Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.</li> <li>5. Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.</li> <li>E-RESOURCES:</li> <li>1. <a href="https://nptel.ac.in/courses/112106133">https://nptel.ac.in/courses/112106133</a></li> <li>2. <a href="https://nptel.ac.in/courses/112103262">https://nptel.ac.in/courses/112103262</a></li> <li>3 <a href="https://www.youtube.com/watch?v=ZBfmj4PRoRA">https://www.youtube.com/watch?v=ZBfmj4PRoRA</a></li> <li>4 <a href="https://archive.nptel.ac.in/courses/112/105/112105129/">https://archive.nptel.ac.in/courses/112/105/112105129/</a></li> </ul>	1.	¹ . Fifth Edition, Dhanpat Rai & Sons,2002										
<b>REFERENCES:</b> 1.       Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Editio 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007. <b>E-RESOURCES:</b> 1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/	2.	Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017.										
1.       Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third Editio 2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.         E-RESOURCES:         1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	REF	ERENCES:										
1.       2013.         2.       Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.         3.       Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.         4.       Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.         5.       Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.         E-RESOURCES:         1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	1	Arora. C.P, "Refrigeration and Air Conditioning", Tata McGraw-Hill Publishers, (Third I	Edition)									
<ol> <li>Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.</li> <li>Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.</li> <li>Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.</li> <li>Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.</li> <li>E-RESOURCES:         <ul> <li>https://nptel.ac.in/courses/112106133</li> <li>https://nptel.ac.in/courses/112103262</li> <li>https://www.youtube.com/watch?v=ZBfmj4PRoRA</li> <li>https://archive.nptel.ac.in/courses/112/105/112105129/</li> </ul> </li> </ol>	1.	2013.										
<ol> <li>Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.</li> <li>Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.</li> <li>Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.</li> <li>E-RESOURCES:         <ol> <li>https://nptel.ac.in/courses/112106133</li> <li>https://nptel.ac.in/courses/112103262</li> <li>https://www.youtube.com/watch?v=ZBfmj4PRoRA</li> <li>https://archive.nptel.ac.in/courses/112/105/112105129/</li> </ol> </li> </ol>	2.	Ganesan.V, "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.										
<ul> <li>4. Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.</li> <li>5. Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.</li> <li>E-RESOURCES: <ol> <li><u>https://nptel.ac.in/courses/112106133</u></li> <li><u>https://nptel.ac.in/courses/112103262</u></li> <li><u>https://www.youtube.com/watch?v=ZBfmj4PRoRA</u></li> <li><u>https://archive.nptel.ac.in/courses/112/105/112105129/</u></li> </ol> </li> <li>COURSE ARTICULATION MATRIX:</li> </ul>	3.	Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.										
<ul> <li>5. Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.</li> <li>E-RESOURCES: <ol> <li><u>https://nptel.ac.in/courses/112106133</u></li> <li><u>https://nptel.ac.in/courses/112103262</u></li> <li><u>https://www.youtube.com/watch?v=ZBfmj4PRoRA</u></li> <li><u>https://archive.nptel.ac.in/courses/112/105/112105129/</u></li> </ol> </li> <li>COURSE ARTICULATION MATRIX:</li> </ul>	4.	Rudramoorthy. R., "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003.										
E-RESOURCES:         1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	5.	Sarkar. B.K, "Thermal Engineering", Tata McGraw-Hill Publishers, 2007.										
1.       https://nptel.ac.in/courses/112106133         2.       https://nptel.ac.in/courses/112103262         3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	E-RI	ESOURCES:										
2.       https://nptel.ac.in/courses/112103262         3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/         COURSE ARTICULATION MATRIX:	1.	https://nptel.ac.in/courses/112106133										
3       https://www.youtube.com/watch?v=ZBfmj4PRoRA         4       https://archive.nptel.ac.in/courses/112/105/112105129/	2.	https://nptel.ac.in/courses/112103262										
4 https://archive.nptel.ac.in/courses/112/105/112105129/ COURSE ARTICULATION MATRIX:	3	https://www.youtube.com/watch?v=ZBfmj4PRoRA										
COURSE ARTICULATION MATRIX:	4	https://archive.nptel.ac.in/courses/112/105/112105129/										
	COU	RSE ARTICULATION MATRIX:										

COs						PO	Os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3									2	
2	2 3 3 3 3 2 2													
3 3 3 3 3 1														
4	3	3	3	3									2	
5	5 3 3 3 3 2 2													
1: Slig	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)													

COMPUTER AIDED ENGINEERING: THEORY AND											
MI	E227	709 PRACTICES (Common to ME and MN)	1	0	4	2					
COU	RSI	E OBJECTIVES:				<u></u>					
1.	Uno	derstand the fundamental principles and significance of computer-aided engineer	ing	(CA	E) i	n					
	mo	dern engineering practices.	ion	of							
2.	eng	in pronciency in utilizing CAE software tools for design, analysis, and optimizatilizing intering systems and components.		01							
3.	Dev	velop the ability to apply CAE methodologies to solve practical engineering prob	lem	s re	latec	l to					
Δ	Enh	nance critical thinking and problem-solving skills by interpreting CAE simulation	ı res	ults	,						
т.	opti	imizing engineering designs for Industrial needs.									
TINIT	тл	INTRODUCTION (EXCLUDED FOR EXAMINATION)				3					
UNI	10										
Histo Rayle	orica eigh	l background – Classical Techniques in FEM – Discretization - Weighted res Ritz method	idua	ıl m	etho	∙d –					
	Ť										
UNI	ТΙ	MEMBERS SUBJECTED TO FLEXURAL LOADS				12					
One l	Dim	ensional problems: Bar, Truss, Beam, steady state conduction heat transfer probl	ems	5							
Two	o Dimensional problems: Plane stress, Plane strain and Axisymmetric problems in CST elements -										
Iso-p	aran	netric elements – Gauss Integration									
		LABORATORY COMPONENT				60					
	-	LIST OF EXPERIMENTS				60					
1.	Fo	orce and Stress analysis using link elements in Trusses, cables etc									
2.	St	tress and deflection analysis in beams with different support conditions.									
3.	St	tress analysis of flat plates and simple shells									
4.	St	tress analysis of axisymmetric components									
5.	T	hermal stress and heat transfer analysis of plates									
6.	T	hermal stress analysis of cylindrical shells									
7.	V	ibration analysis of spring-mass systems.									
8.	Μ	Iodal analysis of beam.									
9.	Η	armonic, transient and spectrum analysis of simple systems									
10.	O ra	ptimization to improve the design of a mechanical component based on strength tios	to v	veig	ht						
11.	Si	imulation of fluid flow through a pipe or around an airfoil to study velocity profi- istributions, and flow patterns.	les,	pres	sure	;					
		surveions, and now patterns									
		TOTAL	: 75	PE	RIC	DS					
<b>CO P</b>	N.a.	COURSE OUTCOMES			R	BT					
CUI	NO				Le	vel					
At th	e en	d of the course, students will be able to:			ı						
CO	1	Students will understand and apply the concepts of Finite Element Method (FEI	M)			3					

Fundamentals															
CO	2	Stud	lents v	vill ana	alyze St	ructura	l Memb	pers and	l Thern	nal Sys	stems U	sing FE	М		4
CO	3	Stud	lents v	vill per	form St	ress, N	Iodal, a	nd Vib	ration A	Analys	is with I	FEM			4
CO	4	Stud	lents v	vill app	oly FEN	I for O	ptimiza	tion an	d Fluid	Flow	Simulat	ion			4
TEX	ТВО	OK	S:												
1.	Ban	sal, I	R.K., '	"A Tey	ktbook (	of Stren	igth of I	Materia	lls", La	xmi Pı	ublicatio	ons (P) I	Ltd., 20	18	
2.	Jind	al U	.C., "S	Strengt	h of Ma	terials'	', Asiar	n Books	Pvt. L	.td., Ne	ew Delh	i, 2009			
REFERENCES															
1. Hibbeler, R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2017															
2. Ferdinand P. Beer, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", McGraw											raw				
Hill Education,8 th edition, 2019															
3. Rattan, "Strength of Materials", McGraw Hill Education, 3rd Edition, 2017															
4. Egor. P.Popov "Engineering Mechanics of Solids" Pearson, 2010															
				/	2	1	- 16	1.12	- 24		X	1			
E-R	ESOI	URC	CES:	1	51	·				1-	1	10			
1.	http	s://n	ptel.ac	c.in/co	urses/11	21071	46	_	1	2	2	2			
2.	http	s://n	ptel.ac	c.in/co	urses/11	21061	41	0	0	11		0	1		
3.	http	s://a	rchive	.nptel.	ac.in/co	urses/1	05/105	/10510	5108/	1 2	150	15			
				Z		2.2	11		$\left( \right)$			m			
COU	JRSE	E AR	TICU	JLATI	ION M	ATRIX	K:	1	$\smile$	1.5	- 95	1 m	1		
COs				12	2 \		Р	Os	/	-		2	/	PS	Os
	1	L	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3		0.0	1		1	1947		10	5/		1	2
2	3	3	3	3	1	3	1	1	2 - 2	/	2	/		1	
3	3	3	3	3	1	3	ter		- 1	20	17	0		2	
4	3	3	3	3		3	91	44	1 9	2				2	
	•											·			
1: Sl	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)														

CONTROLLERS FOR AUTOMATION:     L     T										
MN	22509	THEORY AND PRACTICES	2	0	2	2				
~~~~		(Common to ME & MN)	4	U	2	3				
COL	JRSE O	BJECTIVES:								
1.	Gain kr	nowledge of PLC programming, including ladder logic, function	block	diagr	ams,	and				
	structur	ed text, to design, and implement it for industrial automation.		•						
2.	Explore	the architecture and functionalities of Micro controller and S	CAD	A sys	tems	for				
	Industria Coin ho	al applications.				- and				
3.	Gain na	has-on experience in HIVII design and implementation for diverse ind	ustria	l proc	esses	and				
	applicat	10118.								
UNI	TI I	PLC AND MICRO CONTROLLERS				10				
PLC	Fundam	entals - CPU memory I/O modules timers counters registers		Drogra	mmi	<u>10</u>				
I add	ler Logic	Function Block Diagrams Structured Text Run/Stop/Program mo	des so	rannir	ող Խ	lig -				
cont	rollers –	Hardware - I/O interfacing sensor data acquisition actuator co	ntrol	imnl	emei	nting				
cont	rol logic	Industrial communication protocols of PLC and micro control	ler A	nnlic	ation	is in				
indu	strial auto	pmation.	101, 1	ippiie	auton	.5 111				
111000		151								
UNI		IMI S				08				
Intro	duction	Different Types of Operator Interfaces – Textual and Graphical -	Wirin	ng pra	ctice	and				
data	handling	- Configuration and Interfacing to PLC and PC - Communication St	andard	ls. dis	play	data				
(tem	peratures	production rates), receive operator input (start/stop buttons).			P-~,					
			1							
UNI	T III S	SCADA AND DCS				12				
SCA	DA intro	duction - Role of SCADA in Industrial Automation - SCADA Sys	tem C	Config	urati	on –				
Rem	ote Term	inal Unit - Communication Protocols - Script Programming - Real	Time	and I	Histo	rical				
Tren	d - Confi	guring Alarms - Real Time Project Development with PLC Interfaci	ng - C	Comm	unica	ation				
with	Other S	oftware. DCS - Architecture - Yokogawa Centum CS 3000 - Com	pariso	n of I	PLC	with				
DCS	- Progra	mming Languages for DCS - Different Types of cards and their funct	ions.							
		LABORATORY COMPONENT								
		LIST OF EXPERIMENTS								
		SETT TITT ZO								
1	Create	simple programs to control motor starters, lights, and other basic	indust	rial e	quip	ment				
1.	using ti	mers and counters.								
2.	Interfac	e PLC with analog sensors and actuators to execute the sequential op-	eratio	18.						
3	Develop	a PLC program to automate the operation of a conveyor belt system	n, inc	luding	g star	ting,				
	stoppin	g, and speed control and palletizing the objects.								
4	Develop	and configure communication protocols using SCADA screens to	moni	tor an	d co	ntrol				
••	industri	al processes in real-time								
5.	Use the	e SCADA software to monitor real-time operations of sensors,	camar	a in :	indu	strial				
	automa	ion.								
6.	Demon	strate how operators can monitor and control industrial operations	remo	otely 1	using	; the				
	SCADA	Interface.				<u> </u>				
7.	Create a	a basic HMI screen with buttons, indicators, and numeric displays to	contr	ol and	1 mo	nitor				
	a simula	ated industrial process.								
8.	Implem	ent production reporting features in the HMI system to track	prod	uctior	1 CO	unts,				

	dow	downtime events, and quality metrics.														
9.	Implement duty cycle modulation to achieve variable speed and position control in indus												ndustrial			
	app	applications. Implement the microsontroller to execute control electithms, manage perimbered devices of														
10.	Imp con	communicate with external systems to perform specific tasks autonomously.														
ΤΟΤΑΙ. (Α ΒΕΒΙΟΒΟ																
											101	IAL: 00 PE	RIUDS			
CO	No				С	OURS	E OUI	ГСОМ	ES				RBT Level			
At th	the end of the course, students will be able to:												2			
	1	Configure	$\frac{10}{2}$ SCAT	$\frac{1}{1}$	lication	$\frac{1}{1}$ PLC,	Micro	Control	$\frac{1000}{1000}$ and	ADA,	and HIV	11 systems.	3			
CO	02	from indu	istrial p	rocesse	s.	15 10 a	equire,	proces	s, and	visual		I-time data	3			
CO	3	Design an	nd imple	ement e	ffective	e autom	nation s	olution	S				4			
CO	94	Evaluate and HMI	emergin technol	ng tren ogy	ds and	advan	cement	s in PI	.C, Mi	cro Co	ntroller	, SCADA,	4			
TEV	TP(NNKS ,	1	5		-9-	- 3		-	N						
		mel Kha	led and	Eman	Kamel	Progr	ammah	le logi	contro	ollers: 1	ndustri	al control. N	AcGraw			
1.	Hi	ll Professi	ional, 20)13.	Tunio	· I Togi	ummue	ie iogi	, contra		2					
2.	K	S Manoj,	Power	System	Autor	nation:	Build	Secure	Power	System	n SCA	DA & Smai	t Grids,			
	NO	otion Press	<u>s 2021.</u>	1	- 1	1	1	-	0.00	8 H	5					
REF	ERF	ENCES:	2		12	1	N	-			Pres.	-				
1.	Ja	ck, Hugh.	Automa	ting M	anufact	turing S	System	s with F	LCs. U	Jnited H	Kingdoi	m, Lulu.com	n, 2009.			
2.	Ba Pu	rati Mo blishing F	barakeh Platform	, Moha , 2017.	2. Barati Mobarakeh, Mohammad Hossein. DCS Distributed Control System. Independent Publishing Platform 2017											
3.	Gı Ine	Guccione, S., McKirahan, J. Human Machine Interface: Concepts and Projects. United States: Industrial Pross Inc. 2016														
		austriarr	., McKi ress Inc.	rahan, 2016.	J. Hum	nan Ma	chine 1	Interfac	e: Con	cepts a	nd Proj	ects. United	l States:			
E-RI	ESO	URCES:	., McKi ress Inc.	rahan, 2016.	J. Hun	nan Ma	chine]	Interfac	e: Con	cepts a	nd Proj	ects. United	I States:			
E-R]	E SO	URCES:	., McKi eess Inc.	rahan, 2016. purses/1	J. Hum 081050	nan Ma	ichine 1		e: Con	cepts a	nd Proj	ects. United	I States:			
E-R 1. 2.	ESO htt	URCES: ps://nptel	., McKi ess Inc. .ac.in/co .slidesh	urses/1 are.net/	J. Hum 081050 (slidesh	nan Ma 088 ow/bas	ics-of-a	Interfac	e: Con	cepts a	nd Proj	ects. United	I States:			
E-R 1. 2. 3.	ESO htt htt htt its	URCES: ps://nptel ps://www ps://www -importan	., McKi ess Inc. .ac.in/co .slidesh .manufa ce-in-in	ourses/1 are.net/ dustrial	J. Hum 081050 (slidesh gtomorr l-autom	nan Ma 088 ow/bas ow.cor nation/1	ics-of-a n/articl 8191	Interfac automate/2022/	e: Con ion-plo	cepts a	nd Proj cada/41 chine-in	794488 nterface-hm	I States:			
E-R) 1. 2. 3.	ESO htt htt its	URCES: ps://nptel ps://www ps://www -importan	., McKi ess Inc. .ac.in/cc .slidesh .manufa ce-in-in	ourses/1 are.net/ dustria	J. Hum 081050 (slidesh tomorr l-autom	088 0w/bas ow.cor 0ation/1	ics-of-a n/articl 8191	Interfac automat e/2022/	e: Con ion-plo	cepts a	nd Proj cada/41 chine-in	794488 nterface-hm	I States:			
E-R) 1. 2. 3. COL	ESO htt htt its	URCES: ps://nptel ps://www ps://www -importan	., McKi ess Inc. .ac.in/cc .slidesh .manufa ce-in-in ULATI	ourses/1 are.net/ dustrial	J. Hum 081050 (slidesh gtomorr l-autom	088 0w/bas ow.cor ation/1	ics-of-articl 8191	Interfac automat e/2022/	e: Con ion-pla	cepts a	nd Proj cada/41 chine-in	794488 nterface-hm	i-and-			
E-R 1. 2. 3. COU COS	ESO htt htt its	URCES: ps://nptel ps://www ps://www -importan E ARTIC	., McKi ess Inc. .ac.in/cc .slidesh .manufa ce-in-in ULATI	2016. 2016. 2016. 2016. 2017 2017 2017 2017 2017 2017 2017 2017	J. Hum 081050 /slidesh gtomorr l-autom	Dan Ma	ics-of-a n/articl 8191 Os	Interfac	e: Con ion-plo 01/hun	cepts a	nd Proj	794488 nterface-hm	i-and-			
E-R 1. 2. 3. COU COS	ESO htt htt its JRSI	URCES: ps://nptel ps://www ps://www -importan E ARTIC L 2 3 2	., McKi ess Inc. .ac.in/co .slidesh .manufa ce-in-in ULATI 3 1	2016. 2016. 2016. 2016. 2017 2016 2016 2016 2016 2016 2016 2016 2016	J. Hum 081050 (slidesh gtomorr l-autom ATRIX 5	Dan Ma	ics-of-a n/articl 8191 Os 7	Interfac	e: Con ion-plo 01/hun 9	cepts a c-and-so nan-ma	nd Proj cada/41 chine-in	794488 nterface-hm	i-and-			
E-R] 1. 2. 3. COU COs 1. 2.	ESO htt htt its JRSI	URCES: ps://nptel ps://www -importan E ARTIC L 2 3 2 3 2	., McKi ress Inc. ac.in/co .slidesh .manufa ce-in-in ULATI J 1	2016. 2016. 2016. 2016. 2017 2016 2016 2016 2016 2016 2016 2016 2016	J. Hum 081050 (slidesh tomorr l-autom ATRIX 5	an Ma	ics-of-a n/articl 8191 Os 7	Interfac	e: Con ion-plo 01/hun 9	cepts a	nd Proj	794488 nterface-hm	i-and- PSOs 2 2 2 2			
E-R) 1. 2. 3. COU COs 1. 2. 3.	ESO htt htt its JRSI	URCES: ps://nptel ps://www ps://www -importan E ARTIC L 2 3 2 3 2 3 2 3 2	., McKi ess Inc. .ac.in/cc .slidesh .manufa ce-in-in ULATI ULATI 3 1 1 1	2016. 2016. 2016. 2016. 2017 2016. 2	J. Hum 081050 (slidesh gtomorr l-autom ATRIX 5	Dan Ma	ics-of-a n/articl 8191 Os 7	Interfac	e: Con ion-plo 01/hun 9	cepts a	nd Proj	794488 nterface-hm 12 1 1 1 1 1 1 1 1 1 1	i-and- PSOs 2 2 2 1			
E-R] 1. 2. 3. COU COs 1. 2. 3. 4.	ESO htt htt its JRSI	URCES: tps://nptel tps://www tps://www	., McKi ess Inc. ac.in/cc .slidesh .manufa ce-in-in ULATI J 1 1 1 3	2016. 2016.	J. Hum 081050 (slidesh gtomorr l-autom ATRIX 5 3	Dan Ma	ics-of-a n/articl 8191 Os 7	automate/2022/	e: Con ion-plo 01/hun 9	cepts a	nd Proj	794488 nterface-hm 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i-and- PSOs 2 2 2 1 2 1 2			

MN	22511	MODERN MANUFACTURING PROCESSES	L	Т	Р	С							
	22011	LABORATORY	0	0	3	1.5							
COL	JRSE	OBJECTIVES:											
1.	To impart the basics of UNU programming software.												
2.	To in	part the basics machining skills in CNC turning center and Vertical Machining	; Cente	er.									
5. 10 metricate the role planning and sheing in additive manufacturing process.													
LIST	F OF I	EXPERIMENTS:											
1.	Facir	g, simple turning and step turning											
2.	Taper turning and circular interpolation												
3.	Threa	id cutting											
4.	Profi	e milling – Linear and circular interpolation											
5.	Drilli	ng and tapping											
6.	Mirro	oring											
7.	Mode	elling of an engineering component and creation of STL file											
8.	Slici	ig and study of effects of process parameters											
9.	Planr	ing of supports on overhanging components											
10.	3D p	inting of an engineering component using FDM technique											
11.	3D p	inting of an engineering component using SLA technique	1										
12.	Fabri	cation of an engineering component using Wire-Arc Additive Manufact	uring										
)TAL	:60 I	'ERI	ODS							
		Z											
CO	No.	COURSE OUTCOMES	/		R L	ABT evel							
At th	e end	of the course, students will be able to:											
	5	howcase their skills in setting machine datum, employing appropriate te	chniq	ues									
CC)1 f	or workpiece clamping, and conducting precise machine calibration pro-	cedure	es and		3							
	I	proticiently operate them.											
CC	CO2 Analyze the given part diagram and generate CNC programs utilizing G-codes and M-codes and execute the CNC programs in CNC machines.												
CC	03 I	Design and develop engineering components using different additive manufacturing											
	techniques.												
DEE	איז כו ידי	ICES.											
КЕГ	EKE	ICED:											
2	HM	C "Mechatronics" McGrawHill 2018											
	Add	tive Manufacturing laboratory manual prepared by department of Mech	anical	Engi	neerir	ng.							
3.	SVC	E.		0		0,							
E-R	ESOU	RCES:											
1.	https	://archive.nptel.ac.in/courses/112/103/112103293/											
2.	https	://archive.nptel.ac.in/courses/112/105/112105211/											
3.	https	://ultimaker.com/software/ultimaker-cura/#downloads											

COURSE ARTICULATION MATRIX:															
COs		Pos													
COs	1	2	2 3 4 5 6 7 8 9 10 11 12										1	2	
1.	3				3				2	2		1		3	
2.	3 3 3 2 1													3	
3.	3 3 3 3													3	
1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)															
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS															
SL.N	ITEM DESCRIPTION												Qty.		
1.	SEENC turn software												5		
2.	SE	SEENC mill software													
3.	CN	CNC Turning Center													
4.	Ve	ertical N	Iachini	ng Cen	ter	12	S. R.		1-	Λ,	10		1		
5.	FD	DM 3D	printers	1	e. A.			2	35	1	21		3		
6.	SL	.A 3D p	orinters	1	r T	10	2	0)	112	/	0		2		
7.	Cu	ring eq	uipmen	ıt		1.5	1	1	0.00	3	IP		1		
8.	De	sktop c	ompute	ers	1.20	1	17		1-1-		-		4		
9.	3D) printin	ıg softv	vare	2	1		1	1.0.	3-1	m		5		
10.	As	sorted f	finishin	g tools	÷.,	1		/			20/		2 sets		
			1	1 S B	11/10	वा	रम 🕀	100	ant	10	In!				

MN	MN22512 ROBOTICS LABORATORY									P 3	C				
COU	RSE OI	BJECT	IVES:									U	v	J	1.0
1.	1. To understand the construction and components of a robot														
2.	2. To learn robotic programming and employ robot to carryout various tasks														
LIST	LIST OF EXPERIMENTS:														
0	Study of robot's configuration														
1.	Operating a robot using teach pendant														
2.	Introduction to robot programming														
3.	Robot programming using linear interpolation														
4.	Continu	uous pa	th prog	rammir	ng										
5.	Circula	r interp	olation	program	mming	~	01	1	1						
6.	Conditi	ional pr	ogramr	ning us	ing IF s	stateme	nt —	LEI	22	1					
7.	Conditi	ional pr	ogramr	ning us	ing FO	R loop		-	0	1					
8.	Robot j	path pro	ogramm	ning usi	ng prec	ision fu	inction	1.1		0					
9.	Pick an	d place	using '	TLP		15	0 31	B		0					
10.	Pick an	d place	by pal	let com	mand	1	1990		1-0	10	01				
11.	Colour	sorting	124	11	1.20	/		1	N		21				
12.	Size so	rting	F	1 9	17	10	2	0/0	100	/	0				
			3	a.				-	mil	2	TO	TAL:	60 I	PERI	ODS
CON	No.		K	5	С	OURS	E OUT	COMI	ES	×	E			F L	RBT evel
At the	e end of	the cou	rse, stu	dents w	ill be a	ble to:	-				77				
CO	1 Op	erate th	ne robot	t using t	teach po	endant	701	2	1		≤ 1				3
CO	$\frac{2}{2}$ Pro	ogram t	he robo	ot on dif	terent p	oaths c		1 . 1		15	2/				3
CO	3 Pro	ogram a	ind ope	rate the	robot t	o perto	rm the	desired	task	9	/				3
REFI	RENC	ES	-	(_	Y	1	1	an /					
1. I	Mitsubis	hi Elec	tric Ind	ustrial l	Robot -	RV-80	CRL Sta	andard	Specifi	cations	manu	al			
2. I	Lab Mar	nual pre	pared b	y depai	rtment of	of Mec	hanical	Engine	ering,	SVCE					
I		-	1	• 1	2			_							
E-RE	SOUR	CES:													
1. ł	nttps://w	ww.mi	tsubishi	ielectric	c.com/fa	a/									
COU	RSE AI	RTICU	LATIC	ON MA	TRIX:										
COg						P	Os							PS (Os
	1	2	3	4	5	6	7	8	9	10	11	12		1	2
1.	3				3	3			3	3		3			3
2.	3				3	3			3	3		3			3
3.	3				3	3			3	3		3			3
1: Sli	ght (Lo	w), 2: N	Aodera	te (Me	dium),	3: Sub	stantia	l (High	i)	<u>ı</u>	<u>.</u>				
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS															
--	---	-------------	--	--	--	--	--	--							
SL.No.	ITEM DESCRIPTION	Qty.													
1.	6 axis robot with teach pendant	01													
2.	Robot programming software license	10													
3.	Conveyor system with camera and sensors	01													
4.	Air compressor	01													
5.	Desktop computer	10													
6.	UPS	As required													

SEMESTER VI

MN226(MODERN MATERIAL HANDLING SYSTEMS	L	T ^	P	C						
COUDEI	(Common ME and MN)	3	0	0	3						
1 Evol	COBJECTIVES: ore modern material handling systems (MHS) integrated with automa	tion t	echn		ies						
	ore modern material nandning systems (writs) integrated with automa		Jenn	ologi	105.						
UNIT I	INTRODUCTION TO MODERN MHS				9						
Fundame	ntals of material handling, Evolution of material handling systems, R	lole of	f Au	toma	tion						
in materia	l handling, Safety and regulatory considerations, Conveyors and Caro	ousels	•								
UNIT II	AUTOMATED GUIDED VEHICLES				9						
Overview and classification of AGVs, Navigation and control systems, Integration with mat											
handling	handling systems, Applications, and case studies.										
A COLLEGE											
UNIT III	AUTOMATED STORAGE AND RETRIEVAL SYSTEMS				9						
Introducti	on to AS/AR Systems, Types, Design considerations and Layout Pla	unning	3, W	areho	ouse						
Optimizat	ion with AS/AR Systems.										
	CODTINC SYSTEMS	<u> </u>									
	SURTING SYSTEMS				9						
Pusher so sorting. I applicatio	orter, Automated Sorting – Automated conveyor sorting, AGV so ntegration – warehouse management, conveyor systems and AS/RS ons.	rting . Cas	and e stu	Rob Idies	otic and						
	IN St.										
UNIT V	OVERHEAD HOIST SYSTEMS	1			9						
Principles Influencin and regul Common implemen	of overhead hoist systems, Types - Electric, Manual, Pneumatic. Cong hoist system design, Installation Requirements and Best Practices ations, Operating procedures, Routine maintenance and inspections Issues, Applications in Mechanical Industries, Case Studiatations	ompor s, Safe s, Tro es o	ients ety s ouble f si	, Fac stand shoo lcces	tors ards ting sful						
	TOT	AL: 4	5 PI	ERIC)DS						
	ा परा ।										
CO No.	COURSE OUTCOMES			R L	BT evel						
At the end	l of the course, students will be able to:										
CO1	Explain the material handling systems using automated converses	eyors	and		2						
CO2 Navigate and control of AGVs for handling different materials											
	Describe the integration of automation of material sorting sto	orage	and	-	-						
CO3	retrieval in warehouses	<i></i>	unu		2						
CO4	Illustrate the types and application of overhead hoist systems in handling	mate	rials		2						
CO5	alyze relevant case studies in modern material handling systems used in rious industries and report the implementation, applications, safety 3 ndards and regulations.										

TEX	TBOOI	KS:											
1.	Automa	ation, Produ r. Pearson E	ction S	Systen n. Nev	ns, and v York	d Con	nputer-	Integr	ated N	/lanufa	cturing	g, Mik	cell P
2.	Materia ISBN:9	uls Handling 7804710978	Handbo 22	ook, R	aymon	d A. K	ulwiec	, John	Wiley	& Son	is, Inc.,	,	
3.	Fundan and Ro	nentals of Ro bot Vehicles,	bot Tec ISBN	chnolo 97894	gy: An 01167	Introd 703, K	uction ogan F	to Ind Page L	lustrial td. 201	Robot 3	s, Tele	operate	ors
REF	ERENC	'ES·											
1.	Automa Madasa 365933	ated Mechan atey Gunase 5792.	ical So garan,	orting Laml	Device pert A	e for N cadem	lixed ic Pu	House blishir	hold W ng, Inc	Vastes, lia,	Razal 2013,	i Zol ISBN	Bahri, : 978-
2.	Bulk N 4757-4	laterials Har 695-2	ndling I	Handb	ook, Ja	acob F	ruchtb	aum, l	Springe	er New	vyork,	ISBN9	978-1-
E-RI	ESOUR	CES:	A	20	-		_	SE	0.	1			
1.	https://	www.convey	co.com	/blog/	pros-co	ons-pop	oular-s	ortatic	on-syste	ems/			
2.	https://	www.falcona	utotech	.com/	sortatio	on-solu	tions/	1	1	0)	1		
COL	IRSE A	RTICULAT	ION M	IATR	IX:		2	1		2	1		
		131	10111		P	Ds	-	1 20	30	E		PS	Os
COs	1	2 3	4	5	6	7	8	9	10	11	12	1	2
1	2	LUL	5%			9	- 1	1.8	3	100			3
2	2	121		2	2	_	/	-	3	20	3		3
3	2	14		2	2	Sel.	1	10	3	2	3		3
4	2	10	01	2	2	D.	÷.	.)	3	5/	3		3
5	2		1.2	2	2	Y	1	1	3	/	3		3
1: Sl	ight (Lo	w), 2: Mode	rate (N	lediu	n), 3: S	Substa	ntial (High)	/				
					11	45	4	/					
					-	_							

	INDUSTRIAL INTERNET OF THINGS:									
Μ	IN22	608	THEORY AND PRACTICES	2	Δ	2	2			
			(Common to ME and MN)	4	U	4	3			
		<u>COBJE</u>	CTIVES:							
l.	To 1	ntroduc	e the foundational concepts and principles of Industrial Internet of I	hings	•					
2.	Tot	amiliar	ize with the key technologies and protocols used in IIoT deployment	lS.						
3.	106	enable s	tudents to analyze and design 1101 solutions for real-world applicati	ons.						
UNI	ΤI	INT	RODUCTION				8			
Defi	nitio	n and S	cope of IIoT - Understanding the Difference Between IIoT and Io'	Г - Ке	ey Co	mpor	nents			
and	Tech	nologie	s - Sensors and Actuators - Connectivity Protocols - Edge and Fog	g Com	putin	g - C	loud			
Platf	orms	and Se	rvices - Applications and Use Cases of IIoT in Various Industries							
UNI	ΤIΙ	AR	CHITECTURE AND IMPLEMENTATION				12			
Arch	itect	ural Lay	vers of IIoT - Design Considerations: Interoperability, Scalability, S	ecurit	y and	Priva	acy -			
Chal	lenge	es in I	IoT Implementation - System Integration - Data Management	and	Gove	ernan	ce -			
Stan	dardi	zation a	and Regulation - Implementation Strategies - Prototyping and Proc	of of C	Concep	ots -	Pilot			
Depl	oym	ents - F	all Deployment - Data Analytics and Insights - Continuous Monitori	ng and	d Mai	ntena	nce.			
UNI	T III	NE	TWORK PROTOCOLS				10			
Proto	ocols	in Da	ta Communication – Requirements: Power and Latency - Con	nmon	IIoT	Net	work			
Proto	ocols	-MQ'I	T – CoAP - HTTP/HTTPS – AMQP – DDS – LoRAWAN - Sensor	Data	Trans	missi	on -			
Com	man	d and (Control Applications - Real-Time Monitoring and Alerting - Pe	rtorm	ance	Metr	ics -			
Secu	rity I	reatures	- Integration with Existing Systems.	1						
TIC	ГОГ	EVDE	LABORATORY COMPONENT	-						
		EAPE	RIMENIS:	+						
1. 2	Sim	ulation	of the traffic light embiance	1						
<u>2</u> .	Sim	ulation	of the light amitting diada with a push button							
3. 4	Sim	ulation	of the hyper							
4. 5	Con	trolling	the light emitting diode							
J. 6		rasonia	ansor interfacing with the microcontroller							
0. 7	Ten	asonic s	e and Humidity measurement							
7. 8	Det	action S	vstem with Ultrasonic Sensor							
0. Q	Dire	ectional	Control of the DC motor							
10	Dit	a acquis	ition using the cloud database							
10.	Dat	a acquis		TAT	• 60 D	FDI	005			
					1		500			
~ -						ŀ	RBT			
CO	No		COURSE OUTCOMES			L	evel			
At th	ne end	d of the	course, learners will be able to:							
CO)1	Analyz	e the impact of IIoT technologies on industrial processes and operat	ions.			3			
CO	2	Apprai	se the significance of the IIoT architecture to enhance the performan	ce me	trics.		3			
<u> </u>	2	Evalua	te the effectiveness of different IIoT network protocols and con	nmun	icatio	n	2			
	5	technol	ogies in industrial settings.				3			
CO)4	Investi	gate the simulation results and interpret data generated by virtual IIo	T dev	ices.		4			
CO	5	Design	and implement IIoT solutions for specific industrial applications,	consi	iderin	g	1			
	5	factors	such as scalability and interoperability.				4			

TEX	TBOOI	KS:												
1.	Introdu	ction to	o IoT by	S. Mis	ra, A.	Mukher	ijee, a	nd A. Ro	y, Cam	bridge	Univers	sity Pres	s, 2020.	
2.	Learnin	g Inter	net of T	hings b	y Pete	r Wahe	r, 1st]	Edition, F	Packt P	ublishiı	ng, 2015	5.		
REF	ERENC	CES:												
1.	Practical Industrial Internet of Things Security: A Practitioner's Guide" by Sravani Bhattacharjee, 1st Edition, Packt Publishing, 2018.													
2.	S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and Industry 4.0. CRC Press.													
3.	3. Designing the Internet of Things - Adrian McEwen & Hakim Cassimality. Wiley India, ISBN: 9788126556861.													
E-R	ESOUR	CES: (includiı	ng NPT	TEL co	ourse)								
1.	https://o	onlinec	ourses.n	ptel.ac	.in/noc	22_cs5	3/prev	view	-					
				/	01	7 9	-		30					
COU	JRSE A	RTICU	JLATIC)N MA	TRIX	-			1	0	5			
COs	5		/	2	/	Р	Os	1	1	X	/		PS	Os
	1	2	3	_4	5	6	7	8	9	10	11	12	1	2
1.	3	2	12	1	7.8	/	-	1	N		21	1	1	2
2.	3	2	12	/	1970 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 -	14	2	0)	11.00		9	1	1	2
3.	3	2	\mathbf{Y}	1.3			4	-	A		2	1	1	1
4.	3	3	3	2	3	11		61	/ 1	44	111	2	1	2
5.	3	3	3	3		2	2	2	2	2	11	2	1	2

कि विद्या परा हवता क

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

MN2	AIN22609 PROGRAMMING AND MODELLING IN INDUSTRIAL L T P											
COU	DSE O	AUTOMATION: THEORY AND PRACTICES		<mark>0</mark>	<mark>4</mark>	<u> </u>						
1.	Maste	r the use of Python, Arduino, and MATLAB for industrial automation ta	asks.									
2.	Devel	op programming skills to control hardware devices and create automatic	on scri	pts.								
3.	Learn	to model and simulate industrial processes using MATLAB										
4.	Apply	theoretical knowledge to design and execute complex industrial automatic	ation p	orojec	ts							
UNI	ΓΙ	PYTHON FOR INDUSTRIAL AUTOMATION				7						
Basic	s of Py	thon Programming, Data types - integers, floats, strings, lists, tuples,	dictior	naries.	, Typ	es of						
opera	tors, Lo	pops, Variables, Functions - Setting up programming environment - Nur reading object oriented programming Automation Scripts for File N	npy li Ianaga	brary	- File	: I/O, Data						
Proce	ssing -	Using Python to Access and Manipulate Database Records - Implement	ting T	CP/IP	Prot	ocols						
in Py	thon for	Industrial Applications.		01/11	1100	00015						
		A A GEELGE										
UNI		MATLAB FOR MODELLING AND SIMULATION			1 1	8						
Intro	luction fitting	to MAILAB, Syntax, Variables, Functions, and Scripts - Control s and interpolation – Visualizing Plots and graphs - Optimization technic	tructu	res ai	nd Io ink ai	ops - nd its						
applic	cations.	and interpolation visualizing riots and graphs optimization teemin	1005. 5	Jiiiui	iiix a	iu ius						
		14/10 11/2										
		LABORATORY COMPONENT										
		LIST OF EXPERIMENTS										
1.	Worki	ng with Arrays/Matrix in python.										
2.	Projec	tile Motion using python	1									
3.	Analy	sis of Beams - Shear force and Bending Moment Diagrams using pytho	n									
4.	Analy	se the Diesel Cycle with python Program.										
5.	Quarte	er Car Suspension Model with Python.										
6.	Brakiı	ng Force Calculations using MATLAB										
7.	Aerod	ynamic Drag Force using MATLAB										
8.	Bendi	ng Stress calculations and Plotting using MATLAB										
9.	SimPl	otting Shear force and Bending Moment Diagram using MATLAB										
10.	Calcu	ate stresses of a thin-cylinder using MATLAB										
11.	Detect	ing bottle fill level using python programming										
12.	Mode	and Control Robot Dynamics to Automate Virtual Assembly Line usin	g MA	TLAI	3							
		TO	DTAL	: 75 I	PERI	ODS						
	1					DDT						
CON	No.	COURSE OUTCOMES				Zevel						
At the	e end of	f the course, students will be able to:										
CO1	App	y Python programming concepts and Numpy library.				3						

002	Anal Diese	Analyze mechanical systems using Python, including projectile motion, beam analysis, Diesel cycle simulation, and suspension modeling.											4	
CO3	Diese	gn MA' ems	TLAB	scripts	for m	odeling	g, simul	ation,	and o	ptimiza	ation of	engine	ering	4
CO4	Simu	late en	gineeri drag f	ing scer	narios und bend	using N	ATLA	B, inc	luding	brakin	g force	calcula	tions,	3
CO5	Desig	gn the v	irtual i	ndustria	al autor	nation s	systems	using	MATL	AB				4
TEX	TBOOH	KS:												
1.	McKinn	ey, Wes	s. Pyth	on for	Data	Analy	ysis: D	Data V	Wrangli	ing w	vith Par	ndas, 1	NumPy	, and
2	Moore. 1	Holly N	Aatlab	for Eng	ineers.	United	7. Kingde	m. Pe	arson F	ducati	on Limi	ted. 20	11.	
		1011911	iuiuo	101 Ling	,	enited	Tinguo	111, 1 0		adout	, בוווו			
REF	ERENC	ES:			1		OL	1	-					
1	Sweigar	t, Al. A	utomat	te the B	oring S	tuff wi	th Pytho	on, 2nd	l Editic	on: Pra	ctical Pr	ogramn	ning fo	r Total
1.]	Beginners. United States: No Starch Press, 2019.													
2.	Bober, William. MATLAB® Essentials: A First Course for Engineers and Scientists. United States: CRC Press 2017													
	States: CKC Press, 2017.													
E-RF	SOUR	CES	14	Ĩ/	× 6.		-	3	1	· /	31			
	E-RESOURCES: Verniz Academic Source Codes and Tutorials https://werniz.com													
1	Image:													
<i>Z</i> . <u>1</u>	MAILA	B Cent	<u>rai</u> - nt	.tps://in.	mathw	orks.co	m/matia	ibcenti		×0	2	-		
COL		2 2 1												
COURSE ARTICULATION MATRIX:														
	RSE A	RTICU	LATI	ON MA	ATRIX			Z)	1.2	- N	m			
COs		RTICU	LATI	ON MA	ATRIX	: P	Os	/		1	E		PS	SOs
COs		RTICU	LATI	ON MA	TRIX	: P 6	Os 7	8	9	10	E A	12	P\$ 1	SOs 2
COs		2	LATION 3	ON MA	5	: P(6	Os 7	8	9	10	11	12	P\$ 1	SOs
COs 1 2		2	3	ON MA	5	: P 6	Os 7	8	9	10	ERII	12	P \$ 1	SOs 2
COs 1 2 3		2			5	: P 6	Os 7	8	9	10	E R 11	12	P5 1	SOs 2
COs 1 2 3 4		2			5	: P 6	Os 7	8	9	10	11	12	PS 1	SOs 2
COs 1 2 3 4 5		2			5	: P 6	Os 7	8	9	10	ERII	12	P\$	SOs 2
COs 1 2 3 4 5 1: Sli	IRSE A	RTICU 2 w), 2: M	3 Moder	A A A A A A A A A A A A A A A A A A A	5 cdium),	: P 6	Os 7	8 1 (Hig	9 	10	11	12	PS 1	SOs 2
COs 1 2 3 4 5 1: Sli	RSE A	2 w), 2: N	3 Moder	A A ate (Me	5 edium).	: P 6 , 3: Sul	Os 7	8 1 (Hig	9 	10	11	12	PS 1	SOs 2
COs 1 2 3 4 5 1: Sli	IRSE A	2 w), 2: 1	LATION STREET	A A A A A A A A A A A A A A A A A A A	5 edium),	: P 6 , 3: Sul	Os 7 Dostantia	8 I (Hig	9 h)	10	11 DENTS	12	PS 1	SOs 2
COs 1 2 3 4 5 1: Sli	IRSE A	RTICU 2 w), 2: N	IATIO	ON MA	TRIX 5 edium), UIPMI	: P 6 , 3: Sul ENT F FEM D	Os 7 5 5 5 5 5 5 5 5 5 5 5 5 7 6 7 7 7 7 7	8 I (Hig ATCI PTIO	9 h)	10	11 DENTS	12		SOs 2 Qty.
COs 1 2 3 4 5 1: Sli SLN 1.	Image: A line of the second	RTICU 2 w), 2: I	LATIONAL STREET	ON MA	TRIX 5 edium), UIPMI II Intel or	: P 6	Os 7 5 5 5 5 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7	8 I (Hig ATCI PTIO)	9 h) HOF 3 N essor w	10 0 STU	11 DENTS	12		SOs 2 2 2 2 2 30
COs 1 2 3 4 5 1: Sli SLN 1. 2.	Image: All state Image: All state 1 1 ight (Lo Io. PC Rate PY	RTICU 2 w), 2: I	3 Moder LIST Windov (minin) 10 or a	ON MA	TRIX 5 edium). UIPMI II Intel or	: P 6	Os 7 ostantia OR A B ESCRI x86-64	8 I (Hig ATCI PTIO	9 h) HOF 3 N essor w	10 0 STU	11 DENTS	12	PS 1	SOs 2 2 2 2 30 30
COs 1 2 3 4 5 1: Sli SLN 1. 2. 3.	Image: All state 1 1 ight (Lo Io. PC Rate Py M	RTICU 2 w), 2: M C with V m 8GB thon 3. ATLAH	3 Moder: LIST Window (minin) 10 or a 3 2022	A A A A A A A A A A A A A A A A A A A	TRIX 5 dium), edium), UIPMI II Intel or	: P 6	Os 7 Ostantia OR A B ESCRI x86-64	8 I (Hig ATCI PTIO	9 h) HOF 3 N essor w	10 0 STU	11 DENTS	12		SOs 2 2 Qty. 30 30 30

	1 2
COURSE OBJECTIVES:	+ 2
1. To understand the different toolboxes of factory simulation software.	
To learn the factory simulation techniques and employ the same to design and simulate the	
^{2.} different industrial operations.	
LIST OF EXPERIMENTS:	
1. Modeling and Simulation of workstations and robots	
2. Modeling and Simulation of storage systems	
3. Modeling and Simulation of material handling devices- Conveyors, AGV, Overhead Hoist	
4. Modeling and Simulation of material handling devices – Robots.	
5. Modeling and Simulation of manufacturing control systems	
6. Modeling and Simulation of assembly line	
7. Modeling and Simulation of testing & inspection center	
8. Modeling and Simulation of packaging line	
9. Modeling and Simulation of manufacturing factory layout	
10. Modeling and Simulation of food processing industry layout	
11. Modeling and Simulation of supply chain network	
12. Modeling and Simulation of material flow analysis in manufacturing industries	
TOTAL: 60 PE	RIODS
CO No. COURSE OUTCOMES	RBT Level
At the end of the course, students will be able to:	
CO1 Demonstrate proficiency in modeling and simulating manufacturing and supply chain systems using various software toolboxes.	3
CO2 Interpret the simulation results to identify various metrics in the manufacturing processes, such as cycle time etc.	3
CO3 Communicate simulation findings, insights, and recommendations for effective operations.	3
REFERENCES:	7
1. Modeling, Simulation, and Control of Flexible Manufacturing, MengChu Zhou & F Venkatesh, Worl Scientific Publisher, 1999.	Lurapati
2. Visual Components Laboratory manual prepared by Department of Mechanical Engineering	, SVCE
E RESOURCES	
E-RESOURCES:	
1. https://www.visualcomponents.com/resources/#/ebook	

COUR	COURSE ARTICULATION MATRIX:													
COa						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3		3		3				3	3		3		3
2.	3	2	3	1	3		2		3	3	2	3		3
3. 3 3 3 2 2 3 3 2 3												3		3
1: Sligl	nt (Lo	w), 2: N	Aodera	te (Me	dium),	3: Sub	stantia	al (High	ı)					
]	LIST C)F EQU	J IPME	NT FO)R A B	ATCH	OF 30	STUE	DENTS			
SL.No	•				ITE	M DES	CRIP	FION					Qty	7.
1. Desktop computer with Windows 10, Intel or AMD x86-64 processor with two or more cores, Ram 16GB (minimum)											h	30		
2. UPS												As requ	lired	
3. Visual Components software license												30		

HS22511

INTERVIEW & CAREER SKILLS LABORATORY

 L
 T
 P
 C

 0
 0
 3
 2

COURSE OBJECTIVES:

1. Build confidence and develop learners' language proficiency

2. Create skills to better learners' performance in competitive examinations.

3 Improve learners' employability skills.

4 Develop entrepreneurship skills.

5. Expose learners to the use of professional English.

UNIT I LISTENING AND SPEAKING SKILLS

Conversation Skills – types small talk, face to face and telephonic, formal and informal conversations – skills in presenting ideas and collating information during conference calls (one –to one and technical group / team) – academic and workplace situations – conversing with faculty/visiting faculty/guests/officials/employers and employees – group discussion – etiquette and dos and don'ts, turn taking –presentation skills – seminars and projects using digital tools; mock interview – etiquette and dos and don'ts – audio-visual interface for enhancement of listening and speaking skills. IELTS and TOEFL (Listening related exercises)

UNIT II READING / SPEED READING, CRITICAL THINKING AND WRITING SKILLS

Reading Comprehension – general and scientific texts/articles/case studies from different or relevant fields of study for analysis and critical thinking; employability skills – writing job applications – cover letter accompanying résumé – types of business letters and email writing and etiquette; writing reports – statement of purpose – writing articles for publication style and format – creating blogs or company profiles – speed reading of voluminous reports / documents and exacting necessary information and abstract preparation including dissemination. IELTS and TOEFL(Reading related exercises)

UNIT III ENGLISH FOR PROFESSIONAL EXAMINATIONS

Sentences, paragraphs and reading comprehension – vocabulary building – general and technical terms – contextual meaning – spelling – subject specific words – usage and user specific terminology. IELTS and TOEFL(Grammar and verbal exercises)

UNIT IV ENTREPRENEURSHIP SKILLS

Introduction to entrepreneurship; developing leadership qualities and team work; goal setting and real life scenarios; fundamentals of entrepreneurial skills – marketing strategies microcosmic and macrocosmic levels of product sales and survey – sector / industry appraisal and appreciation (review and understanding state of the nation / economy / environment / sector reports published) interaction and understanding the role of multilateral financial / institutional / industrial agencies such as World Bank, ADB, UNDP, CII.

TOTAL: 45 PERIODS

CO No	COURSE OUTCOMES	RBT Level				
At the end of the course, learners will be able to:						
CO1	Take international examination such as IELTS and TOEFL	2				
CO2	Make presentations and participate in Group Discussions.	3				
CO3	Successfully answer questions in interviews	3				

12

12

9

12

TEXTB	OOKS:											
1.	Busine	ss Englis	sh Certi	ficate M	aterials,	Cambric	lge Univ	ersity Pr	ess.			
2	Graded	l Examin	ations	in Spoke	n Englis	h and Sp	oken Er	nglish for	r Work d	lownloa	dable ma	aterials
2.	from T	rinity Co	ollege, l	London.								
REFER	ENCES	•										
1.	Interna	tional Er	nglish I	Language	e Testing	System	Practice	Tests, C	Cambridg	ge Unive	ersity Pre	ess
2.	Interactive Multimedia Programs on Managing Time and Stress.											
3.	Personality Development (CD ROM), Times Multimedia, Mumbai.											
E-RESC	OURCES	5:										
1.	http://w	www.slid	eshare.	net/rohit	jsh/prese	entationc	n group	discussi	on			
2.	http://www.washington.edu/doit/TeamN/present_tips.html											
3.	http://www.oxforddictionaries.com/words/writingjobapplications											
4.	http://www.kent.ac.uk/careers/cv/coveringletters.html											
		1	6	/	- 2	2 8	1		2			
COURS	E ARTI	CULAI	TION N	IATRIX	Κ:		1	1	S			
COs		11	-1	- 14	1	P	Os	24	15	1		
005	1	2	3	4	5	6	7	8	9	10	11	12
1.		X		4.	1.1	Y		ê~	- 2	3		
2.		15	1.	3	11	16	11	U.a.	12	3		
3.		15	51						15	3		
4.		1	1			300	1		13	3		
5.			The	14		T		-/	51	3		
1: Slight	t (Low),	2: Mode	erate (N	Aedium), 3: Sub	stantial	(High)	1	1			
			1	0 7	2		-	212	/			
				10	ETT	11111	20	1				
						4-(1	1					

SEMESTER VII

м	F 22701	ENGINEERING ETHICS AND HUMAN VALUES	L	Т	Р	С
IVI	17 44 / VI	(Common to ME and MN)	3	0	0	3
COU	JRSE OB.	IECTIVES:				1
1.	To enable	the students to create an awareness of Engineering Ethics.				
2	To impar	t knowledge of a variety of moral issues, inquiries, dilemmas, and	l diffe	erent	moral	and
2.	ethical the	eories.				
3	To instill	Moral and Social Values and Loyalty.				
4	To create	awareness on assessment of safety and risk				
5.	To create	an awareness of Engineering Ethics and Human Values.				
UNĽ		INTRODUCTION TO ETHICS	T : C C	11 . 11		9
Basic Intell	c Concepts,	Governing Ethics, Personal & Professional Ethics, Ethical Dilemmas,	Life S	SKIIIS,	Emot	liom
Profe	rgence, II	sociations Professional Risks Professional Accountabilities Profession	al Suc	cess	Fthics	and
Profe	ssion.	sociations, Trocessional Risks, Trocessional Accountabilities, Trocessiona	u Suc		Lunce	ana
		S. Inl				
UNI	TII E	NGINEERING ETHICS				9
Sens	es of 'Eng	ineering Ethics' - variety of moral issues - types of inquiry - mor	al dile	emma	s – n	noral
autor	nomy - Ko	hlberg's theory - Gilligan's theory - consensus and controversy - M	odels	of Pr	ofess	ional
Role	s - theorie	s about right action - Self-interest - customs and religion - uses of eth	ical th	neorie	s. Val	uing
Time	e – Co-ope	ration – Commitment.	1			-
		× · · · · · · · · · · · · · · · · · · ·				
UNI	T III El	IGINEER'S SOCIAL EXPERIMENTATION				9
Eng	ineer's As	Social Experimentation - Framing the problem - Determining the fact	ts –Co	des o	f Ethi	cs –
Clari	ifying Con	cepts -Application issues -Common Ground -General Principles -Ut	ilitaria	an thi	nking	
respe	ect for pers	ons- Case study-The Challenger, Disaster of Tettron Dam				
		121				
UNI	T IV EI	IGINEERS RESPONSIBILITY FOR SAFETY AND RISK				9
Safet	y and risk	-Assessment of safety and risk -Risk benefit analysis and reducing	risk-	Safet	y and	1 the
Engir	eerDesignii	ig for the safety-intellectual Property rights (IPR)-Case Study - Bhopal Gas Ir	agedy,	Tunn	el coll	apsed
on un	c Jammu-Si					
UNI'	ти	HUMAN VALUES				9
Mor	als Values	and Ethics-Integrity-Work Ethic-Service learning – Civic Virtue –	- Resr	ect o	r othe	ers _
Livir	ng Peacefi	lly -Caring -Sharing -Honesty - Courage-Cooperation-Commitme	ent –	Emp	athv -	-Self
Conf	idence Ch	aracter – Spirituality-Case Study- Honesty in Sales. Morals in Work.	ont	Linp	uny	ben
00111)TAL	: 45 I	PERI	ODS
				<u> </u>		020
CO	No	COUDSE OUTCOMES			F	RBT
CU		COURSE OUTCOMES			L	evel.
At th	e end of the	e course, learners will be able to:				
CO	1 Ident relev	ify and analyze an ethical issue in the subject matter under investig ant field.	ation	or in	a	2
CO	2 impa theor	rt knowledge of various moral issues, inquiry, dilemmas, and moral ies.	and	Ethic	al	3
CO	3 Asse	ss their own ethical values and the social context of problems				3

CO4	Identify ethical concerns in research and intellectual contexts, including academic integrity, use and citation of sources, the objective presentation of data, and the treatment of human	3
CO5	To create an awareness on Human Values.	3

TEXTBOOKS:														
1.	1. 1.Mike W.Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi,2017 2 2.M. Govindarajan, S. Natarajan, V.S. Senthil Kumar "Engineering Ethics includes Human Values													
2	2.M. G	ovinda	rajan, S	. Natar	ajan, V	.S. Sen	thil Ku	mar "E	Inginee	ring Et	hics in	cludes	Human '	Values
۷.	PHI Le	arning	Pvt. Lto	1-2009	-									
REF	ERENC	$\frac{\mathbf{ES:}}{\mathbf{D} + 1}$	1 1	D 1 '	·· · ·			GENIC			T 1'	T 1''	2000	
1.	Harris,	Pritcha	and and	Rabins	"Engin	ieering	Ethics",	CENC	JAGE I		ig, India	a Editio	on, 2009.	
2.	Laura I and Soc	P. Hart cial Res	man an sponsib	d Joe I ility" N	Desjard IcGraw	lins, "B 7 Hill Eo	usiness ducatior	Ethics n, India	: Decis Pvt. L	td., Nev	akıng f w Delhi	or Pers i 2013.	onal In	tegrity
3.	Prof.D. New De	R. Kira elhi 20	an, "Pro 07.	fession	al Ethi	cs and l	Human	Values	", McC	iraw H	ill Educ	cation,	India Pv	t. Ltd.,
4.	Premvi	r Kapo	or, "Pro	fession	al Ethi	cs and I	Human `	Values	", Khar	nna Pub	olishing	House	,2018.	
5	5. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,													
Э.	5. New Delhi, 2010													
	17 - 10 - 10 I													
E-RESOURCES:														
1.	1 https://onlinecourses.nptel.ac.in/noc24_mg17/preview													
2	1. https://onlinecourses.nptel.ac.in/noc24_mg17/preview													
Ζ.	<u>www.o</u>	nnneet	mcs.org	1 2		10		- /	1.100	-	m			
3.	www.n	spe.org	$\sqrt{2}$	1	100	-		/		1	21			
4.	www.g	lobalet	hics.org	\sim			-32	1	1	1.	51			
			/	00	10	РС .,	100		1	10	1			
COU	RSE AI	RTICU	JLATI	ON MA	TRIX	:	50	5	/	1	/			
COs				10	175	PC	Ds		10	7			PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	2							3					2	
2.		1						3		2			2	
3.						3		3					2	
4.	I . 3 1 2 2													
5.						2	3	3	2				2	
1: Sli	ight (Lo	w), 2:]	Modera	ate (Me	dium),	, 3: Sub	stantia	l (Higł	1)					

		AI AND ML FOR AUTOMATION L T P				
MN	22701	(Common to ME and MN) 3 0	0	3		
COU	URSE	OBJECTIVES:				
1.	Unde	rstand the foundational concepts of artificial intelligence (AI) and machine learning	ng (J	ML)		
2	techn	iques and apply them to automate industrial tasks.				
2. 3	Evalue Evalue	top and implement AI-based solutions for automation challenges in real world.	tion			
5.	Lvan	ate the entreal implications of AT and WL in automation and propose responsible sold	uon	5.		
UNI	ТІ	AI TECHNIOUES		9		
AI a	nd MI	concepts, Overview of automation systems using AI and ML, Heuristic search tech	niqu	es –		
Hill	climbi	ng, Best-First search, Fuzzy logic and fuzzy control systems, Genetic algorithm and	Ger	netic		
prog	ramm	ng				
UNI		SUPERVISED LEARNING	Loo	9		
regre	ession	Ensemble methods	LOg	15110		
10510		Ensemble methods.				
UNI	TIII	UNSUPERIVSED LEARNING		9		
Clus	tering	algorithm – K-means Hierarchical clustering Dimensionality reduction and	fea	ture		
extra	action	techniques – PCA, LDA.	100	.cur c		
UNI	TIV	DEEP LEARNING		9		
Neur	ral net	works, Multi-layer perceptron, Convolutional Neural Networks, Recurrent Neural Net	wor	ks		
UNI	TV	CASE STUDIES AND ETHICAL CONSIDERATIONS		9		
Chal of n	redicti	raced during implementation, improvements achieved and lessons learned in implementation of supply chain process	ienta	tion		
indu	strial s	setting - Ethical implications of AI and ML in industrial automation - Bias and fairne	28 II 285 II	n AI		
algo	rithms	- Societal impacts - Responsible deployment of AI systems in industry	755 H			
		TOTAL: 45 PH	CRI(DDS		
		1000				
CO	No	COURSE OUTCOMES	R	BT		
0	110.	COURSE OUTCOMES	L	evel		
At th	ne end	of the course, students will be able to:				
	1	Apply search techniques, rule-based techniques and algorithms for optimization in		2		
	Л	industries		Ζ		
		Apply different learning techniques for analyze and classify data to facilitate		2		
	<u>J</u> 2	decision making process.		3		
		Implement deep learning algorithms to solve complex problems in industrial		_		
CC	03	automation, including image recognition, bottle neck identification, supply chain		3		
			──			
		Analyze case studies of AI and ML to identify challenges, improvements, and		1		
	J4	manufacturing plants and optimization of supply chain processes		+		
	25	Evaluate the ethical implications of AI and MI in industrial automation and		1		
CO At th CC CC CC	No. ne end D1 D2 D3 D4 D5	COURSE OUTCOMES of the course, students will be able to: Apply search techniques, rule-based techniques and algorithms for optimization in industries Apply different learning techniques for analyze and classify data to facilitate decision making process. Implement deep learning algorithms to solve complex problems in industrial automation, including image recognition, bottle neck identification, supply chain optimization. Analyze case studies of AI and ML to identify challenges, improvements, and lessons learned in industrial automation, including predictive maintenance in manufacturing plants and optimization of supply chain processes, Evaluate the ethical implications of AI and ML in industrial automation and		BT vel 2 3 3 4 4		

	propose strategies to address ethical concerns and ensure responsible use of AI technologies													
			gies											
TEX	ГВОО	KS:												
1.	Miche Addis	al Negr	nevitsky lev, Eng	y, Artif	ficial Ir 2011	tellige	ence: A	Guid	e to I	ntelligent	Systems,	3rd E	dition,	
2.	Timot Susse	hy J Ro x Wiley	ss, "Fu	zzy Lo	gic witl	h Eng	ineering	Appli	ications	s", 4th Edit	tion, Chic	hester,	2011,	
3.	R. A. Londo	Collacc on A Hal	ott, "Me stead Pi	echanic ress Bo	al Fault ok John	t Diag Wiley	nosis an y & Son	nd cor s, New	ndition York	monitoring	;", Chapn	nan and	d Hall	
REF	REFERENCES: S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach". Prentice Hall. Fourth													
1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Fourth Edition, 2021 Artificial Intelligences for Delection by Econois X. Course, Deelet Publiching, Limited, Stephenderd														
 2. Artificial Intelligence for Robotics, by Francis X. Govers, Packt Publishing Limited; Standard Edition (30 August 2018), ISBN-10 : 1788835441 2. Simulation (1990) 														
3. Simon Haykin, "Neural Networks and Learning Machines: A Comprehensive Foundation", Third Edition, Pearson, delhi 2016														
4. Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997.														
4. Machine Learning. 1011 Mitchen. First Edition, McOraw- fill, 1997.														
E-RE	SOUR	CES :	12	11		/		1	N	12	1			
1.	Introd	uction to	Machi	ne Leai	rning, <u>h</u>	ttps://r	nptel.ac.i	in/cou	rses/10	6106139/				
2.	An In	troductio	n to Ar	tificial	Intellige	ence, <u>k</u>	nttps://np	otel.ac.	in/cour	rses/106102	220/			
			7	2	10	1	11	7		17	-			
COU	RSE A	RTICU	LATIC	N MA	TRIX:			11		-1 H	1			
COs			17		÷	PO	Os	/		120	1	PS	Os	
0.05	1	2	3	4	5	6	7	8	9	10 11	12	1	2	
1	3		10	6	3	3	- H .	-	1	01	3		3	
2	3		1		3	3	V	2	1		3		3	
3	3	2		10	3	3		30	10	/	3		3	
4	3	2			3	3	431	9	/		3		3	
5	3					3		2			3		3	
1: Sli	ght (L	ow), 2: N	Aodera	te (Me	dium), i	3: Sub	ostantia	l (Higł	n)					

DATA SCIENCE FOR AUTOMATION:	L	Т	Р	С								
N22709DATA SCIENCE FOR AUTOMATION: THEORY AND PRACTICES (Common to ME and MN)LTP202												
(Common to ME and MN) 2 0 2 3												
COURSE OBJECTIVES:												
1 To develop skills in data collection, preprocessing, analysis, and visu	alization	for i	ndust	rial								
1. datasets.												
2. To apply data science methodologies to solve practical problems in industri	al automa	tion.										
To explore advanced topics such as machine learning and predictive ana	ytics in	the co	ontex	t of								
^{5.} industrial applications.												
UNIT I INTRODUCTION				8								
Significance - data preprocessing techniques: data cleaning, transformation	and no	ormali	zatio	n -								
Statistical analysis - principles of data visualization - Exploratory Data Analysis	is (EDA) tech	nique	es -								
scatter plots – histograms - box plots.												
ADDELEGE												
UNIT II STATISTICS				10								
Sampling distributions - Test based on Normal, t-distribution, chi-square, and F-	listributio	ons –	Anal	ysis								
of variance - Completely Randomized Design - Randomized Block Design - Lat	n Square	Desig	gn – 2	2								
Factorial Design.												
	1											
UNIT III PREDICTIVE ANALYTICS	1			12								
Forecasting - decision-making - Time series analysis: ARIMA and Exponential S	moothin	g - Re	gress	sion								
analysis: Linear regression, polynomial regression, logistic regression - Cla	ssificatio	n alg	orith	ms:								
Decision trees, random forests, support vector machines (SVM), k-neares	neighb	ors (l	k-NN	() -								
Clustering algorithms: K-means clustering, hierarchical clustering.	71											
	7 /											
LABORATORY COMPONENT												
LIST OF EXPERIMENTS	1											
1. Perform One-sample Z-test, one- and two-sample t-tests, paired t-test using	Python/N	Iinita	b									
2. Perform the Correlation and covariance test using Python/Minitab												
3. Perform the Chi square goodness of fit using Python/Minitab												
4. Conduct the ANOVA and develop a linear model using Python/Minitab												
5. Create Histogram, Scatterplot and box plot using Python/Minitab												
6. Forecast the data with the linear models using Python/Minitab												
7. Forecast the data with the nonlinear regression model using Python/Minitab												
8. Design of decision tree using Python/Minitab												
9. Support Vector Machines (SVM) using Python/Minitab												
10. Cluster analysis using Python/Minitab												
	OTAL:	60 PE	ERIO	DS								
	0 11121	0011		20								
CO No COURSE OUTCOMES			R	BT								
			Le	evel								
At the end of the course, learners will be able to:												
COI Understand the basics of data analytics using concepts of statistics and	probabili	y		2								
CO2 Apply various interential statistical analysis techniques to describe data	sets and			3								

withdraw useful conclusions from acquired data set														
CC)3	Dev	elop a	1 mach	ine lear	ming m	nodel to	o predic	t equip	pment f	failures based	on histe	orical	3
		data		•			1 (1	1 4	1	11				2
	04	App	ly dat	a scien	$\frac{ce conc}{1}$	ept and	1 metho	$\frac{1}{1}$	lve pro	oblems	in real world	context.		3
CC	95	the 1	ct adv esults	anced.	techniq	ues to	conduc	t thoro	ugh an	d insig	htful analysis	and inte	erpret	4
TEX	TBC	OOK	S:											
1.	Gar Stat	eth . istica	James al Lea	, Dan rning:	iela Wi with Ap	itten, 7 plication	Frevor ons in H	Hastie, R", Spri	and and nger P	Robert ublicati	Tibshirani, ions, Second E	"An In Edition, 1	troduct 2017.	tion to
2.	Gup Nev	ota, S v Del	.C and lhi, 20	d Kapo 17.	oor, V.K	, "Fun	damen	tals of I	Mather	natical	Statistics", Su	ltan Cha	and and	d Sons,
REF	ERI	ENCI	ES: _			-	_	01	_	_			<u> </u>	
1. Middleton, J. A. "Experimental Statistics and Data Analysis for Mechanical and Aerospa Engineers" Chapman and Hall/CRC, 2021. 2 Kumar, Zindani, Davim, "Artificial Intelligence in Mechanical and Industrial Engineering",														ospace
2.	 Kumar, Zindani, Davim, "Artificial Intelligence in Mechanical and Industrial Engineering", CRC Press, 2021. Zsolt Nagy, "Artificial Intelligence and Machine Learning Fundamentals", Packt Publishing, 													
3. Zsolt Nagy, "Artificial Intelligence and Machine Learning Fundamentals", Packt Publishing, 2018, ISBN: 978-1-78980-165-1													,	
2018, ISBN: 978-1-78980-165-1														
E-R	ESO	URC	CES:	E	1	+ T	10	2	0)	110	10			
1.	http	s://o	nlinec	ourses.	.nptel.ac	c.in/noc	:21_cs6	59/previ	ew	\	. 1=	1		
2.	http	s://w	ww.st	atlearr	ning.com	n/	1.1	-	-	16	_ 2	1		
				6		5.0	11	- 84		/ []	100	1		
COU	JRSI	EAR	TICU	JLATI	ION MA	ATRIX			~]	0.25	111	1		
COs	5		- 1	17		n in	P	Os	/_	-	12		PS	SOs
	-	1	2	3	4	5	6	7	8	9	10 11	12	1	2
1.		3	2	2	S	1			2	/	9/	2	1	1
2.		3	2	1	1 a	2	-	Y)	1	6/	2	1	1
3.		3	2	1	1	19	ETT	TIM	ざい	90	/	2	1	1
4.		3	2	3		3		44	1	_		3	2	2
5.		3	2	3		3						3	2	2
1: SI	light	(Lov	v), 2:	Mode	rate (M	edium)), 3: Su	bstanti	al (Hig	gh)			_	

MN	2271	1	COMPREHENSION										L 0	T 0	P 2	C
COU	RSE	OB,	JECT	IVES:									U	U	2	1
1	To r	ecal	l the k	nowled	ge, acq	uired t	hrough	various	s theory	and la	borator	y cou	ses st	udied	from	the
1.	first	sem	ester	to the si	xth sen	nester.										
			_			MET	HOD C	DF EVA	ALUAT	TION						
1.	The	stuc	lents	will be	assess al and a	ed 100	0% inte	rnally vineeriu	to test	his / ł pline	ner und	lerstar	ding	of fu	ndam	ental
	Sem	inar	$\frac{1}{s, MC}$	Q-type	tests, c	ase stu	idies, et	c. will	be conc	lucted	at perio	odical	interv	als b	y cov	ering
Ζ.	all t	he pi	ofessi	ional co	re cour	ses.					I			•		0
							_		-			TOT	AL:	15 I	PERI	ODS
COLLEGA																
CO No. COURSE OUTCOMES RBT Level																
At the end of the course, students will be able to:																
CO	At the end of the course, students will be able to: CO1 understand and comprehend any given problem related to mechanical engineering field. 2															
				1.4	1	e. Ø. 1	-		2	3.5		2	(
COU	RSE	AR'	ГІСU	LATIC	N MA	TRIX	10	2	0/1	1	1	0				
00				31	- Q.		P	Os	-		2.1	1	1		PS ()s
COs	1	-	2	3	4	5	6	7	8	9	10	11	12	2	1	2
1.	3	;	3	2	5	2				Ų.	×	1	2		2	
1: Sli	ght (Low), 2: N	Modera	te (Me	dium)	, 3: Sub	stantia	l (High	n)		T	/			
	_		- 0	1	1			0245	1	1	1	SI				
				12	13			÷		10	15	2/				
				1	S	1		1		/	0	/				
					1 00	120	-	X	/	1	0/					
					1	19	ETT	11-11	25	16.	/					
							-11	44	4	/						

MN22712INDUSTRIAL TRAINING/INTERNSHIPLTP000			P	C												
COU	RSF	OB	IFCT	IVFS.									0	0	0	Z
1.	App	oly a exp	cademi erimen	tation.	wledge t	to real-v	world s	scenario	s, foste	ering pr	actical	skills i	n pro	blem	-solvi	ng
2.	Dev hand	elop ds-o	o profes n indus	ssional stry exp	compet perience	tencies : e.	like co	ommunio	cation,	teamw	ork, and	d proble	em-s	olving	g thro	ugh
						CO	URSE	DESCI	RIPTI	ON						
1.	The sum	stu mer	dents s	hould er vaca	undergo tion and	o Indust d should	trial tra l earn	aining / a minim	Intern	ship fo <u>1 credi</u>	r a peri t or a m	iod of 2 naximu	2 to m of	4 wee 2 cre	eks dı dits.	ıring
2.	The may Dep wint	Inte un artn ter v	ernship dergo nent Co vacatior	/ Indu Interna onsulta n, in lie	istrial tr ship at tive Co eu of Inc	aining Resear mmitte dustrial	to be to be to or to or to or trainin	complet ganization a perioon ng.	ed betv on / U 1 presc	ween 4 Jniversi gribed in	th to 6t ity (aft n the cu	h seme er due urriculu	ester app um d	3. Th roval uring	e stuc from sumr	lents the ner /
TOTAL: 15 PERIODS																
CON	CO No. COURSE OUTCOMES RBT Level															
At the	e end	of t	he cou	rse, stu	dents w	ill be a	ble to:		10	1N	1	0				
CO	1	Ap	oly aca	demic	theory t	o indus	trial cl	hallenge	s effec	tively.		Pra	1			3
CO	2	Der	nonstra	te imp	proved c	ommur	icatio	n and co	ollabora	ation sk	ills.	2	-			3
<u> </u>	3	Dev	velop p	rofessi	onalism	and ad	aptabi	lity in th	ne wor	kplace.	-	m	-			3
COU	RSE	AR	TICU	LATIO	ON MA	TRIX:			-)			m	1			
			10	$\langle \rangle$	1	1.10	Р	Os	2	754	1	21			PSC)s
COs	1	L	2	3	4	5	6	7	8	9	10	11	12	2	1	2
1.				1	2			10		3	3	/	1		1	
2.					0	12	-	K	-	3	3		1		1	
3.					1	14	11	(D)	5	3	3		1		1	
1: Sli	ght (Lov	v), 2: N	Iodera	te (Me	dium),	3: Sul	ostantia	l (Higl	h)				•		
L																

SEMESTER VIII

MN	22811				PR	OJECT	Г WOR	RK				L	Т	Р	С
COURSE OBJECTIVES:											0	20	10		
COU	RSE (<u>OBJEC'</u>	<u>FIVES:</u>												
1.	To de	evelop th	ne ability	to sol	ve a spe	ecific p	roblem	right fr	om its i	identific	cation	and l	iterati	ure	
2	To tr	ein the a	tudonta i	siui so	oring pr	oi o tre sa	anne.	nd to fe		and on	d vivo	Nooo	ovor	inotic	
Ζ.	10 u	ann the s	tudents	n prep	aring pi	oject n	eports a			lews and			exam	man	л.
					MET	HOD (OF EV A	ALUAT	TION						
1.	 The students in a group of 3 to 4 work on a topic approved by the Head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by an external and internal examiner constituted by the Head of the Department. 														inder g the on a f the iated niner ODS
			10	0/		12	To Ma		1	14	10				
CON	No.		14	1	C	COURS	SE OUT	гсом	ES	1	2			F L	RBT Jevel
At the	e end o	of the co	urse, stu	dents v	will be a	able to:	2	0/	u	1	9	1			
CO	1	Students proper m	will be a structure will be a	able to ogy to s	demons summai	strate th	neir und 1 solve	lerstand challen	ling by ging pra	effectiv actical p	vely ap proble	oplyir ms.	ng		5
			6		S - 1	1	14			. 1	m	1			
COU	RSE A	ARTIC	U LATI O	ON MA	TRIX			~/	1203	1	Π	1			
G 0			17	1	5	P	Os	/		1	2	1		PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	1	2	1	2
1.	1. 3 3 1 1														
1: Sli	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)														
L	<u> </u>	,, -		100	9	धा	पर	5	10,	/					

VERTICAL 2 PRODUCT AND PROCESS DEVELOPMENT

		DESIGN FOR MANUFACTURING ASSEMBLY AND	L	Т	Р	С
ME	22021	ENVIRONMENT	2	Δ	Δ	2
		(Common to ME and MN)	3	U	U	3
COU	URSE O	BJECTIVES:				
1	To Pro	vide students with a comprehensive understanding of the design proc	cess i	n eng	gineer	ing,
1.	emphas	sizing principles that enhance manufacturability and cost-effectiveness				
2	To Equ	ip students with the knowledge and skills necessary for effective desi	gn in	vario	ous m	ietal
2.	manufa	cturing processes, including casting, welding, and forging.				
3	To Tea	ch students with an in-depth understanding of various machining process	ses ar	id the	essei	ntial
5.	design	principles to optimize components for machining.				
Δ	To Pre	pare students with the knowledge and skills to design components and s	systen	ns for	r effic	ient
1.	manual	assembly				
5	To Edu	acate students on integrating environmental considerations into product	t desi	gn to	pron	note
5.	sustain	ability				
		1.81				
UNI	ΤI	PHILOSOPHY AND MATERIAL SELECTION				9
Intro	duction	: Design philosophy – steps in design process – general design rules for	manu	ıfactu	ırabili	ty –
basio	e princip	bles of designing for economical production – creativity in design, app	licati	on of	linea	ır &
non-	linear o	ptimization techniques. Materials: Selection of materials for design	– de	velop	ment	s in
mate	rial tech	nnology – criteria for material selection – material selection interrelation	onshij	p wit	h pro	cess
selec	ction – p	rocess selection charts.				
		× in 2				
UNI	TII	CASTING, WELDING AND FORMING				9
Meta	al Casti	ng: selection of casting process - general design considerations fo	r cas	ting	- cas	ting
toler	ances -	use of solidification simulation in casting design - product design rul	es for	r sand	d cast	ing.
Meta	al Joinin	g: Factors in design of weldments - general design guidelines - pre ar	id pos	st trea	atmen	it of
weld	ls - effec	ets of thermal stresses in weld joints. Forging: Design factors for Forging	g - de	sign J	princi	ples
for F	unching	, Blanking, Bending, Deep Drawing - Component Design for Blanking.				
UNI	T III	MACHINING PROCESS				9
Ove	view of	various machining processes - general design rules for machining - Di	mens	ional	tolera	ance
and	surface	roughness - Design for machining - Ease - Redesigning of components	for r	nachi	ning	ease
with	suitable	examples General design recommendations for machined parts	101 1	liuein	iiiig v	cuse
vv ittii	Sultuoit	examples. Seneral design recommendations for machined parts				
UNI	TIV	ASSEMBLY				9
Gen	eral desi	an auidelines for manual assembly, assembly efficiency, classification	n svsta	em fo	r ma	nual
hand	lling_ cl	assification system for manual insertion and fastening, effect of part sy	mmet	ry on	hand	ling
time	- effect	of part thickness and size on handling time, effect of weight on h	andli	ng ti	me_ r	varte
requ	iring two	bands for manipulation, effects of combinations of factors estimation	of ins	ertion	ntime)arts
Tequ	ining two	o hands for manipulation- effects of comonations of factors, estimation (51 1115			·
UNI	ти	ENVIRONMENT				9
Envi	ronmen	tal objectives. Lifecycle assessment, Basic method, Environmentally	resno	nsihl	e pro	duct
2556	ssment_	Techniques to reduce environmental impact Design to minimize materia	al nea)esiar	1 for
recu	olability	Design for remanufacture. Design for energy efficiency. Design	to re	gu- L smilet	tione	and
stan	larde	, Design for remanurature- Design for energy enterency- Design	10 10	guia	10115	anu
stan	iai us	mon		45 D		

TOTAL: 45 PERIODS

	CO No. COURSE OUTCOMES RBT													
CO No.	No. COURSE OUTCOMES e end of the course, students will be able to: To Provide students with a comprehensive understanding of the design proce To Provide students with a comprehensive understanding of the design proce													
At the e	nd of	the cou	rse, stu	dents w	ill be a	ble to:								
	То	Provid	le stude	ents wi	th a co	mprehe	ensive u	underst	anding	of the	design	process in		
CO1	eng	gineerii	ng, em	phasizi	ng pri	nciples	that	enhanc	e man	ufactur	ability	and cost-	3	
	eff	ectiven	less.											
CO2	То	Equip	studen	ts with	the kn	owledg	ge and a	skills n	ecessa	ry for e	ffectiv	e design in	4	
	vai	rious m	etal ma		iring pi	ocesse:	s, inclu	ding ca	sting, v	welding	$\frac{1}{1}$, and for	orging.	_	
CO3	10	l each	studen	ts with	an in-	depth u	indersta	anding	of vari	ous ma	chining	g processes	3	
		Dreme	sential	design	princip	les to c	pumize ladaa	e comp	onents	lor mac	chining	• • • • • • • • • • • • • • • • • • • •		
CO4	10	riepa	re stud	iont mo	nul ac	sombly	ledge a	and ski	ins to	design	compo	onents and	4	
		Educe	oto stu	donts (n into	arating	onvir	onmont	al con	cidarati	one in	to product	-	
CO5	des	ign to	nromot	e sustai	nabilit	granng	envire	Jiment	ai con	siderati	ons m	to product	4	
	uc	51511 10	promot	e susta	maonn	y.		(20					
ТЕХТВ	ROOK	S:		1.0	<u>r</u>	-		-	-	~	5			
1. A K Chitale and R C Gupta, "Product Design and Manufacturing", PHI, New Delhi, 2003.														
 A K Cintale and K C Gupta, "Foddet Design and Manufacturing", First Edition, Marcel Dekk Boothroyd G, "Product design for Manufacture and Assembly", First Edition, Marcel Dekk New York, 1004 														
2. N	New York, 1994 Kavian Otto and Kristin Wood, Product Design, Baerson Publication, 2004													
3. K	Kevien Otto and Kristin Wood, Product Design. Pearson Publication, 2004.													
4. K	K.T. Ulrich and S.D. Eppinger, Product design and development, Tata McGraw Hill, 2020													
5. F	Fixel, J. Design for the Environment McGraw Hill., 1996.													
G	Graedel T. Allen By. B, Design for the Environment Angle Wood Cliff, Prentice Hall. Reaso													
о. Р	ub.199	96.	2		1 1	1	14	1			177			
		1	ill	5			10	1	- 9-	2 - I	-			
REFER	RENC	ES:	-					1			-			
1 D	icksor	n, John	n. R, a	nd Coi	roda F	Poly, E	ngineei	ring De	esign a	and De	sign fo	or Manufac	ture and	
1. S	tructu	ral App	roach,	Field S	tone Pu	ıblisher	, USA,	1995.	-	12	SI			
2. B	ralla, l	Design	for Ma	nufactu	ire han	dbook,	McGra	w Hill,	1999.	10	-/-			
			1	0.					/	1				
E-RESO	OURC	CES:		10	10	-	Y	/	1	-/				
1. ht	ttps://	Onlinec	courses.	nptel.a	c.in/noo	c19_me	e48/pre	view	10.	/				
2. ht	ttps://r	nptel.ac	.in/cou	rses/10	710301	2	44	-	_					
COURS	SE AR	RTICU	LATIO	ON MA	TRIX									
CO						PO	Os						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12 1	2	
1	3					1	1		1	1				
2	3	3				1	1		1	1				
3	3					1	1		1	1				
4	3	2 1 2 1 1 0												
5	3	3	3	1	1	1	2		1	1				
1: Sligh	t (Lov	w), 2: N	Aodera	te (Me	dium),	3: Sub	ostantia	ıl (Higl	n)					

FAILURE MODES AND EFFECTS ANALYSIS L Т Р С **ME22022** 3 (Common to ME and MN) 0 0 3 **COURSE OBJECTIVES:** To understand the Failure Modes and Effects Analysis (FMEA) concepts and its types. 1. To impart the knowledge in design FMEA process and steps involved in the implementation. 2. 3. To understand the methods of Process FMEA and control process. 4. To familiarize the Risk assessment procedures based on the Risk Priority Number (RPN). **INTRODUCTION** 9 UNIT I Introduction to Failure Modes and Effects Analysis (FMEA) - Need of FMEA- Uses of FMEA-Types of FMEA- History of the tool. UNIT II DESIGN FMEA 9 Steps in Design FMEA-Identify the failure modes-potential effects of each failure mode and assign severity rating-Determine the potential causes-prevention controls and assign occurrence ratingdetection controls and assign detection rating- Action Plans UNIT III **PROCESS FMEA** 9 PFMEA-Identify - process functions- Potential Failures - Effect of failure - Causes of failures - Process controls – Confirm the critical characteristics UNIT IV | RISK ASSESSMENT 9 FMEA Risk Assessment strategy- Risk assessment methods- Risk Assessment Factors- Rating scale of Severity, Occurrence and Detection- Risk Priority Number (RPN) - Risk Matrix. CASE STUDY ON FMEA UNIT V 9 Case study- FMEA- Design FMEA - Process FMEA- Control plan. **TOTAL: 45 PERIODS** RBT CO No. **COURSE OUTCOMES** Level At the end of the course, students will be able to: Illustrate the failure mode effect analysis and its types. **CO1** 2 Implement the design FMEA using the methods of design failure mode effect 3 **CO2** analysis. Identify the various process FMEA modes and critical characteristics. 3 **CO3 CO4** Calculate the risk assessment number to identify the risk factors in the process. 3 Model the FMEA in the real time industry applications by practice. 3 **CO5**

TEXTBOOKS: 1. D. H. Stamatis , "Failure Mode and Effect Analysis: FMEA from Theory to Execution", American society for quality, Second edition,2003 2. Raymond J. Mikulak ,"The Basics of FMEA", Productivity Press; 2nd edition,2008.

DEE	REFERENCES:													
REF	ERENC	ES:												
1.	Gerardu 2019.	us Blol	kdyk, "FMI	EA failure	modes	effects	analysis	s A Co	mplete	Guide"	°, 5STA	ARCoo	ks,	
2.	Dean H Quality	I. Stam Press,	atis, "Risk 2019.	Managem	ent Usii	ng Failı	ure Mod	le and	Effect A	Analysi	s (FME	EA)", A	SQ	
3.	Moham persona	nmed H al-lean,	lamed, "Ri 2021.	sk Assessi	ment Us	ing FM	EA: A	Case o	f Relia	ble Imp	roveme	ent",		
E-RF	SOUR	CES:												
1.	https://nptel.ac.in/courses/112107241/													
2.	https://a	archive	e.nptel.ac.ir	n/courses/1	110/101/	/110101	1010/							
3.	https://a	archive	e.nptel.ac.ir	n/courses/1	110/105/	/110105	5094/	/						
				~ D	10	OL.	LE(36						
COU	RSE AI	RTICU	JLATION	MATRIX	K:			2	2	5				
CO			15	2.	P	Os		1	N.			PS	Os	
COS	1	2	30	4 5	6	7	8	9	10	11	12	1	2	
1	2	2	121	1.2	/	(1	N	/	21	2	3		
2	2	3	3	3	10	2	0/	100		0	2	3		

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High) D

Γ

ह मा परा हवता -

ME22023NEW PRODUCT DEVELOPMENTLTPC(Common to ME and MN)3003											
IVIE	22023	(Common to ME and MN) 3 0	0	3							
CO	URSE	OBJECTIVES:									
1.	To in front	npart the basic concepts of engineering design and product development with focu- end processes	s on	the							
2	To f	amiliarize the product development processes and knowledge of concept general	ion	and							
۷.	selec	tion tools.									
UNI		INTRODUCTION		9							
Need	d for	developing products – the importance of engineering design – types of design –th	e de	sign							
proc	idorot	relevance of product lifecycle issues in design –designing to codes and standards-	soc	letal							
deve		ions in engineering design –generic product development process – various phases of each phases of engineering for products establishing markets, market segments, relevance of	pro ma	uuci							
rese	arch	ent-plaining for products –establishing markets- market segments- relevance of	1110	пксі							
10500		COLLE									
UNI	ТЛ	CUSTOMER NEEDS		9							
Iden	tifyin	g customer needs -voice of customer -customer populations- hierarchy of human needs	eds-1	need							
gath	ering	methods – affinity diagrams – needs importance- establishing engineering charac	teris	tics-							
com	petitiv	e benchmarking- quality function deployment- house of quality- product design speci	ficat	ion-							
case	studie	es									
				-							
UNI	T III	CREATIVE THINKING		9							
Crea	ative 1	hinking -creativity and problem solving- creative thinking methods- generating	g de	sign							
conc	cepts-s	ystematic methods for designing -functional decomposition - physical decompo	sitic)n –							
func	tional	representation –morphological methods-TRIZ- axiomatic design.									
		WI 53									
UNI		DECISION MAKING AND PRODUCT ARCHITECTURE	1 7	9							
Deci	ISION	naking –decision theory –utility theory –decision trees –concept evaluation metho	ds-F	'ugh							
conc	cept s	nt design product architecture types of modular architecture stops in developing	culo:	n lo duct							
arch	itectu	m design -product architecture - types of modular architecture - steps in developing	pro	uuci							
aren	neetu										
UNI	TV	DESIGN AND COST ANALYSIS		9							
Indu	strial	design – human factors design –user friendly design – design for serviceability – de	esigr	1 for							
envi	ronme	ent – prototyping and testing – cost evaluation –categories of cost – overhead costs –	acti	vity-							
base	d cost	ing -methods of developing cost estimates - manufacturing cost -value analysis in cost	sting	5.							
		TOTAL: 45 PH	RIC	DDS							
СО	No.	COURSE OUTCOMES	R	BT							
				evel							
At th	he end	of the course, students will be able to:									
C	D1	Understand the role of engineering design in product development, emphasizing its		2							
		significance in achieving functionality, efficiency, safety, and user satisfaction.	<u> </u>								
C	CO2 Identify and analyze customer needs by employing various methods such as 3										
		Analyze the relationship between erectivity and realize ending	├──								
	73	creativity as a fundamental aspect of generating innovative solutions to complex		3							
	55	engineering challenges		5							
		engineering enunenges.									

	CO4 Identify different types of modular architecture, including functional, physical, and process modularization, and understand their applications in product design and 3													
	4 p d	rocess r evelopm	nodular lent.	ization,	and t	inderst	and the	r appl	ication	s in pro	duct d	lesign	and	3
CO	5 E	Evaluate	the co	st impl	ication	s of c	design c	lecisio	ns and	develop	oment	activit	ies,	3
	i	ncluding	manufa	acturing	costs,	overhe	ead costs	s, and l	ifecycl	e costs.				
TEXT	FBOC	KS:												
1	Anita	Goyal, I	Karl T	Ulrich,	Steven	D Epp	oinger, "I	Produc	t Desig	n and De	evelop	ment "	, 4th E	dition,
1.	2009,	Tata Mo	cGraw-I	Hill Edu	ucation	, ISBN	1-10-007	-14679)-9.	, ,	1		·	
2.	Kevin	n Otto,	Kristin	Wood,	"Prod	luct De	esign- [Fechni	ques in	n Revers	se Eng	gineerin	ng and	1 New
	Float	ict Deve	lopinen	t, mai	in Kepi	IIII 201	IJ, Pears			, ISDIN-9	/001/	13002	17.	
REFE	EREN	CES:												
1.	Clive John	L. Dyn Wiley &	n, Patric Sons, 2	ck Little 2009, IS	e, "Eng BN 97	gineerii 8-0-47	ng Desig 0-22596	gn: A 1 5-7.	Project	-based I	ntrodu	ction",	3rd E	dition,
2.	2. George E. Dieter, Linda C. Schmidt, "Engineering Design", McGraw-Hill International Edition, 4th Edition, 2009, ISBN 978-007-127189-9.													
3.	 3. Yousef Haik, T. M. M. Shahin, "Engineering Design Process", 2nd Edition Reprint, Cengage Learning, 2010, ISBN 0495668141. 													
Learning, 2010, ISBN 0495668141.														
E-RE	SOUI	RCES:	14	1	Q.)	1	-	2	35	13	21			
1.	https:	//nptel.a	c.in/cou	rses/11	21072	17/	23	0/	11-	1	01	8		
2.	https:	//nptel.a	c.in/cou	rses/11	210423	30/	1	-	1.023	0.1	5			
	-	-	2		20	1	D.	7			-			
COU	RSE A	ARTICU	JLATIO	ON MA	TRIX		1	1	0	2-1	1			
<u> </u>			17		÷5.,	Р	Os	/		1:	21		PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		2	10.	1	۰.,				0	/	2	2	
2	2	2	2	0		3	V	1	1	_/		2	2	1
3	3	3	3	3	12	1	2	1	121	/		2	2	1
4	3	3	3	3	/	-11	45	16	/			2	2	
5	3	3	3	2			2					2	2	1
1: Slig	ght (L	ow), 2:]	Modera	ate (Me	dium)	3: Su	bstantia	l (Hig	h)	· · ·				-

ME22024PRODUCT LIFE CYCLE MANAGEMENT (Common to ME and MN)LTP300														
	22027	024 (Common to ME and MN) 3 0 0 SE OBJECTIVES:												
COU	JRSE	OBJECTIVES:												
1.	Fam	iliarize with various strategies of Product Life cycle Management (PLM)												
2.	To u	nderstand functions and features of PLM/PDM												
3.	To u	nderstand different modules offered in commercial PLM/PDM tools												
4.	To de	emonstrate PLM/PDM approaches for industrial applications												
5.	To U	se PLM/PDM with legacy data bases, CAX & ERP systems												
UNI	ΤI	INTRODUCTION TO PLM AND PDM				9								
Intro	ductio	on to Product Life cycle Management (PLM), Need for PLM, opportunities	s of PI	LM,	Diffe	rent								
view	's of	PLM - Engineering Data Management (EDM), Product Data Ma	inager	nent	(PD) M),								
Coll	aborat	ive Product Definition Management (CPDM), Collaborative Product	Comr	nerco	e (Cl	PC),								
Prod	luct Li	fecycle Management (PLM). PLM/PDM Infrastructure – Network and Cor	mmun	icati	ons, I	Data								
Man	ageme	ent, Heterogeneous data sources and applications.												
		20-40-66												
UNI	ΤIΙ	PLM/PDM FUNCTIONS AND FEATURES				9								
User	· Func	tions – Data Vault and Document Management, Workflow and Process Ma	anage	ment	, Pro	duct								
Strue	cture	Management, Product Classification and Programme Management. U	Jtility	Fur	iction	ıs –								
Com	munio	ation and Notification, data transport, data translation, image services, sys	stem <i>e</i>	ıdmi	nistra	tion								
and	applic	ation integration.												
			S.											
UNI	T III	MODULES IN APDM/PLM SOFTWARE				9								
Case	studi	es based on top few commercial PLM/PDM tools.												
UNI	TIV	PLM ROLE IN ININDUSTRIES				9								
Case	e studi	es on PLM selection and implementation (like auto, aero, electronic) - oth	ner por	ssibl	e sec	tors,								
PLM	I visi	oning, PLM strategy, PLM feasibility study, change management for	or PL	LM,	finar	ncial								
justi	ficatio	n of PLM, barriers to PLM implementation, ten step approach to PLM, be	enefits	of I	ЪЛ	for-								
busi	ness, c	rganization, users, product or service, process performance.												
UNI	ΤV	BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM S	OFT	WAI	RE	9								
PLN	I Cust	omization, use of EAI technology (Middleware), Integration with legac	y data	a ba	se, C	AD,								
SLM	I and I	ERP.	•											
		ТОТ	'AL: 4	45 P	ERIC	DDS								
					R	вт								
CO	No.	COURSE OUTCOMES			Le	evel								
At th	ne end	of the course, students will be able to:												
CO	01	Summarize the various strategies of PLM.				2								
CO)2	Use the functions and features of PLM/PDM.				2								
CO)3	Use different modules offered in commercial PLM/PDM tools.				2								
CO)4	Implement PLM/PDM approaches for industrial applications.				3								
CO)5	Integrate PLM/PDM with legacy data bases, CAX & ERP systems.				3								

TEXTBOOKS:														
1.	Antti S 2008 (3	Saaksvu Brd Edit	ori and ion).	Anselr	ni Imr	nonen,	"Produc	ct Lif	ecycle]	Manage	ment",	Spring	er Pub	lisher,
2.	Michae	el Griev	es, "Pro	oduct Li	ife Cyc	le Maı	nagemen	ıt", Ta	ata McC	Braw Hil	1, 2006	5 .		
3.	Karl U	lrich, St	teven E	ppinger	, "Prod	luct De	esign and	d Dev	elopme	nt", Mc	Graw-H	Hill Edu	ication	, 2012
4.	Burden	, Rodge	er PDM	[: Produ	ct Data	l Mana	agement,	Resc	ource Pu	Iblicatio	ns, 200)3		
5.	Saaksv	uori, Aı	ntti & I	mmone	n, Anse	elmi. P	Product I	Lifecy	cle Mar	nagemer	nt, Sprin	nger-V	erlag, 2	2004
6.	Gerard	us Blok	dyk, "I	PLM So	ftware	A Con	nplete G	uide"	, 2019					
7.	Stark, Springe	John. " er-Verla	Produc ag, 201	t Lifecy 1.	cle Ma	anagen	nent: Pa	radig	m for 2	lst Cen	tury P	roduct	Realiza	ition",
REF	ERENC	ES:												
1.	Interna	tional J	ournal	of Prod	uct Life	ecycle	Manage	ment.	Inderso	cience P	ublishe	ers		
2.	Ivica O Produc 2003	Crnkovi t Data 1	c, Ulf Manage	Asklur ement a	nd and nd Sofi	Anni tware	ta Perss Configu	on D ration	ahlqvis Manag	t, "Imp gement"	lementi , Artec	ing and h Hous	d Integ e Publ	rating ishers,
3.	Michae	el Griev	es, "Pro	oduct Li	ife Cyc	le Mai	nagemen	ıt", Ta	ata McC	braw Hil	1 2006.			
			10	~/		2	2.8.	18	4		. \			
E-RF	SOUR	CES:	14	1	6				13	10	12			
1.	https://	archive	.nptel.a	c.in/cou	urses/11	2/107	/112107	217/	IN	1	51			
2.	https://	archive.	.nptel.a	c.in/noc	c/course	es/noc	18/SEM	1/noc	18-me3	1/	77.			
3.	Produc ISBN-1	t Lifecy 10 : 366	vele Ma 251633	nageme 30.	ent for a	a Glob	al Marke	et, Sp	ringer; 2	2014 edi	ition (2	9 Septe	ember 2	2016),
4.	Produc 089930	t Life C)3196.	ycles a	nd Proc	luct Ma	nagen	nent, Pra	leger	Publishe	ers Inc (27 Mar	rch 198	9)ISBN	J-10 :
			1/	1	1.11	-	_	1	1	1	-01			
COU	RSE AI	RTICU	LATIO	ON MA	TRIX:		- <u>S</u>	1	1	12	5/			
CO			1	5	0	Р	Os	2	/	0	/		PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	1	17	TT	11.13	之	20	/		1	2	
2	3	2	2		1	-1	4-(1	1	_	1		1	2	
3	3	1	2		1					1		1	2	
4	3	1	2		1					1		1	2	
5	5 3 1 2 1 1 1 2													
1: Sli	ght (Lo	w), 2: N	Aodera	te (Me	dium),	3: Sul	bstantia	l (Hig	gh)					

٦

ME22025 IN PRODUCT DEVELOPMENT (Common to ME and MN) COURSE OBJECTIVES: . . To provide knowledge on quality tools such as seven old and new tools on	3 0	0										
(Common to ME and MN) COURSE OBJECTIVES: . To provide knowledge on quality tools such as seven old and new tools on	5 0		3									
COURSE OBJECTIVES: To provide knowledge on quality tools such as seven old and new tools o		v										
To provide knowledge on quality tools such as seven old and new tools of quality, statistic												
^{1.} process control, multivariate charts, box plots, Pareto charts in product develop	f quality, ment.	statis	tical									
2. To impart benchmarking quality function deployment, house of quality and r	eliability	n pro	duct									
development.												
3. To use Six Sigma and Lean manufacturing concepts in product development												
4. To apply Robust and embodiment design in product development.	nt											
5. To understand Finance and working capital management in product development	III											
UNIT I STATISTICAL TOOLS FOR PROCESS QUALITY			9									
Seven statistical tools of quality - new seven management tools - multivariable c	harts and	3d p	lot –									
statistical process control (SPC): problems in mean and range chart; p, np, u and c	c chart; pr	oblen	ns in									
box plot and pareto chart.												
			T									
UNIT II QUALITY TOOLS FOR FUNCTION AND FAILURES	0	D	<u> </u>									
Benchmarking: Types; Process; Benefits – quality function deployment (QFD):	Concept;	Bene	efits;									
Process; house of quality (HoQ): structure and methodology – feliability: hazard	/ failure f m_{α}	ate; r	nean									
time between randre, simple problems in series, paraner, combination, standby system	11159											
UNIT III DESIGN FOR QUALITY PRINCIPLES			9									
Six Sigma: definition; concept; process Define, Measure, Analyze, Improve and	d Control	(DM	AIC									
Methodology) – project selection for six sigma (types of quality problems) –	Key too	s in	lean									
production / manufacturing – 4R total improvement – PDSA cycle: phases; ber Kairwa – 5S housekeeping – Total Productive Maintenance (TPM): definition: object	ients – K	aizen										
Kanyo – 55 housekeeping – Total Productive Maintenance (TPM). definition, object	ive, pilla	s, step)8.									
UNIT IV ROBUST DESIGN AND EMBODIMENT DESIGN			9									
Robust design: definition: process steps – embodiment design: basic methods: ref	ining geo	netrv	and									
layout - Failure Mode and Effects Analysis (FMEA) procedure; benefits.												
UNIT V FINANCE AND WORKING CAPITAL MANAGEMENT			9									
Financial planning: definition; need; sources; capital structure; capitalization; terr	n loans; S	hort	term									
Finance; venture capital; export finance - working capital management: defin	nition; sig	nifica	ince;									
assessment; factors; sources; management.												
TO	ГАL: 45 I	PERI	ODS									
CO No. COURSE OUTCOMES		R L	.BT evel									
At the end of the course, students will be able to:												
Apply the concept and principles of quality tools such as seven old and no	ew tools o	f										
CO1 quality, statistical process control, multivariate charts, box plots, paret	o charts in	1	3									
product development.												
Practice the quality tools such as benchmarking, quality function de	ployment	,	2									
UU4 house of quality and reliability in anodust descelations	-		3									
nouse of quanty, and refiability in product development.												

CO	CO4 Execute robust design and embodiment design in product development. CO5 A securation of the second meridian control of												3		
СО	5	Aco	compli	sh fina	nce and	worki	ng cap	ital mar	ageme	ent in p	roduct c	levelop	ment.		3
TEX	<u>FBO</u>	OK	<u>S:</u>				~								
1.	Bake	er, catio	M. & on, 200	Hart)7.	S. "Pro	duct S	Strateg	y and	Manag	ement.	" (2nd.	Ed.)	Edinbu	rgh: F	' earson
2.	Hito Pres	oshi s, 2	Kume 008.	, "Qua	lity Ma	inagem	ent in	New F	roduct	Deve	lopment	t" 1st e	dition,	Produ	ıctivity
3.	Ulri Hill	ch, Edı	K. & I ucation	Eppinge 1, 2012.	er, S., "	Produc	t Desig	gn and I	Develo	pment.	" (5th.]	Ed.) Lo	s Ange	les: M	cGraw
REF	ERE	NCI	ES:										1		
1.	Ami Edu	itava cati	a Mitr on Asi	a, "Fu a, 2002	ndamen	tals of	Quali	ity Con	trol ar	ıd Imp	roveme	nt", 2 nd	¹ editio	on, , I	' earson
2.	Kev Proc	in (luct	Otto & Devel	x Kristi opment	in Woo t," Pear	od, 'Pr son Ed	oduct ucatio	Design 1 (LPE).	Techn 2001	iques	in Reve	erse En	gineerii	ng an	d New
3.	James R. Evens, William M Lindsay," The Management and Control of Quality,"6 th edition, Published by Son South-Western University of Mumbai,2014.														
				14	1	16		0.57	_	1 3	× / (1.1			
E-RE	SOU	JRC	CES:	F	1	4	1		~	N		21			
1.	https	s://a	urchive	.nptel.a	c.in/cou	urses/1	12/107	//112107	7217/	1		6)			
2.	https	s://e	elearn.r	nptel.ac	.in/shop	o/nptel/	/total-q	uality-n	nanage	ment-i	/	Z			
3.	http:	://w	ww.di	<u>gimat.iı</u>	n/nptel/	courses	s/video	/112107	217/L	11.htm	<u>l</u>	m	<u> </u>		
4.	<u>http</u>	s://v	www.c	lasscen	tral.con	n/cours	<u>e/sway</u>	<u>am-nev</u>	<u>/-produ</u>	act-dev	<u>elopme</u>	<u>nt-1421</u>	<u>0</u>		
5.	https	s://v	www.c	oursehe	ero.com	/file/13	371885	93/Prod	luct-De	evelopr	nent-No	otesdocy	x/		
				13	21	100				100	15	2/			
COU	RSE	AR	TICU	LATIO	ON MA	TRIX	:	. D.	2	/	9	/			
					100	2	Р	Os	~	~	6/			P	SOs
COs	1		2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	2	1		_	11	44	4	/			1	2	
2	3	;	2	1									1	2	1
3	2	2	2	1									1	2	
4	2	2	2	1									1	2	
5	2	2	1	1								3	1	2	
1: Sli	ght (Lov	w), 2: I	Modera	nte (Me	dium),	, 3: Su	bstantia	al (Hig	h)					

ME	ME22026SYSTEM DESIGN FOR SUSTAINABILITY (Common to ME and MN)LTPC3003													
	IE22020 (Common to ME and MN) 3 0 0 3 OURSE OBJECTIVES: Image: Common to ME and MN) Image: Common to ME and MN) Image: Common to ME and MN) Image: Common to ME and MN)													
	JRSE	OBJECTIVES:												
1.		initialize the sustainability design for product service systems with strate	ories	and a	midel	ines								
2.	towa	derstand the sustainability design for product service systems with strate ds the environmental, social and distributed economies systems.	egies	and §	zuldel	mes								
2	To e	plain the methods for system sustainability and its stages and tools for	r syst	tem d	lesign	for								
3.	susta	nability.												
4.	To p	actice the various tools for analyzing the system design for sustainability												
UNI	ті	INTRODUCTION- BASICS OF SUSTAINABILITY				8								
Sust	ainabi	ity, historical perception -need of sustainable development – recogniz	zed ro	ole fo	or des	ign-								
evol	ution	of sustainability design- sustainability dimensions -design for sustainability	y			-8								
UNI	TI	SUSTAINBILTY DESIGN FOR PRODUCT LIFE CYCLE				8								
Intro	ductio	on to Product Life cycle Management (PLM), need for PLM– product life	cycle	e- Pri	nciple	s of								
	cycle	assessment (LCA)- me cycle assessment- concept of eco- cosis- $C_{\rm C}$ (CLCA)- East track Life cycle assessment (ELCA)- life cycle assessment	lassi	cal L	m_{-} sv	ycie								
bour	ndarv.	(CLCA)- I ast track Life cycle assessment (I LCA)- file cycle assessment	in pai	aurgi	n- sya	stem								
0.000	<u></u>	1.9/												
UNI	T III	DESIGN FOR SUSTAINABLE PRODUCT SERVICE SYSTEM				10								
Defi	nition	Types - sustainable product service - win-win opportunities- strategie	es and	l guio	leline	s of								
prod	uct se	rvice system to environmental - social- distributed economies sustainabilit	ies.											
TINIT	T I X 7	CVCTEM DECICILEOD CHCTAINADH ITV	-			10								
Ohie	IIV	SISTEM DESIGN FOR SUSTAINABILITY	-oriei	nted r	moces									
tools	s- sust	ainability design orienting scenarios (SDOS) on sustainable product ser	vice	svstei	m (SF	PSS)								
and	Distri	outed economies (DE)- concept description form for sustainable produ	ict se	rvice	syste	em -								
stake	eholde	rs interaction storyboard- satisfaction offering diagram.												
UNI	TV	ANALYSIS OF SYSTEM DESIGN FOR SUSTAINABILITY				9								
Strat distr	ibuted	manufacturing (DM) applied to product service system - design toolkit.	ecosy	stems	; (SE	E) -								
aisti	10 410 4	TO'	TAL:	45 P	'ERI(DDS								
СО	No.	COURSE OUTCOMES			R	BT								
At th	ne end	of the course, students will be able to				vei								
						2								
	Л	Understand design's crucial role in advancing the sustainability.				3								
CC)2	Analyze the given product's life cycle using life cycle assessment metho	ds			3								
CC)3	Apply the design concepts for Sustainable Product Service System				3								
CC)4	Execute the methods for system design for sustainability processes.				4								
CC	CO5 Analyze the socio-economic ecosystems applied to Product service system. 4													

TEX	TBOOH	KS:												
1	1. Fabio Giudice, Guido La Rosa, "Product Design for the environment-A life cycle approach,"													
1.	Taylor	& Fran	cis, 200)6.										
2	Kalpak	ijian,S a	and Scl	nmid, S	S "Mar	nufactui	ring Pro	ocesses	s for Er	ngineeri	ing Ma	terials,'	'6th e	dition,
Ζ.	Pearson	n, 2016	•											
3.	Seliger Manuf	,G, Ma acturing	arwan, ". IRP.	M.K. Spring	Khrai ver pub	sheh, l lishers.	I.S. Jav 2011.	wahir,	D. Ro	odick,	"Advar	nces in	Susta	inable
manufacturing , net, opringer paononero, 2011.														
REF	ERENC	CES:												
1.	Carlo Practic	vezzolı, e," Ma	luca N ggioli I	Aacri E Editore	Berill 1 , , Via (akacs del Car	Dongfa pin , 20	ng Ya 22.	ng," Sy	vstem L	Design	for Sus	tainabi	lity in
2.	Ceschi technic Routle	n Fabri al Sys dge,202	zio," D stems 21.	esign f (Routle	for sust edge 1	ainabil Focus	ity: A i on Er	Multi-l ivironn	evel Fr nent a	amewo nd Su	rk from stainab	n Produ ility) , "	cts to 1 st e	Socio- dition,
3.	Vezzol of Sust 2021.	i,C, Bro ainable	enda Ga Produc	arcia P ct-Serv	arra,an ice Sys	d Koh tems A	tala ,C, pplied	" Des to Dist	igning stributed	Sustain Econo:	ability mies,"	for All: 1 st editi	The I on, Spi	Design ringer;
4.	Vezzol "Produ	i, C., I ct-servi	Kohtala	a, C., S em des	Sriniva ign for	san, A sustain	., Xin, ability.	L., Fu 1 st edi	isakul, tion, Ro	M., Sa outledge	ateesh, e,2014.	D. and	l Dieh	l, J.C,
			1.4	2/		1.	1.0	92.5	1-0	13	01			
E-RF	ESOUR	CES:	12	1	1.2	1	_	1	N	1	2)			
1.	1. http://www.lens-india.org,													
2.	https://	www.c	oursera	.org/co	urses?c	query=s	ustaina	bility	1 25	S	2	1		
3.	https://	'www.y	outube.	com/pl	aylist?	list=PL	wdnzlV	/3ogoX	KD4NB	vgyZJh	sDUga	EB1nV	3	
4.	https://	www.y	outube.	com/us	ser/CES	SEduPa	ckTuto	rials.	1.20	~-	m			
5.	https://	www.c	oursehe	ero.com	/file/1.	371885	93/Proc	luct-De	evelopn	nent-No	otesdoc	x/		
				1.			-36	1	1	1	SI			
COU	RSE A	RTICU	LATIC	ON MA	TRIX	:	T		-	10	1			
COa				0		P	Os		1	2	/		PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2			1	2	2	6	/			1	1	
2	3	2				2	2					1	1	
3	3	1				2	2					1	1	
4	3	2				2	2					1	1	
5	3	2				2	2					1	1	
1: Sli	ght (Lo	w), 2: I	Modera	nte (Me	edium)	, 3: Sul	bstanti	al (Hig	(h)					

ME22027VALUE ENGINEERING AND PROCESS PLANNINGLTPC(Common to ME and MN)3003														
	(Common to ME and MN) 3 0 0 3 COURSE OBJECTIVES: 3 0 0 3													
COU	RSE (DBJECTIVES:												
1. ′	To Stu	dy the value of the engineering process and identify its functions within t	the pro	ocess										
· · · ·	To De	termine appropriate value engineering methodologies for given projects a	and pr	opose	e rele	vant								
<i>2</i> . 1	trainin	g approaches	1	1										
3.	To eq	up students with the necessary knowledge and skills to effectively util	lize w	orks	heets	and								
	guidel	ines for value engineering projects												
4. ′	To Un	derstand the principles of process planning and its significance in manufa	cturir	ıg.										
5. '	To Lea	arn how to select appropriate production processes, tools, and parameters.	•											
6. ′	To Est	imate costs associated with different manufacturing operations.												
						-								
UNIT	ΓI	VALUE ENGINEERING JOB PLAN AND PROCESS				9								
Defin	ition (of value engineering and value analysis, Value management vs. traditi	onal	cost	reduc	tion								
techni	iques,	Types of value functions, Creativity in value engineering. Job Plan a	nd Pr	ocess	s - Se	even								
phase	s of th	e job plan, FAST Diagramming as a value engineering tool, Behavioral	l and	orgai	nizati	onal								
aspec	ts, Pri	nciples of value analysis, Benefits of value engineering.												
UNII	T II	VALUE ENGINEERING TECHNIQUES				9								
Creat	ivitv t	echniques (brainstorming, Gordon technique), ABC Analysis, Probabilis	stic ar	proa	ch. N	Iake								
or buy	v deci	sions, Function cost-worth analysis (FCWA), Function Analysis System	Tech	niaue	(FA	ST).								
Break	-even	analysis Life cycle cost (LCC)			(~ _ /,								
Dieun														
TINIT	TTT		-			•								
UNIT		WORKSHEETS AND GUIDELINES				9								
Prepa	ration	of worksheets, Function classification, relationship, and summary, Cost a	analys	sis, Id	ea lis	sting								
and co	ompar	ison, Feasibility ranking, Value engineering proposal writing, financial as	spects	- Ca	se stu	idies								
and d	iscussi	ion.												
UNIT	ΓIV	PROCESS PLANNING AND ACTIVITIES				9								
Proce	ss Pla	nning - Meaning and significance of process planning - Methods of	proce	ess p	lanni	ng -								
Draw	ing in	terpretation - Material evaluation - Steps in process selection - Produc	tion e	quip	ment	and								
toolin	ig sele	ction. Calculation for various production processes, Selection of jigs a	nd fix	tures	, Qu	ality								
assura	ance r	nethods. Set of documents for process planning. Economics of proce	ess pla	annin	g - (Case								
studie	es.	YET TIT GOV	1		0									
UNIT	ГΥ	PRODUCTION COST ESTIMATION				9								
Metho	ods of	costing - Elements of cost estimation - Types of estimates - Estimating	labor	cost	mat	erial								
cost	and ov	erbead charges Estimation of Different Types of Jobs	14001	cost	, mai	eriui								
Impoi	rtance	of machine time calculation - Calculation of machining time for differen	nt latk	ie on	eratio	ms -								
Drilli	ng and	boring time estimation	in ian	ic op	crain	<i>л</i> ıз -								
DIIII	ing and	TO	FAL:	45 P	ERI	ODS								
CON	No	COURSE OUTCOMES			R	BT								
					L	evel								
At the	e end o	of the course, students will be able to:												
CO	1	Possess a comprehensive understanding of value engineering and valu	e ana	lysis,		3								
	-	distinguishing between the approaches and recognizing their signi	ficanc	e in		-								

optimizing value within engineering projects.														
CO2	A	Apply th	e tools	effectiv	vely to	evaluat	te optio	ns, opti	imize v	value, a	nd mak	e inform	ned	3
	ć	lecision	s across	s variou	s engin	eering	context	ts		-				5
CO3		Create	and u	tilize 1	the wo	orkshee	ets and	l guid	elines	for v	alue e	engineer	ring	3
	P	proposal	/project	ts.		lana fi			fo of				1 4 0	
CO4	e e	stimate	produc	tion co	sts accu	irately.	or varie	ous ma	inuract	uring (operatio	ons and	i to	3
CO5		Calculate	e costs	associa	ted with	h vario	us man	ufactur	ing ope	erations				3
	BOO	<u>KS:</u>	A 1		<u>г</u> ,	•	0	D 1 1'	/' T	T. 1			010	
1.	Mukh	ophadhy	aya A	K, Valu	e Engi	neering	g, Sage	Publica	tions F	vt. Ltd.	, New I	Delhi, 2	2019	
2.	Richar Sinho	D D M	, value	e Engin	eering -	- A Pla	in for Ir	Toto M	iis, St.		ress, Lo ublichir	$\frac{1}{2}$	$\frac{2017.}{1005}$	
0 Ostwalal, P.F. and JairoMunez, Manufacturing Processes and Systems, 9th Edition,														
4. JohnWiley, 2008.														
REFERENCES:														
Larry W Zimmesman. P E, Value Engineering –A Practical Approach for Owners Designer													ers and	
1. Contractors, CBS Publishers, New Delhi, 1992														
2. Arthus E Mudge, Value Engineering, McGraw Hill Inc., New York, 1996														
3. Russell, R.S. and Tailor, B.W., Operations Management, 4th Edition, PHI, 2011.														
4. Chitale, A.V. and Gupta, R.C., Product Design and Manufacturing, 2nd Edition, PHI, 2011.														
E-RESOURCES:														
1.	https://	/onlinec	ourses.	nptel.ac	.in/noc	:19_me	51/prev	view	0	×	m			
2.	https://	/archive	.nptel.a	.c.in/co	urses/1	10/105/	/110105	5155/			201			
3.	https://	/archive	.nptel.a	.c.in/co	urses/10	05/106/	/105106	5149/		12	5/			
4.	https://	/onlinec	ourses.	nptel.ac	.in/noc	20_me	12/prev	view	1	0	1			
			1	0.	-	10			1)	/			
COUF	RSE A	RTICU	LATIO	ON MA	TRIX		-	~	1	1				
COa					A	9/Р	Os	6	2	6			P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	1	1		1		1					1	1	
2	3	1	1		1		1			1		1	1	
3	3	1	1		1		1					1	1	
4 3 1 1 1 1 1 1 1 1 1 1														
5 3 1 1 1 3 1 1														
1: Slig	ht (Lo	ow), 2: I	Modera	ate (Me	dium),	3: Sul	ostantia	al (Hig	h)	ı	I	·		

ME	2202	PRODUCT LIFE CYCLE MANAGEMENT LABORATORY	L	Т	Р	С
IVII	12202	(Common to ME and MN)	0	0	4	2
COU	JRSE	OBJECTIVES:				
1.	Acq	uire prerequisite knowledge essential for effective PLM utilization				
2.	Und	erstand the procedural aspects of implementing PLM tools				
3.	Dev	elop confidence and competence in integrating CAD/CAE software with	PLM	systen	ns	
LIST	ΓOF	EXPERIMENTS:				
1.	Exp	ore different CAD software tools and their basic features.				
2.	Rec	reate engineering drawing sheet layouts using industry-standard practices	•			
3.	Crea	te 3D models from 2D sketches using techniques like extrusion and revo	lution			
4.	Des	gn, model, and assemble engineering components using solid modeling of	operation	ions.		
5.	Perf	orm static structural analysis with FEA software.				
6.	Con	duct modal analysis for natural frequencies.				
7.	Ana	lyze thermal distribution and thermal stresses.				
	Exh	biting use of following modules of any PLM software through at least six assign	nments	5		
	•	Organization				
	•	Workflow				
0	•	A coose Manager	1			
0.		Ouery Builder	1			
	•	Change Management				
	•	Schedule Manager				
	•	Manufacturing Process Planner	20 C			
			COTA	L: 60	PER	IODS
CO	No	COURSE OUTCOMES	/		I	₹BT
	110.		<u></u>		I	<i>l</i> evel
At th	ne end	of the course, students will be able to:	1 1	. 1		
CC)1	Gain proficiency in exploring various CAD software tools, understan	d and	l apply	Y	3
		their basic features within the context of PLM.	h a a t		~	
CC)2	adhering to industry standard practices using PLM software	neet	layout	8	3
		Develop skills in creating detailed 3D models from 2D sketches utilizin	a teck	nique	2	
CC)3	such as extrusion and revolution within PLM environments	5 1001	inque	3	4
REF	ERE	NCES:				
1.	K.R.	Gopalakrishnan," Machine Drawing", Pearson Education Publication, 20	20			
2.	Karl	Jlrich, Steven Eppinger, "Product Design and Development", McGraw-H	Iill Ed	lucatio	on, 20	12
3.	Burde	en, Rodger PDM: Product Data Management, Resource Publications, 200	3			
4.	Saaks	vuori, Antti & Immonen, Anselmi. Product Lifecycle Management, Sprin	nger-V	/erlag,	, 2004	ŀ
5.	Gera	dus Blokdyk, "PLM Software A Complete Guide", 2019				
6.	Stark	John. "Product Lifecycle Management: Paradigm for 21st Century	Prod	uct R	ealiza	tion",
	Sprin	ger-Verlag, 2004. ISBN 1852338105				
1						

COURSE ARTICULATION MATRIX:														
COs						P	Os						PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3			3				3				1	
2.	3	3	3		3				3					
3.	3	3	3		3				3				1	
SL.N	0.				LIST	OF E	XPERI	MENI	S				Qty	y.
1.	(Comput	er Serve	er									1	
2.	1	Comput network	er node ed to th	s or sys e serve	stems (I r	High en	d CPU	with at	least 1	GB ma	in men	nory)	30	
3.	1	Laser Pr	inter	/	aP	10	OL	LE	GF	1			1	
4.]	PLM Licensed software integrated with CAD and FEA30												
5.	1	Licensed operating system								30				

VERTICAL 3 DIGITAL AND GREEN MANUFACTURING

ME220	31 DIGITAL MANUFACTURING AND INTERNET OF THINGS			P o	C 2							
COURS	F OR IFCTIVES:	5 (,	U								
1. Ac	nuire knowledge about the fundamentals of digital manufacturing.											
2. Un	derstand the integration of IoT technologies with digital manufacturing proce	esses.										
3. Ap	bly data analytics techniques to interpret manufacturing data collected through	gh IoT.										
		-										
UNIT I	INTRODUCTION TO DIGITAL MANUFACTURING				9							
Historic	l context and evolution of Digital Manufacturing - Key Components and T	Cechnolo	ogies	s - D	DNC							
and UNC - Additive Manufacturing - Adaptive control - types, application and benefits - general												
contiguration of adaptive control and function – reasons for process change -practical problems with adaptive control												
adaptive control - example for feedback and adaptive control.												
UNIT II MECHATRONIC ELEMENTS IN CNC MACHINE TOOLS												
CNC sv	tems - configuration of the CNC system – interfacing – monitoring – diagno	ostics ma	nchi	ne d	ata -							
compens	ations for machine accuracies - PLC in CNC – PLC programming	for CN	С,	step	s in							
program	ming and case studies - machine structure -types of loads on CNC machin	ie - guio	le w	ays	and							
types - r	nechanical transmission elements - elements for rotary motion to linear mot	ion - ba	ll sc	rew	and							
types -re	ller screw and types -rack and pinion - various torque transmission element	nts -requ	iirer	nent	ts of							
feed driv	es and spindle drive.											
UNIT I	I INTERNET OF THINGS (IoT)				9							
IoT Fun Sensors	damentals and Architecture - Architecture and Layer - Types - IoT Syste and Data Acquisition - Techniques - Challenges in industrial environments	ms - Ic - Data N	oT d Mana	levic agen	es - nent							
and Secu	rity - Design and Methodology.											
	12/2 1 2/2/											
UNITI	COMMUNICATION PROTOCOLS		0		9							
lol Con	munication Protocols - Principles of Wired and Wireless Connectivity – Eff	1ciency	– Se r C	ecuri	ity –							
IoT Har	ware - Cloud Computing - Edg and Edge Computing	IIIS - 101	U Ua	alew	ay -							
101 1141	tware - cloud computing - 1 og and Lage computing.											
UNIT V	CHALLENGES AND CASE STUDIES				9							
Security	Threats and Vulnerabilities - Cyber threats in IoT-enabled manufacturing	systems	- S	trate	gies							
for secur	ing infrastructure, devices and data - Predictive Maintenance and Quality C	ontrol.	Case	e stu	dies							
-Connec	ed Vehicles - Smart Grid - Industrial IoT - Agriculture, Healthcare, Activity	Monito	ring	5 .								
	TO	ГАL: 45	5 PE	RIC)DS							
	COURSE OUTCOMES			R	BT							
				Le	evel							
At the en	d of the course, students will be able to:			1								
CO1	Apply procedural knowledge and technical skills to execute digital mar processes.	ufacturi	ng		3							
CO2	Able to design and implement end-to-end IoT solutions.				3							
L				I								

Gain an understanding of the security and privacy challenges inherent in IoT												
systems.												
CO5 Apply IoT principles and technologies to real-world scenarios across different 4 domains.												
TEXTBOOKS:												
1. Groover, M.P., "Automation, Production System and CIM", Prentice Hall of India Pvt. Ltd, 2003												
2. S. MISRA, A. MUKNERJEE, and A. KOY, 2020. Introduction to IoT. Cambridge University Press.												
DEFEDENCES.												
REFERENCES:												
1. Kaushik Kumai, Divya Zindani, J. Faulo Davini, 2019. Digital Manufacturing and Assemble Systems in Industry 4.0 (Science, Technology and Management) CRC Press												
S Misra C Roy and A Mukheriee 2020 Introduction to Industrial Internet of Things an												
2. Industry 4.0. CRC Press.												
2 Internet of Things - A Hands on Approach - Arshdeep Bahga and Vijay Madisetti. Universitie												
^{3.} Press, ISBN: 9788173719547.												
Designing the Internet of Things - Adrian McEwen & Hakim Cassimality. Wiley India, ISBN												
4. 9788126556861.												
141.0												
E-RESOURCES:												
1. https://onlinecourses.nptel.ac.in/noc22_cs53/preview												
COURSE ARTICULATION MATRIX:												
POs PSOs												
COs 1 2 3 4 5 6 7 8 9 10 11 12 1 2												
1 3 3 2 1 2												
2 3 3 2 2 1 1 2												
3 3 3 2 2 1 1 2												
4 3 3 2 2 1 1 2												
5 3 3 3 2 1 1 2												
1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)												

SUSTAINABLE MANUFACTURING

 L
 T
 P
 C

 3
 0
 0
 3

9

9

9

9

9

COURSE OBJECTIVES:

1. Familiarize the concept and importance of sustainability manufacturing with tools and techniques

2. To teach various tools/techniques of sustainable manufacturing

3. Inculcate knowledge on performing life cycle analysis

4. To impart the factors to be considered for Modelling a Green manufacturing environment

5. Introduce the concept of green supply chain management

UNIT I INTRODUCTION TO SUSTAINABLE MANUFACTURING

Introduction to Sustainable Manufacturing; Resources in manufacturing, Drivers of Sustainable Manufacturing; Concept of Triple bottom line; Environmental, Economic and Social Dimensions of Sustainability; Relation between Green, Lean and Sustainable manufacturing.

UNIT II SUSTAINABLE MANUFACTUIRNG TOOLS

Environmental conscious- quality function deployment-R3 and R6 cycles-Environmental impact assessment methods- CML, EI 95 and 99, ISO 14001, EMS and PAS 2050 standards, environmental impact parameters. Sustainability assessment-concept models and various approaches, product sustainability and risk assessment-corporate social responsibility.

UNIT III SUSTAINABLE PRODUCT DESIGN

Life cycle analysis-Remanufacture and disposal, tools for LCA, LCA assessment elements, optimization for achieving sustainability in manufacturing, value analysis, analysis for carbon footprint-software packages for sustainability analysis, factors effecting sustainability.

UNIT IV GREEN MANUFACTURING MODELLING

Metrics for green manufacturing - Economic metrics, Environmental metrics, Societal metrics. Green manufacturing indicators - Product-level indicators for green manufacturing, Industry level indicators for green manufacturing, green manufacturing rating criteria, Number of indicators to use.

Developing Green Manufacturing System - Manufacturing strategy for green manufacturing, Steps in developing green manufacturing system, Identify the status Improvement plan, Implementation, Maintain Environment conservation activities

UNIT V GREEN SUPPLY CHAIN

Carbon footprints in transportation, Green Supply chain: techniques and implementation Green Supply chain, Logistics management Green Supply Chain as Product Life Cycle Management, Case Studies: Green packaging and supply chain, implementation of lean manufacturing at industries.

TOTAL: 45 PERIODS

CO No.	o. COURSE OUTCOMES								
At the end of the course, students will be able to:									
CO1	Recognize the Need of Sustainable Manufacturing	2							
CO2	Explore the State-of-art Tools & Techniques of Sustainable Manufacturing	3							

CO	3 I	Perform nanufac	carbon	footpr systems	rint ana and pr	lysis a ocesses	nd Life 3.	e Cycle	Asses	sment	(LCA)	specific to		3
CO	4 1	Design a	and deve	elop gro	een ma	nufactu	ring an	d apply	enviro	onmenta	al norm	s		4
CO	5 1	Develop	Green	Supply	Chain	Techni	ques.							4
TEX	[BOO	KS·												
1.	Mrityı Advar	injay S ced Ma	Singh, 7 Iterials"	Г. Ohji Elsevie	i and er (1st l	Rajiv Ed.) 20	Asthan	a, "Gr	een an	d Sust	ainable	Manufac	turii	ng of
2.	G. Se Manut	liger, I facturin	Marwan g", IRP.	, M.K.	. Khra ger publ	isheh, lishers.	I.S. Ja 2011	wahir,	D. Ro	odick,	"Advar	nces in Su	istai	inable
I	DEEDENCES													
KEFERENCES: 1. Klemes J., Sustainability in the process industry. McGraw-Hill. 2011.														
1.	2 G. Atkinson, S. Dietz, E. Neumayer, Handbook of Sustainable Manufacturing. Edward Elgar													
2.	Publishing Limited,2007 Christian N. Madu, Handbook of anvironmentally, conscious merufacturing. London Kluwer, Auderic													
3.	Christian N. Madu, Handbook of environmentally conscious manufacturing, London Kluwer Academic Publishers,2001.													
4.	Joseph Sarkis, Greener manufacturing and operations: from design to delivery and back, Greenleaf Publications, 2001													
5.	Balkan Cetinkaya and Richard Cuthbertson 'Sustainable Supply Chain Management' 2nd Edition, Springer, 2011.													
6.	Rogers, P.P., Jalal, K.F. and Boyd, "An Introduction to Sustainable Development", Earth scan, London, 2007.													
7.	D. Ro York, 2	dick, Ind 2007	dustrial	Develop	oment f	or the 2	21st Ce	ntury: S	Sustaina	ble Dev	elopme	nt Perspect	ives	, New
8.	U.S. I manufa	Departmotecturing	ent of l and the	Energy, Circular	Office Econor	of the ny, 202	e Energ 3	y effic	iency a	ind ren	ewable	energy, "S	usta	inable
			17	1	1.71			1		1	-01			
E-RE	SOUR	CES:	13	21	1		- 50		1	13	5/			
1.	https:/	/nptel.a	c.in/cou	rses/11	210422	25	cito.	2	/	9	/			
2.	https:/	/vrscet.	digimat.	.in/npte	l/cours	es/vide	o/1121	04225/1	L21.htr	nl /				
				1	19	TT		2	20,	/				
COU	RSE A	RTICU	JLATIO	ON MA	TRIX	-11	43	4	/			I		
COs		1		1		P	Os			T			PS	Os
005	1	2	3	4	5	6	7	8	9	10	11	12	l	2
1	2						1			1				2
2	3						1			1				3
3	3	2					1			1				3
4	3	2					1			1				3
5	3						1			1				3
1: Sli	ght (Lo	ow), 2:	Modera	nte (Me	edium),	3: Sub	ostantia	al (Hig	h)					

ME	22033	ENVIRONMENTAL IMPACT ASSESSMENT	P	С									
	22033	(Common to ME and MN) 3 0	0	3									
COU	URSE	OBJECTIVES:											
1.	Empl	asize the significance of conducting an Environmental Impact Assessment (EIA	() as	an									
	integ	al part of the planning process for the proposed project.											
2.	Ident	ify and assess the anticipated environmental impacts of the project, considering	vari	ous									
	Deter	mine the key environmental parameters and attributes that will be monitored and		sed									
3.	throu	shout the EIA process.	<i>assec</i>	scu									
UNI	ΤI	INTRODUCTION TO EIA		9									
Con	cepts	of environmental impact assessment: Environment; environmental impacts; environmental impac	nme	ntal									
impa	act ana	lysis; and environmental impact statement; EIA- as an integral part of the planning pr	ocess	5									
		COLLEO		_									
UNIT II DETAILED CONTENTS OF EIA 9													
Detailed Contents of EIA: Introduction; Project Description; Description of The Environment;													
Anu Mon	cipale	Programme: Additional studies: Project Benefits: Environmental Cost Benefit Analysis	onme	ntai									
WIOI	ntoring	r rogramme, Additional studies, r roject benefits, Environmental Cost benefit Anary	515										
UNIT III ENVIRONMENTAL ATTRIBUTES 9													
Environmental attributes: air; water; noise; land and soil. Description of the Baseline Environment:													
Purposes for defining the Environmental Setting; Selection of parameters, Monitoring of physical													
envi	ronme	ntal parameters, Collection, and interpretation of baseline data for various enviro	nme	ntal									
attril	butes												
UNI	TIV	ASSESSMENT METHODS		9									
Pred	iction	and Methods of Assessment of Impacts on Various aspects of Environment; Applic	atioi	1 Of									
Fnvi	ironme	outers for the Frediction of impact on An Environment, water Environment	., ING	Jise									
UNI	ТV	PROJECT CATEGORIZATION AND CASE STUDIES		9									
Cate	goriza	tion of projects, Procedure for getting environmental clearance. Case studies on	EIA	for									
Indu	stries	and Infrastructure projects											
		TOTAL: 45 PH	CRIC	DS									
			1										
со	No.	COURSE OUTCOMES	Rl Le	BT vel									
At th	ne end	of the course, students will be able to:	1										
CO	D1												
CO		Understands the importance of EIA as an integral part of planning process2Examine the project for anticipating the impact on environment and analysis of2											
1	02	Understands the importance of EIA as an integral part of planning process Examine the project for anticipating the impact on environment and analysis of alternatives.	,	2									
CO	D2 D3	Understands the importance of EIA as an integral part of planning process Examine the project for anticipating the impact on environment and analysis of alternatives. Examine different environmental attributes and selecting the environmental parameters affecting project		2 3 3									

CO	5	Cre	ate th	e EIA r	eport f	for getti	ng Env	ironme	ental cle	earance					4
TEX	ГВО	OKS	:												
1.	Anja BS 1	aneyt public	lu Y atior	erramill ns, 2000	i and	Valli N	Manicka	am, Er	vironm	ental I	mpact	assessm	nent metho	odolo	ogies,
2.	 John Glasson and Riki Therivel, Introduction To Environmental Impact Assessment 5th Edition, Taylor and francis, 2019. 														
REFERENCES:															
V. S. Kulkarni, Dr. S. N. Kaul and R. K. Trivedy, A Handbook of Environment Impact															
1.	Ass	essme	ent H	ardcove	r Scier	ntific p	ublisher	iourna	als. 200	2					
2.	Rau	au Whooten, Environmental Impact Analysis Handbook, McGraw Hill publications, 1980													
3.	Judith Petts, Handbook of Environment Impact Assessment, McGraw Hill publications, 1999														
2. Fulling Color of Environment Impact responsibility, interest of Environment Impact responses in the Environment Impact response in the Environment Impact responses in the Environment Impact response in the Environment Impact responses in the Environment Impact response in the Envit Impact response in the Environment Impact response															
E-RE	SOU	JRCH	ES:		/	AD	0	OL.	LE(36	1				
1.	http	s://on	linec	ourses.r	ptel.a	c.in/noc	:23_ar0	4/prev	iew	1	0	5			
				1	0	1	1.00	100		1	N				
COU	RSE	ART	TCU	LATIO	N MA	TRIX		N.		1		10			
GO		POs										PSOs			
COs	1	L	2	3	4	5	6	7	8	9	10	11	12	1	2
1				2	1	. /	2	3		1023	ð	5			2
2			2	2	10.00	1.20	2	3				E			2
3	2	2	1	LLI	3	2	2	3		25	×	m.	2		2
4				7	2	3	2	3	3		1	2	2		2
5				1-	2	1	2	3	2	13	13	2	2		2
1: Sli	ght (Low)	, 2: N	Modera	te (Me	dium),	, 3: Sub	stanti	al (Higl	h)	0	1			
					0	177	वा	क रा	100	Int	/				

ME22034 GREEN MANUFACTURING DESIGN AND PRACTICES (Common to ME and MN) L T P C COURSE OBJECTIVES: 3 0 0 3

1. To introduce the concept of environmental design and industrial ecology

2. To impart knowledge about air pollution and its effects on the environment.

3. To enlighten the students with knowledge about noise and its effects on the environment.

4. To enlighten the students with knowledge about water pollution and its effects on the environment. To introduce the concept of green co-rating and its need.

UNIT I DESIGN FOR ENVIRONMENT AND LIFE CYCLE ASSESSMENT

Introduction to Environmental effects of design -natural friendly material –application- Eco friendly design - Emission less manufacturing– Pollution prevention – Reduction of toxic emission – design for recycle.

UNIT II POLLUTANTS AND MEASUREMENT

Pollutants-Types-Industrial Pollution- Ambient air quality Standards- Air pollution sampling-collection of gaseous air pollutants-collection of particulate pollutants-stock sampling- analysis of air pollutants-sulfur dioxide-nitrogen dioxide- carbon monoxide- oxidants and ozone.

UNIT III NOISE POLLUTION AND CONTROL

Definition and types of noise pollution-Frequency and Sound Levels- Units of Noise based power radio-Measuring Instruments for frequency and Noise levels-types-Standards for acceptable noise levels in different environments- Noise mitigation strategies-Engineering Controls-Sound barriers-noise-reducing materials.

UNIT IV WATER DEMAND AND WATER QUALITY

Water resources-importance of water demand and quality-Factors affecting consumption-Variation-Contaminants in water-Nitrates-Fluorides- Detergents- taste and odour- Radio activity in water- Major pollutants of Water- Water Quality Requirement for different uses-Global water crisis issues.

UNIT V GREEN CO-RATING

Ecological Footprint - Need for Green Co-Rating – Green Co-Rating System – Intent – System Approach – Weightage- Assessment Process – Types of Rating – Green Co-Benefits – Case Studies Of Green Co-Rating

TOTAL: 45 PERIODS

CO No.	COURSE OUTCOMES	RBT Level								
At the end of the course, students will be able to:										
CO1	Understand the environmental design and selection of eco-friendly materials	2								
CO2	Examine manufacturing processes towards minimization or prevention of air pollution.	4								
CO3	Analyse manufacturing processes towards minimization or prevention of noise pollution.	4								
CO4	Analyse manufacturing processes towards minimization or prevention of water pollution.	4								

9

9

9

9

9 0n-

CO	5	Exa	amine	e green	co-ratin	ig and i	ts bene	efits							4
TEX	ТВО	OKS	:												
1.	D. D 2013	orni	feld (ed.), G	reen M	anufact	turing:	Fundar	nentals	and A	Applicat	ions, Sp	oringer	, New	York,
2.	Grad	el.T	.E. ar	nd B.R.	Allenb	y, Indu	strial E	cology	Prenti	ce Hall	l, 2010				
3.	Rao Delh	M.N i Se	I. and	l Dutta Edition	A.K. V	Vastew	ater tre	eatment	, Oxfo	rd & II	BH pub	lishing	Co. Pv	vt. Ltd	., New
REFERENCES:															
1	Frances Cairncross, Costing the Earth: The Challenge for Governments, the Opportunities for														
1.	Busi	ness	, Har	vard Bu	isiness S	<u>School</u>	Press,1	1993.				~			
2.	Worl Univ	World Commission on Environment and Development (WCED), Our Common Future, Oxford University Press 2005.													
3.	Rao	ao CS, Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 2006.													
4.	Lewis H Bell and Douglas H Bell, Industrial noise control, Fundamentals and applications, Marcel Decker, 1994.														
E-RF	SOU	RCI	ES:	10	?/	- 15	- Te			10	11	01			
1.	https	://ar	chive	.nptel.a	c.in/cou	urses/1	12/104	/112104	4225/	N	- \	21			
2.	https	://ar	chive	.nptel.a	c.in/no	c/cours	es/noc	19/SEM	[1/noc1	9-mg2	4/	03			
				Y		. 1	1.1		0	1250	80. d	2			
COU	RSE .	AR	FICU	LATI	ON MA	TRIX	1	1	7	1-1-1		177			
00				Ш	5		P	Os		1.85	5-	m		P	SOs
COs	1		2	3	4	5	6	7	8	9	10	-m/	12	1	2
1	3		2	1-	13	3	1	1	1	17	13	5/	1	1	
2	3		2	1	5		1	1	2	/	1	/	1	1	
3	3		2		1		1	V	1	~	1/		1	1	
4	3		2		1	19	1	1	- 21	20	1		1	1	
5	3		2			/	_1	44	Y		1		1	1	
1: Sli	ght (I	Jow), 2: I	Modera	ate (Me	dium),	3: Sul	ostantia	al (Hig	h)					

г

		GREEN SUPPLY CHAIN MANAGEMENT	L	Т	Р	C								
ME	22035	(Common to ME and MN)	3	0	0	3								
COU	URSE	OBJECTIVES:												
1.	To in	troduce the concepts of green supply chain Management (GSCM) to the s	tuder	nts										
2.	To st	ress on importance of measuring and managing GSCM												
3.	To in	corporate knowledge of developing sustainable product for environment												
TINI	тт	INTRODUCTION TO CREEN SUPPLY CHAIN MANACEMENT	,			0								
Gree	n sur	poly Chains – Need for Green Supply Chains – Implications of m	oder	n sun	nlv c	hain								
man	ageme	ont – The supply chain strategy – Sustainable Development Goals (SI	DG)-	Envi	ronm	ental								
conc	erns o	f the modern society	,											
UNIT II MEASURING AND MONITORING CREEN SUDDI V CHAINS 0														
UNIT II MEASURING AND MONITORING GREEN SUPPLY CHAINS														
Ingredients of green supply chain strategy -Evaluating the impact of GSCM activities on sustainability – Economic Environmental and social impacts of GSCM. Stages of GSCM performance measurement														
Economic, Environmental, and social impacts of GSCM- Stages of GSCM - performance measurement.														
UNIT III MANACINC SUDDI V NETWODE OF OPFENI SUDDI V CUAIN														
UNIT III MANAGING SUPPLY NETWORK OF GREEN SUPPLY CHAIN														
Man	aging	supply chain processes – Analyzing and monitoring systematically – C	Greer	1 Sup	ply C	hain								
Segmentation - Supply chain operations reference (SCOR) model – Green SCOR as a focused model; –														
Opu	Optimization of goods collection													
UNI	TIV	LIFE CYCLE APPROACH AND SUSTAINABLE ECO.DESIGN				9								
Stag	UNIT IV LIFE CYCLE APPROACH AND SUSTAINABLE ECO-DESIGN 9 Stages of product development process in green design: Materials- Manufacturing - Packaging and use -													
Estir	nating	product life cycle- End of Life and disposal - Design for recycling - Life	e Cy	cle A	ssessi	ment								
(LC	A), an	d Eco-design tools - Environmental management systems, and Internationa	al sta	ndard	S									
						1								
UNI	TV	LOGISTICS & CASE STUDIES				9								
Chal	llenge	s and issues – Transport marketplace – Transport exchange – GSCM	enabl	lers w	ith I	4.0 -								
was	te gen	erated in supply chain processes- GSCM case studies.		45 1		ODC								
		10	TAL	:: 45 P	ERI	UDS								
						DT								
CO	No.	COURSE OUTCOMES				evel								
At th	ne end	of the course, students will be able to:												
CO	01	Understand concept of Green supply chain management and Sustainabili	ty			2								
CO	02	Monitor Green Supply Chain Management.				3								
CO)3	Manage the supply network and address its issues				3								
CO	04	Analyze stages of creating sustainable ecofriendly product				3								
CO	05	Find solutions logistic problems in GSCM through case studies				3								
		0.112			·									
ТЕХ	(TBO	OKS:	<u> </u>		<u> </u>									

1. Green Supply Chain Management, by Charisios Achillas , Dionysis D. Bochtis , Dimitrios Aidonis, Routledge; 1st edition, 2018

	Supply Chains - A Research-Based Textbook on Operations and Strategy by Yann Bouchery,
2.	Charles J. Corbett, Jan C. Fransoo and Tarkan Tan, Volume 4, Springer Series in Supply Chain
	Management,2017

REFERENCES:

- Balkan Cetinkaya and Richard Cuthbertson 'Sustainable Supply Chain Management' 2nd Edition, Springer, 2011
 Micheal Hugos, Essentials of Supply Chain Management, Wiley, 2018
- 3. Sunil Chopra and Peter Meindl, Supply Chain Management, Pearson Publishers, 2016.

E-RESOURCES:

1. https://nptel.ac.in/courses/110108056

COUR	SE Al	RTICU	LATIC	DN MA	ATRIX	- C	OL	LE	2	-				
COs		PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	1	10	2/		2	2		A		~			2
2		1	14	1	1. 6.		2	3	13	1	2			2
3			17	2	- 7	10	3	10	N.	1	0	6		2
4			3	2		2	3	3	1000	25	1			3
5		2	3	13	1.00	1	3		-	2	2			2
1: Slig	ht (Lo	w), 2:]	Modera	te (M	edium)	. 3: Sul	ostanti	al (Hig	h)	22.1	111			4

INS STATE

tant or

INECCOURSE OBJECTIVES: 3 0 1. Understand the principles of lean manufacturing to identify and eliminate waste within processes. 1 2. Implement strategies such as Just in time (JIT) continuous improvement, Total principles of the principles of streamline operations and increase efficient and the principles like Total Quality Management (TQM) and mistake-proofing (Pokalensure high-quality output. 3. UNIT I INTRODUCTION Introduction to Lean and Factory Simulation: History of Lean and comparison to other method.	0 roduct roduct iency. ·Yoke)	3 tion tive) to										
COURSE OBJECTIVES: 1. Understand the principles of lean manufacturing to identify and eliminate waste within processes. 2. Implement strategies such as Just in time (JIT) continuous improvement, Total principles (TPM) and value stream mapping to streamline operations and increase efficiency and the stream mapping to streamline operations and increase efficiency (Pokase) 3. Learn techniques like Total Quality Management (TQM) and mistake-proofing (Pokase) unit INTRODUCTION Introduction to Lean and Factory Simulation: History of Lean and comparison to other method. Wastes their causes and the effects An overview of Lean Principles Stock less Production	roduct roduct iency. •Yoke)	tion tive) to										
1. Understand the principles of lean manufacturing to identify and eliminate waste within processes. 2. Implement strategies such as Just in time (JIT) continuous improvement, Total principles of the principles of the processes. 3. Learn techniques like Total Quality Management (TQM) and mistake-proofing (Pokalensure high-quality output. UNIT I INTRODUCTION Introduction to Lean and Factory Simulation: History of Lean and comparison to other method. Wastes their causes and the effects An overview of Lean Principles Stock less Production	roduct roduct iency. -Yoke)	tion tive) to										
 Implement strategies such as Just in time (JIT) continuous improvement, Total primaintenance (TPM) and value stream mapping to streamline operations and increase efficient. Learn techniques like Total Quality Management (TQM) and mistake-proofing (Pokaters high-quality output. UNIT I INTRODUCTION Introduction to Lean and Factory Simulation: History of Lean and comparison to other method. Wastes their causes and the effects. An overview of Lean Principles. Stock less Production 	roduct iency. Yoke)	tive) to										
3. Learn techniques like Total Quality Management (TQM) and mistake-proofing (Poka- ensure high-quality output. UNIT I INTRODUCTION Introduction to Lean and Factory Simulation: History of Lean and comparison to other method Wastes, their causes and the effects	Yoke)) to										
UNIT I INTRODUCTION Introduction to Lean and Factory Simulation: History of Lean and comparison to other method Wastes their causes and the effects An overview of Lean Principles Stock less Production												
Introduction to Lean and Factory Simulation: History of Lean and comparison to other method Wastes, their causes and the effects. An overview of Lean Principles. Stock less Production		9										
Introduction to Lean and Factory Simulation: History of Lean and comparison to other methods – The Wastes, their causes and the effects – An overview of Lean Principles – Stock less Production.												
C.0115												
UNIT II LEAN TOOLS												
The Tools of Lean Manufacturing: Continuous Flow – Continuous Flow Manufacturing and Standard Workflow – 5S and Pull Systems (Kanban and WIP systems) – Error Proofing and Set-up Reduction -												
SMED – Total Productive Maintenance (TPM) – Kaizen Event examples. Toyota production	syste	ms,										
Ford production systems												
UNIT III LEAN SYSTEM												
Lean systems: Features manufacturing and services. Workflow, Small lot sizes, Pull Method	. Kanb	oan.										
Just In Time - Problems.	, ,	,										
UNIT IV PROJECT SELECTION FOR LEAN		9										
Resource and project selection, Selecting projects, Process mapping, Current and future val	ue stre	eam										
mapping, project suitable for lean initiatives.												
UNIT V I FAN MANACEMENT AND IMDI EMENTATION		0										
Standardized work continuous improvement Lean projects - Case Study: Training sele	cting	9 the										
Members, preparing project plan, implementation, review. Productivity improvement:	Proce	ess.										
machinery operator and equipment.		,										
TOTAL: 45 P	ERIO	DS										
	RE Lev	3T vel										
CO NO. COURSE OUTCOMES												
COURSE OUTCOMES At the end of the course, students will be able to:												
CONSE OUTCOMESAt the end of the course, students will be able to:CO1Understand the importance of Lean management in enhancing organizational efficiency, reducing waste, and improving overall performance.	¹ 2	2										
COING. COURSE OUTCOMES At the end of the course, students will be able to: Understand the importance of Lean management in enhancing organizational efficiency, reducing waste, and improving overall performance. CO1 Understand the importance of Lean management in enhancing organizational efficiency, reducing waste, and improving overall performance. CO2 Acquire proficiency in utilizing a variety of Lean tools and techniques, such as 5S Kaizen, Kanban, and Visual Management, to streamline processes and drive continuous improvement.	2	2										
CO No.COURSE OUTCOMESAt the end of the course, students will be able to:CO1Understand the importance of Lean management in enhancing organizational efficiency, reducing waste, and improving overall performance.CO2Acquire proficiency in utilizing a variety of Lean tools and techniques, such as 5S Kaizen, Kanban, and Visual Management, to streamline processes and drive continuous improvement.CO3Implement practices such as cross-training and multi-skilling to create a flexible workforce that can adapt to varying production requirements.	¹ 2 3 3	<u>2</u> <u>3</u> <u>3</u>										

СО	5	En	sure rovi	the lon	g-term	viabili nd adar	ity and	succes	s of the	e organ	nization ditions	n by co	ntinuo	ously	3
		mp	1011		255C5 di	iu auap		changh			unions	•			
TEX	ТВО	OKS	:												
1.	Gop Pren	alakr tice l	ishn Tall	an N, S of India	implifi NewF	ied Lea Delhi 20	an Man 013	ufactu	e: Elei	nents,	rules,	tools a	nd im	plement	ation,
2.	Jam	es P.	Wor	nack, D	aniel T	Jones	s Lean	Thinkir	ng, Free	press	busines	ss.2013.			
				, ,			,		Ú,	1		,			
REFERENCES:															
1. Kai Yang and Basemel-Haik, "Design for Six-Sigma: A Roadmap for Product Development", McGraw Hill, 2009.															
2.	2. Michael L. George, David Rowlands, Bill Kastle, what is Lean Six Sigma, Tata McGrawHill,2003.														
3.	3. James P. Womack, Daniel T. Jones, Lean Thinking, Free press business, 2013.														
COLLE															
E-RESOURCES:															
1.	https	s://np	tel.a	c.in/cou	rses/11	010713	30	×3., 3	100	1	0				
				12	21		1.5	0 8			100				
COU	RSE	ART	ICU	JLATIC)N MA	TRIX	: 13			1-0	11	01			
GO			0	1E	1	123	PO	Ds	>	N	1	21		PS	Os
COs	1		2	3	4	5	6	7	8	9	10	11	12	1	2
1	3			2	- 3	1	2		2	百	1	Z	2		2
2	2		1	3	2	1		2		FU.	1	111	2		2
3	2		1	3	2			2		00	1	III.	2		3
4	2	,	1	3	1			2	2		1	21	2		3
5	2	,	1	3	15	10		2	B-11	10	15	2/	2		3
1: Sli	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)														

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

		STATISTICAL AND QUALITY TECHNIQUES FOR	L	Т	Р	С
ME	22037	MANUFACTURING	•	•		
		(Common to ME and MN)	3	U	U	3
COU	URSE C	BJECTIVES:	<u> </u>		<u> </u>	
1.	Unders manufa	tand the fundamental principles of statistical analysis and the	neir	applic	cation	in
2.	Apply	statistical process control techniques to monitor and control manufacturi	ng pr	ocess	es.	
3.	Design quality	and conduct experiments to optimize manufacturing processes an	nd im	prove	e pro	duct
4.	Implen	nent quality management principles to enhance overall manufacturing pe	rform	nance		
5.	Apply process	Six Sigma methodology and lean concepts to reduce defects and wasta	ge in	manı	ıfactu	ring
	<u>process</u>					
UNI	TI	INTRODUCTION TO STATISTICAL METHODS IN MANUFAC	TUR	ING		9
Con	cept of	quality, quality characteristics, quality standards, quality cost, concep	t of c	qualit	y con	trol,
qual	ity conti	ol methodology, statistical methods of quality control, quality philosop	hy an	id ma	nager	nent
strat	egies. S	Statistical Description of Quality: Population and sample, techniques	of sa	mplin	ıg, sir	nple
rand	om sam	ple, analysis of sample data, representation of sample data, practical exa	mples	5		
		1.2				
UNI	TI	STATISTICAL PROCESS CONTROL (SPC)				9
Intro	oduction	to SPC and its importance in manufacturing - Basis of control chart, typ	es of	contr	ol cha	ırt,
desig	gn of co	ntrol chart, analysis of control chart, control charts for variables and attri	ibutes	s, case	: studi	es.
Proc	ess Cap	ability: Concept of process capability, measures of process capabilit	y, po	tentia	ıl pro	cess
capa	bility, a	ctual process capability, process capability analysis, case studies.	_			
			1			
UNI	TIII	DESIGN OF EXPERIMENTS (DOE) & SAMPLING SCHEMES				9
Intro	oduction	to experimental design principles Factorial designs and their appl	icatio	ons -	Respo	onse
surfa	ace met	hodology Analysis of variance (ANOVA)- Experimental setup	and	data	anal	ysis
tech	niques.					
Basi	s of sam	pling schemes, types of sampling schemes, acceptance sampling schem	nes fo	r vari	ables	and
attri	butes.					
UNI		QUALITY MANAGEMENT PRINCIPLES (6 HOURS) **	(77.0)			9
Intro	duction	to quality management systems (QMS) - Total Quality Management	(TQI	M) pr	incipl	es -
ISO	9000 st	andards and certification Quality tools and techniques: Pareto analy	\$1\$, C	ause-a	and-ef	itect
diag	rams, et	c Case studies on quality management implementation- Six Sigma pri	nciple	es and	1 DM.	AIC
meth	nodolog	/				
UNI		LEAN MANUFACTURING & CASE STUDIES ON SQC		.		9
Intro	duction	to lean manufacturing principles Value stream mapping Just-In-Tim	ne (JI	r) pro	ducti	on
- Ka	izen and	continuous improvement Practical applications and case studies	1.	. 1	•	
Ana	lysis of	real-world manufacturing case studies Application of statistical and c	lualit	y tech	inique	es to
addr	ess man	uracturing challenges	TAT	47 5		
		10	IAL	: 45 P	EKI(JD8

CON	No.				С	OURS	SE OUT	СОМ	IES					RBT Level
At the	e end	of the cou	ırse, stu	dents v	vill be a	ble to:	:						•	
СО	1	Understa in manut	and the facturin	fundar g.	nental j	princip	oles of st	atistic	cal anal	ysis and	l their	applicat	tion	2
СО	2	Apply st processe	atistica s.	l proce	ss cont	rol tec	hniques	to mo	onitor a	nd cont	rol mai	nufactur	ing	3
СО	3	Impleme performa	ent qua ance.	lity m	anagen	nent p	orinciples	s to	enhance	e overa	ill mai	nufactur	ing	3
СО	4	Utilize S processe	Six Sigr s.	na met	hodolo	gy to 1	reduce d	efects	s and va	ariation	in mai	nufactur	ing	3
CO	5	Identify efficienc	and ap y.	ply lea	an man	ufactu	ring con	cepts	to elim	inate w	aste ar	nd impro	ove	3
TEXTROOKS														
1 EA	Mon	JKS:		Introdu	ction to	Static	tical Ou	ality (Control	' John '	Wilow	& Song	2017	
1. Montgomery, D. C. "Introduction to Statistical Quality Control", John Wiley & Sons, 2017 2. Douglas, C. M. & Magrab, F. B. (2016), Engineering Statistics, John Wiley & Sons														
2. Douglas, C. M., & Magrao, E. B. (2010). Engineering Stausucs. John whey & Sons.														
REFERENCES:														
1.	Pyzdek, T., & Keller, P. A. (2014). The Six Sigma Handbook: A Complete Guide for Green Be Black Belts, and Managers at All Levels, McGraw-Hill Education											Belts,		
2.	Won Corp	nack, J. P oration. S	., & Joi Simon a	nes, D. nd Sch	T. (199 uster	96). Le	ean Thin	king:	Banish	Waste	and Cr	eate We	alth ir	1 Your
3.	Total Caro 7758	Quality Besterfi -412-7	Manage eld-Mic	ement: chna , 1	Dale H Rashmi	. Beste Urdh	erfield, l wareshe	Hema , Gle	nt Urdh n H. Be	wareshe esterfiel	e , Mar d, Pear	y Bester son, IS	rfield-S BN: 9	Sacre , 78-81-
4.	Desi	gn of Exp	erimen	t: Doug	glas C. I	Montg	omery, J	ohn V	Viley &	Sons, I	SBN: ()-471-31	1649-0)
			17	1	100	-		/		1	-01			
COU	RSE .	ARTICU	LATI()N MA	TRIX		50	1	100	12	5/			
<u> </u>			1	10	0	Р	Os	2	1	9	1		PS	\$Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1	3		1	1d	T		7	20,	/				3
2	1	2		3		÷,	43	Y	/					3
3	1	2		3										3
4	1	3		2										3
5	1	3		2										3
1: Sli	ght (I	Low), 2: I	Modera	te (Me	dium),	3: Su	bstantia	l (Hig	gh)					

ME	22030	DIGITAL MANUFACTURING AND IOT LABORATORY L T	P	С
		$(Common to ME and MN) \qquad 0 0 $	4	2
	RSE C	DBJECTIVES:		
1.	10 a	miliarize with the key technologies and protocols used in UoT deployments		
<u>2.</u> 3		able students to analyze and design IIoT solutions for real-world applications		
5.	100	able students to analyze and design not solutions for real-world appreations.		
LIST	C OF F	XPERIMENTS:		
1.	Intro	duction to G and M codes for milling and turning		
2	Part 1	Programming (Milling): Linear, circular interpolation and cutter radius compensation		
3	Part	Programming (Milling): Canned cycle concept		
<u> </u>	Part 1	Programming (Turning): Straight Taper and Radius Turning		
5	Part	Programming (Turning): Thread cutting and tapping cycle		
5. 6	Com	nuter aided part programming		
7	Simu	lation of the light emitting diode		
8	Simu	lation of the light emitting diode with a push button		
9	Cont	colling the light emitting diode		
10	Tem	perature and Humidity measurement		
10.	Deter	stion System with Ultrasonic Sensor		
12	Dete	acquisition using the cloud database		
12.	Dutu		FDI	
				.005
			R	BT
COI	No.	COURSE OUTCOMES	L	evel
At th	e end o	of the course, students will be able to:		
CO	01 H	Enumerate the simulation results from the part programming (Milling)		3
	$\frac{1}{2}$	Appraise the simulation results from the part programming (Lathe)		3
		Inderstand the role of computer aided part programming.		4
CO	$\mathbf{)4}$	levices.		4
CO	$\frac{1}{f}$	Design and implement IIoT solutions for specific industrial applications, considering actors such as scalability and interoperability.		4
REF	EREN	CES:		
	Digital	manufacturing and IOT Laboratory Manual Prepared by Faculty of Mechanical Eng	gine	ering,
1.	Sri Ve	nkateswara College of Engineering		
E-RI	ESOU	RCES:		
1.	http://v	/labs.iitkgp.ac.in/cim/#		

COUR	COURSE ARTICULATION MATRIX:													
COs						P	Os						PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	2			3				2	2				2
2.	3	2			3				2	2				2
3.	3	1			3				2					3
4.	3	1			3				2					3
5.	3	1			3				2					2
SL.N	0.				LIST	OFE	XPERI	MENT	S				Qty	y.
1.		Desktop	Comp	uters	-	C	OL	LE	C.				30 n	os.
2.	CAM software 30 license											enses		
3.	3. IoT Kit										5 nos.			

VERTICAL 4

LOGISTICS AND SUPPLY CHAIN MANAGEMENT

ME22041	BUSINESS ANALYTICS FOR MANAGEMENT DECISION	L	T	P	C							
COUDEE	(Common to ME and MN)	3	0	0	3							
	OBJECTIVES:											
1. Under 2 A pol	rstand the need for effective business analytics within an organization.											
2. Anal	vize complex problems using advanced analytics tools.											
J. Lean	r descriptive, predictive and prescriptive business anarytics.											
4. Intel 5 Unde	rstand the need for effective business analytics within an organization											
<i>J.</i> Onu	Istand the need for effective business anaryties within an organization.											
UNIT I	INTRODUCTION TO BUSINESS ANALYTICS				9							
Definition	and importance of Business Analytics (BA) - Types of analytics: des	scripti	ive, p	oredic	tive,							
Models in	Business analytics, prescriptive- Role of business analytics in management	nt dec	ision	-mak	ing -							
Overview	of tools and techniques used in business analytics. Data types and sources	- Daí	ta cle	aning	and							
pre-proces	sing techniques.											
	161											
UNIT II	DESCRIPTIVE ANALYTICS				9							
Introducti	on to Descriptive analytics – Visualising, and Exploring Data - Des	cripti	ve S	tatisti	cs -							
Sampling	and Estimation - Probability Distribution for Descriptive analytics - Ana	alysis	of D	escrip	otive							
analytics-	analytics- Exploratory Data Analysis (EDA)- Data visualization techniques - Data manipulation tools											
like Excel	SQL, or Python libraries (e.g., Pandas)											
		1										
UNIT III	PREDICTIVE ANALYTICS	1			9							
Introducti	on to Predictive analytics- Logic and Data Driven Models - Predictive Ana	alysis	Mod	elling	and							
procedure	- Data Mining for Predictive analytics. Analysis of Predictive analytics - T	[ime	series	s Ana	lysis							
and Regre	ssion Analysis-Case studies											
	10											
UNIT IV	PRESCRIPTIVE ANALYTICS				9							
Introducti	on to Prescriptive analytics - Prescriptive Modelling - Non-Line	ear (Optim	isatic	n -							
Demonstra	ting Business Performance Improvement. Decision trees, Markov Decision	on Pro	ocesse	es- M	ulti-							
Criteria D	ecision Analysis -Case Studies											
					1							
UNIT V	DATA MINING AND BA APPLICATIONS IN MECHANICAL ENGINEERING				9							
Overview	of data mining concepts and Machine Learning (ML) algorithms, -	Big T	Data	analy	tics-							
Introduction	on to big data concepts and technologies. Applications of BA in pred	ictive	e Mai	ntena	nce,							
Supply Cl	ain Optimization: Energy Efficiency, Product Life cycle Management	(PLM	I)-Per	form	ance							
Monitorin	g and Optimization- cost optimization-Finance, Marketing, Human Res	ource	Mar	nagen	nent,							
Supply Ch	ain, Healthcare.		4.5.5									
	ΤΟ΄	I'AL:	45 P	'ERIO	JDS							

At the end of the course, students will be able to:CO1Understand the need for effective business analytics within an organization.2CO2Analyze complex problems using Descriptive Analytics tools.3CO3Analyze complex problems using predictive business analytics.3CO4Analyze complex problems using Prescriptive business analytics.3											
CO1Understand the need for effective business analytics within an organization.2CO2Analyze complex problems using Descriptive Analytics tools.3CO3Analyze complex problems using predictive business analytics.3CO4Analyze complex problems using Prescriptive business analytics.3											
CO2Analyze complex problems using Descriptive Analytics tools.3CO3Analyze complex problems using predictive business analytics.3CO4Analyze complex problems using Prescriptive business analytics.3											
CO3Analyze complex problems using predictive business analytics.3CO4Analyze complex problems using Prescriptive business analytics.3											
CO4Analyze complex problems using Prescriptive business analytics.3											
CO5Analyze the case studies using data mining and business analytics application in different field of business3											
1 Lames F.R. (2017) Business analytics. UK: Pearson Education Limited											
2. Camm, J.D., Cochran, J.J., Fry, M.J., Ohlmann, J.W., Anderson, D.R. (2015), Essentials of Business analyticss, Cengage Learning, Second Edition.											
3. Prasad, R. N., Acharya, S. (2011), Fundamentals of Business analytics, Wiley.											
4. Schniederjans, M.J., Schniederjans, D.G., Starkey, C.M. (2014), Business analytics: Principles, Concepts and Applications, Pearson.											
REFERENCES:											
 Liebowitz, J. (2013), Business analytics: An Introduction, Auerbach Publications. Hardoon, D.R., and Shmueli, G. (2016), Getting Started with Business analyticss, CRC Press, Tradam & Function 											
 aylor & Francis. Rao, P.H. (2014). Business analytics: An Application Focus Prentice Hall India 											
4. Sharma, J.K., Khatua, P.K. (2012). Business Statistics. Pearson.											
5. Pinsky, M.A., Karlin, S. (2010), An Introduction to Stochastic Modelling, Academic Press, 4t Edition.											
6. Provost, F. & Fawcett, T. (2013), Data Science for Business: What you need to know about dat mining and data-analytics thinking, O'Reilly Media.											
ALL T SIS											
E-RESOURCES:											
1. https://onlinecourses.nptel.ac.in/noc20_mg11/preview											
2. https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-mg11/											
COURSE ARTICULATION MATRIX:											
POs PSOs											
COs 1 2 3 4 5 6 7 8 9 10 11 12 1 2											
2 2 1 2 3 3											
3 2 1 3 2 3 3											
4 2 1 3 2 3 3											
5 2 1 3 3 3 3											
1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)											

ME	22042	ENTERPRISE RESOURCE PLANNING	T	P	C						
CO	IIDSE	(Common to ME and MIN) 3 OR IECTIVES:	0	0	3						
	To pr	ovide Knowledge on various Modules of Enterprise Resource Planning (E	RP) an	d Rel	ated						
1.	Techn	ologies.	iti) un		uteu						
2.	To lea	rn the ERP Modules structure, Purchasing and Sales perspective.									
3.	To un	derstand the future direction of Enterprise Resource Planning (ERP).									
UNI	IT I	INTRODUCTION			9						
Evo	lution	of ERP Various Modules of ERP. Advantage of ERP. Integrat	ad Inf	orma	ation						
Svs	tems-	Business Modelling- ERP for SME- ERP for Make to Order Compa	inies- I	Busir	ness						
Pro	cess N	lapping - Design, Environment and its Selection for ERP Implementati	ion.								
UNIT IL ERP AND RELATED TECHNOLOGIES											
UNI		ERP AND RELATED TECHNOLOGIES	<u> </u>		9						
Bus	iness l	Process Re-engineering, Management Information Systems (MIS), De	ecision	Sup	port						
Oys Date	iems (a War	phousing, Online Transaction Processing (OLTP), Data Mining-O	antage nling <i>(</i>	S OI I Voalv	⊏IO, tical						
Pro	cessin	a (OLAP)- Product Life Cycle Management (PLM)- S	Supply	C	hain						
Mar	nagem	ent(SCM)- ERP Security issues.	2 appij								
		IN THE AVENES									
UNIT III ERP MODULE'S STRUCTURE 9											
Finance, Sales and Distribution, Manufacturing and Production Planning- Material and											
Cap	oacity I	Planning- Shop Floor Control- Quality Management- JIT/Repetitive	Manuf	actur	ing-						
Cos	st Mana	agement- Engineering Data Management									
UNI		PURCHASING AND SALES PERSPECTIVE	<u> </u>		9						
Role	e of E	RP in Purchasing- Purchase Module- Features of purchase modu	ile- Be	nefit	s of						
puro Moc	cnase	module- ERP Purchase System- Role of ERP in Sales and Dis	Foreic)n- c m tr	-duc						
Inte	aration	of Sales and Distribution Module	i uleig	ni uc	206-						
	grader										
UN	IT V	FUTURE DIRECTIONS IN ERP			9						
Nev	v Treno	ds in ERP- ERP to ERP II-Implementation of Organisation -Wide ERF	, Deve	əlopn	nent						
of N	lew Ma	arkets and Channels- Latest ERP Implementation Methodologies- cas	e stud	ies- I	ERP						
and	E-bus	iness.									
		TOTA	L: 45 P	ERIC	JDS						
											
CO) No.	COURSE OUTCOMES			BT evel						
At th	he end	of the course, students will be able to:									
0	01	Understand ERP concept, Business modelling, Business process and mapp	ing of		2						
U	,UI	business modules.			Ζ						
C	:02	Apply ERP related technologies to information systems practiced in an			2						
		organization.			-						
C	203	Study the ERP modules like finance, sales and distribution, manufacturing	, and		3						

		quality	/ manage	ement.										
СС)4	Demo an ER procur	nstrate a P system ement p	workin to man rocess.	g knov age th	vledge e sales	of how order p	data aı rocess,	nd trans produc	sactions etion pr	are int ocess, a	egrated and	in	3
CC)5	Develo and E-	op the fu business	iture dir 3.	ections	s of ER	P imple	menta	tion in	new ma	arket, cl	nannels	,	2
TEX	TBO(<u>DKS:</u>	1 1011	F 1(1 (())		D	D 1	· .		T			
1.	Bret	Wagne a	$\frac{1}{1}$ (D)	$\frac{1}{1}$ F. Mot	<u>ık, "Er</u>	iterpris	e Resou	irce Pla	anning'	', Ceng	age Lea	arning-2	$\frac{2008}{2008}$	
2.	2. CRM", Tata McGraw—Hill, New Delhi, 2001													IM and
	DEFEDENCES.													
REF	EREN	ICES:												
1.	Chris	ristian N. Madu, "ERP and Supply Chain Management", CHI, 2005												
2. Glynn C. Williams, 'Implementing SAP ERP Sales & Distribution'', McGraw-Hill-2017														
E-RESOURCES:														
1.	http:/	//www.re	etawproj	ects.con	n/uploa	ads/An-	-Overvi	ew-En	terprise	e-Resou	irce-Pla	nning_	_ERP	.pdf
2.	https	://www.u	udemy.c	om/topi	c/erp				17	11	51			
			12	1 2	4	1		~	18	1	2			
COU	RSE .	ARTICU	JLATIC)N MA'	TRIX:	(47)	-		1	63			
			\leq	- 6.	. [PO	Os		音	80. j	Z		Р	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		E		2			/	- C		2		2	
2	2		1		2		2215	K	5	1	3		3	
3	2		12	12	2		Ť		100	15	3		3	
4	2		/	20	2		12		/	5	3		3	
5	2			0	2		Y	-	2	9/	3		3	
1: Sli	ght (I	Low), 2:	Modera	te (Mee	lium),	3: Sub	ostantia	l (Hig	h)					
					-	_		-						

-

ME2	22043	INDUSTRIAL ENGINEERING AND MANAGEMENT	L	T	P	C 2					
COI	IRSE ((Common to ME and MIN) OBJECTIVES:	3	0	U	3					
	To ide	entify and explain the core functions of management and their signifi	canc	e in	achie	ving					
1.	organi	zational goals.									
2	To ana	alyze and streamline work processes in different organizational domains,	aimi	ng to	elimi	nate					
Ζ.	unnece	essary steps and improve efficiency.		-							
3	To de	evelop proficiency to ensure adherence to quality standards and	ident	tify	areas	for					
5.	improv	vement.									
		INTRODUCTION TO MANAGEMENT CONCEPT & ORGANIZA	ATIC) NAI		•					
UNI	11	STRUCTURES				9					
Functions of management - Mc- Gregor's Theory X and Theory Y, Maslow's Hierarchy of Human Needs, Mc.Kensey's 7'S, Framework, Organizational Structure – Departmentation – Line and Staff Structure – Span of Management – Matrix Structure, Boundary less Organization, Virtual Organization, Measurement of productivity, factors affecting the productivity.											
UNI	TII	WORK STUDY & TIME STUDY				9					
chart rating motie	s, Han g, facto on time	ded process charts, SIMO chart, and micro motion study. Standard per ors of affecting rate of working, allowances and standard time determina e study, Method time measurement (MTM).	rform tion,	iance Prede	, scal eterm	e of ined					
TINIT	тш	WACES INCENTIVES & EDCONOMICS	-			0					
Wag	1 111 0 incor	where we are a chieve of a good wage incentive plan be	cic o	f goo	d wo	9					
incer huma Com	ntive pl an effi ponent	an – plan- types of wage – incentive plans. Design of workplaces, influciency. Influence of noise, Areas of study under ergonomics, mas of man-machine system.	ience n-ma	of c	limate sys	e on tem.					
		1001-01									
UNI	T IV	INSPECTION AND QUALITY CONTROL				9					
Purp Norn Conc	ose- ol nal dis cept of	bjectives, Kind of inspection, In process inspection, Inspection of fin stribution, Poisson distribution, Significance testing, ANOVA, Mont Zero defect.	ished e-cor	goo lo si	ds, S mulat	QC- tion,					
UNI	ТΥ	CURRENT TRENDS				9					
Intro mana	duction agemen	to Agile manufacturing, Lean and Six Sigma, Value Engineering, just in the integrated enterprise resource planning, Supply chain and logistics man	i time	e, Tot nent.	tal qu	ality					
	<u> </u>		TAL:	45 P	'ERI(DDS					
CO	No.	COURSE OUTCOMES			R Le	BT evel					
At th	e end c	of the course, students will be able to:									
CC	01	Understand the fundamental functions of management and their applicable various organizational contexts.	ility i	n		2					
CC)2	Demonstrate proficiency in creating work study and time study technique	es to		+	3					
		enhance productivity and resource utilization within organizations				-					

CO	3	Apply th and deve	e princi lop effe	ples of v ective co	wage in mpens	ncentiv sation p	e scher blans an	nes and d work	d ergoi place	nomic de layouts.	esign to	o propo	se	3
CO4	4	Utilize s inspectic manufac	tatistica on proce turing a	l quality dures to nd servi	contro wards	ol techr achiev ustries.	niques ting the	o desig concer	gn and ot of ze	implem ero defe	ent effe cts in	ective		3
CO	5	Analyze overall current tr	operati perform rends in	ional pro ance in industri	ocesse diver al eng	s, enha rse bus ineerin	ance of siness g	rganiza enviror	tional ments	efficier s throug	ncy, an gh app	d impr lication	ove of	3
		TO												
TEXTBOOKS: 1. Khanna O.P. 'Industrial Engineering and Management'. Dhannat Rai Publications Pvt Ltd. 2010														
2. Ralph M.Barnes, 'Motion and time study design and Measurement of work', Paperback. 2009														
3. M Mahajan, 'Statistical Quality Control', Dhanpat Rai Publications Pvt Ltd, 2016											07			
3. In manajan, Statistical Quanty Control , Dhanpat Karr ubilcations i vi Eul, 2010														
REFERENCES:														
1.	Telsar 2006	ng, Marl	and, S.	'Indust	rial E	nginee	ring an	d Proc	luction	n Manag	gement	', Char	nd Pub	lisher,
2.	S Dalela and Sourabh, 'Work Study and Ergonomics ', Chand Publishers, 3rd edition, 2017													
3.	Khan M.I, 'Industrial Engineering', New Age International,2nd edition, 2009													
4. Sanders. S and E J McCormick, 'Human Factors in Engineering Design', Mcgraw Hill, New york, 7th Edition,1993.												v york,		
			E	1 - 2	Ť	10	Ph	0/0	IN	1	0			
E-RE	SOU	RCES:	SI	1 D.	- /)	-		. 1				
1.	https:	//nptel.ac	.in/cou	rses/112	/107/1	121072	292/		1.0	<u> </u>	Z			
2.	https:/	//www.c	oursera.	org/cou	rses?q	uery=ir	ndustria	1%20ei	nginee	ering	III	1		
3.	https:/	//www.ir	techop	en.com/s	series/.	33		/		1	71	1		
			1	1			202011	~	5.	1	21			
COU	RSE A	RTICU	LATIC	ON MAT	RIX :		-24-		10	15	2/			
			1	SI	-	PO)s	2	1	0	1		PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1				198	2	TDI	15	10	/	3	2		3
2	1	2				2	-1 -1				3	2		3
3	1	2				2					3	2		3
4	1	2		2		2					3			3
5				2		2					3			3
1: Slig	ght (L	ow), 2: N	Aodera	te (Med	ium),	3: Sub	stantia	l (Higł	ı)					

ME22044 DISTRIBUTION (Common to ME and MN) 3 0 0 COURSE OBJECTIVES: 1. Gain a comprehensive understanding of the fundamental concepts, principles, and th underpinning supply chain management. 2. Analyze various logistic strategies and practices employed in supply chain management. 3. Examine the role of technology and innovation, such as information systems, automati enhancing supply chain visibility, agility, and responsiveness to dynamic market demands. UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing of business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerc Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strat Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	3 cories nt to on in 9 d and verall 9 c and cgies,								
(Common to type and MN() COURSE OBJECTIVES: 1. Gain a comprehensive understanding of the fundamental concepts, principles, and th underpinning supply chain management. 2. Analyze various logistic strategies and practices employed in supply chain management. 3. Examine the role of technology and innovation, such as information systems, automatie enhancing supply chain visibility, agility, and responsiveness to dynamic market demands. UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing or business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerc Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strat Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Very Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container Load (CDL)	eories nt to on in 9 d and verall 9 e and sgies,								
1. Gain a comprehensive understanding of the fundamental concepts, principles, and th underpinning supply chain management. 2. Analyze various logistic strategies and practices employed in supply chain management optimize resource utilization and minimize costs. 3. Examine the role of technology and innovation, such as information systems, automati enhancing supply chain visibility, agility, and responsiveness to dynamic market demands. UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing of business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & stratt Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL). Inland Container I	eories nt to on in 9 d and verall 9 2 and 2 gies,								
1. underpinning supply chain management. 2. Analyze various logistic strategies and practices employed in supply chain management optimize resource utilization and minimize costs. 3. Examine the role of technology and innovation, such as information systems, automatie enhancing supply chain visibility, agility, and responsiveness to dynamic market demands. UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing obusiness performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & stratt Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; J Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	nt to on in 9 d and verall 9 e and sgies,								
2. Analyze various logistic strategies and practices employed in supply chain management optimize resource utilization and minimize costs. 3. Examine the role of technology and innovation, such as information systems, automatic enhancing supply chain visibility, agility, and responsiveness to dynamic market demands. UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing or business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strat Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	nt to on in 9 d and verall 9 ; and sgies,								
 optimize resource utilization and minimize costs. Examine the role of technology and innovation, such as information systems, automatienhancing supply chain visibility, agility, and responsiveness to dynamic market demands. UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing obusiness performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & stratt Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I 	on in 9 d and verall 9 ; and sgies,								
3. Examine the role of technology and innovation, such as information systems, automation enhancing supply chain visibility, agility, and responsiveness to dynamic market demands. UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing or business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strat Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	9 d and verall 9 ; and ; gies,								
UNIT I INTRODUCTION TO LOGISTICS Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing or business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & stratt Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	9 d and verall 9 e and sgies,								
Definition, Types, Concept of logistics management, Logistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing or business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & stratt Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	d and verall 9 e and e gies,								
Definition, Types, Concept of logistics management, Eogistics vs SCM, logistics functions, inbour out bound logistics, bullwhip effects in logistics, efficiency, and effectiveness in enhancing c business performance. UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerc Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strat Manufacturing, Facility location- factors influencing plant location-Manufacturing model w shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	9 e and e gies,								
UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strate Manufacturing, Facility location- factors influencing plant location-Manufacturing model we shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	9 and egies,								
UNIT II PROCUREMENT AND MANUFACTURING Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strate Manufacturing, Facility location- factors influencing plant location-Manufacturing model we shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	9 e and egies,								
Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strate Manufacturing, Facility location- factors influencing plant location-Manufacturing model we shortage, Material Requirement planning (MRP), Bill of material (BOM) UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I	e and egies,								
UNIT III LOGISTICS AND SUPPLY CHAIN MANAGEMENT Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL). Inland Container I	Dimensions of product quality, Procurement Perspectives Procurement Strategies, E-Commerce and Procurement - Manufacturing: Manufacturing Perspectives, Manufacturing cost & strategies, Manufacturing, Facility location- factors influencing plant location-Manufacturing model without shortage, Material Requirement planning (MRP), Bill of material (BOM)								
UNIT IIILOGISTICS AND SUPPLY CHAIN MANAGEMENTKey Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL), Inland Container I									
Key Drivers of Supply Chain Management and Logistics relationships, Basics of Transport Transportation Functionality and Principles; Multimodal Transport: Modal Characteristics; I Comparisons; Less-than Container Load (LCL) - Full Container Load(FCL). Inland Container I	9								
CONCOR.	ation, Iodal Pepot,								
UNIT IV DISTRIBUTION MANAGEMENT FOR GLOBAL SUPPLY CHAIN	9								
Functions of distribution –marketing forces affecting distribution, designing and choice of distribution channel– factors affecting, Distribution control – stages of control process – standards & measurement – monitoring – corrective action, Distribution Channel Structure – Logistic Require of Channel Members – Logistics Support to Distribution Channel.	ution ;oals- nents								
UNIT V INTERNATIONAL LOGISTICS MANAGEMENT	9								
Recent Trends in World Trade – Leading players – India's Foreign Trade – Commodity Compo and Destination - Overview of International Logistics Components, Importance, Objectives; Bene Logistics Outsourcing – Third Party Logistics (3PL) – Fourth Party Logistics (4PL) – Value A Services.	sition its of dded								
TOTAL: 45 PER	ODS								
CO No. COURSE OUTCOMES	שתנ								
At the end of the course, students will be able to:	xB1 .evel								
CO1 Understand the key drivers of Supply Chain Management and the dynamics of logistics relationships.	AB I Level								

CO	$2 \begin{bmatrix} I \\ i \end{bmatrix}$	Demonstrate proficiency in the basics of procurement and manufacturing and mak informed decisions regarding transportation choices within supply chain										nake	3	
CO	, E	Evaluate t	he func	tionalit	y and p	rincip	les of m	ultimo	dal tra	nsport l	by com	paring	and	2
0.	° c	ontrastin	g modal	charac	teristic	s				-				3
CO4	1	Analyze the	he funct	ions ar	nd force	es affe	cting dis	stributi	on in g	global s	upply o	chains,	and	3
		esign ein	ecuve di	ends	ion cha	nneis. Id tra	de inc	luding	trade	dvnar	mics of	commo	dity	
CO	5 c	ompositi	on, and	compr	ehend t	he obj	jectives,	and be	enefits	of inte	rnation	al logis	stics	3
	n	nanagem	ent.	1		5	,					U		
TEXT	FBOC	OKS:	<u> </u>		1C	1 T		M		+2 M.C	T	:11 200	0	
1.	Bowe	I Covle	oss, Coo C. John	per, 'S Langle	uppiy C	obert	<u>A Nova</u>	ck Br	gemen ain I (it, MCC Jibson	Mana	111, 200 aina Su	9 Innly (hains.
2. A Logistic Approach', Cengage Learning India Private Limited, 9th edition, 2013											manns.			
COLLEAN														
REFERENCES:														
1. D K Agrawal, 'Distribution and Logistics Management: A Strategic Marketing Approach' Macmillan publishers India, 2007											roach',			
2.	Yossi Covid	Sheffi, l-19', An	'The No nazon D	ew (Al igital S	o)Norm Services	al: Re LLC,	shaping 2020	Busin	ess an	d Supp	ly Cha	in Stra	tegy E	Beyond
3. Rushton A, Croucher P, Baker P, 'The Handbook of Logistics and Distribution Management' 5 th edition, Kogan Page, New Delhi, 2014										ent' 5 th				
			Z1	n	1	9		-			11			
E-RE	SOUI	RCES:	\leq	- 6	. [. 3	~		14	80. j	Z			
1.	https:	//onlinec	ourses.n	ptel.ac	.in/noc2	23_mg	g71/prev	iew	-	a 1	m			
2.	https:	//www.co	oursera.	org/spe	cializat	ions/s	upply-cl	nain-m	anagen	nent?irg	gwc=1			
I		1	7		1.0	~	_	/		1	21			
COU	RSE A	ARTICU	LATIO	N MA	TRIX:		- 52	1		12	51			
			10	6	-	P	Os		1	0	1		PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1			12	10	77	-	20	2	/	3	1		3
2	2	2			1	11	451	6	2		3	2		3
3	2	2		2		2		9			3	2		3
4	2	2		2		2					3	2		3
5		2		2		2					3	2		3
1: Slig	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)													

ME22045 SUSTAINABLE SUPPLY CHAIN MANAGEMENT L T P C							
	22043	(Common to ME and MN) 3 0	0	3			
CO	URSE	OBJECTIVES:					
1.	To un releva	nderstand the principles and importance of sustainability in supply chain management ance to Sustainable development goals.	it and	d its			
2	To ex	amine components like green procurement and logistics and evaluate procurement'	s rol	e in			
۷.	susta	nability.					
3.	To d logist	iscuss strategy, performance measurement, and analyze emerging trends such as ics, block chain technology, and successful sustainability initiatives.	s risl	c in			
UNI	TI	INTRODUCTION TO SUSTAINABLE SUPPLY CHAIN MANAGEMENT		9			
Defi	nition	and importance of sustainability-Supply chain sustainability, Environmental, soo	cial,	and			
ecor	nomic	aspects of sustainability, Sustainable development goals (SDGs) and relevance to	o suj	pply			
chai	ns, Lev	veraging connections of consumer, brand and environment sustainability.					
		CULLEON					
UNI	T II	COMPONENTS OF SUSTAINABLE SUPPLY CHAINS		9			
Gree	en proc	curement and sourcing-Sustainable logistics and transportation, Energy efficiency and	d cai	bon			
foot facto	print r ors of s	eduction, Waste management and recycling strategies, Triple bottom line approatupply chain sustainability.	ch,	Key			
		LUI S					
UN	TII	PROCUREMENT AND REVERSE LOGISTICS		9			
Sust	ainabl	e Procurement- drivers and barriers Procurement framework Ecolabels Lit	e c	vcle			
Asse	essmer	t (LCA). Profitability vs Environment benefits. Packaging for environment.	Circ	ular			
ecor	nomy,	Reverse logistics, Recycling.					
	,						
UNI	TIV	STRATEGY AND PERFORMANCE MEASUREMENT		9			
Sust	ainabl	e supply chain performance measurement. Sustainability metrics and reporting fram	newo	orks.			
The	oretica	l motivations underlying corporate and sustainable strategy, Assessing sustainable	cho	ices			
and	initiat	ives, Sustainability metrics and reporting frameworks, Environment Management	Sys	tem			
(EM	[S).		•				
UNI	T V	EMERGING TRENDS AND CHALLENGES		9			
Rece	ent Tre	ends in World Trade - Leading players - India's Foreign Trade - Commodity Com	iposi	tion			
and	Destin	ation - Overview of International Logistics Components, Importance, Objectives; Be	nefit	s of			
Log	istics (Dutsourcing – Third Party Logistics (3PL) – Fourth Party Logistics (4PL) – Value	e Ac	lded			
Serv	vices.						
		TOTAL: 45 PH	ERIC)DS			
00	NT		R	BT			
CO	No.	COURSE OUTCOMES	Le	evel			
At tl	he end	of the course, students will be able to:					
C	D1	Understand economic, ecological, and social aspects of Sustainable supply chain and relate Sustainable Development goals to supply chain.		2			
C	02	Identify the key components of sustainable supply chains and evaluate strategies in order to improve sustainability in supply chains.		3			
C	03	Evaluate the role of procurement in promoting sustainability and appraise the trade- offs between profitability and environmental benefits		3			
		one occorden promating and environmental tenents.	1				

CO	4	Analyze strategies for measuring and improving the sustainability performance by understanding the underlying sustainability strategies.												
CO	5	Identify a showcasi	and asse	ess mitigessful su	gation c Istainab	of risks oility ir	s in log nitiative	istics t s.	,. hrough	analys	sis of c	ase stu	dies	3
		ova												
TEX	LRO LRO	UKS:	nt Char	Vouv	long &	Alava	ndor To	ution	"Sucto	inchla	[agisti	ag and	Supply	Chain
1.	Man	agement	second	E few w	", Koga	an Pag	ge Public	ation,	2017		Logisti	es and ,	Suppry	Chain
2.	Yan Rese	n Bouche earch-Bas	ery, Cha ed Text	rles J. (book on	Corbett, Operat	Jan C	C. Fransond Strat	oo, Tai egy", S	rkan Ta Springe	an, "Su r publi	stainab cation,	le Supj 2017	ply Ch	ains-A
DFFL	REFERENCES:													
	1 Satish C. Ailawadi & Rakesh Singh: Logistics Management, Prentice-Hall of India Pvt Ltd., New													
1.	^{1.} Delhi, second edition, 2005													
2.	Saril 2005	ka Kulka 5	rni: Sup	ply Cha	in Man	ageme	ent, Tata	n McGi	raw Hi	ll Publi	ishing (Co Ltd.	, New	Delhi,
3.	Krishnaveni Muthiah: Logistics Management & World Sea borne Trade, Himalaya Publishing House, Mumbai, 2011													
E-RE	SOU	RCES:	14	21	10	1 Ed			10	11	12			
1.	https	s://nptel.a	c.in/cou	rses/110	0108050	5		1	N		21			
2.	https susta	s://www.e ainable-su	edx.org/ 	learn/su ain-mai	pply-ch nageme	ain-ma nt	anagem	ent/ma	ssachus	setts-in	stitute-	of-tech	nology	-
			-		2	1.7	17		-		-	_		
COU	RSE	ARTICU	JLATIO	ON MA	TRIX:		16	11	. U-	× 1	111			
COs			15			PO	Os	/		1	71		PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		17	12	1		3	1	100	15	2			2
2	2			0,			3	1	/		2			2
3	2		2	0	12	1	3	-	A	1	2			2
4	2		2		46	//i	3	60	~		2	2		2
5	2		2			1	3	_	100		2	2		2
1: Slig	ght (Low), 2:	Modera	ate (Me	dium), i	3: Sub	ostantia	l (Higl	n)					

ME2204	ME2204(TOTAL QUALITY MANAGEMENTLTP(
WIE2204	(Common to ME and MN)	3 0)	0	3					
COURS	E OBJECTIVES:									
$\begin{array}{c c} 1. & To \\ 2 & T_{-1} \end{array}$	acilitate the understanding of Quality Management principles and processes	•								
2. 10	earn 1QM & process monitoring techniques.									
3. 101	now about various quanty management system implemented in industries.									
UNIT I	INTRODUCTION				0					
Fundame	ntals of TOM Historical developments important philosophies. Demi	ng Jurs	n (Tros	shy					
Ishikawa	and their impact of quality – Quality planning Quality statement – Visic	ng, Jura m Miss	ion		ality					
policy.	and then impact of quality Quality pranning, Quality statement + iste	II, IVII 55	1011,	Zui	unty					
<u> </u>										
UNIT II	TQM PRINCIPLES				9					
Customer	focus - Customer satisfaction – customer perception - customer con	nplaints	C	usto	mer					
Relations	hip Management (CRM), Employee involvement – Empowerment	and	Tea	mw	ork-					
Recognit	on and Reward - Performance appraisal - Supplier Quality Man	agement	t – S	Supp	olier					
Relations	hip Manager (SRM)- Supplier Rating – Supplier rating by Analytical H	lierarchi	cal	Pro	cess					
(AHP)	S X									
	191 101									
UNIT II	PROCESS MONITORING				9					
Statistica	fundamentals - Normal curve charts for variables and attributes- Process	Capabil	ity a	ınaly	ysis,					
PDSA cycle, 5S, Kaizen, Poke yoke- 7 quality control (QC) tools, New 7 management tools, Pillars of										
TPM-Im	Dementation of TPM -Case Study	-								
		-			0					
UNITIV	IQMIECHNIQUES				9					
Quality F	unctions Deployment (QFD) – House of Quality (HOQ), QFD process and	1 benefi	ts, F	ME	ΔA –					
Study B	industrial case studies on DFMEA and PFMEA – Lean Six Sigma – -1	Methodo	nogi	es-c	ase					
Study, D	actimation process, raguem Quanty Loss function.									
IINIT V	OUALITY MANAGEMENT SYSTEMS				9					
ISO 900	0 standards and certification Implementation of OMS in organizati	ons. A	nditi	ng	and					
continuo	is improvement in OMS- ISO 14000 standards and certification. Implen	ientation	n - 1	OSF	HAS					
18000- E	thical considerations in quality management Applications of Information	techno	logy	- I	4.0,					
IoT, Mac	hine Vision- ML and DL and Big data analytics in quality management - Ca	ise studi	es.							
	TO	Ր <mark>AL: 4</mark> 5	, PE	RIC	DDS					
	COUDSE OUTCOMES			R	BT					
CU NO.	COURSE OUTCOMES			Le	evel					
At the en	d of the course, students will be able to:									
CO1	Describe the evolution and concepts of quality and Total Quality Manager	nent.		1	2					
CO2	Discuss the principles of TOM with an industrial applications				2					
CO3	Illustrate process monitoring tools and relate with industrial examples				3					
~~~	mestale process monitoring tools and rotate with industrial examples.				-					
COA	Apply the various techniques of TOM in industries				3					
CO4	Apply the various techniques of TQM in industries				3					

TEXTBOOKS:														
1	Dale H	H. Beste	erfiled, e	t at., "7	Total q	uality N	Manage	ement",	Third	Editio	n, Pears	son Ed	ucation	Asia,
1.	Indian	Reprin	t, 2006.											
2.	Poorni	ma M.	Charanti	math, T	'otal Q	uality N	Manage	ment, I	Pearson	n educa	tion, 3r	d editio	on, 201	7
REF	EREN	CES:												
1.	Satish Delhi,	C. Aila second	wadi & edition,	Rakesh 2005	Singh	: Logist	tics Ma	nagem	ent, Pr	entice-	Hall of	India P	vt Ltd.	, New
2	Sarika	Kulkar	ni: Supp	ly Chai	in Man	lagemen	nt, Tata	a McGr	aw Hi	ll Publ	ishing (	Co Ltd.	, New	Delhi,
۷.	2005													
3.	Krishn	aveni N Mumb	Muthiah:	Logist	ics Ma	anagem	ent &	World	Sea b	orne T	rade, H	limalay	a Publ	ishing
House, Mullioal, 2011														
E-RESOURCES:														
1. https://nptel.ac.in/courses/110/104/110104080/														
2.	https://	/nptel.a	c.in/cou	ses/110	/104/1	101040	)85/		2	0	5			
			1	0	0	1.20		5,	1	~				
COU	RSE A	RTICU	LATIO	N MAT	<b>FRIX:</b>	12.1	Re	10	1		10			
00			1.4	1 :	A.	РО	s	2.1	15	1	21		PS	Os
COS	1	2	3	4 -	5	6	7	8	9	10	11	12	1	2
1	2		21	15		3		00	1000	5	2			3
2	2		7	1	2	1	X		-		2			3
3	2	2	ill !	2	2			1	95	×	2			3
4	2	2	2	2	2	1		1	_	1	2			3
5	1		1	1	2	3	2		-3	13	2			3
1: Sli	1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)													

विद्या परा देवता ।

ME	2047	WAREHOUSING AUTOMATION	L	Т	Р	С					
ME2	22047	(Common to ME and MN)	3	0	0	3					
COL	JRSE	OBJECTIVES:									
1.	Unde	rstand the principles and technologies of warehousing automation.									
2.	Appl	y theoretical knowledge in designing, implementing, and managing automa	ited wa	areho	ouse.						
3.	Evalu	ate the challenges and considerations in implementing warehousing autom	ation	solut	ions.						
UNI	ΤI	FUNDAMENTALS OF WAREHOUSE AUTOMATION				9					
Ware	ehouse	Process - Understanding Warehouse Challenges - Slow fulfilment - Pick	king e	errors	- L	abor					
short	ages	and safety concerns - Warehouse Automation Technologies – Types		Ben	ents						
Caro	users,	Shuttles and Cranes - Conveyor Systems - Picking and Packing Robots - Ia	iyouts	•							
IINI'	тп	OUFLUNG THEORY				9					
Conc	n ni	and Terminology Queuing Models $M/M/1$ and $M/M/c$ Analysis of	orda	r nic	king	and					
nack	ing _	Identification of bottlenecks and congestion points - Service Level Man	ageme	nt _	Δve	rage					
wait	time	and queue length - Forecasting queuing behaviour and demand fluctu	ageine	s - 1	Proad	tive					
ident	identification and mitigation.										
UNI	тш	PLANNING AND IMPLEMENTATION				9					
Proie	ect Pla	anning and Feasibility Analysis - Cost analysis ROI calculations and	risk	asse	ssme	ent -					
Technology Selection and Integration - Warehouse Management Software - ASRS - Robotic system -											
Strat	egies	for testing and validating automation systems - Monitoring key performance	ce indi	cato	rs (K	PIs)					
- Cor	ntinuo	us Improvement - warehouse automation solutions in a virtual environment	t.			,					
		Z S M M									
UNI	T IV	<b>DECISION-MAKING PROCESS IN WAREHOUSE AUTOMATIO</b>	N			11					
Over	view	- Design and Implementation - Business goals and objectives - Techno	logy S	Selec	tion	and					
Inves	stment	Decisions - Cost, Scalability, and Compatibility in technology - O	ptimal	l dep	oloyr	nent					
strate	egy -	SWOT Analysis - Cost-Benefit Analysis - Decision Trees - Pareto Analy	vsis - I	Mult	i-Cri	teria					
Deci	sion A	.nalysis (MCDA).									
	<b>T T</b> 7										
		ADVANCED TECHNOLOGIES AND FUTURE TRENDS			1	7					
Predi	ictive	Maintenance, Demand Forecasting, Optimization and Next-generation aut	omation	on so		ns - D					
Conr	les an	Warehouse potential discuptions from technologies like hyper loop de	lai Ke		(1)	x) - 2D					
nrint	ing fo	r on-demand parts and block chain-based inventory management	nvery	syst	ems,	, 50					
print	ing io	TOT	אד • <i>י</i>	15 DI	7010	פתר					
		101	AL, 4	•J I I	21/10	סעי					
					D	вт					
CO	No.	COURSE OUTCOMES				evel					
At th	e end	of the course, students will be able to:									
		Demonstrate a comprehensive understanding of the fundamentals of y	wareho	ouse							
CC	л	automation.	,		1	3					
00		Understand the fundamentals of queuing theory and its relevance to v	wareho	ouse	1	4					
CC	12	automation.			1	4					
CC	12	Evaluate different types of warehouse automation technologies and their	suitab	ility		4					
U	,5	for specific applications.				+					

СО	4	Evaluate allocatior	the imp	end of a	queuing operatio	behav	viour or	n work	flow o	ptimiza	ation an	d reso	urce	3
СО	5	Explore j in wareho	predictiv buse pro	ve analy cesses.	tics tec	hniqu	es for a	nticipa	ating an	d miti	gating b	ottlene	ecks	3
TEX	ТВО	OKS:												
1.	Gw imp 749	ynne Ricl roving eff 4-6934-4.	hards - Ticiency	2014, and mi	Second nimizin	editio g cost	on - W s in the	arehou mode	ise Ma rn ware	nagem house.	ent: A Kogan	compl Page.	ete g ISBN	uide to 978-0-
2.	Edv Mc	vard H. F Graw-Hill	Frazelle Educati	- 2016 on. ISB	, Worl N: 978	d-Clas 00718	s Warel 42822	housin	g and	Materi	ial Han	dling,	2nd ]	Edition.
REF	ERE	NCES:										~ .		
1.	Joh Inst	n J. Barth	oldi and chnolog	l Steven gy, Atlan	n T. Ha nta.	ickmai	n - 2019	9, Wai	rehouse	& Di	stributic	n Scie	ence.	Georgia
2.	My MI	kel J. Koo Press. IS	chenderf BN: 978	fer – 20 3026233	015, De 31708.	cision	Making	g Und	er Unc	ertainty	y: Theor	ry and	Appl	ication.
E-RE	SOU	JRCES:	10	27		2	0.8.1	÷2.		1	1			
1.	ww	w.wareho	use-scie	nce.com	1.6.	3		2	12	1	51			
2.	http mar	s://www.u agement/'	idemy.c ?coupon	om/cou Code=N	rse/artif NVDPR	icial-i ODIN	ntelliger 135	nce-in-	wareho	ouse-	6			
			~	12		- N	1	-	0.00	25	5			
COU	RSE	ARTICU	JLATIC	)N MA	TRIX:	1 7	V				2			
<b>CO</b> -			iu	53	1	P	Os	11	. U-	2-1	m		P	SOs
COS	1	2	3	4	5	6	7	8	9	10	_11 /	12	1	2
1	3	3	2	1			320	1		1:	5/	1	2	
2	3	3	2	201		÷	Τ.		1	0	1	1	1	
3	3	3	2		1		5	~	1	-		1	1	
4	3	3	2	0	12	T		30	191	/		1	1	
5	3	3	2	0.00	1	11	121	6	/			1	1	
1: Sli	ght (	Low), 2:	Modera	te (Me	dium),	3: Sut	ostantia	l (Hig	h)					

ME	22040	PROJECT MANAGEMENT LABORATORY	L	Т	Р	С				
~~~		(Common to ME and MN)	0	0	4	2				
COU	RSE OF	BJECTIVES:		~ .						
1.	To prov	vide learners with hands-on experience in utilizing Statistical Package	for the	e Soci	al Sci	ences				
-	(SPSS)	software for project management purposes.								
2.	To equi	p learners with practical skills in utilizing Mini tab software for projection	<u>et mar</u>	nagem	ent ta	sks.				
3.	To prov	vide learners with practical experience in using TORA software for pro	oject r	nanag	emen	t				
	applica	tions.								
LIST	OF EX	PERIMEN'I'S:								
The f	ollowing	exercise shall be practiced using SPSS and Mini tab								
	Import	the data into SPSS and calculate descriptive statistics (mean, median,	stand	ard de	viatio	n) for				
1.	each va	riable and discuss how descriptive statistics help in understanding the	le cha	racter	istics	of the				
	project	for the given dataset.		1.00		•				
2	Conduc	t correlation analysis using SPSS to identify relationships betw	veen	differ	ent p	roject				
2.	variables. Interpret the correlation coefficients and discuss their implications for project									
	Dorform	ement decision-making.	atrica	(0.0		lation				
3	time) k	a multiple regression analysis in SFSS to predict project success in	suics	(e.g.,	ifican					
5.	. time) based on these factors. Interpret regression coefficients and discuss the significance of									
	Conduct time series analysis including trend analysis and forecasting techniques. Discuss how time									
4.	series analysis can help in predicting future project trends and making informed decisions.									
	Conduct one-way ANOVA in SPSS to compare project performance across different categories									
5.	Interpret the ANOVA results and discuss potential factors contributing to performance variations.									
	Perforn	n factor analysis in SPSS to identify underlying factors influencin	g pro	ject n	nanag	ement				
6.	success	. Interpret factor loadings and discuss how these factors can inform	n pro	, ject n	nanag	ement				
	strategi	es.	1		U					
7	Conduc	t cluster analysis to group projects based on similarities in their c	haract	eristic	s. Int	erpret				
7.	cluster	results and discuss implications for project portfolio management and	resou	rce all	locatio	on.				
	Conduc	et hypothesis testing (e.g., paired t-test) in SPSS to determine if	there	e is a	signi	ficant				
8.	improv	ement in project performance and discuss the validity of the hypothes	is test	and i	mplic	ations				
	for proj	ect management practice.								
0	Analyz	e the survey data using SPSS, including calculating descriptive sta	itistics	s and	condu	licting				
9.	hypothe	esis tests and discuss how survey analysis can provide insights into ar	eas to	r impi	ovem	ent in				
TT1 0	project	management practices.								
The f	ollowing	exercise shall be practiced using TORA		9						
10	Create	a network diagram of a project with various tasks and their deper	idenci	es. Ca	alcula	te the				
10.	critical	path and identify the tasks that are critical for the project completions of with a second se	tion t	ime.	Discu	ss the				
		tions of critical path analysis on project scheduling and resource allocation wh	ation.		ina n	mainat				
11	Apply	near programming techniques to optimize resource allocation with a creater of the results and discuss trade offs between resource	ne m	Inimiz Nation	and p	roject				
11.	perform	ance	utiliz	auon	and p	Toject				
	Constru	ict a project time-cost trade-off model considering the relationship by	-twee	1 proj	ect du	ration				
12	and cos	t. Use optimization techniques to find the optimal balance between r	project	com	oletion	1 time				
	and cos	t. Interpret the trade-off curve and discuss strategies for project time-off	cost m	anage	ment					
10	Conduc	t Monte Carlo simulations to assess the impact of risks on project con	mpleti	on tin	ne and	l cost.				
13.	Analyz	e simulation results, identify critical risks, and discuss mitigation strat	egies.							

14.	Model a project scheduling problem with precedence constraints and integer programming capabilities. Solve the scheduling problem to minimize project duration while satisfying all task dependencies. Interpret the schedule and discuss the implications of task sequencing on project execution.													
15.	App min disc	ly resou imizing j uss strate	rce leve project c gies for	elling luration resourc	and sn 1. Analy 2e mana	noothin yze the gement	ig tech impac	niques t of rea	to op source	otimize levellir	resoun ng on p	ce util project	ization schedul	while es and
16.	Con bene risk- the a	struct a efits. Use adjusted analysis r	decision decisio value of esults.	model n analy f each a	and e sis tech dternati	valuate hniques ve. Rec	multips (e.g., comme	ole proj decisio nd the 1	ect alton trees nost fa	ernative , sensit vorable	es base ivity a projec	d on th nalysis) t alterna	heir cos to asso ative ba	ets and ess the used on
17.	 Model a project quality management problem, considering trade-offs between project cost and quality. Apply optimization techniques to determine the optimal allocation of resources for quality assurance activities. Discuss the role of quality management in project success and the implications of resource allocation decisions. 													
	TOTAL:PERIODS													
CO No. COURSE OUTCOMES RBT Level														
At the	At the end of the course, students will be able to:													
CO	CO1Gain proficiency in navigating the SPSS and Minitab software interface and performing basic operations such as data input, manipulation, and analysis.3									3				
CO	CO2Develop the ability to generate meaningful visualizations and reports using SPSS and Minitab to communicate project findings and insights clearly to stakeholders4													
CO	CO3 Generate and interpret TORA output to make informed decisions and recommendations for improving project performance and efficiency.													
DEE		NOES.	15	1		1				- /	711			
	E KE Proie	NCES: ct Manao	ement S	Chou	hury '	Tata M	ecoraw	hill ed	ucation	Pvt I to	21			
2.	Proje willy	ct Manag and sons	ement -	A syste	em appr	oach to	planni	ng sche	eduling	nd con	trolling	g-Harolo	d kerzne	er John
3.	Proje	ct Manag	ement, I	Bhavesh	n M.Pat	el,Vika	s Publi	cation I	House,	4002	/			
4.	Proje	ct Planni	ng sched	uling a	nd cont	rol, Jan	nes P.L	awis, N	Ieo pub	olishing	compa	ny, 5th	edition	4010
				8	1	91	TP	16	4					
E-RF	ESOU	RCES:			- 2			_						
1.	https:	//onlinec	ourses.n	ptel.ac.	in/noc2	4_mg0	1/previ	ew						
2.	https:	//www.u	demy.co	m/cour	ses/bus	iness/pi	roject-n	nanagei	ment/					
COU	RSE	ARTICU	LATION	MATE	RIX:									
COs						P	Os						PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	2	2 2		3	2						2		2	
2.	2	2 2		3	2						3		3	
3.	2	2 2		3	2						3		3	
1: Sli	1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)													

LIST OF EQUIPMENT FOR A BATCH OF 30 USERS									
SL.No.	LIST OF EXPERIMENTS	Qty.							
1.	Computer Server	1							
2.	Computer nodes or systems (High end CPU with at least 1 GB main memory) networked to the server	30							
3.	Laser Printer	1							
4.	SPSS software	Freeware							
5.	Minitab & TORA	Freeware							
6.	Licensed operating system	Adequate							

VERTICAL 5 CLEAN AND GREEN ENERGY TECHNOLOGIES

ME22051 BIOMASS CONVERSION AND BIOREFINERY L T P C											
IVIE	22051	(Common to ME and MN) 3	0	0	3						
CO	URSE	OBJECTIVES:									
1.	To in	part basic knowledge on biomass composition, properties and its availability.									
2.	To te	ach the biomass conversion techniques and methods used in biorefinery.									
3.	To te	ach the characterization and production of biofuels.									
4.	To ec	lucate about the environmental and economic sustainability of advanced bior	nass c	onvei	sion						
5	and b	10refinery processes.									
3.	10 11	ipart the future perspectives and chanenges of biomass conversion techniques.									
UNI	TI	INTRODUCTION TO BIOMASS			7						
Defi	nition	and types of biomass-Biomass composition and properties-Global biomas	s reso	urces	and						
avai	lability	COLLEG									
		ap GE									
TINI	тп	BIOMASS CONVERSION TECHNOLOGIES AND BIOREFINERY			10						
	1 11	CONCEPTS			10						
The	moche	emical conversion: pyrolysis, gasification, combustion-Biochemical conversion	n: ferr	nenta	tion,						
enzy	matic	hydrolysis-Physical conversion: densification, torrefaction. Biorefinery	over	view	and						
prine	ciples-	Types of biorefineries: biochemical, thermochemical, hybrid-Biorefinery pro	cess 1	ntegra	ation						
and	opum	Zauon.									
UNI	тш	BIOFUELS PRODUCTION AND PRODUCTS			10						
Bioethanol production: feedstock selection, pretreatment fermentation-Biodiesel production:											
trans	sesterif	ication, feedstock options-Biogas production; anaerobic digestion, methane c	apture	s. org	vanic						
acid	s, alcol	hols, and others-Biopolymers and bioplastics-Value-added products from bior	efinery	/ strea	ams.						
	,										
UNI	TIV	SUSTAINABILITY AND LIFE CYCLE ASSESSMENT			9						
Envi	ironme	ental impacts of biomass conversion and biorefinery processes-Economic	feasi	oility	and						
tech	no-eco	nomic analysis-Social implications and stakeholder engagement.									
UNI	TV	FUTURE PERSPECTIVES AND CHALLENGES			9						
Futu	re pro	spects of biomass conversion and biorefinery-Challenges and opportunitie	s in s	caling	g up						
bior	efinery	operations-Policy and regulatory frameworks supporting bio-based industries			opa						
		ΤΟΙΑΙ	.: 45 P	EKI	JDS						
	<u> </u>				DE						
CO	No.	COURSE OUTCOMES			BL						
A 4 41	h a a a d	of the course students will be able to:			ever						
Atti		or the course, students will be able to:									
CO	01	availability.	na its	;	2						
CO	02	Acquire the knowledge on biomass conversion techniques and methods u	sed ir	1	3						
	12	Understand the feed stock preparation characterization and production of hi	ofuels	+	2						
	<i>J</i> 3	familiarize the environmental and economic sustainability of biomass con	Juersio	<u> </u>	2						
CO	04	familiarize the environmental and economic sustainability of biomass conversion and biorefinery processes.									

CO	5 A	Acquire (the futu	re persj	pectives	s and ch	nalleng	es of bi	omass	convers	sion tecl	hniques	5.	3
TEX	FBOO	KS:			D' 1	•	A T .	1.1	•	D	1 2007	,		
1.	PKS	D T o	va, Elei	nentary	$\frac{1}{10}$ B10 pl	1ysics -	An Int	roducti	on, Na	rosa Pu	b2005	m and (7000 84	tudiaa
2.	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Pearson. 2011. Bradley A S: Adebayo A O. Maria P. Engineering applications in sustainable design and													
3.	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, CL Engineering, 2015.													
4.	Shule	er M.L., 1	Kargi F	., Biopı	rocess H	Enginee	ering, P	rentice	–Hall,	1992.				
DEE		CEC.												
KEFI 1	Dorat	<u>CES:</u> 1 P M -	-Biopr	ocess F	Inginee	rino Pri	inciples		lemic F	ress 2	2012			
1.	Ladisch, M.R., "Bio separations Engineering: Principles, Practice, and Economics", John Wiley &													
Ζ.	Sons, 2001.													
3.	Mohe Volui	eimani, N ne 2, Sp	J. R, Bo ringer, 1	oer M. I 2015.	P. M. K	, Parisa	a A, and	d Bahri,	, "Biofi	uel and	Biorefi	nery Te	echnolo	ogies",
4.	Lee S	, Shah Y	′.Т, "Ві	ofuels	and Bic	energy	". CRC	C, Taylo	r & Fra	ancis, 2	013.			
5.	Roger, H., "Bio-separations Science and Engineering", Oxford University Press, 2006.													
6.	S. Yang, H.A. El-Enshasy, N. Thongchul (Eds.), "Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers", Wiley, 2013.													
7.	Shang-Tian Yang (Ed.), "Bioprocessing for Value Added Products from Renewable resources", Elsevier 2007													
	Liber	101, 2001	. 4	1 3.		(7)	-		. 1	-			
E-RESOURCES:														
1.	https://steamaxindia.com/chapter-1-introduction-to-biomass-energy/													
2.	https://ypte.org.uk/factsheets/renewable-energy-biomass-energy/introduction													
3.	https://link.springer.com/journal/13399/aims-and- scope													
4.	https://www.intechopen.com/chapters/73832													
5.	https://www.climatehubs.usda.gov/hubs/northwest/topic/biofuel-production													
6.	https:	//en.wik	ipedia.c	org/wik	i/Biofu	el		-	10	1				
7.	https://archive.nptel.ac.in/courses/103/103/103103207/													
			_					_						
COU	RSE A	ARTICU	JLATI	ON MA	ATRIX	:								
	POs													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2										3	
2	3	3	2										3	
3	3	3	2										3	
4	3	3	2										3	
5	3	3	2										3	
1: Sli	ght (L	ow), 2:	Modera	ate (Me	edium)	, 3: Sul	ostanti	al (Hig	h)					_

CARBON FOOTPRINT ESTIMATION AND REDUCTION TECHNIQUES (Common to ME and MN)

L	Т	Р	C		
3	0	0	3		

COURSE OBJECTIVES:

ME22052

1. To introduce climate change and carbon footprint.

2. To study the principle of product life cycle and Green House Gas emissions accounting.

3. To study the Methodology for Carbon Footprint Calculation.

4. To learn emission mitigation and carbon sink.

5. To study the case study of carbon footprint.

UNIT I CLIMATE CHANGE AND CARBON FOOTPRINT

Green House Effect and Climate Change - Causes and Impacts of Climate Change – Economic implications of Climate Change -IPCC Reports and Projected Climate Change Scenarios – Green House Gas (GHG) Emission – Carbon footprint of Activities, Processes, Products and Services of Organisations – GHG Emission factors and Calculations

UNIT II PRODUCT LIFE CYCLE AND GHG EMISSIONS

Life-cycle GHG Accounting - Principles of Product Life Cycle GHG Accounting and Reporting -Fundamentals of Product Life Cycle GHG Accounting - Establishing the Scope of a Product Inventory-GHG Emission Inventories and Accounting - Collecting Data and Assessing Data Quality- Allocation and Assessing Uncertainty.

UNIT III METHODOLOGICAL ASPECTS OF CARBON FOOTPRINT

Methodology for Carbon Footprint Calculation in Crop and Livestock Production, End of Life Scenarios and Carbon Footprint of Wood Cladding, Carbon Footprints and Greenhouse Gas Emission Savings of Alternative Synthetic Biofuels, Making Food Production GHG Efficient, Carbon Footprint of Wood-Based Products and Buildings, Challenges and Merits of Choosing Alternative Functional Units, modeling aspects of carbon footprint, Quantifying Spatial–Temporal Variability of Carbon Stocks and Fluxes.

UNIT IV EMISSION MITIGATION AND CARBON SINK

Setting GHG Reduction Targets and Tracking Inventory Changes – Non-Fossil Fuel based Energy Systems - Carbon Dioxide capture and Storage Technologies –Mitigation potentials of different Sectors and systems – Innovation, Technology Development and Transfer, - Social aspects of mitigation – Policies, Institutions and international corporations – Carbon Pricing and Finance –GHG Offsetting and Green marketing.

UNIT V CASE STUDIES

Carbon Footprint Estimation from Building Sector - Urban Carbon Footprint Evaluation - Applications of carbon footprint in urban planning – Mechanical Equipment and Electronic Product Carbon Footprint - Carbon Footprint of Aqua and Agriculture products- GHG Emissions from Municipal Wastewater Treatment and Solid waste management.

TOTAL: 45 PERIODS

9

9

9

9

9
CON	No.	COURSE OUTCOMES RBT Level												
At the	e end	of the co	ourse, stu	idents v	will be a	able to:								
CO	1	Explain	n the clir	nate ch	ange an	d carbo	on footp	orint.						2
CO	2	Discus: accoun	s the pi ting.	rinciple	of pro	oduct 1	ife cyc	cle and	d Gree	n Hou	se Gas	emissior	IS	3
CO	3	Explain	n the Me	thodolo	ogy for	Carbon	Footpr	rint Cal	culatio	n.				2
CO	4	Discus	s emissio	on mitig	gation a	nd carb	on sink	Κ.						3
CO	5	Explain	the cas	e study	of carb	on foot	print.							2
TEX	ГВО	OKS:		_			_						_	
1.	Asse Sent 2010	essment hilkanna 5), ISBN	of Carb n Muthu -10 : 981	on Foc 1, Sprin 110117	otprint iger; So 37.	in Diff ftcover	erent I reprin	ndustri t of the	al Sec origin	tors, V al 1st e	olume d. 2014	1, by Su edition (bran 23 A	ianian August
2.	Asse Sent	essment hilkanna	of Carb n Muthu	on Foo 1, Sprin	otprint ger Nat	in Diff ure; 20	erent I 14th ed	ndustri lition (3	al Sec 30 Apri	tors, V il 2014)	olume , ISBN-	2, by Su -10: 9814	bran 5857	nanian '42.
			/	di	0	, -	-			5				
REF	ERE	NCES:	10	2/	6	2	0.8	53	4		1			
1.	Sub	ramaniar	, Senthi	Kanna	n, Mutl	<u>10 (201</u>	$\frac{6}{10}$, Car	bon Fo	otprint	Handb	ook, Cl	<u>RC Press.</u>		1
2.	Sub	lies, Butt	erworth	I Kann Heinen	ian, Mu nann Pu	ithu (20 Iblisher	516), E S.	environ	mental	Carbo	n Footj	print Indu	stria	1 case
3.	Wor Rep	ld Reso	urces In andard.	stitute,	Green	House	Gas I	Protoco	l - Pro	oduct L	ife Cy	cle Acco	ıntin	g and
4.	ISO Oua	14067 - ntificatio	2018, C	Breen H national	louse g Organi	ases ar sation t	nd carb for Stai	on foc ndardis	otprint, ation.	Requir	ements	and Gui	lelin	es for
5.	IPC Fran	C (2022)	-Sixth	Assess	ment R	eports - Change	– Inter	govern	mental	Panel	on Clin	nate Chan	ge, I	Jnited
6.	Mat	thew Jo	hn Frai	nchetti,	Defne	Apul	"Carl "Carl	bon Fe	ootprin	t Anal	ysis: (Concepts,	Me	thods,
	mp	iementai	ion, and	Case 5	tuules		1055,20	12.	-	6	1			
E-RE	SOU	RCES:		× 1	-		Y		1	2	/			
1.	http	s://online	courses.	nptel.a	c.in/noc	23 ar2	5/	- 50	10	1				
2	http	s.//sustai	nability_	academ	v org/n	roduct/	online	cortific	pate_on	carbon	_reduct	ion_strate	w /	
2.	mup	5.//Sustai			iy.org/p	Toduct				-carbon	-icuuci		5 y /	
COU	RSE	ARTIC	ULATI	ON MA	TRIX									
						PC	Os						PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2				2	2						3	
2	2	2				2	2						3	
3	2					2	2						3	
4	2	2				2	2						3	
5	2					2	2						3	
1: Sli	ght (Low), 2:	Modera	ate (Me	edium),	3: Sub	stantia	al (Hig	h)					

ENERGY CONSERVATION AND WASTE HEATLTP								
ME	22053	RECOVERY	0	0	3			
		(Common to ME and MN)	U	U	5			
COU	IRSE	OBJECTIVES:						
1.	To tea	ach the importance of thermodynamic cycles in energy conservation.						
2.	To tea	ach various methodologies adopted in industry						
3.	To tea	ach the application of WHR system for heating and cooling purpose	•,					
4.	To tea	ach the application of the WHR system for direct conversion of heat into electric	uty.					
Э.	10 tea	ach the economic calculation of wHR to find the economic viability of the same						
LINIT	гт	THEDMODVNAMIC CVCLES			0			
Intro	11 ductio	n to Thermodynamic cycles - The Carnot cycle - Rankine cycle - Ideal and a	etual	Ran	9 kine			
cvcle	aucilo s = Cc	ogeneration – Kalina cycle - Advantages and drawbacks Brayton cycle – Impro	weme	nt in	the			
cycle	= Sor	inces of Waste heat.	, venne	111 11	i uic			
•) • 1 •	200	COLLES						
UNI	ГП	WASTE HEAT RECOVERY (WHR) METHODOLOGIES			9			
Exerg	gy ana	lysis – Utilization of industrial waste heat – Properties of exhaust gas – Gas to	liquid	l and	gas			
to ga	s heat	recovery systems - Joule heating - Recuperators and regenerators; qualitative	ve trea	atme	nt –			
shell	and tu	be heat exchangers – TEMA – Waste heat boilers and its types.						
UNI	ГIII	WHR – APPLICATIONS – LOW, MEDIUM AND HIGH TEMPERATU	RES		9			
Indus Vario	stry Ei	hergy use in the drying Industries – HT Applications – Steel Industry – Cerar beess industries case study.	nic in	dust	ry –			
TINIT	T) TX7				0			
UNI	I IV	WHR - HEAT ENERGY TO ELECTRICAL ENERGY	ficion		y f tho			
conve Effec	ersion	- The Seebeck Effect. The Peltier Effect - Applications of the Peltier Effe	ct. 7	Thon	1son			
UNI	гv	FCONOMICS OF WHR			9			
Wast	e heat	recovery calculations - Available heat - Pinch analysis - typical energy costs -	-con	struc	- tion			
costs	– pay	back analysis - thermo-economic viability.	com	suu	tion			
		TOTAL:	45 PF	ERIC)DS			
001	T			R	BT			
COI	NO.	COURSE OUTCOMES		L	evel			
At th	e end	of the course, students will be able to:						
CO	01	Estimate the potential of waste heat from a system using thermodynamic cycles	s.		3			
CO	02	Analyze the various technologies available for the WHR.			4			
CO	03	Determine the working parameters of the WHR system for the heating/cod applications.	oling		3			

Design the working parameters of the WHR system for direct conversion (Heat to **CO4** 3 Electrical) applications. CO5 Do the financial analysis to determine the economic viability of WHR systems. 3

TEX	FBOOKS:
1.	Hussam Jouhara "Waste Heat Recovery in Process Industries" - Wiley - 2022.
2.	Hewitt, G. F., Shires, G. L., and Bott, T. R. (1993); Process Heat Transfer, CRC Press, Florida.
REFI	ERENCES:
1.	Goswami, D. Y., and Kreith, F. (2007); Energy Conversion, CRC Press.
2.	Harlock J. H. (1987); Combined Heat and Power, Pergaman Press
3.	Kreith F. and West R. E. (1999); Handbook of Energy Efficiency, CRC Press
E-RE	SOURCES:
1.	https://onlinecourses.nptel.ac.in/noc24_mg01/preview
2.	https://www.coursera.org/courses?query=project%20management
	~ UULLEON
COU	RSE ARTICULATION MATRIX:
COs	POs PSOs

COc				0	1	rus								05
COS	1	2	30	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	. A.		1	1	15		21		3	
2	3	3	2	2	T.	10	5	0/	32		G	6	3	
3	3	3	2	2		1 × 1	1	0 (- 1025	0	IP		3	
4	3	3	2	2	1.20	1	N				2		3	
5	3	3	2	2	8. U			1	9	1×	m		3	
1: Slig	ht (Lo	w), 2:]	Modera	te (Me	edium)	, 3: Sul	ostanti	al (Higl	h)		21			
			1	No Shi	14/40	वा	में पि	10	Tal	100				

ME22054 ENERGY EFFICIENT BUILDINGS L T P (Common to ME and MN) 2 0 0									
COI	JRSE	OBJECTIVES:	3	U	U	5			
1.	To le	arn the green buildings concepts applicable to alternate design.							
2.	To be	e familiar with basic terminologies related to buildings.							
3.	To le	arn the building (air) conditioning techniques.							
4.	To ki	now the methods to evaluate the performance of buildings.							
5.	10 11	corporate Renewable energy systems in bundings.							
UNI	ΤI	INTRODUCTION				9			
Clim Wate	nate a er, Ene	nd Building, Historical perspective, Aspects of green building design ergy, Materials and IAQ, ECBC Standards	– Su	stain	able	Site,			
UNI	TII	LANDSCAPE AND BUILDING ENVELOPES	aniaaa	nina	D1	9 dina			
enve – Tł Decr builc	elope – nermal cement ling w	- Thermal comfort, Psychrometry, Comfort indices, Thermal Properties of Resistance, Thermal Time Constant (TTC), Diurnal Heat Capacity (D Factor, Effect of Solar Radiation – Sol-air Temperature, Processes of ith environment, Insulation	f Buil OHC), of hea	ding Thei it exc	Mate mal chang	rials Lag, e of			
UNI	T III	PASSIVE HEATING AND COOLING	1			9			
HVA Indir (Stac	AC in rect H ck and	roduction, Passive Heating – Solar radiation basics, Sun Path Diagra eating and Isolated heating, Concept of Daylighting, Passive Cooling – Wind), Evaporative Cooling and Radiative Cooling.	am, E Natu	oirect ral V	Hea entila	ting, ition			
UNI	TIV	THERMAL PERFORMANCE OF BUILDINGS	hi -			9			
Heat of b Stora	trans uildin age int	fer due to fenestration/infiltration, Calculation of Overall Thermal Transi g loads: Steady state method, network method, numerical method, co egration in buildings	nittan orrelat	ice, E tions,	stima The	ıtion rmal			
TINIT	T X 7					0			
Intro	duction	on of renewable sources in buildings, BIPV, Solar water heating, sr PV systems Hybrid system – Economics	nall	wind	turb	ines,			
		το	TAL:	45 P	ERI	ODS			
СО	No.	COURSE OUTCOMES			R L	BT evel			
At th	ne end	of the course, students will be able to:							
CC	D1	Design the climate responsive building.				3			
CO	02	Calculate the energy load of the buildings.				3			
CC)3	Determine the passive (air) conditioning parameters.				3			
CC	04	Evaluate the performance of buildings.				3			
CC)5	Develop the renewable energy models suitable for the buildings.				3			
		_			-				

TEXTBOOKS:															
1. Baruch Givoni: Climate considerations in building and Urban Design, John Wiley & Sons, 1998															
2.	2. Baruch Givoni: Passive Low Energy Cooling of Buildings by John Wiley & Sons, 15-Jul-1994														
3.	3. Ana-Maria Dabija, "Energy Efficient Building Design", Springer Cham, 2020														
DEFEDENCES.															
REFERENCES: Jos' e Manuel and 'uiar and Sergio G'omez Melgar "Energy Efficiency in Buildings Both New															
1.	1. Jos' e Manuel and 'ujar and Sergio G'omez Melgar "Energy Efficiency in Buildings Both New and Rehabilitated.														
2	2 Mili Majumdar, "Energy Efficient Buildings in India", TERI, Ministry of Non-Conventional														
2.	2. Mill Majumdar, Energy Efficient Buildings in India", TERI, Ministry of Non-Conventional Energy Resources 2009														
E-RF	SOUR	CES:													
1.	https://	nptel.a	c.in/cou	rses/10)51021	75		_							
2.	https://	www.u	idemy.c	com/sha	are/103	810/	OL	LE	2	-					
				1	aP	-	_	_	36	1					
COU	RSE AI	RTICU	COURSE ARTICULATION MATRIX:												
	POs PSOs														
COa			10	51		P	Os	19 - I	1	1	1		PS	Os	
COs	1	2	3	4	5	P(Os 7	8	9	10	Cn)	12	PS 1	Os 2	
COs	1 3	23	3	4	5	P0 6	Os 7	8	9	10	21	12	PS 1 3	Os 2	
COs 1 2	1 3 3	2 3 3	3 2 2	4 1 1	5	P(Os 7	8	9	10	CIN GI	12	PS 1 3 3	Os 2	
COs 1 2 3	1 3 3 3	2 3 3 3	3 2 2 2 2	4 1 1 1	5	P(Os 7	8	9	10	MGIN	12	PS 1 3 3 3	Os 2	
COs 1 2 3 4	1 3 3 3 3 3	2 3 3 3 3	3 2 2 2 2 2 2	4 1 1 1 1	5	P(Os 7	8	9	10	MGINE	12	PS 1 3 3 3 3 3	Os 2	
COs 1 2 3 4 5	1 3 3 3 3 3 3	2 3 3 3 3 3 3	3 2 2 2 2 2 2 2 2 2	4 1 1 1 1 1	5	P(Os 7	8	9	10	MGINEE	12	PS 1 3 3 3 3 3 3	Os 2	
COs 1 2 3 4 5 1: Sli	1 3 3 3 3 3 3 ght (Lo	2 3 3 3 3 3 w), 2: 1	3 2 2 2 2 2 2 2 2 Modera	4 1 1 1 1 1 ate (Me	5	P(Os 7 5 5 5 5 5 5 5 5 5 5	8	9	10	TUGINEER	12	PS 1 3 3 3 3 3 3	Os 2	
COs 1 2 3 4 5 1: Sli	1 3 3 3 3 3 3 ght (Lo	2 3 3 3 3 3 w), 2: 1	3 2 2 2 2 2 2 2 3 Modera	4 1 1 1 1 1 ate (Me	5 edium)	P(Os 7 5 5 5 5 5 5 5 5 7 6 7 7 7 7 7 7 7 7 7	8 al (Hig)	9 	10	TUGINEERIN	12	PS 1 3 3 3 3 3 3	Os 2	
COs 1 2 3 4 5 1: Sli	1 3 3 3 3 3 3 ght (Lo	2 3 3 3 3 3 w), 2: 1	3 2 2 2 2 2 2 2 Modera	4 1 1 1 1 1 ate (Me	5 edium)	P(Os 7 5 5 5 5 5 5 5 5 7 6 7 7 7 7 7 7 7 7 7	8 al (Hig)	9 h)	10	TUGINEERIN	12	PS 1 3 3 3 3 3 3	Os 2	
COs 1 2 3 4 5 1: Sli	1 3 3 3 3 3 ght (Lo	2 3 3 3 3 3 w), 2: 1	3 2 2 2 2 2 2 2 Modera	4 1 1 1 1 1 ate (Me	5 edium)	P(Os 7 bstanti	8 al (Hig)	9 	10	TUGINEERIN	12	PS 1 3 3 3 3 3 3	Os 2	
COs 1 2 3 4 5 1: Sli	1 3 3 3 3 3 3 ght (Lo	2 3 3 3 3 3 w), 2: 1	3 2 2 2 2 2 2 2 3 Modera	4 1 1 1 1 1 ate (Me	5 edium)	P(Os 7 bstanti	8 al (Hig	9 h)	10	TUGINEER	12	PS 1 3 3 3 3 3 3	Os 2	

ME22055 ENERGY STORAGE DEVICES L T P								
IVIL	22033	(Common to ME and MN)	3	0	0	3		
COU	URSE (OBJECTIVES:						
1.	To inc	ulcate the concept of the various types of energy storage.						
2	To im	part the knowledge of various types of energy storage materials and	design	n La	tent	Heat		
2.	Storag	ye System						
3.	To en	ighten the types of hydrogen and biomass energy storage.						
4.	To im	part Knowledge in Fundamental concept of batteries						
5.	To edu	acate about various alternate energy systems.						
						T _		
UNI	TI	INTRODUCTION				9		
Nece	essity of	of energy storage-types of energy storage-comparison of energy sto	orage	tech	nolog	gies-		
Sens	ible He	eat Storage Systems-Latent Heat Storage Systems, Applications						
		THERMAL STORAGE SYSTEM				9		
Ther	mal sto	brage-1 ypes-Simple water and rock bed storage system-pressurized wa	iter sto	orage	syst	em–		
NIO	lelling (of phase change storage system –Simple units, packed bed storage unit	is. Des	sign	OI L	atent		
Heat	. Storag	e System: Requirements and Considerations for the Design, Design Meth	100010	gies.				
		(9) (m) (m) (m)				<u> </u>		
UNI	TIII	HYDROGEN AND BIOGAS STORAGE				9		
Hydi	rogen s	torage options-compressed gas-liquid hydrogen-Metal Hydrides, chemi	ical St	orag	e, Bi	ogas		
stora	ige-con	parisons. Safety and management of hydrogen and Biogas storage - App	licatio	ns.				
UNI	TIV	ELECTROCHEMICAL STORAGE				9		
Fund	lamenta	al concept of batteries, Materials, Principle of Operation, Positive of	electro	ode 1	mater	rials,		
nega	tive ele	ectrode materials, electrolytes.						
UNI	ΤV	ALTERNATE ENERGY STORAGE TECHNOLOGIES				9		
Flyw Cone	wheel, cept of	Super capacitors, Principles & Methods–Applications, Compressed a Hybrid Storage – Applications	air En	nergy	sto	rage,		
		TO	ГAL:	45 P	ERI	ODS		
		00						
00	NT				R	BT		
CO	No.	COURSE OUTCOMES			L	evel		
At th	ne end o	of the course, students will be able to:						
		Acquire the capability to recognize energy storage technologies su	uitable	for				
)1	specific applications.				2		
		Grasp the concepts and functioning of thermal energy storage systems,	as we	ell as		2		
CC	52	design such systems.				3		
CC)3	Investigate the operational principles of Hydrogen and Biogas storage sy	stems			3		
		Summarize the concepts related to electrochemical storage and various	is type	es of				
CC)4	batteries.	JP.			2		
~		Understand the techniques employed in supercapacitors flywh	eels.	and	-			
)5	compressed energy storage systems				2		

TEX	ГВООК	KS:												
1	Therma	al Ene	rgy Sto	rage T	Cechnol	logies	for Su	stainab	ility S	ystems	Design	n, Ass	essmen	t and
1.	Applica	ations,	Kalaisel	vam, S	., Para	meshwa	aran, R	, Elsev	ier, 20	14.				
2	Advanc	tes in	Therma	Energ	gy Stor	age Sy	stems	- Meth	ods an	d Appl	lications	s, Luisa	a F. Ca	abeza,
2.	Elsevie	r Woo	d head	Publish	1ng, 20)15Rob	ert Hug	ggins, I	Energy	Storag	e: Fund	amenta	ils, Ma	terials
	and Ap	plication in L	ons, 2na	Vuoli	i, Sprir	iger, 20	115 Datroch	omiaal	toohn	alogias	for	norau	storage	and
3.	convers	iu, Le	/ilev nul	Auen	ns 201	ин, Ек 2	ectioch	enncar	techno	ologies	101 61	liergy	storage	
	conven	, ion, ii	ney put	meatio	115, 201	-								
REF	ERENC	ES:												
1	Therma	al Ener	gy Stora	ige: Sys	stems a	and App	plicatio	ns, Ibra	ahim D	inçer, N	Marc A.	Rosen	, John `	Wiley
1.	& Sons	Ltd., 2	2010.											
2.	David I	Linden	, Handb	ook of	Batteri	es, Mc	Graw-H	lill, Inc), 4th e	dition,	New Yo	ork. 20	10.	
3.	Nationa	al Ene	rgy Tec	hnolog	y Lab	oratory	, U.S.	Depar	tment	of Ene	ergy, Fu	iel Cel	ll Hand	lbook
	(Sevent	th Edit	10n). No	vembei	r 2002.	C	UL.	LEI	2					
E DE			50	12	8.r	-		_	36	1				
E-RE	SOUR	CES:	1	1P	/	1	19.1		-	0.				
1.	https://i	nptel.a	c.in/cou	rses/11	310510)2	0 3			1.				
2.	https://o	onlinec	courses.r	nptel.ac	.in/noc	21_ch1	1/prev	iew	10	11	01			
3.	https://v	www.y	outube.	com/wa	atch?v=	=0FSEk	KHc-CO	DA	N	1	21			
I			JI	1		10	3	0/	u s	1	01	<u>.</u>		
COU	RSE AF	RTICU	JLATIC	N MA	TRIX	1 °.		1	1 1000	3.1	II			
C O			7	- 7	20	PC	Os				177		PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2		÷.,	1		/			21		3	
2	3	2	2	1	9		32	1	19	12	S/		3	
3	3	2	2	10	-		h	2		0	/		3	
4	3	2	2	Č	2	1	Y	>	1	-/			3	
5	3	2	2	1	19	TT	1000	- 20	20,	/			3	
1: Sli	ght (Lo	w), 2:]	Modera	te (Me	dium),	3: Sub	ostantia	l (Higl	h)					

HYDROGEN ENERGY: PRODUCTION, STORAGE, TRANSPORTATION AND SAFETY (Common to ME and MN)

L	Т	Р	С
3	0	0	3

9

9

9

9

COURSE OBJECTIVES:

ME22056

1. To understand the basic concept of Hydrogen Energy.

2. To understand the basic concept of Hydrogen production and Storage devices.

3. To familiarize about Hydrogen energy transportation and safety

UNIT I HYDROGEN – BASICS AND PRODUCTION TECHNIQUES

Hydrogen: global status of supply and demand – physical and chemical properties, salient characteristics. Production of hydrogen – methane decomposition - steam reforming – water electrolysis – gasification and woody biomass conversion – biological hydrogen production – photo dissociation – direct thermal or catalytic splitting of water.

UNIT II HYDROGEN STORAGE AND APPLICATIONS

Novel materials for solid state hydrogen storage - Hydrogen storage options – Compressed gas – Liquid hydrogen – Metal hydrides – Chemical storage, Hydrogen energy chain: Transport, Stationary power, Portable power and other applications, Environmental concerns, and cost – Safety and management of hydrogen, Applications of Hydrogen

UNIT III HYDROGEN TRANSPORTATION

Hydrogen pipelines - Liquid hydrogen transportation - High-pressure tube trailers - Hydrogen carriers (ammonia, liquid organic hydrogen carriers) - Integration with existing fuelling infrastructure.

UNIT IV HYDROGEN SAFETY

Hydrogen properties and hazards - classification of hydrogen hazards: compressed and liquid hydrogen related hazards- Risk assessment and mitigation strategies - Codes and standards for hydrogen safety - Case studies of hydrogen incidents.

UNIT V HYDROGEN FUTURE DIRECTIONS

Renewable hydrogen production methods - Hydrogen economy and policy implications - Emerging trends and research challenges in hydrogen technology – Case studies: utilization of hydrogen in various sectors, global status and future directions.

TOTAL: 45 PERIODS

CO No.	COURSE OUTCOMES	RBT Level
At the end	l of the course, students will be able to:	
CO1	Understand the fundamental knowledge on hydrogen production techniques	2
CO2	Evaluate the details of different methods of hydrogen storage technologies	3
CO3	Analyse the challenges and opportunities associated with the transportation of hydrogen and develop strategies	3
CO4	Develop the protocols and regulations governing the production, storage, and transportation of hydrogen	3
CO5	Apply principles of sustainability and environmental impact assessment to hydrogen energy systems	3

TEX	TBOOK	KS:												
1.	Gupta, Group,	R. B., 2009	Hydrog	gen Fue	el: Proc	duction	, Trans	port an	d Stora	age, CF	C Press	s, Tayl	or & F	rancis
2.	Kazuna	ari Sasa	ki., Hy	drogen	Energy	y Engin	eering,	2016						
3.	Michae	el Hirsc	her, "H	andboo	k of H	ydroger	n Stora	ge", Wi	ley-VO	CH, 201	0.			
REF	ERENC	ES:												
1.	Global review-	Hydro -2021	gen Re	view 20)21, IE	EA (202	21), Pai	ris, http:	s://ww	w.iea.o	rg/repor	ts/glob	al-hydi	ogen-
2.	Agata (Godula	-Jopek,	Hydrog	gen Pro	oduction	n by El	ectrolys	is, Wil	ley-VC	H, Gern	nany, 2	015	
3.	Tzimas perspec	, E., Fi tive. N	liou, C. etherla	, Peteve nds": E	es, S.E uropea	0., &Ve n Com	yret, J. munitie	B. "Hyc es, 2003	lrogen	storage	e: state-o	of-the-a	art and	future
					-									
E-RF	SOUR	CES:		/	N	C	OL	LEI	22	-				
1.	https://	onlinec	ourses.	nptel.ac	in/no	c24_me	e68/pre	view	10	~				
2.	https://	onlinec	ourses.	nptel.ac	.in/no	c22_ch	66/prev	view	1	N.				
			10	51	ð	14	9 R.	100 - 1	1.		10			
COU	RSE Al	RTICU	LATIO)N MA	TRIX	:	10		1 6	11	31			
CO-			F	/ :	+	Р	Os	0	1RV	1	51		PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	- 0	5-	1. 2	2		山谷	1.2.2	2		3	
2	3	2	3	5	1.1		2		Ų.	1			3	
3	3	2	3			1	2				51		3	
4	2	2	2	1	10		2	1	Nº.	1.	5/		3	
5	2	2	2	5	1		2		100	15	-/		3	
1. 61	aht (I a		Madama	to Mo	dimm)	2. 6.1	atanti			1.0	1			

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

RENEWABLE ENERGY RESOURCES (Common to CH, ME, MN and MR)

L T P C 3 0 0 3

COURSE OBJECTIVES:

CH22041

1. Understand energy scenario, energy sources and their utilization.

2. Explore society's present needs and future energy demands.

3. Study the principles of renewable energy conversion systems.

4. Exposed to energy conservation methods.

UNIT I INTRODUCTION

Introduction: Principles of renewable energy; energy and sustainable development, fundamentals, and social implications. worldwide renewable energy availability, renewable energy availability in India, brief descriptions on solar energy, wind energy, tidal energy, wave energy, ocean thermal energy, biomass energy, geothermal energy, oil shale. Introduction to Internet of energy (IOE).

UNIT II SOLAR ENERGY

Solar Energy: Fundamentals; Solar Radiation; Estimation of solar radiation on horizontal and inclined surfaces; Solar radiation Measurements- Pyrheliometers, Pyrometer, Sunshine Recorder. Solar Thermal systems: Flat plate collector; Solar distillation; Solar Pond electric power plant. Solar electric power generation- Principle of Solar cell, Photovoltaic system for electric power generation, advantages, Disadvantages, and applications of solar photovoltaic system.

UNIT III WIND AND BIOMASS ENERGY

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, Basic components of wind energy conversion system (WECS); Classification of WECS- Horizontal axis- single, double and multiblade system. Vertical axis-Savonius and darrieus types.

Biomass Energy: Introduction; Photosynthesis Process; Biofuels; Biomass Resources; Biomass conversion technologies-fixed dome; Urban waste to energy conversion; Biomass gasification (Downdraft)

UNIT IV TIDAL AND OCEAN THERMAL ENERGY

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, advantages, and limitations.

Ocean Thermal Energy Conversion: Principle of working, OTEC power stations in the world, problems associated with OTEC.

UNIT V GREEN ENERGY

Green Energy: Introduction, Fuel cells: Classification of fuel cells - H₂; Operating principles, Zero energy Concepts. Benefits of hydrogen energy, hydrogen production technologies (electrolysis method only), hydrogen energy storage, applications of hydrogen energy, problem associated with hydrogen energy.

TOTAL: 45 PERIODS

9

9

9

9

CO No).	COURSE OUTCOMES													
At the e	end of	f the cou	irse, stu	dents v	vill be a	able to:									
CO1	D w	escribe	the env	ironme vention	ntal asp al ener	pects of gy syst	f renewa ems, th	able en eir pros	ergy re spects a	sources and limi	, in Con	mpariso	on	3	
CO2	D pi	escribe roductio	the use n with 1 n	of sola respect	r energ to appl	y and t ication	he vario s like-h	ous con eating,	nponen coolin	ts used g, desal	in the e ination	energy , power		3	
CO3	U	Inderstar	nd the c	onversi	ion prir	nciples	of wind	and ti	dal ene	rgy				2	
CO4	U	Inderstar	nd the c	oncept	of bior	nass en	ergy re	sources	s and gi	een en	ergy.			2	
CO5	A	cquire the fill of the second se	he basio	c know	ledge o	f ocean	therma	ıl energ	gy conv	ersion	and hyc	lrogen		3	
	BOOKS:														
TEXT	EXTBOOKS:														
1. D. Yogi Goswami & Frank Kreith, Energy Efficiency and Renewable Energy Handbook, Sec Edition, 2016														second	
2. I	Edition, 2016 Imene Yahyaoui, Advances in Renewable Energies and Power Technologies: Volume 1 and Wind Energies, 2018													: Solar	
3. J	and Wind Energies, 2018. John Twiddel & Tony Weir, Renewable Energy Resources, 2006.														
	5. John Twiddel & Tony weir, Kenewable Energy Kesources, 2006.														
REFE	EFERENCES:														
1. F	rinci	ples of E	on Energy	convers	sion, A.	W. Cu Shoht	Noth S	AcGrav	W Hill, Dearson	1996	-	-			
2. 1	NOII-C			igy Rea	Sources	, 51001	I I Valli L	fingii, i		1, 2010	2	-			
E-RES	OUR	CES:	Ĩ	5	6. 1	1	1	1	U.	×	m	1			
1. h	ttps:/	/nptel.ac	c.in/cou	rses/10	310320)6		/			21				
2. h	ttps:/	/www.c	oursera	.org/co	urses?c	uery=r	enewab	le%20	energy	1:	5/				
	•		10	5	-		T			10	-/-				
COUR	SE A	RTICU	LATIO)N MA	TRIX		1	с Т	/		/				
				6	19	Р	Os	-	100	9/			PS	SOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	2	2	2	2	2	2	1	2	3	2	3	3	3		
2	2	2	2	2	3	2	3	2	2	2	3	3	3	+	
3	2	2	2	2	2	3	3	2	3	3	2	3	3		
4	3	2	3	3	3	3	3	2	3	2	3	2	3		
5	3	3	3	3	3	3	3	3	3	2	3	3	3		
1: Sligi	nt (Lo	ow), 2: N	Modera	te (Me	dium),	3: Sul	ostantia	l (Hig	h)	1	1	1		-1	

ME	22050	ENERGY AUDIT - CASE STUDY	L	T	P	C
COI	IDSE	(Common to ME and MN)	0	0	4	2
$\frac{1}{1}$	To ide	DDJECTIVES:	m			
2	To cal	culate amount of energy that interacts and draw the energy balance diagra	am			
3.	To est	imate the various energy losses and irreversibility's.				
4.	To fin	d the possible way to ensure the conservation of exergy of the system				
ME	ГНОD	OLOGY				
1. 7	This sub	pject is going to be conducted as a practical course.				
2. I	Learner	s will be asked to identify a thermodynamic system in the campus. It m	ay be	eithe	er a si	mall
e	engine o	or as big as a laboratory itself.				
3. H	He/ She	should carry out the energy and exergy analysis.				
4. J	he lear	ners should submit the same as a technical report.	`			
5. f	Lach an	ary should submit three such reports in a semester and the correspon). dina	mork	. wil	l ha
0. 7	onsider	red as EAT marks	ung	mark	5 WII	I De
7 4	At the e	nd there would be model and summative examinations				
8 7	The mar	ximum marks for formative assessment shall be 60%. The criteria for art	ivino	at th	e Inte	ernal
0. I	Assessn	pent marks of 60 is as follows: Maximum of 40 marks shall be awa	rded	for s	ucces	sful
C	complet	ion of all the three case studies and a model test will be conducted an	nd the	e mar	k wil	l be
s	caled d	own to 20.				
9. 1	The ma	ximum marks for Summative assessment shall be 40%. A summative	exam	inatio	n wil	l be
C	onduct	ed for a small thermodynamic system for a maximum mark of 100. Th	en th	e mai	k wil	l be
S	caled d	own to 40.				
		TO	FAL:	60 P	ERIC)DS
CO	No.	COURSE OUTCOMES			R Le	BT evel
At th	ne end o	of the course, students will be able to:				
C)1	Identify the system and all the energy interactions.				3
CO	02	Know how to calculate the quantity of energy that interacts with the syste	em			3
CO)3	Estimate the losses in energy and irreversibility's.				3
CO	04	Propose a methodology to conserve the exergy				3
ТЕХ	твос	DKS:				
1	Hand	book of energy audits / Albert Thumann, William J. Younger, Terry Ni	ehus	©201	0 by	The
1.	Fairn	nont Press.				
2	WF		st ed	ition	Floo	vier
		R. Murphy and F. Mc Kay Butter wort, "Energy Management", I		mon,	LISC	
2.	publi	ations, 2012.			LISC	
2. PFL	publi	CES.				
2. REF	publi	CES: D.A. "Industrial Energy Conservation" 1st edition Pergamon Press 20	003			
2. REF 1.	publi	CES: , D.A., "Industrial Energy Conservation", 1st edition, Pergamon Press, 20 , D.A. "Industrial Energy Conservation", 1st edition, Pergamon Press, 20 , D.A. "Industrial Energy Management and Utilization" 1st edition	003.	нюп, 	emien	here

3. Paul O' Callaghan, "Energy Management", 1st edition, Mc-Graw Hill Book Company, 1998.

E-RESOURCES:

- 1. https://iisdt.in/product/diploma-in-energy-audit-and-management/
- 2. https://www.udemy.com/share/103fdq/

COURSE ARTICULATION MATRIX:

COa						PO	Os						PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1									3	
2	3	3	2	1	1	1			1				3	
3	3	3	2	1	SA	0	UL.	LE(25				3	
4	3	3	2	10	S				0	0	5		3	
5			/	2	/	14	1	1	1	~			3	
			1.1	- /				A	A					

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

VERTICAL 6 SMART MANUFACTURING

МЛ	122061	DIGITAL TWIN AND INDUSTRY 5.0	L	Т	Р	С
	22001	(Common to MN and ME)	3	0	0	3
CO	URSE	OBJECTIVES:				
1.	To in	roduce the concept and significance of Digital Twin technology in moder	n ind	ustrie	s.	
2.	To ex	plore the application of Digital Twin within discrete industries.				
3.	To ex	plore the application of Digital Twin within process industries.				
4.	To un	derstand the evolution and impact of Industry 5.0 on technological advance	ceme	nts.		
5.	To cr	tically evaluate the challenges and prospects of Digital Twin.				
UNI	ΤΙ	INTRODUCTION TO DIGITAL TWIN				9
Defi	nition.	Evolution and concepts of Digital Twin Technology - Digital Twin in	Prod	uct L	ife C	vcle
Man	ageme	nt - Digital twin in industrial application – Challenges of digital twin	1 app	licatio	on –	Kev
Tech	nologi	es – Eight rules for Digital Twin modeling.	··r r			5
	0					
UN	тп	DIGITAL TWIN IN SMART MAUFACTURING				9
Con	cept of	digital twin in shon-floor – Implementation Key technologies challer	iges i	n sho	p-flo	or -
Eau	ipment	Energy consumption management (EECM) – Framework, Implementa	tion.	Adva	ntage	es of
EEC	CM in s	hop-floor - Physical fusion in shop-floor.	,			
UN	тш	DIGITAL TWIN AND NEW TECHNOLOGIES				9
Intro	ductio	n to digital twin and cloud for Edge computing $-$ Big data $-$ Lifec	vcle	of hi	σ dat	a in
man	ufactu	in σ – Fusion of digital twin and big data – VR AR in design manufaction	turing	y and	servi	ce –
Digi	tal twi	\mathbf{r}_{ij} and cyber physical system in manufacturing – Role of IoT in digital twi	1. 1.	, und	501 11	
2.8.						
UN	TIV	INDUSTRY 5.0				9
Fror	n Indus	stry 4.0 to Industry 5.0: Evolution - Principles and Objectives of Industry	50-	Chall	enger	sof
5.0	– Bene	fits of $5.0 - Automation in engineering manufacturing business robo$	otic d	lioital	inte	llect
proc	ess – F	rocess transformation	110, u	ingitui	, 11100	neet
UN	ти	TECHNOLOGIES AND APPLICATIONS OF INDUSTRY 5.0				9
Inter	met of	Things (IoT) and its applications in Industry 50 - Potential of IoT in	man	ufact	nring	and
auto	mation	- Artificial Intelligence and Machine Learning in Industry 5.0 - Autom	ation	syste	ms ir	the
auto	mobile	industry - Challenges and opportunities in implementing.	ation	5,500	ins n	i une
		TO'	ГАТ.	45 P	ERI	ODS
		10				JD 0
					P	RT
CO	No.	COURSE OUTCOMES				DI
Δ + +1	no ond	of the course, students will be able to:				
		Apply Digital Twin basics to industrial problems				3
	$\frac{J1}{22}$	Apply Digital Twin basics to industrial problems.			<u> </u>	2
	<u>J</u> 2	Develop officiency strategies in process inductrics using Digital Twins			_	2
	<u>J</u> 3	Develop efficiency strategies in process industries using Digital Twins.				<u> </u>
	<u>J4</u>	Utilize Digital twin knowledge for Industry 5.0			<u> </u>	3
	J5	Apply the advantages in industry 5.0.				3
	7000 0	NV/0				
TEX	TBO	JKS:			1 ~	<u> </u>
	"Dig	ital Twin – Fundamental Concepts to Applications in Advanced Manuf	tactur	'ing"	by Su	ırjya
1.	Kant	a Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakra	varty	, Srik	anta	Pal.
	Sprii	iger International Publishing, August 2021. ISBN:9783030818159, 30308	31815	2		

"Industry 5.0: The Future of the Industrial Economy" by Elangovan and Uthayan. United 2. States: CRC Press, 2021. ISBN:9781000484663, 1000484661

REF	ERENC	ES:												
1	Andrew	v Yeh (Chris No	ee, Fei	Tao, a	nd Men	ig Zhan	g, "Dig	gital Tv	vin Dri	ven Sm	art Ma	nufactu	ring",
1.	Elsevier	r Scien	ce., Uni	ited Sta	ites, 20	19								
-	Ibrahim	ı Garbi	e. "Sust	ainabil	ity in N	Manufac	cturing	Enterp	ises. C	oncept	s. analy	ses and	lassess	ments
2.	for Indi	istry 4	0" Spri	nger	Switze	rland 2	016	p		one-p.	<i>,</i> ,			
	Aln Ua	stundad	$\frac{1}{2}$ and $\frac{1}{2}$	Emro (- Coviko	on "In	ductry	10· N	Innadi	ng The	Digite	1 Tror	sform	tion"
3.	Alp Us	stunuag n Somio	z and z	uomood	Monu	all, Ill Footumin		4.0. Iv	1 anagn	ing The	Digita	u Hai	15101111a	
	Springe	s Selle	s III Au	vanceu	Manu		g., Swi	Zerrand	1, 2016)				
E-RE	SOUR	CES:												
1.	https://v	www.re	esearchg	gate.net	/publi	cation/3	400557	'58_Dig	gital_T	win_Te	echnolog	gy		
2	https://y	www.d	ioitaltw	inconse	ortium	org/we	binars/	IF		-				
2.	D' '4 1	T ·		· ·		r. 1 .	omars	LE(36					
3.	Digital	I wins	Trom U	niversi	ty of N	lichigar	1	55500	C.	-				
	https://v	www.c	lasscent	ral.con	n/cours	e/digita	ul-twins	-55789		0.				
			1	9		1		1		2				
COU	RSE AF	RTICU	LATIC)N MA	TRIX	:	Re		1	\sum	10			
CO			1.4	1		PO	Os	2.1	35	1	21		PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		<	1		1.5		00		0	1P	1	1	1
2	3		F	2	2	1	V			1		1	1	2
3	3	1	1	2	2	1	1	1	Q.	×	m.	1	1	2
4	3		2			1	2	1			21	2	2	2
5	3		\1_	1:	1		2			12	5/	1	1	1

ीवेद्या परा देवता ।

G

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

MN22062

DRONE TECHNOLOGIES (Common to MN and ME)

L T P C 3 0 0 3

COURSE OBJECTIVES:

1. To Understand drone basics and concepts.

2. To Learn drone design, fabrication, and programming.

3. To Gain knowledge in flying and operating drones.

4. To Explore drone applications across sectors.

5. To Study drone safety, risks, and regulations.

UNIT I INTRODUCTION TO DRONE TECHNOLOGY AND BASIC AERODYNAMICS

Drone Concept and Evolution - Terminology - History of Drones - Fixed Wing and Multi rotor Drones: Introduction, Kinematics, and Dynamics - Types of Current Generation of Drones Based on Propulsion Methods - Drone Technology's Impact on Businesses - Opportunities for Entrepreneurship and Employability in the Drone Sector.

UNIT II DESIGN, FABRICATION, AND PROGRAMMING OF DRONES

Classifications of UAVs and Overview of Main Drone Parts - Technical Characteristics and Functions of Component Parts - Assembling and Fabricating Drones - Energy Sources and Level of Autonomy – Drone Configurations and Propulsion Mechanics - Basics of Drone Programming: Installation and Running Programs – Multi rotor Stabilization and Flight Modes - Wi-Fi Connectivity and Remote Control Operations.

UNIT III ADVANCED DRONE OPERATIONS AND CONTROL SYSTEMS

Operating Drones: Flight Modes and Control Mechanisms - Navigational Sensors and Inertial Systems -Magnetometers, Pressure Sensors, GPS, and Camera-Based Navigation - State Estimation and Attitude Estimation Techniques - Advanced Flight Controls and Motion Planning: PIC Control, Linear Quadratic Regulator (LQR), and Linear Model Predictive Control - Collision-Free Navigation and Structural Inspection Path Planning.

UNIT IV COMMERCIAL APPLICATIONS AND REGULATORY COMPLIANCE

Selecting Drones for Specific Applications - Drones in Various Sectors: Insurance, Agriculture, Delivery Services, Inspection of Infrastructure - Legal and Ethical Considerations in Drone Operations – Specific Aviation Regulations, Standardization, and Drone Licensing - Safety Guidelines and Risk Management in Drone Operations.

UNIT V FUTURE TRENDS IN DRONE TECHNOLOGY AND SAFETY INNOVATIONS

Innovations in Drone Design: Miniaturization and Increased Autonomy - The Use of Drones in Swarms and Collaborative Operations - Emerging Technologies in Drone Safety and Risk Mitigation – Global Trends and Future Prospects in Drone Technology - Ethical Implications and Environmental Considerations in the Development and Use of Drones.

TOTAL: 45 PERIODS

9

9

9

9

CON	No.					С	OURS	E OUI	COM	ES					RBT Level
At the	e end	of the	cour	se, stu	dents w	vill be a	ble to:								
CO	1	Apply	kno	wledge	e of dro	one tech	nnologi	es to so	olve rea	l-world	l challe	nges.			3
СО	2	Build function	anc onali	d expe ity.	eriment	t with	drone	mode	els to	under	stand t	heir d	esign	and	3
CO	3	Choos	e ap	propria	ate droi	ne techi	nologie	s for sp	ecific i	ndustr	y applic	ations.			3
CO	4	Devel	op st	trategie	es for e	ffective	e drone	operati	on and	manag	ement.				3
CO	5	Utilize	e dro	one tecl	hnolog	y withii	n legal	and eth	ical gu	ideline	s.				3
		0.770													
TEX	TBO	OKS:	and	ти	/ Mol	ain "	Small 1	Inmon	nod Ai	roroft	Theory	r and]	Draatioo	" Dri	nooton
1.	Univ	versity	Pres	s, 201	2 NICL	am, c	Sman	Unnan	neu Al	iciait.	Theory		Fractice	, 11	licetoli
	Dan	iel Ta	l a	nd Jo	hn Al	tschuld	, "Dro	one Te	echnolo	ogy in	Archi	itecture	, Engi	neerin	g and
2.	Con	structio	on: A	A Strat	tegic G	uide to) Unma	anned .	Aerial	Vehicle	e Opera	tion ar	nd Impl	ement	ation",
	$\frac{202}{\text{Chin}}$	I John	W116 Rani	ey & S ian Pat	ons, In ttnaik	C. G. Sury	va Nara	vana '	Drone	Techno	alogy: I	Future '	Trends :	and Pr	actical
3.	App	licatio	1s",	June 2	023, W	iley Pu	blicatio	on. ISB	N:9781	39416	6534, 1	394166	532		actical
	••			11	1	10	13	11. 1		100	11	01			
REF	ERE	NCES:		T1: 1	0.1.11		/		100.0	1.0	77'11		1 100	20	
1.	R.C	$\frac{1}{1}$ Nelso	on, "	Flight	Stabilit	ty and A	Automa	Cottin	ntrol", I	McGrav	w Hill,	New Y	ork, 199	78 in a''	Malzar
2.	Mec	lia Inc,	201	6, Else	vier Sc	tience.,	United	States	g Start			es mai	iuiaciui	mg ,	IVIAKCI
3.	Gar Tecl	vit Pa hnolog	ndya y" M	, "Bas Iarch 2	sics of 2021, N	Unma Otion P	anned Press. IS	Aerial SBN:97	Vehic 816374	les: Ti 153872	ime to , 16374	start 53876	working	g on	Drone
			1	1					1			111			
E-RF	SOU	JRCES	:	1	1	1.10			-	75	1	21			
1.	Dron Univ	nes fo versity -13843	r A	gricult tps://w	ure: P. ww.cla	repare isscentr	and E al.com	Design /course	Your /drones	Drone s-wager	(UAV ningen-) Miss univers	sion - sity-rese	Wager arch-d	ningen Irones-
2.	Unn	nanned	A	erial	System	ns (Uz	AS):	Fundan	nentals	- U	niversit	y of	Alaska	a Fai	rbanks
	nup	<u>s://ww</u>	w.cla	asscent	tral.con	1/cours	e/scien	<u>ce-univ</u>	ersny-o	or-arasi	ka-faird	anks-ui	nmanne	a-a- 20	/521
COU	RSE	ARTI	CUI	LATIC)N MA	TRIX			~	-					
~~~							P	Os						PS	SOs
COs	1		2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3												1	1
2	3	3		2		2				2				2	2
3	3	3		1	1	2								1	2
4	3	3					2		2					1	
5	3	3					2		2				1	1	1
1: Sli	ght (	Low),	2: M	Iodera	te (Me	dium),	3: Sut	ostantia	al (Hig	h)			• • • •		•

MN	22063	INDUSTRIAL NETWORK AND PROTOCOL	L	T	P	C
COI	IRSE	OBJECTIVES:	3	U	U	3
1		derstand the architecture and operation of industrial communication syste	ms			
1. 2	Tole	arn about various industrial protocols and their applications in automation				
2. 2	To de	sign and implement network solutions for industrial control systems	•			
5. 4	To ar	alvze and troubleshoot industrial networks				
4.	10 ai	aryze and troubleshoot industrial networks.				
UNI	ΤI	FUNDAMENTALS OF INDUSTRIAL NETWORKS				9
Intro	ductio	n to Industrial Network – Importance - applications - Overview of OSI a	nd TC	CP/IP	mod	els -
Wire	eless -	Wired Networks Comparison - Serial Communication Protocols - RS232	– UA	RT -	SPI -	I2C
–UN Eirer	I/O B	us-1 Wire-Camera Link - Parallel Communication - PPI - Wishbone Bus	– AM Madh	BA -	– JTA	.G –
oper	vare -	applications Selection Criteria for Industrial Networks	woodd	us; p	rinci	nes,
oper	unons					
UNI	T II	INDUSTRIAL ETHERNET AND WIRELESS COMMUNICATION	N			9
Trad	itiona	and Industrial Ethernet - Overview of switches, routers, and gateways s	specif	ic to	indus	trial
appli	icatior	s - Wireless Communication Standards: Antenna Technology - Net	work	Тор	ologi	es -
Wire	eless I	Local Area Networks (WLAN) - Wireless Personal Area Networks (W	PAN)	- W	imed	1a —
VV III.	lax - r	r – Bluetooth- wi-Fi – Zigbee – wireless industrial Automation Protocol	<u>s.</u>			
UNI	TIII	WIRED NETWORKS FOR AUTONOMOUS SYSTEMS	1			9
Over	view	of Industrial Wired Networks – Terminal Bus - Modbus - HART Network	$x - M \phi$	echat	rolink	- II
– Et	her C	AT - SERCOS II/III - CAN - CANopen - Modbus IDA - PROFIN	NET-	PRC	FIBU	JS -
Ethe	rnet/II	P- Ethernet Power link - AG Automation and Drives (AS-I) - Device Net				
						0
UNI		WIRELESS NETWORKS AND NETWORK DESIGN	) am ai		tread	9
Cont	roller	Based Networks - Wireless HART Technology - 3G/4G for Automation	- RF		ata T	55 - 'ags
Desi	gn Pri	nciples - Network topologies - Security in Industrial Networks – Vulne	erabili	ties -	· Seci	ugs. urity
meas	sures a	nd policies.				2
UNI	TV	TRENDS AND FUTURE DIRECTIONS				9
Revi	ew of	Industrial IoT (IIoT): Impact of IoT on industrial networking, challenges	s, and $\mathbf{W}$	oppo	ortuni	ties.
Netv	uenan	g of Sub-elements and Machines - Communication Network I avout Desi	a w m = N	Jetwo	wind	nine for
TIA	- Cloi	d Computing Future landscape of industrial networks.	gn - 1		JIKIIIE	, 101
		TO	FAL:	45 P	ERIC	DDS
·						
со	No.	COURSE OUTCOMES			R	BT
Λ++1	here of	of the course, students will be able to:				vei
Aill		OF the course, students will be able to: Describe the architecture and operation of different industrial communic	ation			
CC	)1	systems.	ation			2
CC	)2	Select and apply appropriate industrial protocols for specific automation	tasks.			4
CC	)3	Design and implement industrial network solutions to meet system require	remer	ıts.		5
	1	· · ·			- 1	

CO	4 ′	Froubles	shoot ar	nd optir	nize inc	lustrial	networ	ks for	reliabili	ity and	perform	nance.		4
CO	5	Understa	and the	securit	y implic	cations	and bes	st pract	tices in	industr	ial netw	orks.		2
TEX	$\frac{\Gamma BOO}{D^{1}}$	<u>KS:</u>	<b>U</b> 7' 1		1 0	т 1	1 .		••••• •• • • • • • • •	h ד ויגי	τ.		10	C
1.	Dick Auton	Caro, "V nation. 2	014.	s Netwo	orks foi	r Indus	trial Ai	itomat	ion", 4"	" Editio	on, Inte	rnation	al Soci	ety of
2.	A. Gu Spring	pta, "Da ger.	ita Com	munica	ation Pr	rinciple	es for Fi	xed an	d Wire	less Ne	etworks	," 1st E	dition,	2003,
REF	EREN	<u>CES:</u>	1 1 1 1		1	· 1	A 1	• 1	0 1	• 11 1	· <b>F</b> 1'.'	200		1 • 1
1.	A.v. Public	Bakshi a	and U.A	A. Baks	shi, "Ne	etwork	Analys	is and	Synthe	2818," 1	st Editi	on, 200	19, Tec	hnical
2.	Willia Editio	m Stall n, 2010.	ings, ac Pearso	lapted n India	by Brij	endra	Singh,	"Wirel	less Co	mmuni	cations	& Net	tworks	," 2nd
3.	K.P. Manu	Pradee facturing	p Ku 2." 3rd ]	mar, Edition	"Auton . 2015.	nation, PHI Le	Prod earning.	uction	Syste	ems,	and (	Comput	er-Inte	grated
4.	Raj K McGr	amal, " aw-Hill	Embedo Educati	ded Sy ion.	stems:	Archite	ecture,	Progra	mming	and D	)esign,"	3rd E	dition,	2013,
			10	0/		12	No.		1		10			
E-RE	SOUR	CES:	1.4	1	£ 6.		-	2	15	1	21			
1.	https:/	/onlinec	ourses.	nptel.a	c.in/noc	22_ee6	61/previ	ew	112	/	0			
2.	https:/	/onlinec	ourses.	nptel.a	c.in/noc	22_cs1	9/previ	ew	1	0	11			
3.	https:/	/www.r	aspberr	ypi.org	/docum	entatio	n		1-11-	1.00	2			
4.	https:/	/www.a	rduino.	cc/en/C	Buide		1	1	1.9-	×	m			
			17			1		/		1	21			
COU	RSE A	RTICU	LATIO	ON MA	TRIX:		3235	100	222	1.	SI			
COs			17	5	10	PO	Os		100	15	=/		PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	3	2	2		12	2	9/		3	1	2
2	3	3	2		2	97	R	6	2			2	3	3
3	3	2	1	1	2							2	2	2
4	3	3	2			2		2				2	2	2
5	3	2	1			2		2				1	2	2
1: Sli	ght (L	ow), 2: 1	Modera	nte (Me	edium),	3: Sut	ostantia	l (Hig	h)					

## MN22064INTELLIGENT PHYSICAL SYSTEMS<br/>(Common to MN and ME)LTPC3003

**COURSE OBJECTIVES:** 

1. To acquire knowledge and skills in various hardware and software design aspects of intelligent Physical Systems.

2. To analyze the functional behavior of intelligent physical systems.

3. To develop an exposition of the challenges in implementing a cyber-physical system from a computational perspective.

### UNIT I INTRODUCTION TO INTELLIGENT PHYSICAL SYSTEM

Intelligent Cyber-Physical Systems in the real world, Basic principles of design and validation of Intelligent Physical Systems in Industry 4.0, Auto SAR, IIOT implications Building Automation, Medical CPS.

### UNIT II NETWORKING AND COMMUNICATION PROTOCOLS

Principles of Modulation and Demodulation: Principles of Amplitude and Frequency Modulations- CPS Network - Wireless Hart, CAN, Ethernet, CPS SW stack – RTOS, Scheduling Real-Time control tasks CPS.

### UNIT III LIMITATIONS IN INTELLIGENT PHYSICAL SYSTEM DEPLOYMENT

Stability Analysis: CLFs, MLFs, stability under slow switching, Performance under Packet drop and Noise. CPS: From features to automotive software components, Mapping software components to ECUs CPS Performance Analysis - effect of scheduling, bus latency, sense and actuation faults on control performance, network congestion Building real-time networks for CPS.

### UNIT IV INTELLIGENT PHYSICAL SYSTEM APPLICATION

Case Study: Suspension Control, Healthcare: Artificial Pancreas/Infusion Pump/Pacemaker, Green Buildings: automated lighting, AC control, Digital Twin system, Safe Reinforcement Learning - Robot motion control - Autonomous Vehicle control.

### UNIT V SECURE DEPLOYMENT OF INTELLIGENT PHYSICAL SYSTEM

Attack models, Secure Task mapping and Partitioning, State estimation for attack detection, Automotive Case study: Vehicle ABS hacking, Power Distribution Case study: Attacks on Smart Grids.

### **TOTAL: 45 PERIODS**

9

9

9

9

CO No.	COURSE OUTCOMES	RBT Level
At the end	d of the course, students will be able to:	
CO1	Identify the components and techniques required for an intelligent physical system.	2
CO2	elaborate processors, Networking, Communication protocols and programming	3
CO3	Categorize the essential modelling formalisms of intelligent Physical Systems.	3
CO4	Demonstrate the different control systems and applications of intelligent physical systems	4
CO5	develop intelligent systems, security, safety aspects and implementation	3

TEX	ТВООЬ	KS:												
1.	Rajeev	Alu, P	rinciple	s of Cy	ber-Ph	ysical S	Systems	s, The M	AIT Pre	ess, 201	16			
2	Edward	1 A. L	ee and	Sanjit	A. Se	eshia, Ir	ntroduc	tion to	Embe	dded S	Systems	: A Cy	/ber-Ph	ysical
2.	System	is Appr	oach, S	econd e	edition	, MIT P	ress, 20	)11						
REF	ERENC	ES:												
1.	Song, l princip	H., Rav les, and	vat, D. l applic	B., Jes ations.	chke, å Morga	S., &Br n Kaufr	echer, nann, 2	C. (Eds 2016	s.). Cył	per-phy	vsical sy	ystems:	founda	ations,
ſ	Rodrig	ues, Jo	el Jose	PC, Iva	an Stoj	menovi	c, and	Danda	B. Rav	vat. Cy	ber-phy	ysical s	ystems	: from
۷.	theory	to pract	tice. CR	RC Pres	s, 2015	5.								
E-RF	SOUR	CES:												
1.	https://	onlinec	ourses.	nptel.ac	c.in/no	c23_cs6	2/prev	iew						
2.	https://	courses	s.cornel	l.edu/pi	review_	_course	_nopop	.php?ca	atoid=3	81&coi	d=4910	66		
				1	aP	· · · ·			Ac	1				
COU	RSE AI	RTICU	LATIC	ON MA	TRIX	-			1	0)	5			
COs			1	2		PO	Os		1	x	1		PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	1	3	1			X		21		2	
2	3	3	2	<u></u>	3	(4		2/			6		2	
3	3	3	2	- 0	. 3	1.1		0	the second		Z		2	
4	3	3	2		3	11	16		-11.		111		2	
5	3	2	4	1 2	10 St.	2		2	100		m	1	2	
1: Sli	ght (Lo	w), 2: I	Modera	nte (Me	dium)	, 3: Sub	ostantia	al (High	<b>1</b> )	1	21			
			1	S.	1/10		Ű	1	101	5				

## MN22065MACHINE VISION AND IMAGE PROCESSING<br/>(Common to MN and ME)LTP300

0 0 3

С

### **COURSE OBJECTIVES:**

1. To understand the principles of image formation and representation.

2. To learn the core techniques in image processing and analysis.

3. To apply machine vision algorithms to solve engineering problems.

4. To design and implement systems for various applications in automation and robotics.

### UNIT I INTRODUCTION AND IMAGE FORMATION

Overview of Machine Vision Systems: History and evolution of machine vision - Differences between machine vision and computer vision - Components of a machine vision system. Image Formation Principles: Physics behind image formation - light properties, reflection, refraction, and absorption - Camera models. Lighting and Optics for Machine Vision: Lighting techniques - The selection of optics and lenses - focal length, field of view, and depth of field. Digital Image Fundamentals: Digital image representation - pixel intensity, color models (RGB, HSV) and image formats - Sampling and quantization

### UNIT II IMAGE ENHANCEMENT AND RESTORATION

Spatial Domain Methods: Image contrast and brightness - Histogram equalization and local enhancement techniques - Spatial filters for noise reduction. Frequency Domain Methods: Fourier Transforms - image smoothing and sharpening - Frequency domain filters (low-pass, high-pass, band-pass). Advanced Enhancement Techniques: Adaptive filtering techniques - Image content and wavelet transforms for multi-resolution analysis - Noise reduction, enhancing features, and compressing images - Image degradation and restoration.

### UNIT III FEATURE EXTRACTION

Edge Detection and Feature Extraction: Gradient-based and Laplacian methods for edge detection - Advanced feature extraction methods - SIFT and SURF. Feature Matching and Applications: Algorithms for matching features across different images - Brute force matching and FLANN based matching - Applications of feature extraction and matching in object recognition - 3D reconstruction - motion tracking.

### UNIT IV OBJECT RECOGNITION

Pattern Recognition in Machine Vision: Basics of pattern recognition - Template matching - Statistical classification methods. Deep Learning Approaches: Deep learning in object recognition - Convolutional neural networks (CNNs) - Architecture of CNNs - Training processes. Practical Applications of CNNs: Real-world applications of CNNs in machine vision - Facial recognition - Automated vehicle navigation - Industrial inspection.

### UNIT V APPLICATIONS IN SMART MANUFACTURING

The role of machine vision in Industry 4.0 - Real-time monitoring of production lines, automated inspection for quality control, and machine maintenance - The application of machine vision in robotics - robot navigation, object handling, and automated assembly processes - The use of augmented reality for maintenance - The application of machine learning algorithms for predictive analysis.

**TOTAL: 45 PERIODS** 

9

9

9

9

CON	No.					C	COURS	E OUI	COM	ES					RBT Level
At the	e end	l of t	he cou	rse, stu	dents w	ill be a	able to:								
CO	1	Ana	alyze a	nd proc	cess ima	iges us	ing vari	ious tec	chnique	s.					3
CO	2	Des	ign an	d imple	ement n	nachine	e vision	system	ıs.						4
CO	3	App	oly ima	age pro	cessing	algori	thms for	r real-v	vorld ap	plicati	ons.				3
CO	4	Wo	rk wit	th softv g.	ware to	ols ar	nd libra	ries re	levant	to ma	chine v	vision	and im	age	3
CO	5	Ana	alyze a	nd proc	cess ima	ages us	ing vari	ious tec	chnique	s.					5
TEX	<u>FBO</u>	OK	<u>S:</u>		1.5.		<b>- - - - - - - - - -</b>	1 115			<u> </u>	• • • •	1 5 11		
1.	Rafa	ael (	C. Goi	nzalez	and Ri	chard .	E. Woo	ods, "D	igital I	mage	Process	ing," 4	th Edit	ion, F	Pearson
	Dav	vid A	$\frac{511}{201}$	vth and	Jean P	once. '	'Compu	ter Vis	ion: A	Moder	n Appro	oach." 6	oth Editi	ion. P	earson.
2.	202	0.		j ili uliu		a.P	compu				- ippi	<i>, , , , , , , , , , , , , , , , , , , </i>		, 1	cuison,
					1.0	2					0)	1			
REFI	ERE	NCI	ES:	1	12						X				
1.	Mila Visi	an S ion,"	Sonka, 5 th Ec	Vacla lition, C	v Hlava Cengage	ac, and e Learr	d Roge ning, 20	r Boyl 17.	e, "Ima	age Pr	ocessin	g, Ana	lysis, a	nd M	lachine
2.	Reii	nhar	d Klett	te, "Coi	ncise Co	ompute	er Visio	n," Spr	inger, 2	2014.		21			
3.	Ber	$\frac{\text{nd } J_a}{1 V}$	ahne, "	Digital	Image	Proces	sing," 6	oth Edit	tion, Sp	ringer,	<u>2005.</u>	11 2015			
4.	An	IK.	Jain, " Umbor	Fundar	nentals	of Dig	Ital Ima	ige Pro	Apolyo	," Pren	tice Ha	$\frac{11,2015}{2011}$			
5.	300	uЕ	Uniba	ugn, D	ignal i	nage r	1000551	ng anu	Anarys	<u>15, Cr</u>	C Fles	5, 2011			
E-RE	SOU	JRC	ES:	Ĩ	5	1	1	1	1	Ų.	×	m	1		
1.	http	s://o	nlinec	ourses.	nptel.ac	.in/noc	:23_ee3	9/prev	iew		1	21			
2.	http	s://w	ww.co	oursera	.org/, ed	dX: htt	ps://ww	w.edx.	.org/	0-4	1.	51			
3.	http	s://w	ww.m	nathwoi	ks.com	/help/r		https:/	/docs.o	pency.	org/mas	ster/			
I	1			/	0	-	1	00	1	1		/			
COU	RSE	AR	TICU	LATIO	ON MA	TRIX		X	~	2	6/				
COa						(9)	P	Os	57	10	/			P	SOs
COS	1	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2			2							1	2	
2	2	2	3	3	2	3				1	1			3	
3				2		3							2	2	
4	2	2				2							2	3	
5	2	2	2	2	1	3	1	1	1	2	2	1	3	2	
1: Sli	ght (	Low	v), 2: N	Modera	te (Me	dium)	, 3: Sub	ostantia	al (Hig	h)			<u>ı                                    </u>		

			-	m	<b>_</b>	a
MN	22066	ROBOT OPERATING SYSTEMS		T	P	<u>C</u>
COL	IDCE	Common to MIN and MIE	3	U	U	3
	To in	UBJECTIVES:				
1.	10 III To m	adal a robot with LIDDE				
2. 2	Ton	mulate the robots with Gazaba				
5. 1		mulate the robots with V Ben				
4. 5	Tode	mutate the foods with V-Kep				
5.	10 00					
UNI	тт	INTRODUCTION TO ROBOT OPERATING SYSTEMS				9
Intro	ductio	on to ROS- Advantages and Disadvantages of ROS - ROS Framework-	ROS	pack	age (	]++.
Pvth	on –	ROS computation Graph – nodes. Messages, topics, services, bags.	ROS	Mas	ter- I	ROS
Com	munit	v- Basic programming and Syntax overview in C++ and Python	- st	art v	vith I	ROS
prog	ramm	ing - Creating Environment - Services-Actions and Nodes - Simple	Intera	ction	with	the
Sim	ulation	environment.				
UNI	TII	ROBOT MODELING WITH URDF				9
САГ	) Tool	s for Robot Modelling – ROS Packages for robot modelling – Unified	d Rol	oot D	escrip	otion
Forn	nat an	d Tags- Kinematics and Dynamics Library – Create URDF Model – Ro	bot N	Iodel	ling u	sing
Unif	ied R	obot Description Format (URDF),-ROS parameter server and addin	g rea	l-woi	ld ol	oject
repre	esentat	ions to the simulation environment _ Create Robot description using 7	DOF	: join	t num	iber,
name	e, type	and angle limits - Xacro - Rviz - viewing of 7 DOF arm - creation of w	heele	d rob	ot.	
		X X X	1			
UNI	T III	ROBOT SIMULATION WITH GAZEBO				9
Robo	ot sim	ulation - Gazebo -create simulation model at Gazebo- Adding colors, te	exture	s, tra	nsmis	sion
tags,	3D v	ision sensor to Gazebo- Moving robot joints using ROS controllers-ROS	5 con	trolle	r inter	acts
with	Gaze	bo, interfacing state controller, simulation of moving the robot join	nts –	sim	ulation	n of
diffe	rentia	wheeled robot in Gazebo.				
UNI	T IV	ROBOT SIMULATION WITH V-REP		~ •		9
Simu	lating	the robotic arm using V-REP – Adding the ROS interface to V-REP	joint	- Sin	nulati	ng a
diffe	rentia	wheeled robot, adding a laser sensor, 3D vision sensor.				
		Ser TITT TOP				_
UNI	TV	MAPPING, NAVIGATION, AND MOTION PLANNING ROS WI	ГН М	IOVE	EIT	9
Mov	e it In	stallation - Generating the Self-Collision matrix, virtual joints, planning	group	os, rol	bot po	oses,
robo	t end	effector - Movelt Architecture Diagram - Trajectory from RViz GUI ex	ecuti	ng in	Gaze	bo -
Plan	ning s	cene overview diagram- Collision Checking - Motion Planning, Pick a	and P	lace	Behav	lors
using	g Indu	strial Robots with ROS Movelt – ROS with MATLAB.				
		ТО	TAL	: 45 P	PERI (	DDS
CO	No.	COURSE OUTCOMES			R	BT
	1.00				Le	evel
At th	ne end	of the course, students will be able to:				
CC	)1	Understand ROS and ROS programming				2
	)2	Understand robot modeling and create URDF model				2

CO3Simulate robots in ROS using Gazebo

CO	<b>4</b> S	imulate	e robots	in ROS	S using	g V-Rep								3
CO	5 U	Jndersta	and map	oping, n	avigat	ion, and	l motio	n plann	ing usi	ng Mo	veIt			2
TEX	<b>FBOO</b>	KS:												
1.	Lentin Edition	Joseph 1, Packt	, Jonath t Publisł	an Caca ning, 20	ace, "N )18.	Masterir	ng ROS	for Ro	botics ]	Prograi	nming"	, Secon	ıd	
REF	ERENC	CES:												
1.	Lentin Roboti	Joseph cs Prog	, Aleena grammin	a Johny 1g Made	, "Rob e Easy	oot Oper ", Secoi	ating S nd Edit	ystem ion, Ap	(ROS) : oress, 20	for Abs 022.	solute B	eginne	rs	
2.	Lentin	Joseph	, "ROS	Roboti	cs Pro	jects", F	Packt p	ublishir	ng, 2017	7				
E-RE	SOUR	CES:				_		_						
1.	https://	′www.c	lasscent	tral.con	n/cours	se/robot	ics-del	ft-unive	ersity-o	f-techn	ology-h	ello-re	a-11555	5
				1	Rr	-		-	36					
COU	RSE A	RTICU	JLATIC	ON MA	TRIX	:		121	-	0.				
				the second se										
<b>CO</b> -			10	2/		P	Os		1	1	1		PS	Os
COs	1	2	3	4	5	P(	Os 7	8	9	10	Cn)	12	PS 1	Os 2
COs	1 2	<b>2</b> 2	34	4	5	P(	Os 7	8	9	10	I	12	PS 1	<b>Os</b> 2 2 2
COs 1 2	<b>1</b> 2	<b>2</b> 2 2	3	4	<b>5</b> 3	P0	Os 7	8	9	10	En GI	12	PS 1	Os 2 2 2 2
COs 1 2 3	<b>1</b> 2	2 2 2	3	4	<b>5</b> 3 3	P(	Os 7	8	9	10	TUGIN	12	PS- 1	Os 2 2 2 2 2 2 2
COs 1 2 3 4	1 2 1 1	2 2 2	3	4	<b>5</b> 3 3 3 3	P(	Os 7	8	9	10	TUGINE	12	PS	Os           2           2           2           2           3
COs 1 2 3 4 5	1 2 1 1	2 2 2	3	4	5 3 3 3 3	Pe	Os 7	8	9	10	TUGINEES	12	PS	Os           2           2           2           3
COs 1 2 3 4 5 1: Sli	1 2 1 1 spht (Lo	2 2 2 w), 2: 1	3 1 1 1 1 1 Vodera	4	5 3 3 3 3 dium)	P(	Os 7	8 al (Hig	9 		TUGINEER	12	PS	Os           2           2           2           3

MN22067ROBOTICS FOR SMART MANUFACTURING (Common to MN and ME)LTP300										
CO	URSE	OBJECTIVES:	•							
1.	To in	troduce the basic concepts, types of robots, sensors, and actuators.								
2.	To fa	miliarize the students about the various applications of robots in manufacturing.								
3.	To in	npart knowledge of robotic vision system in robotic inspection.								
4.	To m	ake students understand robotic integration for automation.								
5.	To m	ake students learn how AI and ML for robots helps in smart manufacturing.								
UNI	ΙΤΙ	INTRODUCTION TO ROBOTICS IN MANUFACTURING		9						
Ove	rview	of smart manufacturing: Industry 4.0, automation, and robotics; Role of robotics in	mo	dern						
man	ufactu	ring processes; types of industrial robots: Manipulators, mobile robots, collaborative	e ro	bots						
(COI	5015), 1	sensors and actuators in robotic systems for manufacturing								
UNI	TI	ROBOTIC APPLICATIONS IN MANUFACTURING		9						
Rob	otic w	elding, spray painting, cutting, and material handling applications; Robotic assem	bly	and						
disa	ssemb	ly processes; Quality control and inspection using robotic systems.	-							
		4								
UNIT III   ROBOTS FOR INSPECTION										
Rob	otic	vision systems, image representation, object recognition and categorization.	, d	epth						
mea	surem	ent, image data compression, visual inspection, software considerations.								
TINI										
UN		ROBOTIC INTEGRATION AND AUTOMATION		9						
Integ	gratior	<b>ROBOTIC INTEGRATION AND AUTOMATION</b> of robots with manufacturing equipment: CNC machines, conveyors, and production	on li	9 ines;						
Integ pick	gratior and p	<b>ROBOTIC INTEGRATION AND AUTOMATION</b> of robots with manufacturing equipment: CNC machines, conveyors, and production place, palletizing, depalletizing; machine loading and unloading; Human-robot collar	on li bora	9 ines; ation						
Integ pick (HR	gration and p C) and	<b>ROBOTIC INTEGRATION AND AUTOMATION</b> n of robots with manufacturing equipment: CNC machines, conveyors, and production place, palletizing, depalletizing; machine loading and unloading; Human-robot collar d safety considerations in manufacturing environments; Robotic centered cell.	on li bora	9 ines; ation						
Integ pick (HR	gration and p C) and	<b>ROBOTIC INTEGRATION AND AUTOMATION</b> n of robots with manufacturing equipment: CNC machines, conveyors, and production place, palletizing, depalletizing; machine loading and unloading; Human-robot collar d safety considerations in manufacturing environments; Robotic centered cell.	on li bora	9 ines; ation						
Integ pick (HR UNI	gratior and p C) and TV	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production         blace, palletizing, depalletizing; machine loading and unloading; Human-robot collar         l safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         tashnologies, in, robotics, for smort, manufacturing; AL, machine, learning; principal	on li bora	9 ines; ation 9						
Integ pick (HR UNI Eme	gratior and p C) and T V erging	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production         blace, palletizing, depalletizing; machine loading and unloading; Human-robot collar         l safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce: robotic fleet management and decentralized control systems: case studies and rest	on li bora	9 ation 9 ctive						
Integ pick (HR UNI Eme main appl	gration and p C) and T V erging ntenan ication	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collard safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; price; robotic fleet management and decentralized control systems; case studies and reases of robotics in smart manufacturing; simulation tools for robotics: Using software like	on li bora redic al-w	9 ines; ation 9 ctive vorld obot						
Integ pick (HR UNI Eme main appl Stud	gratior and p C) and T V erging ntenan ication lio, Ga	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collard safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; price; robotic fleet management and decentralized control systems; case studies and reards of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing	on li bora redic al-w	9 ines; ation 9 ctive orld obot						
UNI Integ pick (HR UNI Eme main appl Stuc	r IV gratior and p C) and TV erging ntenan ication lio, Ga	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collard safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; price; robotic fleet management and decentralized control systems; case studies and reals of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         TOTAL: 45 PE	on li bora redic al-w te R	9 ines; ation 9 ctive orld obot						
Integ pick (HR UNI Eme main appl Stuc	rging ntenan ication ication lio, Ga	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collard safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce; robotic fleet management and decentralized control systems; case studies and reast of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         TOTAL: 45 PE	on li borz redic al-w ce R	9 ines; ation 9 ctive orld obot DDS						
UNI pick (HR UNI Eme main appl Stuc	reging tication (T V) and p (C) and (T V) erging thenan tication lio, Ga	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collard safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce; robotic fleet management and decentralized control systems; case studies and reast of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         TOTAL: 45 PE         COURSE OUTCOMES	on li bora redic al-w ce R CRI( R	9 ines; ation 9 ctive orld obot DDS BT						
UNI Integ pick (HR UNI Eme main appl Stuck	ration gration (C) and (C) and (T V) erging ntenan ication lio, Ga No.	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collaid safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce; robotic fleet management and decentralized control systems; case studies and rears of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         COURSE OUTCOMES         OUTCOMES         of the course, students will be able to:	on li bora redia al-w ce R <b>CRIC</b> <b>R</b> <b>L</b>	9 ines; ation 9 ctive corld obot DDS BT evel						
UNI Integ pick (HR UNI Eme main appl Stuc CO At th	reging ntenan ication lio, Ga	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collaid safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce; robotic fleet management and decentralized control systems; case studies and rears of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         TOTAL: 45 PE         COURSE OUTCOMES         of the course, students will be able to:         Understand various types of industrial robots; sensors and actuators used in robots.	on li bora redio al-w ce R <b>CRI(</b> <b>R</b> <b>L</b>	9 ines; ation 9 ctive vorld obot DDS BT evel 2						
UNI Intea pick (HR UNI Eme main appl Stuc CO At th CO	I IV       gratior       gratior       and p       C) and       IC) and       IT V       erging       ntenan       ication       lio, Ga       No.       he end       D1       D2	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collard safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce; robotic fleet management and decentralized control systems; case studies and reards of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         TOTAL: 45 PE         COURSE OUTCOMES         of the course, students will be able to:         Understand various types of industrial robots; sensors and actuators used in robots.         Understand various applications of robots in manufacturing.	redia al-wate R CRIC R	9 ines; ation 9 ctive orld obot DDS BT evel 2 2						
Integ pick (HR UNI Eme main appl Stud CO At th CO	I IV         gratior         and p         C) and         T V         orging         ntenan         ication         lio, Ga         No.         he end         D1         D2         D3	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production blace, palletizing, depalletizing; machine loading and unloading; Human-robot collard safety considerations in manufacturing environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce; robotic fleet management and decentralized control systems; case studies and reades of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         TOTAL: 45 PE         COURSE OUTCOMES         of the course, students will be able to:         Understand various types of industrial robots; sensors and actuators used in robots.         Understand various applications of robots in manufacturing.         Understand the robotic vision system and how it is used for inspection	on li bora redic al-w ce R CRI( R L	9 ines; ation 9 ctive corld obot DDS BT evel 2 2 2 2						
Integ pick (HR UNI Eme main appl Stud CO At th CO CO	I IV         gratior         and p         C) and         T V         orging         ntenan         ication         lio, Ga         No.         he end         D1         D2         D3         D4	ROBOTIC INTEGRATION AND AUTOMATION         a of robots with manufacturing equipment: CNC machines, conveyors, and production bace, palletizing, depalletizing; machine loading and unloading; Human-robot colladed affects and producting environments; Robotic centered cell.         ADVANCED TOPICS         technologies in robotics for smart manufacturing: AI, machine learning; proce; robotic fleet management and decentralized control systems; case studies and reas of robotics in smart manufacturing; simulation tools for robotics: Using software like zebo, or ROS for virtual testing         COURSE OUTCOMES         of the course, students will be able to:         Understand various types of industrial robots; sensors and actuators used in robots.         Understand the robotic vision system and how it is used for inspection         Understand the integration of robots with manufacturing equipment; human-robot collaboration.	redical-water R	<ul> <li>9</li> <li>ines;</li> <li>ation</li> <li>9</li> <li>ctive orld</li> <li>obot</li> <li>DDS</li> <li>BT</li> <li>evel</li> <li>2</li> <li>2</li> <li>2</li> <li>2</li> <li>2</li> <li>2</li> <li>2</li> <li>2</li> </ul>						

TEX	ГВООК	KS:												
1	¹ "Industrial Robotics: Technology, Programming, and Applications" by Mikell P. Groover,													
1.	Mitche	1 R. We	eiss, Ro	ger N. I	Nagel,	and Ni	cholas (	G. Odre	ey.					
2	"Robot	ics: M	odelling	g, Plan	ning a	nd Co	ntrol" ł	oy Bru	no Sic	iliano,	Lorenz	o Scia	wicco,	Luigi
2.	Villani	, and G	iuseppe	Oriolo										
3.	"Introd	uction	to Auto	nomous	s Robo	ts" by I	Nikolau	s Corre	ell, Jona	than C	. How, a	and Vi	jay Kur	nar
DEE	DEEEDENICES.													
KEF	Advor	ES:	ahatiaa	o n d	Tret a 11	icant	A	ation	in M	[		[ In it a d	Ctata	
1.	Global	2010	obotics	and	Intell	igent	Autom	ation	in M	lanurac	turing.	United	State	s, IGI
	Hunt V Smart Robots: A Handbook of Intelligent Robotic Systems Switzerland Springer													
2.	US. 20	13.	in Roo	013. 11	Tunu	UUUK (	or me	ingent	Roboti	ic bys	cents. D	VILLEII	unu, op	inger
	Roboti	$\frac{100}{100}$	mart Ma	anufacti	uring:	Interna	tional V	Vorksh	op. WR	RSM 20	)13. Co-	locate	d with ]	FAIM
3.	2013, 1	Porto,	Portuga	l, June	26-28	, 2013	. Proce	edings.	. Germ	any, S	pringer	Berlin	Heide	lberg,
	2013.													
a GE														
E-RE	E-RESOURCES:													
1	https://www.ieee-ras.org/educational-resources-outreach/educational-material-in-robotics-and-													
1.	automa	tion	10	2/		12	No.		4		10			
2.	https://	robotic	scasual.	.com/ro	botics-	tutorial	ls/	3	15	1	21			
3.	https://	www.r	obots.co	om/appl	ication	S	2	0	11	- \	61			
			Y	11 33	1		1	0		. 1	1			
COU	RSE AI	RTICU	LATIO	)N MA	TRIX		-		142		Z			
~~~		1	Z	1	1	P	Os	1	FU.	2	m		PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	0	1	1	1.1		10201	-	5	1	21			1
2	1		3	2	10		#		1	15	2/			3
3			1	2	1		1	12	/	0	/			1
4			2	2	170	1	1	-	2	0/				2
5	3				3	11	TD	5	70				3	2
1: Sli	ght (Lo	w), 2: I	Modera	ite (Me	dium),	3: Sul	ostantia	l (Hig	h)	1	. 1			

MN2206	MINI PROJECT	L	Т	Р	С							
101112200	(Common to MN and ME)	0	0	4	2							
COURSE	OBJECTIVES:											
	apply the knowledge obtained through the courses in a vertical for carrying out a	projec	t work	or								
labo	ratory exercises or relevant internship in industry.											
PROJEC	Γ WORK:											
GUIDELI	NES	1	hana	on ha								
	e project can be carried out as an individual or group project. Maximum	4 men	iders c	an be								
2. A	2. A particular domain / field shall be selected by the students in consultation with their supervisor.											
3. The students shall be encouraged to attend a design thinking workshop / opportunity identification												
session / problem statement writing.												
4. Th	4. The device / system / component(s) to be fabricated, may be decided in consultation with the											
su	supervisor and if possible with an industry.											
5. Th	5. The students shall prepare time schedule to complete the project.											
6. Th	6. The progress of the fabrication / development of the device / system / component(s) shall be											
rev	reviewed periodically by a committee.											
7. Th	e project work shall be evaluated based on oral presentation, demonstration	on of t	he wor	rking								
m	odel and the project report jointly by external and internal examiners.	\										
	ATORY EXERCISES:											
GUIDELI	NES: argings (not loss than 10 nos.) should be framed to reflect the sources in th	na wart	iool or	d oon	ha							
1. EX	formed in applicable laboratories	le ven		iu can	be							
2 A	Record of exercises shall be maintained by the student and duly verified a	nd ev	aluated	l hy th	e							
tea	cher (s)		inuator	i Oy tii	C							
INTERN	SHIP:	1										
GUIDELI	NES:	/										
1. St	dents shall undergo Industrial training / Internship for a period of 4 week	s to ea	rn 2 c	redits.								
2. Th	e students may undergo Internship at Industry / Research organization	/ Univ	versity	(after	due							
ap	proval from the Department Consultative Committee) for the period press	ribed.										
3. At	the end of the internship, the student shall submit a report to the committee	ee for	evalua	tion.								
	DET THE TAR	ТОТА	L: 60	PERI	ODS							
	परा क											
CONo	COURSE OUTCOMES			R	BT							
				L	evel							
At the end	of the course, students will be able to:											
0.01	Apply the concepts learnt in the vertical and develop a process / worki	ing mo	odel or	r	2							
COI	perform related laboratory exercises or take up internship in related in	idustri	es and	1	3							

complete it successfully

VERTICAL 7 DIVERSIFIED GROUP 1

MN2	22071	COMPUTATIONAL FLUID DYNAMICS:	L	T	P 2	C					
COU	DSF (I HEUKI AND PKACIICES	2	U	Z	3					
1.	To te	each the fundamental principles of fluid dynamics and governing expression of mass, momentum, and energy.	equati	ons,	inclu	ling					
2.	To ut techn	nderstand the concepts of numerical methods such as finite difference iques for solving fluid flow problems.	e and	finit	e vol	ume					
3.	To en ANS	hance the skills in computational fluid dynamics (CFD) simulations usin YS Fluent and CFX, including mesh generation and analysis of flow pher	g soft nomer	ware na.	tools	like					
UNI	ГІ	INTRODUCTION AND GOVERNING EQUATIONS				10					
Intro	duction	-Conservation equation - Governing equations of fluid dynamics - Con	tinuit	y - M	omen	tum					
and e	nergy	-Convective forms of the equations - Initial and Boundary conditions - (Gover	ning	equat	ions					
for b	oundar	y layers - Classification of partial differential equations – Hyperbolic -	Para	bolic	- Elli	iptic					
and N	and Mixed types - Applications and relevance.										
UNI	ГП	INTRODUCTION IN FINITE DIFFERENCE AND FINITE VOLU METHODS	ME			10					
Simple Methods – General Methods for first and second order accuracy – solution methods for finite											
differ	ence e	quations – Elliptic equations – Iterative solution Methods – Parabolic	equat	ions -	– Exp	licit					
and I	and Implicit schemes.										
Finite	e volu	me formulation for steady state one and two -dimensional diffus	ion p	oroble	ems.	One					
dime	nsional	unsteady heat conduction through Explicit, Crank - Nicolson and fully i	mplic	it sch	emes.						
		7	-								
UNI	ΓIII	CALCULATION FLOW FIELD BY FINITE VOLUME METHOD				10					
Speci	al Feat	tures of Navier-Stokes Equations - Time Integration Techniques for Navi	er-St	okes	Equat	ions					
- Imp	licit Pr	essure Correction Methods - SIMPLEC, SIMPLER and Fractional Step N	Metho	ds							
Turbu	ulence	modeling: Reynolds averaged Navier-Stokes equations, RANS modeling	, DNS	S and	LES.						
		LABORATORY COMPONENT									
	1	LIST OF EXPERIMENTS (Any SIX)									
1.	Intro	luction to ANSYS Fluent and CFX – Geometry creation, Mesh generatio	n tecł	niqu	es						
2.	Flow	inside a bent pipe – Velocity and Pressure profile									
3.	Lami	nar flow simulation in a stepdown chamber									
4.	Exter	nal flow over an airfoil – drag force and lift force plots									
5.	Exter	nal flow over a 2D/3D car – Transient Analysis									
6.	Simulation of flow in a convergent divergent nozzle- Velocity and Pressure profile under sub- sonic and super-sonic conditions										
7.	Simu	lation and Heat transfer analysis in a heat exchanger									
8.	HVA	C simulation using CFX									
9.	Multi	phase flow analysis in Cyclone									
10.	Simu	lation of wind turbine (2 blades or 3 blades)									
	•	ΤΟ΄	TAL:	60 P	ERIC)DS					

CON	lo.				C	OURS	E OUT	COMI	ES				F	RBT
1 4 4 h a	and of	44.0.000				h1. 4								evel
At the	end of	the cou	rse, stu	dents w		$\frac{1}{1}$	CI · 1	CI	1.1		<u> </u>			
CO1	Apply with ellipti	the abil	rvation ity to on nixed t	equati- classify vpes.	ons to partial	describ differ	ential e	flow a equation	nd heans into	hyperb	fer phe polic, p	arabolic	, ,	3
CO2	Imple unste	ement fi ady flui	nite dif d flow	fference	e and f ns, inc	inite vo luding	olume r iterativ	nethod e soluti	s for so on tecl	olving s nniques	steady-s for ell	state and iptic and	1 1	3
CO3	Perfo Reyn	rm simu olds-ave	ulations eraged	s of con Navie	nplex f er-Stoke	low sc es (R e mode	enarios ANS)	, such equati	as turb ions, nd LES	ulence and u	modeli indersta	ng using and the	5	4
CO4	Demo variou and n	onstrate us flow ultipha	profici scenar se flow	ency ir ios, inc simula	using luding	ANSY interna	S Flue l and e	nt and xternal	CFX s flows,	oftware heat tr	e for si cansfer	mulatiną analysis	,	4
				1.0	~				1	0)	÷			
TEXT	TEXTBOOKS:													
1.	H.K. Volui	Verstee ne Metl	g, W. N hod", P	Aalalas earson	ekera, ' Publica	'An Int tion, 2	roducti 011	on to C	omput	ational	Fluid D)ynamic	s, The	Finite
2.	Jiyua Appro	n Tu, G bach",E	uan He lsevier	ng Yeo Scienc	h, Chao e, 2012	oqun Li	iu, "Co	mputati	ional F	luid Dy	namics	: A Prac	tical	
			Y	1 a.	1		1	0	·	. 1	71.			
REFE	RENC	ES:	X	- 4	5. 1	1.8	7	-	白音	<u></u>	N			
1.	Ande Hill F	rson. J.l Publishi	D, "Con ng Com	nputati Ipany P	onal Fl vt Ltd.	uid Dyı , New I	namics- Delhi, 2	- The B 004	asic w	ith App	licatior	ns", Tata	McG	raw
2.	Chun	g T.J, "	Compu	tational	Fluid	Dynam	ics", Ca	ambrid	ge Uni	versity	Press, 2	2003		
3.	Clovi Meth	s R. Ma od", Spi	liska, " ringer I	'Fundaı nternat	nentals	of Cor ublishin	nputati ng, 202	onal Fl 3	uid Dy	namics:	The F	inite Vo	lume	
		-	1	10	1	- C	. D.,		1	9	1			
E-RES	SOUR	CES:		C.es	10	_	Y	>	1	0/				
1.	https:	//nptel.a	ac.in/co	ourses/1	121050)45	777-97	- 21	90.	/				
2.	https:	//archiv	e.nptel	.ac.in/c	ourses/	112/10	5/11210)5254/	/					
	1													
COUR	RSE AI	RTICU	LATIC	ON MA	TRIX:									
						PO	Os						PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3		2								2	
2	3	3	3		2								2	
3	3	2	2		3								2	
4	2	2	2		3				2			2	2	
1: Slig	ht (Lo	w), 2: N	Iodera	te (Me	dium),	3: Sub	stantia	l (Higl	n)	•	•			•

Г

	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS								
SL.No.	ITEM DESCRIPTION	Qty.							
HARDWA	HARDWARE								
1.	Computer Server	1							
2.	Computer nodes or systems (High end CPU with atleast 1 GB main memory) networked to the server	30							
3.	Laser Printer	1							
SOFTWA	RE								
4.	CFD Software	30							
5.	Licensed operating system	Adequate							

AE	22602	HYBRID AND ELECTRIC VEHICLES	L	Т	Р	C						
		(Common to AE, ME and MN)	2	0	2	3						
COUI	RSE OBJE	CCTIVES:				• •						
1.	Fo make th	e students to know and understand the constructional and working d	etails	about	Hybr	id						
2 7	Ind Electric	e various configuration of Hybrid and Electric Vehicles										
3. 7	To impart f	he knowledge about energy storage devices										
4. 7	To impart k	nowledge on electrical drives for automobiles.										
5. 7	To introduc	e various electronic controllers for Hybrid and Electric Vehicles.										
UNIT	'I INT	RODUCTION TO NEED FOR ALTERNATIVE SYSTEM				9						
Histor	y of electri	c and hybrid vehicles. Need of electric and hybrid vehicles – compa	rative	study	of di	esel,						
petrol, electric and hybrid vehicles, Limitations of electric vehicles, Specification of different electric and												
hybrid venicles. Opportunities and chanenges in electric and hybrid venicles.												
UNIT	UNIT II ENERGY STORAGE DEVICES 9											
Electro	lectrochemical batteries, types of batteries – lead acid batteries, nickel based batteries, lithium based											
batteri	batteries, electrochemical reactions, thermodynamic voltage, specific energy, specific power, energy											
efficie	ency and ul	tra-capacitors. Recent developments in the Battery charging - Char	ging N	Aetho	dolog	jies -						
Charge	Charging stations - Battery swapping.											
UNIT III ELECTRIC VEHICLES 9												
Electri	ic venicle	layout, performance of electric vehicles, traction motor character	istics,	tract	ive el	Tort,						
contro	lission req	dyantage and limitations, safety and challenges. Case study of latest	npon	ents, ic vel	vicles	onic						
contro	n system, u	avantage and minimutions, sufery and enarisinges, case study of fatest	ciecti		neies							
UNIT	'IV HY	BRID VEHICLES				9						
Conce	epts of hybr	id electric drive train, types, architecture of series and parallel hybr	id elec	etric d	lrive t	rain,						
merits	and deme	rits, hybrid electric drive train design, mild and full hybrids, Pl	ug-in	hybr	id ele	ctric						
vehicle	es and rang	e extended hybrid electric vehicles, Case study of latest Hybrid veh	icles.									
						0						
UNIT	V PRO	DPULSION MOTORS AND CONTROLLERS	of al		~~	9						
Types	of electric	s of DC motors - permanent magnet and separately exited DC motors	$\frac{1}{2}$ or $\frac{1}{2}$	iunt,	series	and						
and 3-	phase moto	or inverters DC and AC motor speed controllers. Selection of motor	rs and	contr	ollers	hase						
	phuse mot	<i>n</i> , myortens, <i>D</i> e and <i>r</i> to motor speed conditioners. Selection of moto.		: 45 F	PERI	DDS						
				1								
	r				RI	BT						
CON	0	COURSE OUTCOMES			Le	vel						
At the	end of the	course, learners will be able to:		•								
CO1	Outline	the need and history of alternative systems for vehicle propulsion a	nd	T		3						
	compar	re their performance with conventional vehicles.			•	-						
CO2	Discus	s and compare the construction, working and performance of various	s energ	gy		3						
	storage	devices and their construction methodologies.	their		_							
CO3	B Discus	s and compare the architecture, performance of electric vehicles and	their			3						
safety aspects.												

CO4	Classi and de	fy and	d discuss the different hybrid vehicle architecture and study their merits 3											
CO5	Descr	ibe the	workin	g, char	acterist	ics of j	propuls	ion mo	tors an	d speed cont	trollers.		3	
						-				-				
TEXTB	OOKS	:												
1.	Iqbal	Husair	n, "Elect	ric and	l Hybri	d Vehio	cles Des	sign Fu	ndame	ntals", CRC	² Press, 200	5.		
2.	Mehro Electr	dad El ic, and	nsani, Y I Fuel C	'imin (ell Veh	Gao, Si nicles",	tefano Third I	Longo, Edition,	, Kamb , CRC l	oiz Ebi Press, 2	rahimi, "Mo 2018.	odern Elect	ric, H	Iybrid	
DEFED		7.												
KEFEK	ENCE:	S: Hodki	nson "	[ight]	Woight	Flectr	ic/ Hul	orid Va	hiclo	Decign" B	utterworth	Hoind	monn	
1.	Public	cation.	2005.	Ligiti	weight	Liccu	IC/ IIyu			Design, D			/111a1111	
2.	Ronal	d K.	Jurgen,	"Elect	ric and	Hybr	id-Elect	tric Ve	hicles:	Engines an	nd Powertra	ains",	SAE	
3	Tom 1	Dentor	<u>, 2015.</u> "Elect	ric and	Hybrid	1 Vehic	cles" 1	st editio	n Roi	itledge Publ	ishers 2017	7		
4.	Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Softcover reprint of the original 1st ed Springer 2013													
	Liecu		licies,	5011000	er repr		ne origi	llal 1St	eu, sp	illiger, 2013	•			
E-RESC	URCE	S: (in	cluding	NPTE	L cour	se)	19.1	10		121				
1	https://	//onlin	ecourses	nntel	$\frac{1}{2}$ in/n	rac 24 e	e30/nre	view	1	101				
1.	nups./	//////////////////////////////////////		s.npter.	ac.111/110	0024_0	-50/pre		X	12	<u>}</u>			
2.	https:/	//onlin	ecourses	s.nptel.	ac.1n/n	oc22_e	e53/pre	eview	1.000	10	1			
3.	https:/	//nptel	.ac.in/cc	ourses/1	08106	170	1	-	102.0	0 5				
		_	2	- 27	20	1 50	17		-					
COURS	E ART	ICUL	ATION	MAT	'RIX:		46	11	.U-3	-12				
COa			51			Р	Os			127	/	PS	Os	
COS	1	2	3	4	5	6	7	8	9	10 11	l 12	1	2	
1.	3	2	19	10	1		T.	_	~	51	2	1		
2.	3	2	1	0. 5	1		U	1	1	-	2	1		
3.	3	2		6	12			20	SI.	/	2	2		
4.	3	2		6	70	11	परा	ç	/		2	2		
5.	3	2									2	2		
1: Slight	(Low)	, 2: M	oderate	(Medi	ium), 3	: Subs	tantial	(High)						

COURSE OBJECTIVES: 10 0	MN	22072	NANOTECHNOLOGY	L 3	T 0	P 0	C 3					
1. Explore the evolution of Nanotechnology in various fields of engineering. 2. Learn the details of clean room environment and safety hazards. 3. Understand the growth techniques of nano materials and nanofabrication techniques. 4. Investigate different characterization techniques used for nano systems UNIT I INTRODUCTION TO NANOTECHNOLOGY 6 Nanoscale Science and Technology – Background, definition and applications – Crystal bonding, structure and growth – Size and dimensionality effects – Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. UNIT I SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing Necessity for a clean room different types of clean room-Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Eiching techniques. 12 UNIT II GROWTH TECHNIQUES OF NANOMATERIALS 12 Iop-Down and Bottöm-Up approaches – Vacutum based deposition, Polsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition, Vapour-Liquid-Sicharge, Sputtering, Evaporation, Chemical Bath Deposition, Fulsed Laser Deposition, Vapour-Liquid-Sicharge, Sputtering Microscopy (STM) – Atomic force Microscope (AFM) Electron Microscopy (EM): Scanning Tunneling Microscopy (STM) – Atomic force Micros	COU	JRSE	OBJECTIVES:		v	v	0					
2. Learn the details of clean room environment and safety hazards. 3. Understand the growth techniques of nano materials and nanofabrication techniques. 4. Investigate different characterization techniques used for nano systems UNIT I INTRODUCTION TO NANOTECHNOLOGY 6. Nanoscale Science and Technology – Background, definition and applications – Crystal bonding, structure and growth – Size and dimensionality effects – Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (EM): Resolution and Magnificati	1.	Explo	re the evolution of Nanotechnology in various fields of engineering.									
3. Understand the growth techniques of nano materials and nanofabrication techniques. 4. Investigate different characterization techniques used for nano systems UNIT I INTRODUCTION TO NANOTECHNOLOGY 6. Nanoscale Science and Technology – Background, definition and applications – Crystal bonding, structure and growth – Size and dimensionality effects – Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 Top-Down and Bottom-Up approaches – Vacutum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Publed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscope (TEM), High Resolution TEM (HRTEM). 12 Optical Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic F	2.	Learn	the details of clean room environment and safety hazards.									
4. Investigate different characterization techniques used for nano systems UNIT I INTRODUCTION TO NANOTECHNOLOGY 6 Nanoscale Science and Technology – Background, definition and applications – Crystal bonding, structure and growth – Size and dimensionality effects – Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (Confoad Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano b	3.	Unde	rstand the growth techniques of nano materials and nanofabrication techni	ques.								
UNIT I INTRODUCTION TO NANOTECHNOLOGY 6 Nanoscale Science and Technology – Background, definition and applications – Crystal bonding, structure and growth – Size and dimensionality effects – Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean from – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Ion Beam Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (Confocal Microscopy (STM) – Atomic Force Microscope (SEM) Technique – Seanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (SEM), Technique – Seanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (SEM) – Electron M	4.	Inves	tigate different characterization techniques used for nano systems									
UNIT INTRODUCTION TO NATO ANOTECHNOLOGY 0 Nanoscale Science and Technology – Background, definition and applications – Crystal bonding, structure and growth – Size and dimensionality effects – Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT II GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Nolecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (AFM) – Stoming Tunneling Microscopy (STM) – Atomic Force Microscope (AFM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles oranalytical applications in medical diagnosis and biote	TINIT	тт										
National Sector Production and applications of Crystal oblining, structure and growth – Size and dimensionality effects – Size effect on thermal, electronic, mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Eiching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (AFM) 12 Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (AFM) 12 Viransmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano	UNI Nanc		Science and Technology Background definition and applications	Cry	retal	hon	0 ding					
mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. Image: Classifications of nanomaterials based on dimensionality. Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Nolocular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nano probes for analytical applications, Nano fluids – Micro Electro Mechanical Systems (MEMS). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotecennology, Manoparticles for targeted drug deliv	struc	structure and growth – Size and dimensionality effects – Size effect on thermal, electrical, electronic,										
dimensionality. Properties and applications of Carbon Nanotubes. UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM); Resolution and Magnification, Scanning Electron Microscope (SEM), Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). 9 CONo. COURSE OUTCOMES RBT Level <td>mech</td> <td colspan="10">mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on</td>	mech	mechanical, optical and magnetic properties of nanomaterials – Classifications of nanomaterials based on										
UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM); Resolution and Magnification, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). 9 CONo. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: 3	dime	dimensionality. Properties and applications of Carbon Nanotubes.										
UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6 Introduction to semiconductor processing – Necessity for a clean room – different types of clean rooms – Structure and requirements of a clean room – Safety issues, flammable and toxic hazards, biohazards – Micro fabrication process – Etching techniques. 12 UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (SEM), Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). 9 CO No. COURSE OUTCOMES RBT Levevel At the end of th												
Initial different engineering in secessity for a clean room - unretent types of clean rooms - Structure and requirements of a clean room - Safety issues, flammable and toxic hazards, biohazards - Micro fabrication process - Etching techniques. UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches - Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy - Solution based deposition processes: Sol-Gel Technique, Electro deposition - Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy - X-Ray Diffraction (XRD) technique - Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) - Atomic Force Microscope (AFM) - Electron Microscope (TEM), High Resolution TEM (HRTEM). 12 UNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery - Nano biosensors: real-time imaging in biological events, smart dust - Nano medicines - Nano tribology: Super lubricity, Nano lubrication, Nano fluids - Micro Electro Microscope (COURSE OUTCOMES RBT Level At the end of the course, students will be able to: 3 3 CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3	UNI	UNIT II SEMICONDUCTOR PROCESSING AND MICROFABRICATION 6										
Micro fabrication process – Etching techniques. 12 VINIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. 12 VINIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). UNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). RBT Level At the end of the course, students will be able to: 3 CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe env	Struc	duciio sture a	In to semiconductor processing – Necessity for a clean room – different ty nd requirements of a clean room – Safety issues, flammable and toxic h	pes of o azards	bio	i roo haza	nns – rds –					
UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12 Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) 12 Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart tust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: 3 3 CO2 Work in a safe environment by following necessary safety protocol in nano- different engineering fields. 3	Micr	o fabr	cation process – Etching techniques.	uzurus,	, 010.	nuzu	r u s					
UNIT IIIGROWTH TECHNIQUES OF NANOMATERIALS12Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Suld method.12UNIT IVCHARACTERIZATION TECHNIQUES12Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM).9Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS).RBT LevelCO No.COURSE OUTCOMESRBT LevelAt the end of the course, students will be able to: different engineering fields.3CO2Work in a safe environment by following necessary safety protocol in nano- distribution cleanzon3			191									
Top-Down and Bottom-Up approaches – Vacuum based deposition processes: Plasma Arc Discharge, Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). UNIT V APPLICATIONS UNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: CO1 Understand unique properties of Nano material structu	UNIT III GROWTH TECHNIQUES OF NANOMATERIALS 12											
Sputtering, Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy – Solution based deposition processes: Sol-Gel Technique, Electro deposition – Other processes: Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (AFM) – Electron Microscope (TEM), High Resolution TEM (HRTEM). Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). 9 At the end of the course, students will be able to: TOTAL: 45 PERIODS CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. CO2 Work in a safe environment by following necessary safety protocol in nano- fabrication clearprocem	Top-	Down	and Bottom-Up approaches – Vacuum based deposition processes: Pla	isma A	rc D	Disch	arge,					
Epiday – solution based deposition processes. Sol-del rechinque, Electro deposition – Other processes. Mechanical Ball milling, Chemical Bath Deposition, Ion Beam Deposition, Vapour-Liquid-Solid method. UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) 12 Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: 3 CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 Work in a safe environment by following necessary safety protocol in nano-fabrication cleaveroem 3	Sput	tering,	Evaporation, Chemical Vapour Deposition, Pulsed Laser Deposition	n, Mol	lecul	ar F	Beam					
method. 12 UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, 9 Nano biology: Nano probes for analytical applications, Nano fluids – Micro Electro 9 Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro 9 Mechanical Systems (MEMS). TOTAL: 45 PERIODS RBT Level At the end of the course, students will be able to: 3 CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano- 3 3	Mecl	hanica	Ball milling Chemical Bath Deposition Ion Beam Deposition	n – Ou Vapour	ier F Liu	nid-l	Solid					
UNIT IV CHARACTERIZATION TECHNIQUES 12 Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). UNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: 3 CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano- 3 3	meth	od.	Dur mining, chomen Dur Deposition, fon Dean Deposition,	upour	219	uiu i	oona					
UNIT IVCHARACTERIZATION TECHNIQUES12Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM).9UNIT VAPPLICATIONS9Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS).RBT LevelCO No.COURSE OUTCOMESRBT LevelAt the end of the course, students will be able to:3CO2Work in a safe environment by following necessary safety protocol in nano- fobrication clasuroom3												
Optical Microscopy: Confocal Microscopy – X-Ray Diffraction (XRD) technique – Scanning Probe Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). VNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS RBT CO No. COURSE OUTCOMES At the end of the course, students will be able to: CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication cleararoom	UNI	T IV	CHARACTERIZATION TECHNIQUES				12					
Microscopy (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force Microscope (AFM) – Electron Microscopy (EM): Resolution and Magnification, Scanning Electron Microscope (SEM) Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). VINIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS RBT Level At the end of the course, students will be able to: CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 GO2 Work in a safe environment by following necessary safety protocol in nano- fabrication cleaveroom 3	Optio	cal M	croscopy: Confocal Microscopy – X-Ray Diffraction (XRD) techniqu	e – Sc	anni	ng F	Probe					
Technique, Principal elements of SEM, Specimen Interactions, Environmental SEM (ESEM), Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 UNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). 9 TOTAL: 45 PERIODS RBT Level At the end of the course, students will be able to: 7 CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication clearpoom	Micr Elect	oscop	y (SPM): Scanning Tunneling Microscopy (STM) – Atomic Force M	lcrosco Micro	ope	(AFI	M) - K					
Transmission Electron Microscope (TEM), High Resolution TEM (HRTEM). 9 UNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS RBT Level At the end of the course, students will be able to: CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano-fibrication cleanroom 3	Tech	nique.	Principal elements of SEM Specimen Interactions Environmen	ital SF	зеор ЕМ	e (S (ES)	EM)					
UNIT V APPLICATIONS 9 Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). 9 TOTAL: 45 PERIODS RBT Level At the end of the course, students will be able to: CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication cleanroom 3	Tran	smissi	on Electron Microscope (TEM), High Resolution TEM (HRTEM).	tur 51	2111		,					
UNIT VAPPLICATIONS9Nano biology:Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS).9TOTAL: 45 PERIODSRBT LevelCO No.COURSE OUTCOMESRBT LevelAt the end of the course, students will be able to:3CO1Understand unique properties of Nano material structure and apply them into different engineering fields.3CO2Work in a safe environment by following necessary safety protocol in nano- fabrication cleanroom3												
Nano biology: Nano probes for analytical applications in medical diagnosis and biotechnology, Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication cleanroom 3	UNI	ΤV	APPLICATIONS				9					
Nanoparticles for targeted drug delivery – Nano biosensors: real-time imaging in biological events, smart dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano fluids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS RBT Level At the end of the course, students will be able to: Understand unique properties of Nano material structure and apply them into different engineering fields. CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication cleanroom 3	Nanc	o biol	ogy: Nano probes for analytical applications in medical diagnosis	and b	oioteo	chno	logy,					
dust – Nano medicines – Nano tribology: Super lubricity, Nano lubrication, Nano Huids – Micro Electro Mechanical Systems (MEMS). TOTAL: 45 PERIODS RBT Level At the end of the course, students will be able to: CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication cleanroom 3	Nanc	opartic	les for targeted drug delivery – Nano biosensors: real-time imaging in bio	logical	eve	nts, s	smart					
TOTAL: 45 PERIODS TOTAL: 45 PERIODS CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication cleanroom 3	dust Mecl	– Nan hanica	o medicines – Nano tribology: Super lubricity, Nano lubrication, Nano II	$u_{1}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5$	IVI1C1	O EI	ectro					
CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: Image: Cold the course is a student in the	WICCI	lianica	TO	TAL:	45 P	ERI	ODS					
CO No. COURSE OUTCOMES RBT Level At the end of the course, students will be able to: Image: Coll different engineering fields. 3 CO1 Work in a safe environment by following necessary safety protocol in nano-fabrication clean room 3							520					
At the end of the course, students will be able to: Image: Coll behavior of the course, students will be able to: CO1 Understand unique properties of Nano material structure and apply them into different engineering fields. 3 CO2 Work in a safe environment by following necessary safety protocol in nano-fabrication cleanroom 3	CO	No.	COURSE OUTCOMES			I I	RBT ∠evel					
CO1Understand unique properties of Nano material structure and apply them into different engineering fields.3CO2Work in a safe environment by following necessary safety protocol in nano- fabrication cleanroom3	At th	e end	of the course, students will be able to:									
CO2 Work in a safe environment by following necessary safety protocol in nano- fabrication cleanroom	CC)1	Understand unique properties of Nano material structure and apply different engineering fields.	them	into)	3					
	CC)2	Work in a safe environment by following necessary safety protoco	ol in r	nano	-	3					

CO3	3	Synthesis approach.	differ	ent type	es of n	anoma	terials u	sing v	various	top-dov	wn and	botton	n up	4
CO4	۱ ۱	Character nethods	rize dif	ferent t	ypes of	nano-	particles	using	g electri	cal, opt	tical and	d struc	tural	4
CO5	; (Compreh ange.	end va	ried ap	plicatio	ons of	nanotecl	nolog	y in su	ıb-micro	on and	nano-s	scale	3
		0												
ТЕХТ	BO	OKS:												
1.	K. 1 200	K. Chatto 9.	padhya	ay and A	A. N Ba	anerjee	, Introdu	ction 1	to Nano	science	and Na	notech	nolog	y, PHI,
2.	2. T. Pradeep, Nano: The Essentials, McGraw Hill Education, 2007.													
REFE	REN	ICES:			C	-	01.	-	-				11 5 1	
1.	1. T. Pradeep, A Textbook of Nanoscience and Nanotechnology, Tata McGraw Hill Education, 2012.													
2.	Cha	rles P.Po	ole Jr a	ind Fran	nk ,J. O	wens, l	Introduct	tion to	Nanote	chnolo	gy, Wile	ey Indi	a, 200	6.
3. W. R. Fahrner, Nanotechnology and Nanoelectronics, Springer (India) Private Ltd., 2005.														
E-RES	SOU	RCES:	14	ĩ/	1 6			3	33	10	21			
1.	http	s://online	course	s.nptel.a	ac.in/no	oc24_m	ne20/pre	view	1100	1	01			
2.	http	s://online	course	s.swaya	m2.ac.	in/cec2	4_cy03/	previe	w	. 1	-			
				1.1	1.	1.1	~		LA		2			
COUH	RSE	ARTICU	JLATI	ON MA	TRIX		16	1	/ U-	2	m			
			15	1	-	Р	Os	1		1	21		Р	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	5	1		T		2	3	-/		1	
2	3	3	3	0.	3	3	0	3	2	3	1		1	
3	3	3	3	3	3		-	3	2	3		2	1	
4	3	3	3	3	3	$\subseteq //$	45	3	2	3		2	1	
5	2	3	3	3	2		3	3	2	3		2	1	
1: Slig	ght (I	Low), 2:]	Moder	ate (Me	edium)	, 3: Sul	bstantia	l (Hig	h)	·				

МЛХ	122072	NON DESTRUCTIVE TESTINC	L	L	L	U						
IVIIN	144073	MON-DESTRUCTIVE TESTING	3	0	0	3						
CO	URSE (DBJECTIVES:										
1.	Understand the need of non-destructive testing.											
2.	Explo	Explore the various non-destructive testing methods to evaluate the defects on the surface.										
2	Learn the various non-destructive techniques, involving thermal energy, electro-magnetic theory,											
^{3.} high energy radiation and sound waves.												
UN	UNIT I OVERVIEW OF NDT 6											
Dof	inition	need types and henefits of non destructive testing stops involved in N	IDT	daat	munativ							

Definition, need, types and benefits of non-destructive testing, steps involved in NDT – destructive vs non-destructive testing – Manufacturing processes and defects in materials – Visual inspection: principle, unaided visual inspection, detection of defects by optical aids.

UNIT II NDT FOR SURFACE DEFECTS

Liquid Penetrant Testing (LPT) – physical principle, procedure for LPT, penetrant testing material, LPT methods, applications and limitations, standards, case studies for interpretation and evaluation. Magnetic Particle Testing (MPT) – definition of magnetism, principle of MPT, magnetizing techniques, procedure and equipment used for MPT, applications and limitations, demagnetization - case studies for interpretation and evaluation.

UNIT III | THERMOGRAPHY AND EDDY CURRENT TESTING (ECT)

Thermography – basic principle, detectors and equipment for thermography test, thermography techniques, applications, examples on thermo gram, thermal imaging. Eddy Current Testing (ECT) -Principles – Instrumentation for ECT – ECT techniques – applications and limitations – Case studies for interpretation and evaluation.

UNIT IV RADIOGRAPHY

Principle - X-ray source, production and properties - radiation attenuation in the specimen - effect of radiation on film - Radiographic imaging and inspection techniques - applications and limitations safety aspects in radiographic testing – Case studies for interpretation and evaluation.

UNIT V ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION TESTING (AET)

Ultrasonic Testing – introduction – frequency, generation and types of ultrasonic waves – Transducers – reflection, refraction and scattering of ultrasonic beams - Ultrasonic Testing techniques: Pulse-echo technique and through transmission technique – normal beam and angle beam inspection – Ultrasonic Flaw detector - Types of scan for interpretation - A-scan, B-scan and C-scan - application and limitations. Acoustic Emission Technique – Principle, AET parameters, Instrumentation, applications – Case studies.

TOTAL: 45 PERIODS

CO No.	COURSE OUTCOMES	RBT Level				
At the end of the course, students will be able to:						
CO1	Understand the defects occurred on manufactured parts and need of NDTs	2				
CO2	Identify the appropriate NDT method such as liquid penetrant, magnetic particle testing to analysis the possible surface defects.	3				

10

10

T D C

Т

11

9
C	03	Identify the nature of manufactured parts and use thermography or eddy current techniques for analysing the defects aroused on the parts manufactured.													4	
		Evo	mino t	ho into	mol dof	ine del	ects ald	in the r	n the p	ants m	anuracu	neu.	ng fora	ina		
C	04	cast	ing. et	c. by ar	plving	radiogi	curreu raphy n	nethods		anurac		y weluli	iig, iorg	,mg,	4	
C	05	Exa	mine t	he struc	tural in	tegrity	on the	fabrica	ted pai	ts by a	pplying	AE me	thod.		3	
									1		11 2 0					
ТЕУ	XTBO	OK	<u>S:</u>	r 1										D 1		
1.	Bald	ev R	ај, Т. J 200	layakun	nar, M.	Thavas	simuth	i, Pract	ical No	on-Des	tructive	Testing	g, Naros	sa Pub	Ishing	
2	Ravi	Prak	$\frac{109}{\text{cash}}$	Ion-Des	structiv	e Testir	ng Tech	niques	New	Age In	ternatio	nal Pub	lishers	2010		
2.	Ituvi	ITur	u 511, 1		, ii deti v	0 105011	15 1001	inques	, 1 (0 ()	inge m	ternatio	nur i uo	11011010,	2010		
REI	FERE	NCI	ES:													
1	J Pra	sad a	and C	G K Na	ir, Non	-Destru	ictive T	est and	Evalu	ation o	of Mater	ials, Ta	ta McG	raw H	11	
1.	Educ	ation	n, 2011	l.		6	0	ULI	LE	2			005			
2.	Paul	E M	1X, Inti	roductio	on to No	ondestr	uctive	l'esting	: A Tra	uning g	guide, V	Viley, 2	005.	<u>al 20</u>	10	
<u>э.</u> Л	Char			er Han	dbook (ve Eva	luation	or Mat	errais,	$\frac{volull}{McC}$	le 17, A Fraw Hil	SIVI III0		iai, 20	10.	
т.	ASN	<u>т (Т</u>	J. Hellier, Handbook of Nondestructive Evaluation, McGraw Hill, 2020. (The American Society for Nondestructive Testing, Columbus, Ohio) NDT Handbook,													
~	Vol.	ASNT (The American Society for Nondestructive Testing, Columbus, Ohio) NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4,														
5.	Radi	ograj	phic T	esting,	Vol. 5,	Electro	magnet	tic Test	ing, V	ol. 6, A	coustic	Emissi	on Test	ing, V	ol. 7,	
	Ultra	soni	c Testi	ng.	1 4	T.	10	n. 1	10	11	1	0				
				31	1 3.			1	-	1	2.1					
E-R	ESOU	URC	ES:	÷	- 9	5-1	1.7	V		1.6		<				
1.	https	://on	lineco	urses.np	otel.ac.i	n/noc2-	4_mm1	4/previ	iew	, U	2-1	11				
2.	https	://wv	ww.nd	e-ed.org	g/				/			51				
				1	1			02015	-	25.2	1	31				
CO	URSE	AR	TICU	LATIC	ON MA	TRIX:		1		-43	15	2/				
				/	S	1	P	Os		1	0	/		PS	SOs	
CO	s	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1		1				19	112	D	5	20	/			2		
2		3	2		3	3	1	141	~			1	1	2		
3		3	2		3	3	1					1	1	2		
4		3	2	2	3	3	1					1	1	2		
5		3	2		3	3	1					1	1	2		
1: S	light (Low	y) , 2: N	Aodera	te (Me	dium),	3: Sub	stantia	l (Hig	h)						

N/N/2	2074	PRODUCTION PLANNING AND CONTROL	Т	Р	C
101112	2074	(Common to MN and ME) 3	0	0	3
COURS	SE OBJE	ECTIVES:			
1. To	impart k	knowledge about objectives, functions, significance of PPC			
2. $\begin{bmatrix} To \\ inv \end{bmatrix}$	examin ventory c	e several classic Operations Management planning topics including f ontrol.	foreca	sting	and
3. To	develop	skills in scheduling and line balancing in production.			
_					
UNIT I	INT	TRODUCTION TO PRODUCTION PLANNING AND CONTROL			9
Definition control - and con even and	on – Ob – Elemen trol depa alysis-Ec	jectives of production Planning and Control – Functions of production nts of production control – Types of production – Organization of produ- artment - Profit consideration- Standardization, Simplification & special onomics of a new design.	n pla uctior ilizati	nning 1 plar on- E	and ning reak
UNIT I	FOI	RECASTING	Eor	oosti	8
Forecast	ing tech	piques- qualitative methods and quantitative methods	FOI	castn	ig –
Torecast	ing teem	inques quantative methods and quantitative methods.			
UNIT I	II INV	ENTORY MANAGEMENT			9
Function Simple	ns of inv	ventories – relevant inventory costs – ABC analysis – VED analysis – s – Inventory control systems – P–Systems and O-Systems - MRP-I, M	- EOG /IRP-I	Qm I&I	odel: ERP.
Kanban	system.				,
UNIT I Definitio	V SCI	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward s	sched	uling,	10 Job
UNIT I Definition shop scl varieties Orders. n jobs or	V SCI on – Act heduling availabl Scheduli n 3 mach	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward s methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems.	sched ilable LISO s on 2	uling, , mac , Ran mach	10 Job hine dom ines,
UNIT I Definition shop scl varieties Orders. n jobs on	V SCI on – Act heduling availabl Scheduli n 3 mach	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward s methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems.	sched ilable LISO s on 2	uling, , mac , Ran mach	10 Job hine dom ines,
UNIT I Definition shop scl varieties Orders. n jobs on UNIT V Aggregat dispatch follow-u	V SCI on – Act heduling availabl Scheduli n 3 mach 7 LIN te plant er – Disp up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward so methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. HE BALANCING ming, Chase planning, Expediting, controlling aspects. Dispatching – patching procedure – follow-up – definition – Reason for existence of func- tations of computer in production planning and control.	sched ilable LISO s on 2 - Ac ctions	uling, , mac , Ran mach tivitie – typ	10 Job hine dom ines, 9 s of es of
UNIT I Definition shop scl varieties Orders. n jobs on UNIT V Aggrega dispatch follow-u	V SCI on – Act heduling availabl Scheduli n 3 mach V LIN tte plann er – Disp up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward s methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. E BALANCING ning, Chase planning, Expediting, controlling aspects. Dispatching – patching procedure – follow-up – definition – Reason for existence of func- tations of computer in production planning and control. TOTAL	sched ilable LISO s on 2 - Ac ctions : 45 I	uling, , mac , Ran mach tivitie – typ	10 Job hine dom ines, 9 s of es of ODS
UNIT I Definition shop scl varieties Orders. n jobs on UNIT V Aggrega dispatch follow-u	V SCI on – Act heduling availabl Scheduli n 3 mach V LIN te plann er – Disp up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward so methods – Arrival pattern, processing pattern, number of workers availe, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. IE BALANCING ming, Chase planning, Expediting, controlling aspects. Dispatching – batching procedure – follow-up – definition – Reason for existence of func- tations of computer in production planning and control. TOTAL	sched ilable LISO s on 2 - Ac ctions : 45 I	uling, , mac , Ran tivitie – typ PERIC RI Le	10 Job hine dom ines, 9 s of es of ODS BT vel
UNIT I Definition shop scl varieties Orders. n jobs on UNIT V Aggregation dispatch follow-u CO No At the en	V SCI on – Act heduling availabl Scheduli n 3 mach v LIN te plant er – Disp up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward so methods – Arrival pattern, processing pattern, number of workers availe, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. IE BALANCING ning, Chase planning, Expediting, controlling aspects. Dispatching – batching procedure – follow-up – definition – Reason for existence of func- trations of computer in production planning and control. ITOTAL COURSE OUTCOMES course, learners will be able to:	sched ilable LISO s on 2 - Ac ctions : 45 I	uling, , mac , Ran mach tivitie – typ PERIC RI Le	10 Job hine dom ines, 9 s of es of ODS BT vel
UNIT I Definition shop scl varieties Orders. n jobs on UNIT V Aggrega dispatch follow-u CO No At the en CO1	V SCI on – Act heduling availabl Scheduli n 3 mach 7 LIN te plant er – Disp up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward s methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. IE BALANCING ning, Chase planning, Expediting, controlling aspects. Dispatching – patching procedure – follow-up – definition – Reason for existence of func- tations of computer in production planning and control. ITOTAL COURSE OUTCOMES course, learners will be able to: stand the problems and opportunities faced by the operations manager in acturing and service organizations	sched ilable LISO s on 2 - Ac ctions : 45 I	uling, , mac , Ran mach tivitie – typ PERIC RI Le	10 Job hine dom ines, 9 s of es of DDS 3T vel
UNIT I Definition shop scl varieties Orders. n jobs on UNIT V Aggrega dispatch follow-u CO No At the en CO1 CO2	V SCI on – Act heduling availabl Scheduli n 3 mach V LIN te plant er – Disp up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward s methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. IE BALANCING ning, Chase planning, Expediting, controlling aspects. Dispatching – batching procedure – follow-up – definition – Reason for existence of func- tations of computer in production planning and control. TOTAL COURSE OUTCOMES course, learners will be able to: stand the problems and opportunities faced by the operations manager in acturing and service organizations arize forecasting techniques used in industries with their relevant application	sched ilable LISO s on 2 - Ac etions : 45 I	uling, , mac , Ran mach tivitie – typ PERIO RI Le	10 Job hine dom ines, 9 s of es of DDS BT vel
UNIT I Definition shop scl varieties Orders. n jobs or UNIT V Aggrega dispatch follow-u CO No At the en CO1 CO2 CO3	V SCI on – Act heduling availabl Scheduli n 3 mach 7 LIN te plant er – Disp up, applic up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward s methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. IE BALANCING ning, Chase planning, Expediting, controlling aspects. Dispatching – batching procedure – follow-up – definition – Reason for existence of func- stations of computer in production planning and control. TOTAL COURSE OUTCOMES course, learners will be able to: stand the problems and opportunities faced by the operations manager in acturing and service organizations arize forecasting techniques used in industries with their relevant application is inventory control using inventory management techniques	sched ilable LISO s on 2 - Ac ctions : 45 I	uling, , mac , Ran mach tivitie – typ PERIC RI Le	10 Job hine dom ines, 9 s of es of DDS 3T vel
UNIT I Definition shop scl varieties Orders. n jobs on UNIT V Aggrega dispatch follow-u CO No At the en CO1 CO2 CO3 CO3	V SCI on – Act heduling availabl Scheduli n 3 mach V LIN te plant er – Disp up, applic	HEDULING ivities-Difference with loading, Scheduling types: Forward, Backward se methods – Arrival pattern, processing pattern, number of workers ava le, Priority rules for job sequencing FIFO, SPT, SOT, EDD, STR, CR, ng Techniques Gantt Charts, LOB, Johnson's job sequencing rules- n jobs ines, n jobs on m machines: Simple problems. IE BALANCING ming, Chase planning, Expediting, controlling aspects. Dispatching – batching procedure – follow-up – definition – Reason for existence of func- tations of computer in production planning and control. TOTAL COURSE OUTCOMES course, learners will be able to: stand the problems and opportunities faced by the operations manager in acturing and service organizations arize forecasting techniques used in industries with their relevant applications is inventory control using inventory management techniques or an ability to apply scheduling concepts in various areas like marketing, ering, personnel management, logistics, etc.	sched ilable LISO s on 2 - Ac etions : 45 I	uling, , mac , Ran mach tivitie – typ PERIC RI Le	10 Job hine dom ines, 9 s of es of DDS 3T vel

TEX	BOOKS	:		0.7		·		1 ~	144		1 5 1		~	
1.	Samuel	Eilon, "	Eleme	nts of F	roduc	tion Pla	inning	and Co	ntrol",	Univer	sal Pub	lishing	Corpoi	ration,
	Digitized	1 2007												
2	Baffa &	Rakes	sh Sar	in, "M	odern	Produc	ction 8	z Oper	ations	manag	ement",	, 8th e	dition,	John
2.	Wiley,20	007												
REFE	ERENCES	S:												
1.	S.N. Cha	ry, "Pr	oductio	on & Oj	peratio	ns Man	ageme	nt", (6tl	n Editio	n), TM	1H.2019)		
2.	Martin K	. Starr	and Da	wid W.	Mille	r, "Inve	ntory C	Control	Theory	and Pr	actice"	Prenti	ce Hall	,1962
2	R.Paneerselvam, "Production and Operations Management", Third Edition, PHI learning Private													
3.	Limited,	2012				-		-					-	
4.	William	Steven	son, "C	peratio	ns Ma	nageme	ent", (1	4th Edi	tion), N	1 cGrav	v-Hill E	ducatio	on,2020	
				-				_	,					
E-RE	SOURCE	CS: (inc	luding	NPTE	L cou	rse)) LI	-Ec	20					
1.	https://ar	chive.n	ptel.ac	.in/cou	rses/11	0/107/1	110107	141/	6	1	2			
			1	25	/	1200	22.2	21.0	1	2				
COU	RSE ART	ICUL	ATION	N MAT	RIX:	2.5	\$	÷.			1			
		1	45	7.	6	РО	s	2	17	10	51		PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	2	2	31	- Q.,	1	1	1	=)		. 1	4		1	2
2.	2	2	17	- 4	2	0.27	Y				2		1	2
3.	2	1	51	5%	1		2	11	Ų-,		100		2	2
4.	2	1	31				2	/			2		2	2
5.	1	1	0		2		2	2	1	1:	2		2	2

परा देवता क

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

ं विद्या

Γ

N	INI22075	SMART AND BIOMATERIALS	L	Т	Р	С
19.	11122073	(Common to MN and ME)	3	0	0	3
CO	URSE OBJI	ECTIVES:				-
1.	To compre application	chensively understand the performance characteristics, manufactures of various biomaterials, including metallic, ceramic, and polymeric	uring c mate	proce rials.	esses,	and
2.	To compre memory al the advanta	chensively explore the properties, manufacturing processes, and a loys (SMAs), including metallic alloys exhibiting shape memory ef ages, challenges, and diverse applications of smart composites incorp	applica fects, ooratir	ations and i 1g SM	of s nvest [As.	hape igate
LINI		matarials				10
Intro	duction To	Bio Materials – Historical Background – Performance Of Bio	materi	ials -	– Mei	tallic
Bior	naterials –	Stainless Steel, Ti Alloys, CoCr Alloys, Tini Alloys, Dental Me	etals -	– Cor	rosio	n Of
Ava	ilable Metals	s - Rate Of Corrosion - Manufacturing Of Implants - Ceramic Bion	nateria	als – A	Alum	ina –
Zirc	onia – Carbo	on – Biodegradable Ceramics – Calcium Phosphate – Al-Calcium F	Phosph	nate C	Ceram	ics –
Poly	meric Bion	naterials - Effect Of Structural Modification And Properties -	Poly	vinylc	chlori	de –
Poly	ethylene -Po	olyesters-Polyamides – Biomaterials For Bone Tissue Engineering	Appli	cation	is - D	ental
Imp	lants – Effec	t of Material Selection – Effect of Surface Properties				
TINI	TII D.	amics of grant motorials				0
UNI		lannes of smart materials	-			9
Sm Sm Of	art Systems Smart Mate	- Smart Materials As Sensors And Actuators – Direct And Conver rials – Piezoelectric Materials - Preparation Of Piezoceramic Actu	se Ef: .ators	fect - - Pie	Prope ezoele	erties ectric
Pol	ymers And	Composites - Applications – Magneto Strictive Materials – Effects	of N	/lagne	tostri	ction
Ele	ctro active P	olymers – Classifications – Applications				
			<u> </u>			
UNI	T III Sha	pe memory alloys and smart composites	-			9
Sha Cry Pse - Si	ape Memory ystal Structur eudo elasticit mart Compo	Alloys - Metallic Alloys – Shape Memory Effects – Manufacturi res Of SMA – Low Temperature Stress – Strain Behaviour – Hyster y – One Way And Two Way Shape Memory Effect - Applications sites – Advantages - Issues – Applications	ng Ot esis C – SM	f SMA Surve (A Bas	A Win Of SM sed Se	res – 1A – ensor
		den tac				
UNI	T IV Pro	cessing of smart materials				9
Inti Fat Syr Inte	roduction – prication Of nthesis – UV egration And	Semiconductors and Their Processing – Metallization Techni Thick And Thin Films – Silicon Micromachining Techniques – V Radiation Curing Of Polymers – Deposition Techniques For P Packaging Of Smart Microsystems	ques Polyr olyme	– Co ners A er Thi	erami And 7 in Fil	cs – Fheir ms -
UNI	T V Apj	plications of Active Materials in Integrated Systems				8
Sol Lev Shu	id State Activerage Mech	uation And Stroke Amplification – Active Fiber Composites – Amp anisms – Torsional Actuators – Double Lever Actuators - Tuning O lectrics - Energy Harvesting - Vibration And Noise-Control Applica	lificat of Con tions	ion B nposit	y Exte e Bea	ernal 1ms -
211)TAL	: 45 I	PERI	ODS

CO N	0	COURSE OUTCOMES												
At the	end of	the cour	se, stud	ents wil	l be ab	le to:								
C01	Ana rang	lyze th	e perfo lication	rmance s of me	chara tallic, c	cteristi eramic	cs, ma , and p	nufactu olymeri	ring t c biom	echniqu aterials	ies, an	d wide	-	4
CO2	Ana	lyze the	feature	s, prope	erties, a	nd app	lication	ns of sm	art ma	terials.				4
CO3	Und	lerstand	the ch smart c	aracteri	istics of tes for	of shap	e men en engi	nory al neering	loys a applic	nd sele	ect SM	A-based	1	3
CO4Apply semiconductor processing, metallization techniques, ceramics fabrication, polymer synthesis, micromachining, UV radiation curing, deposition techniques for polymer thin films, and integration/packaging of smart microsystems to solve real- world engineering problems effectively.CO5Apply active materials in integrated systems for engineering applications														3
CO5	App	ly activ	e materi	als in i	ntegrate	ed syste	ems for	engine	ering a	pplicati	ons			3
	TEXTBOOKS:													
	BOOK	S:	Looge		angina	"Diam	atorial	~" CD(T Drago	2007				
1.	Joyce Vijov I	$\frac{1}{\sqrt{2}}$. Worse	g, Joesp	n D. Br I. Vinov	$\frac{\text{onzino}}{\text{and } S}$, Bion	alerial	$\frac{s}{2}, CRU$	_ Press	, 2007	Sustam	s and M	EMG	
2.	Design	and De	velopm	ent Me	thodolo	gies", 2	2006	ian, Si		ateriar	System	s and w	ENG.	
3.	Inderji	t chopra	, Jayant	Siroji,	Smart s	structur	es theo	ory, Car	nbridge	e univer	sity pro	ess, 201	3	
DEEE	DENO	D.C.	141	1		20		-	100	10	1			
KEFE 1	Mel Sc	L D: hwartz	"Smart	Materi	ale" Cl	RC Pre	ss 200	0	X	1	61			
1. 2.	Mel Sc	hwartz,	"Encyc	lopedia	t of Sm	art Ma	terials'	', Volur	ne 1 ar	nd Volu	ime 2, .	John W	iley &	Sons,
2	2002		<u> </u>	Dr. Ma	41. V.	aluna M	ahan 6	•C	Mataria	1-22 NL	2	202	1	
5.	Dr.P. I		nandra,	Dr. MC	uni Kris	snna M	onan,	Smart	Materia	ais, no	ption pr	ess, 202	,1	
E-RES	SOUR	CES: (in	cluding	NPTE	L cour	rse)	<i>7</i> ~	-/-	<i></i> ,	1	m			
1.	http://a	cl.digin	nat.in/np	otel/cou	rses/vic	deo/113	310400	9/L01.h	ıtml	13	21			
2.	http://a	cl.digin	nat.in/np	otel/cou	rses/vic	deo/113	310807	1/L01.h	ıtml	15	°/			
3.	https://	nptel.ac	.in/cour	rses/112	104173	3	19		/	5				
4.	https://	archive	nptel.ac	.in/cou	rses/11	2/104/1	12104	203/	1	×/				
I				1	192	11 .	1111	25	10	C				
COU	RSE AF	RTICUI	LATIO	N MAT	'RIX:	-	4-0	-						
COs			_		_	РО	s		-	_	_		PS	Os
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3				1			1	1		1	3	3
2.	2. 3 3 1 1 1													3
3. 3 1 1 1 1													3	3
4.	3					1			1	1		1	3	3
5.	3					1			1	1		1	3	3
1: Slig	ght (Lov	w), 2: M	[oderate	e (Med	ium), 3	: Subs	tantial	(High)						

M	122076	WEI DINC TECHNOLOCV		-	•	
IVII	144070		3	0	0	3
CO	URSE (DBJECTIVES:				
1.	Unders	stand the physical principles of welding process				
2.	Learn	the various types of welding processes.				
3.	Explor	e the possibilities of welding automation.				
UN	ТТ	GAS AND ARC WELDING PROCESSES				10

Gas welding: Principle – Gas welding equipment – Oxy-acetylene welding – Air-acetylene welding – Arc welding: Carbon-arc welding, Shielded-metal arc welding, Submerged arc welding, TIG & MIG welding, Electroslag welding and Plasma arc welding processes – principle, equipment, operation, advantages, limitations and applications.

UNIT II RESISTANCE WELDING PROCESSES

Electric resistance welding – fundamentals, process variables, advantages, limitations and application – Spot welding, Seam welding, Projection welding, Resistance Butt welding, Flash Butt welding, Percussion welding and High frequency resistance welding processes – advantages, limitations and applications.

UNIT III SOLID STATE AND OTHER WELDING PROCESSES

Cold (pressure) welding, Diffusion (bonding) welding, Ultrasonic welding, Explosive welding, Friction welding, Forge welding – Thermit welding, Atomic hydrogen welding, Electron beam welding, Laser Beam welding, Under Water welding – advantages, limitations and applications.

UNIT IV WELDING ENGINEERING

Types of Joints and Welds – basic welding symbol – Weldability of specific materials: Aluminium, Copper, and Stainless steels – Weld defects – Welding Test: Tensile test, radiography test, liquid penetrant test, ultrasonic testing.

UNIT V WELDING AUTOMATION

Computer aided welding – Software for welding engineers – Robotic welding system – types of welding robots – control system of welding robot – Classes and levels in welding automation – Applications.

TOTAL: 45 PERIODS

L T P C

10

10

9

CO No.	COURSE OUTCOMES	RBT Level									
At the end	l of the course, students will be able to:										
CO1	Understand the principles of Gas and Arc welding to fabricate the automotive assembly units	2									
CO2	Applying the resistance welding method for industrial components fabrication.	3									
CO3	Select the appropriate welding technology for welding of precision engineered parts in specifics industrial applications.	3									
CO4	Analyse the welded parts by applying appropriate testing methods.	4									
CO5	Acquire knowledge on welding automation for various industrial applications.	2									

		70												
TEXI	ROOF	<u> </u>										1000		
<u>l</u> .	O. P.	Khann	a, A Te	xtbook	of We	lding Te	echnolo	gy, Dh	anpat k	Rai Pub	lication	<u>s, 1999.</u>		
2.	Dr. R	. S. Pai	rmar, W	elding	Engine	ering a	nd Tecl	ınology	v, Khan	na Pub	lishers,	2015.		
REFE	RENC	ES:												
1.	J. F. L	Lancast	er, The	Physic	s of We	elding, l	Pergam	on, 198	6.					
2.	V. M.	Radha	krishna	n, Wel	ding Te	chnolo	gy and	Design.	, New a	nge. 200	02.			
					-					-				
E-RES	SOUR	CES:												
1.	https:/	//online	ecourses	.nptel.	ac.in/no		m15/pr	<u>eview</u>						
2.	https:/	//online	courses	.nptel.	ac.in/no	0c24_m	e33/pre	eview						
						_		_						
COUI	RSE A	RTICU	JLATIO	ON MA	TRIX	: C	OL	LEI	2					
COa			8	10	R	P	Os	-	36	~			PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	1	10	5/	2	1	1		1	N.	1			3
2	3	1	14	1	2	1	-	1	315	1	21			3
3	3	1	47	/	3	10	2	0)	11		0			3
4	3	3	5	3	3	1	1	N	1	2	5			
5	3		-	10.8	3	1	1		3	2	2	2		3

য

tada on

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)

			L	Т	Р	C								
IV	11N22077	INTRODUCTION TO HEAT TRANSFER	2	1	0	3								
CO	URSE OBJE	CCTIVES:												
1.	To teach or	ne-, two- and three-dimensional heat conduction in steady and tran	sient	state	in gei	neral								
	and ID stea	idy state and Lumped system in transient state in particular.												
	To teach th	the fundamentals of forced and natural convection and the method	to ca	lculat	e the	heat								
2.	transfer coo	efficients using the analytical method and more emphasize is on	how .	to ma	ke us	e of								
	proposed c	correlations for the analysis of forced and natural convection	in va	arious	prac	tical								
	To teach the physics of boiling and Condensation and their associated correlations to calculate the													
2	3. boiling and condensation heat transfer, however, forced convective boiling and drop wise													
3.	boiling and	a condensation heat transfer, nowever, forced convective bol	ling a	and c	irop	wise								
4	To tooch he	on are to be treated quantativery.	and r	oting										
4.	To teach th	a fundamentals of radiation and how to calculate the radiation heat	trong	for bo	twoor	a tha								
5.	real surface	s.	. u alis		tweet	i ule								
6	To teach th	e basic concepts of Mass transfer and the calculation of diffusive	and C	onvec	ctive 1	nass								
6.	transfer usi	ng correlations.												
		1.9/												
UN	IT I CO	NDUCTION				9								
Gen	eral three-dir	nensional heat conduction equation in cartesian, cylindrical and sp	herica	al coo	rdinat	tes –								
Ana	lysis of 1D	steady state in all three coordinates for single and composite s	system	ns wit	hout	heat								
gene	eration – 1D	Extended surfaces - Transient heat conduction - lumped system	anal	ysis o	nly. S	Semi								
Infi	nite and Infin	ite Solids –Use of Heisler's charts.												
	1		1											
UN	IT II CO	NVECTION				9								
The	Convection	Boundary Layers - Local and Average Convection Coefficients - La	amina	r and	Turbu	ulent								
Flow	v - Physical	Interpretation of the Dimensionless Parameters - Boundary Laye	r Ana	logies	s Exte	ernal								
Flov	v - Internal F	Tow. Free Convection - Physical Considerations - The Governing E	quation	ons to	r Lan	unar								
Bou	ndary Layers	- Similarity Considerations - Laminar Free Convection on a Vertica	al Sur	tace -	Empi	rıcal								
Cor	relations: Ext	ernal Free Convection Flows - Empirical Correlations.												
TINI						•								
		ILING AND CONDENASATION HEAT TRANSFER	. :1:		-1 D -	<u>9</u>								
Dim Com	ensionless P	arameters in Boiling and Condensation - <u>Boiling Modes</u> - Pool B	olling	- P0		iling								
Cor	relations - I	Forced Convection Boiling - <u>Condensation</u> : Physical Mechanis	ms -	Lam	inar .	Film								
Con	densation of	a vertical Plate Turbulent Film Condensation - Condensation	In H	orizon	ital I	ubes								
DIO	pwise Conde	isation (Quantative treatment only)												
TINI	ти иг	AT FYCHANCERS				0								
Hee	t Exchange	r Types – TEMA standard -The Overall Heat Transfer Coefficien	t _ E	ouling	r fact	$\overline{\mathbf{y}}$								
Hea	t Exchanger	Analysis. Use of the Log Mean Temperature Difference and The	- Fffe	ounig	1ess_1	NTI								
Met	hod – Introdu	iction to Compact and special type of heat exchangers (Oualitative t	reatm	ent on	lv									

UNIT V RADIATION HEAT TRANSFER

Fundamental Concepts - Radiation Heat Fluxes - Radiation Intensity - Blackbody Radiation - Emission from Real Surfaces - Absorption, Reflection, and Transmission by Real Surfaces - Kirchhoff's Law - The Gray Surface – Electrical analogy – Radiation shields – Gas Radiation.

TOTAL: 45 PERIODS

CO No					C	OURSE	E OUTO	COME	S					RBT
At the e	end of	the cou	arse, lea	arners v	vill be a	ble to:								level
	Cal	culate	the fo	llowing	(i) or	e dime	ensional	stead	y state	e heat t	ransfer	(ii) one	2	
CO1	din	nension	al stea	dy stat	e heat	transfe	er in ex	ktended	l surfa	ices (iii) trans	ient hea	t	3
	trar	lster us	ing lun d the c	iped pa	rameter	analys	18. n the ai	alutics	al solu	tion of	Convec	tive hee	ť	
CO2	trar	sfer an	id henc	e identi	fv the r	required	l correla	tions to	o calcu	late the	convec	tive hea	t	3
	trar	nsfer fo	r the gi	ven pra	ctical a	pplicati	ons.						-	-
	Stu	dents v	vill be	able to	analyse	e the he	eat exch	angers	using	LMTD	method	l and E -	-	_
CO3	NTU method. They also will be able to calculate the boiling and Condensation hea transfer													
	transfer Students will be able to calculate the radiation heat transfer between real surfaces													
CO4	Students will be able to calculate the radiation heat transfer between real surface and also between a surface and a gas (CO2 and H2O)													3
C05	Stu	dents v	will be	able to	o calcu	late the	e rate o	of mass	s trans	fer usin	ıg diffu	sive and	1	3
005	con	vective	e mass t	ransfer	equation	ons and	availab	le corre	elations	<u>so)</u>	<u></u>			5
TEVTI		75.	-/	3	/		1			~~	1			
	Frank	P. Incr	opera a	and Day	vid P. F	Dewitt.	"Fundai	nentals	s of He	eat and]	Mass T	ransfer"	John	Wilev
1.	& Son	is, 7th E	Edition,	2014.	14 1 1 2		i unuu	liteittuit		at and		, ,	U O I III	
2.	Yunus	s A. Cei	ngel, "I	Heat Tra	ansfer A	A Practi	cal App	roach"	– Tata	McGra	w Hill,	5thEditi	on - 2	2013.
			12	1		19	1	-	-	. 1	Ph.			
	RENC	ES:	"ILeet	and Ma		afan? 7	Coto Ma	Carry I	1:11 20	10	2	-		
1. 1	Holma Ozisik	an, J.P., - MN	"Heat	and Ma Transfe	ass Trar er" Mc	Graw F	l ata MC	Graw I	1111, 20 1994	010.	m	-		
2. (3.]	Nag P	. K., "F	Heat and	1 Mass	transfer	.". McC	in Doo iraw Hi	ll educa	ation.	2011.	m	1		
		,	17			,1,1100					21			
E-RES	OUR	CES:	1	1			-366	1	83	1/	5/			
1. I	https:/	/online	courses	.nptel.a	ac.in/no	c24_ch	17/prev	iew	-	10	-/			
2. ł	https:/	/www.i	udemy.	com/sh	are/103	vKa/	00	E	/	12	/			
3. I	https:/	/engine	ering.p	urdue.e	edu/onli	ne/cour	ses/inte	rmedia	te-heat	t-transfe	er			
4. ł	https:/	//ocw.m	nit.edu/	courses	/2-51-ir	ntermed	iate-hea	t-and-i	nass-ti	ansfer-f	fall-200	8/		
5. 1	https:/	/www.	classce	ntral.co	m/cours	se/sway	am-hea	t-transf	er-100	61				
	1					5								
COUR	SE Al	RTICU	LATI	ON MA	TRIX	:								
						P	Os						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3	3	2									1	
2.	3	3	3	2									1	
3.	3	3	3	2									1	
4.	3	3	3	2									1	
5.	3	3	3	2										
1: Sligh	nt (Lo	w), 2: I	Modera	ate (Me	dium).	3: Sub	stantia	l (High	ı)	1	I	I		1

VERTICAL 8

DIVERSIFIED GROUP 2

(Common to ME and MN)

AUTOMOBILE ENGINEERING

(Common to ME and MN) **COURSE OBJECTIVES:** To study the construction and working principle of various parts of an automobile. 1. 2. To study the practice for assembling and dismantling of engine parts and transmission system. To study various transmission systems of automobile. 3. 4. To study about steering, brakes, and suspension systems.

5. To study alternative energy sources.

ME 22081

UNIT I **VEHICLE STRUCTURE AND ENGINES**

Types of automobiles, vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC Engine components - functions, materials and its applications in land (Off road and On road), variable valve timing (VVT) and its necessity.

ENGINE AUXILIARY SYSTEMS UNIT II

Electronically controlled gasoline injection system for SI engines (SPI, MPFI, GDI), electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system CRDI), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three-way catalytic converter system, Emission Norms (Euro & BS).

UNIT III **TRANSMISSION SYSTEMS**

Clutch-types and construction, gear boxes-manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

UNIT IV STEERING, BRAKES AND SUSPENSION SYSTEMS

Steering geometry and types of steering gear box - Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control.

ALTERNATIVE ENERGY SOURCES UNIT V

Use of Natural Gas, Liquefied Petroleum Gas, Biodiesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles Engine modifications required - Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell.

TOTAL: 45 PERIODS

CO No.	COURSE OUTCOMES											
At the end	d of the course, students will be able to:											
CO1	Classify the automobiles, their construction and working of various auxiliary systems.	2										

9

С

3

0

L

3

Т

0

9

9

СО	2	Determin system.	e the	various	electro	onics c	compone	ents in	volved	in aut	omobil	e worki	ing	3
CO	3	Understa	nd the v	vorking	g of diff	erent t	ypes of	transmi	ssion s	ystems				2
СО	4	Understa	nd the v	vorking	g of Stee	ering, I	Brakes a	nd Sus	pensior	n Syster	ns.			2
CO	5	Identify p	ossible	alterna	ate sour	ces of o	energy f	or IC E	Ingines	•				3
TEX	<u>FBO</u>	OKS:	A .1	DD	(()	1 . 1	- ·	· • • •		<u> </u>	T11 D 1	1. 1	N T	D 11 -
1.	Jain. 2002	K.K and	Asthan	a R.B,	"Autom	10bile I	Enginee	ring" I	ata-Mc	Graw	Hill Put	olishers,	New	Delhi,
2	Kirp	al Singh	, "Au	tomobi	le Eng	gineerin	ng", Vo	ol.1&2,	Thirt	eenth	Edition	(2014), St	andard
2.	Publ	ishers, No	ew Dell	ni, 2018	3.									
DEE					-	_	01	_	_					
	Gon	NCES:	Intorno	1 Comb	uction	Enging	a". Thir	d Editi	on Tot	o MoC	ow Uil	1 2007		
1.	Hein	z Heisler	"Adv	anced F	Ingine T	Techno	$\frac{1}{100}$ s, $\frac{1}{100}$ s	AE Int	ernatio	nal Pub	lication	<u>1, 2007.</u> 15 USA	1998	
3.	Jose	oh Heitne	r, "Aut	omotiv	e Mech	anics,"	Second	Editio	n, East	-West I	Press, 1	999.	1770	<u> </u>
4.	Mart	in W, St	ockel a	nd Ma	rtin T	Stocke	1 , "Aut	tomotiv	e Mec	hanics	Fundar	nentals,'	' The	Good
5	New	ton. Stee	ds and	Garet. "	Motor	Vehicle	es". But	terwort	h Publi	ishers.	1989.			
5.	1.6.1		ab ana	Surve,	Wieter	v eniter	<u>, Du</u>		in r uon	1511015,	1909.			
E-RE	SOU	RCES:	A	1		(9	2	2)		. 1	0			
1.	https	://nptel.ac	c.in/cou	rses/10	7/106/1	071060)88/		LÊĚ		Z			
2.	https	://www.a	sdc.org	g.in	3.	1	16]]	U.	2	Ξ			
			14	1		1		1			111			
COU	RSE	ARTICU	JLATI	ON MA	ATRIX			1	1	1	21			
CO -			17	21		Р	Os		1	15	2/		PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	2	10	250	_	Y		1	0/			3	
2	2	2	2		19	ETT	1121	15 -	16.				3	
3	2	2	2				44	-					3	
4	2	2	2										3	1
5	2	2	2										3	
1: Sli	ght (l	Low), 2:	Moder	ate (M	edium)	, 3: Su	bstantia	al (Higl	n)	-	•	. I		

Interactor (Common to ME and MN) 3 0 0 1 COURSE OBJECTIVES: . . . To know the importance of composite materials in various industry applications, composite materials. To understanding and identifying the suitable manufacturing methods for making differe composite materials. .	3											
COURSE OBJECTIVES: 1. To know the importance of composite materials in various industry applications, 2. To understanding and identifying the suitable manufacturing methods for making differe composite materials. 3. To impart the micromechanics of lamina, the macromechanics of laminates. 4. To acquire the knowledge on fracture mechanics and design of laminates. UNIT I INTRODUCTION TO COMPOSITE MATERIALS Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MARCOMECHANICS OF COMPOSITES												
1. To know the importance of composite materials in various industry applications, 2. To understanding and identifying the suitable manufacturing methods for making differe composite materials. 3. To impart the micromechanics of lamina, the macromechanics of laminates. 4. To acquire the knowledge on fracture mechanics and design of laminates. UNIT I INTRODUCTION TO COMPOSITE MATERIALS Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcement Types of Fiber Reinforcement, Types of matrix materials. Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES												
2. To understanding and identifying the suitable manufacturing methods for making differe composite materials. 3. To impart the micromechanics of lamina, the macromechanics of laminates. 4. To acquire the knowledge on fracture mechanics and design of laminates. UNIT I INTRODUCTION TO COMPOSITE MATERIALS Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcement Types of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES												
2. composite materials. 3. To impart the micromechanics of lamina, the macromechanics of laminates. 4. To acquire the knowledge on fracture mechanics and design of laminates. 4. To acquire the knowledge on fracture mechanics and design of laminates. UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcemer Types of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques. Introduction techniques.	ıt											
3. To impart the micromechanics of lamina, the macromechanics of laminates. 4. To acquire the knowledge on fracture mechanics and design of laminates. 4. To acquire the knowledge on fracture mechanics and design of laminates. UNIT I INTRODUCTION TO COMPOSITE MATERIALS Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcement Types of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES												
4. To acquire the knowledge on fracture mechanics and design of laminates. UNIT I INTRODUCTION TO COMPOSITE MATERIALS Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcement Types of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES												
UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcemer Types of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. 9 Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. 9 UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES 9 Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques. 9 UNIT III MICROMECHANICS OF COMPOSITES 9												
UNIT IINTRODUCTION TO COMPOSITE MATERIALSIntroduction to Composite Materials, classification of composite materials, Matrices and ReinforcemerTypes of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantageand Disadvantages, Applications of composite materials, Mechanics Terminology.Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminateantisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a LaminateComposite.UNIT IIMANUFACTURING TECHNIQUES OF COMPOSITESLayup and curing, fabricating process, open and closed mould process, Hand layup techniquestructural laminate bag molding, production procedures for bag molding; filament winding, pultrusiopulforming, thermo-forming, injection molding, blow molding.Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques.UNIT IIIMICROMECHANICS OF COMPOSITES												
Introduction to Composite Materials, classification of composite materials, Matrices and Reinforcemer Types of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES 9)											
Types of Fiber Reinforcement, Types of matrix materials- Thermoset and Thermoplastic, Advantage and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES	t.											
and Disadvantages, Applications of composite materials, Mechanics Terminology. Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES 9	es											
Special cases of Laminates; Symmetric Laminates, Cross-ply laminates, Angle ply Laminate antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES 9												
antisymmetric Laminates, Balanced Laminate. Failure Criterion for a Laminate. Design of a Laminate Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES	s,											
Composite. UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES	d											
UNIT II MANUFACTURING TECHNIQUES OF COMPOSITES 9 Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES												
UNIT IIMANUFACTURING TECHNIQUES OF COMPOSITESLayup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques.UNIT IIIMICROMECHANICS OF COMPOSITES												
Layup and curing, fabricating process, open and closed mould process, Hand layup technique structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques.UNIT IIIMICROMECHANICS OF COMPOSITES)											
Structural laminate bag molding, production procedures for bag molding; filament winding, pultrusio pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES 9	s:											
pulforming, thermo-forming, injection molding, blow molding. Manufacturing methods for Met Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, speci fabrication techniques.), n.											
Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, specifabrication techniques. UNIT III MICROMECHANICS OF COMPOSITES	-, al											
Induiting composition (Miller s): Foreign metallargy compared induiting to the second seco	Matrix Composites (MMC's): Powder metallurgy technique, liquid metallurgy technique, special											
UNIT III MICROMECHANICS OF COMPOSITES	~1											
UNIT III MICROMECHANICS OF COMPOSITES												
UNIT III MICROMECHANICS OF COMPOSITES												
	,											
Density, Mechanical Properties; Prediction of Elastic Constants, Micromechanical Approach, Halpin	1-											
Tsai Equations, Transverse Stresses. Thermal Properties; Expression for Thermal Expansion	n											
Coefficients of Composites, Expression for Thermal Conductivity of Composites. Mechanics of Loa	.d											
Transfer from Matrix to Fiber; Load transfer in Particulate Composites.												
UNIT IV MACROMECHANICS OF COMPOSITES)											
Elastic Constants of an Isotropic Material, Elastic Constants of a Lamina, Relationship betwee	n											
Engineering Constants and Reduced Stiffnesses and Compliances, Variation of Lamina Properties with	h											
Orientation, Analysis of Laminated Composites, Stresses and Strains in Laminate Composites, Inte	r-											
laminar Stresses and Edge Effects.												
UNIT V STRENGTH AND FRACTURE OF COMPOSITES)											
Tensile and Compressive strength of Unidirectional Fiber Composites. Fracture Modes in Composite	s;											
Single and Multiple Fracture, Debonding, Fiber Pullout and Delamination Fracture. Failure Analysis ar	d											
Design of Laminates: Tests for measuring interfacial strength - Physical and chemical properties.												
TOTAL: 45 PERIOD	S											
	1											
CO No. COURSE OUTCOMES	1											
At the end of the course, students will be able to:	-											
CO1 Apply knowledge of composite materials, matrices, reinforcement, and laminate 3												
design principies.												

CO2	2	Select ap	ppropria tes	ate mar	nufactu	ring pro	ocesses	for bo	th poly	ymer ar	nd meta	illic ma	trix	3
		Analyze	the me	echanic	al and	therma	l prope	erties of	f com	osites	for unc	lerstand	ling	2
CO3	5 1	the mech	nanics.				1 1		1				0	3
CO4	1	Calculat	e the El	lastic C	Constant	ts of a	Lamina	and its	s variat	tion wit	th orien	tation,	and	3
	1	understa	nd inter	-lamina	ar stress	ses.	onoluci	a to dif	Foronti	ata tha	fractur	a moda	a in	
COS	5	composi	tes.	princip		lanuie	anarysi	s to un	lerenu	ate the	macture	e moue	5 111	3
		- omposi												
TEXT	TBOO	KS:												
1.	Mallio	<u>k, P.K.</u>	and Nev	wman.S	S., "Cor	nposite	Mater	ials Tec	hnolog	gy", Ha	nser Pu	blishers	s, 2003	3.
2.	Rober	t M. Jon r & Eron	ies, "Mo	echanic	es of Co	mposit	e Mate	rials" (I	Materia	als Scie	ence &	Enginee	ering S	Series),
3	$\frac{1 \text{ aylo}}{\text{R F G}}$	$\frac{1}{100} \propto \frac{1}{100} $	Princinl	$\frac{13}{15}$	omnos	ite Mat	erial M	echanic	s" CR	C Pres	s 4th Ea	1 2016	-	
4.	Hyer	M.W, "S	tress A	nalysis	of Fibe	er Reint	forced	Compos	site Ma	terials"	³ , McG1	aw Hill	I, 1998	3.
DEFEDENCES.														
REFERENCES:														
1.	1. Jones and Ashby, "Engineering Materials 2: An Introduction to Microstructure & Processing", 4th													
	ed., 2012. Isaac M. Daniel, Ori Isha, "Engineering Mechanics of Composite Materials". Oxford University													
2.	Press, 2005.													
2	Krishnan K Chawla, "Composite Materials: Science and Engineering", International													
^{5.} Edition, Springer, 2012.														
E-RE	SOUR	CES:	nntal a	o in/oo		12/104	/11210	1220/	FU.		177	-		
1.	https:/		.npter.a	· /		12/104/	112104	+229/	1.000	1	m	<u> </u>		
2.	https:/	/archive	.nptel.a	c.1n/co	urses/1	12/104/	112104	4168/		1	-01			
3.	https:/	/archive	.nptel.a	c.in/co	urses/1	12/103/	112103	3308/	-23	12	S/			
4.	https:/	//archive	.nptel.a	c.in/co	urses/1	12/104/	/112104	4221/	1	0	1			
5.	https:/	//archive	.nptel.a	c.in/co	urses/10	01/106/	/10110	5038/	1	- /				
6.	https:/	//archive	.nptel.a	c.in/co	urses/1	12/104/	/112104	4173/	101	/				
						41	पर	-6,	/					
COUI	RSE A	RTICU	LATIO)N MA	TRIX			-						
						P	Ds						P	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2		2	5	Ū	1	0	,	1		12	3	
2	3	2		2			1			1			3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
4	3	2		2						1			3	
5	3	2		2						1			3	
1: Slig	bt (L	1 (1). 2. 1	 Modera	- ite (Me	dium)	3: Sub	stanti	l al (Hiơł	<u>ן</u>	_ _			5	
-• Dif			·ioucia		· · · · · · / ·	5. Jul	-sound(•• (•••§	-)					

		HEATING, VENTILATION AND AIR CONDITIONING	L	Т	Р	С
ME	22083	SYSTEMS	2	Δ	0	2
		(Common to ME and MN)	3	U	U	3
COL	JRSE	OBJECTIVES:				
1.	To int	roduce the underlying principles of operations in different Refrigeration	& A	ir coi	nditio	ning
	systen	ns and components.				
2.	To pro	ovide knowledge on design aspects of Refrigeration & Air conditioning s	ystem	s.		
3.	To stu	dy the vapour absorption and air refrigeration systems.				
4.	To lea	rn the psychrometric properties and processes.				
5.	To stu	dy the air conditioning systems and load estimation.				
UNI	ТІ	INTRODUCTION				7
Intro	ductio	to Refrigeration - Unit of Refrigeration and C.O.P. – Ideal cycles- Re	frige	rants	Desi	able
prop	erties -	- Classification – Nomenclatures.		unus	2001	uore
<u> </u>		COLLEN				
UNI	ТII	VAPOUR COMPRESSION REFRIGERATION SYSTEM				10
Vanc	or com	pression cycle: p-h and T-s diagrams - deviations from theoretical cyc	le - s	subco	oling	and
supe	r heati	n_{σ} effects of condenser and evaporator pressure on COP- multipre	ssure	svst	- m	low
temn	erature	refrigeration - Cascade systems – problems Fauinment's: Typ	e of	Con	nnres	sors
Cond	lencero	Expansion devices Evaporators	0 01	COL	iipi es	5015,
Conc		, Expansion devices, Evaporators.				
UNI	тш	OTHER REFRIGERATION SYSTEMS				10
Worl	zina r	ringinles of Venor ebsorption systems and adsorption cooling sys	atoma		Stoom	
rofrid	aratio	n Ejector refrigeration systems. Thermoelectric refrigeration Air refri	gorati	ion i	Mag	notic
Vort	av and	Pulse tube refrigeration systems	gerau	- 1011	wiag	lette
VOIU	ex anu	Tuise tube temperation systems.	-			
LINI'	ТIV	PSVCHROMETRIC PROPERTIES AND PROCESSES	-			9
Prop	erties	of moist Air-Gibbs Dalton law Specific humidity Dew point tem	peratu	ire I	Jeare	e of
catur	ation	Relative humidity Enthalpy Humid specific heat. Wet hulb temperat	ure T	herm	odyn	amic
satur wot 1	auton,	mperature Developmentric chart: Developmentric of air conditioning proc		miv	ing o	f oir
otroa	me	inperature, r sychrometric chart, r sychrometric or an-conditioning proc	03505	, 11117	ing 0	1 all
suca						
I INII'	ти	HVAC SYSTEMS AND LOAD ESTIMATION				0
Air	I V	oning loads: Outside and inside design conditions: Heat transfer through	ugh c	truoti	110 6	Jolor
All C	tion E	least ical appliances. Infiltration and ventilation internal heat lead: Appendix	ugii s		ion i	Frach
	uon, c	men comfort & IAO minoinles offective temperature & chart coloul	ation	select	.1011, 1	
air io	bad, ni	iman connort & IAQ principles, effective temperature & chart, calcul	ation	OI S	umm(
Winte		conditioning load; Classifications, Layout of plants; Air distribution	syster	n; F	ners;	Alf
Cont	utionir .ols	ig systems with Controls: Temperature, Pressure and Humidity sensors,	Actu	ators	æ Sa	irety
cont	015.	ТО	гат.	45 P	FDI	שט
		10	IAL.	- J I		500

CO No.	COURSE OUTCOMES	RBT Level									
At the end of the course, students will be able to:											
CO1	Understand the basic concepts of Refrigeration.	2									
CO2	Understand the Vapor compression Refrigeration systems and to analyze the performance.	3									

COS	3	Understa	and the	various	s types	of Refr	rigeratio	n syste	ms.				2
CO4	4	Calculat processe	e the les.	Psycho	metric	prope	rties an	d anal	lyze tł	ne various ps	sychometr	ric	3
COS	5	Understa	and the	concep	ts of H	VAC a	and to an	alyze t	he perf	formance.			3
TEXT	ГВО	OKS:											
1.	Aror 2010	a, C.P.,	"Refrig	eration	and	Air C	ondition	ing", 1	3rd ed	lition, McGra	w Hill,	New	Delhi,
2.	A Te	xtbook o	f Refrig	eration	and A	ir-Con	ditioning	g by R.	K. Rajj	put, 2013			
	DEEDENCES.												
REFE	REFERENCES:												
1.	1. ASHRAE Handbook, Fundamentals, 2010 2 JonesW P. "Air conditioning engineering" 5th edition. Elsevier Butterworth-Heinemann, 2007												
2.	. Jones W.P., "Air conditioning engineering", 5th edition, Elsevier Butterworth-Heinemann, 2007 Roy I. Dossat. "Principles of Refrigeration". 4th edition, Pearson Education Asia, 2009												
5.	Stoecker, W.F. and Jones J.W., "Refrigeration and Air Conditioning". McGraw Hill, New												
4.	Delhi,1986.												
5.	5. Textbook of Refrigeration And Air-Conditioning (M.E.) by R.S. Khurmi, 2019.												
E-RE	SOU	RCES:	14	/			-		15	121			
1.	https	://nptel.a	c.in/cou	rses/11	210512	29/	0	0	11	15			
2.	https	://www.b	righthu	bengin	eering.c	com/hv	/ac	-	[2 1-	1		
				- 1	5.	1.1	-		日	2			
COUI	RSE	ARTICU	LATIC)N MA	TRIX			1	FU.	ITT			
			m	1 ~		Р	Os	1		1		PS	SOs
COs	1	2	3	4	5	6	7	8	9	10 11	12	1	2
1	2	2	2	51	1		Ť		100	151		3	
2	2	2	2	S	1		60		/	5/		3	
3	2	2	2	10	179		Y	-	1	9/		3	
4	2	2	2	1	19	E/[TCT)	5	2.			3	
5	2	2	2	1	2		_	_				3	
1: Slig	ght (l	Low), 2: 1	Modera	te (Me	edium),	, 3: Su	bstantia	l (Hig	h)				

ME	22084	INDUSTRIAL SAFETY ENGINEERING	L	Τ	Р	С					
		(Common to ME and MN)	3	0	0	3					
COL	UKSE	OBJECTIVES:	andi			faty					
1.	meas	ures	and 1	mpre	ove sa	llety					
	Reco	gnize specific safety considerations associated with each type of operation	on to	miti	gate r	isks					
2.	effec	tively.			5	10110					
2	Lear	1 techniques for monitoring safety performance, analyzing data,	and	impl	emen	ting					
3.	mana	gement strategies to enhance safety culture and practices.									
UNI	TI	INTRODUCTION				9					
Eval	uation	of modern safety concepts - Safety management functions - safety of	organi	zatio	on, sa	ıfety					
depa	artmen	t - safety committee, safety audit - performance measurements and mot	ivatic	on -	emplo	byee					
paru	cipati	Sil ili salety - salety and productivity.									
UNI	тп	OPERATIONAL SAFETY				9					
			D			1.					
HOU	metal	operation – safety in Cutting – safety in weiding – safety in Bollers-	formi	sure	vesse	SIS - SIS					
rolli	$n\sigma = f$	Forging - surface hardening – casting – Moulding – coiling Operational	safet	ng p v (c	old n	netal					
oper	ation)	Safety in Machine shop - Cold bending and chamfering of pipes- n	netal	cutti	ng -	shot					
blast	ting, g	rinding, painting - power press and other machines.			0						
	0.0		6								
UNI	тш	SAFETY, HEALTH, WELFARE AND LAW				9					
Features of Factory Act – explosive Act – boiler Act – ESI Act – workman's compensation Act –											
indu	strial	hygiene – occupational safety – diseases prevention – ergonomics - Occ	cupati	onal	disea	ases.					
stres	s, fati	gue - Health, safety and the physical environment - History of legislation	ns rela	ted t	to Sat	fety-					
press	sure v	essel act-Indian boiler act - The environmental protection act - Electricity a	ct - E	xplo	sive a	ict.					
UNI	TIV	SAFETY PERFORMANCE MONITORING		~ .		9					
Pern	nanent	total disabilities, permanent partial disabilities, temporary total disabili	ties -	Calcı	ılatio	n of					
accio	dent 11	idices, frequency rate, severity rate, frequency severity-incidence, incident	t rate,	accı	dent	rate,					
salet	ly l s	score, safety activity rate – problems.									
TINI	TV	SAFETY MANACEMENT				0					
Mati	IV	SAFETT MANAGEMENT		h 1a		9					
haza	nous c irds - 1	b) promoting sale practice – Salety organization- OSHA – Salety controls	s. V151 and re		and Ia	t in					
indu	strial	safety - safety analysis Industrial fatigue- role of industrial psychology- ri	isk an	alvsi	s - sa	i. m ifety					
train	ing -	accident and near miss investigations- promotional measures to avoid	accid	ents	- hu	man					
relia	bility	- safety management characteristics-industrial safety policies and implement	ntatio	n.							
		ТОТ	TAL:	45 P	ERIC	ODS					
CO	No	COUDSE OUTCOMES			R	BT					
	190.	COURSE OUTCOMES			L	evel					
At th	ne end	of the course, students will be able to:									
C	D1	Understand the safety audit committee and management functions. Also	o Eva	luate		2					
	71	the modern safety concepts, measurements and motivations.				-					

CO	2	Obtain metal v	knowled	lge on	differe	nt type	s of op	peration	nal safe	ty in h	ot meta	and c	cold	2
CO	3	Evalua Workm	te the penan Comp	rforma pensatio	nce of on Act.	safety	health	and W	elfare	Act, als	so imple	ementat	tion	3
CO	4	Examir	ne the saf	ety per	forman	ice mor	nitoring	g and ev	valuatio	ns of a	ccident	rate.		3
CO	5	Analyz organiz	e and ation.	implen	nent n	nanagei	ment	techniq	ues fo	or safe	practi	ice in	an	3
TEX	TBO	OKS:												
1. Deshmukh, Industrial Safety Management, Tata McGraw Hill, 2008														
2. Roy Asfatil C, David W Rieske, Industrial safety and Health Management, Prentice Hall, 200)09.
DEFEDENCES.														
REFERENCES:														
1.	1. Joseph F. Gustin, Safety Management: A Guide for facility Management, The Fairmont Inc., 2008.													Press,
2.	Krishnan N.V., "Safety in Industry", Jaico Publisher House, 1996.													
3. Nair P M C, Industrial safety and the law" Attam Publisher's, 1994.														
E-RF	E-RESOURCES:													
1.	http	s://online	courses.	nptel.ac	c.in/noc	:20_mg	g43/pre	view	N		21			
2.	http	s://archiv	e.nptel.a	c.in/co	urses/1	10/105/	/11010	5094/	0.00	- 1	0			
			V	1.2	- 1	1.1	1	-	0.00	25.1	5			
COU	RSE	ARTIC	ULATIC)N MA	TRIX	1	1		1-17		2			
			In	5	81 - A	P	Os	1	1.0-	2-	m		P	SOs
COs	1	2	3	4	5	6	7	8	9	10	211	12	1	2
1	3		1	1:		1	50	1	1	12	2	2	3	
2	3		1	10%	-	1		1	1	0	2	2	3	
3	2	,		2		1	2	3	1	-		2	3	
4	2	,		2	12	1	2	3	24,	/		2	3	
5	2	,		2	/	1	2	3	/			2	3	
1: Sli	ght (Low), 2:	Modera	te (Me	dium)	, 3: Sul	ostanti	al (Hig	h)					

ME2	2085	INSTRUMENTATION AND CONTROL SYSTEMS	L	Т	Р	C				
101152	4005	(Common to ME and MN)	3	0	0	3				
COU	RSE C	DBJECTIVES:								
1.	Compr control	ehensive understanding of the fundamental principles underlying i systems.	nstrui	nenta	tion	and				
2.	Develo	p the analytical and design skills in the field of instrumentation and cont	rol sy	stems	5.					
3.	Identify settings	y, diagnose, and solve problems encountered in industrial automation s.	and p	proces	s coi	ıtrol				
UNIT		PROCESS CONTROL				9				
Proce	ess Mo	deling: hierarchies - Theoretical models - transfer function, state space	ce mo	dels	and	time				
series	model	s -Development of empirical models from process data - Feedback and the ntrol - selective control loops - ratio control - feed forward and ratio control -	feed f	orwa	rd coi	ıtrol				
UNIT II PROCESS INSTRUMENTAION										
PID control and st	design ol: strat tandard	and tuning - trouble shooting - tuning of multi loop - PID control sy tegies for reducing control loop interactions. Instrumentation for proces as - preparation of P&I diagrams.	stems s moi	- De	ecoup ng: co	oling odes				
UNIT		MODERN INSTRUMENTAION				9				
Mode	1 mmodi	intige control. Statistical process control companyicomy control.	no ot	licito						
distril aspec	buted c	control - PC based automation. Programmable logic controllers: organiz ler programming, final control elements - SCADA in process automation	ation,	prog	ramn	ning				
UNIT	ГІ	VIRTUAL INSTRUMENTAION	-			9				
Virtua instru progr	al Instr ment - ammin	umentation - review of virtual instrumentation - block diagram and ar conventional instruments versus traditional instruments - data-flow teo g in data flow.	chitec chniqu	ture ues -	of vii grapł	rtual nical				
UNI	ГΥ	INTELLIGENT CONTROL				9				
Artifi intern netwo metho	cial No nal moc ork. Fuz ods.	eural Network (ANN) based control: Introduction to ANN - model lel control - predictive control - indirect and direct adaptive controller zzy logic based control: fuzzy controllers – preliminaries - Mamdani ar	referendesig	ence n usi geno	contr ng ne infer	ol - oural ence				
		10	I'AL:	45 P	ERIC	JDS				
CON	No.	COURSE OUTCOMES			R Le	BT evel				
At the	e end o	f the course, students will be able to:								
СО	1	Explain the significance of process control in industrial applications and optimizing process efficiency and safety.	l its ro	ole in		2				
СО	2 Select appropriate instrumentation devices for specific process measurement requirements, taking into account environmental conditions and process 3 characteristics.									
CO	3	Critique the advantages and limitations of modern instrumentation compared to traditional methods, considering factors such as cost, comp reliability.	techn olexity	iques , and		3				

CO	4	Simulate validatir	e the be ng cont	havior rol stra	of phy ategies	sical s and	ystems testing	using syster	virtual i n perfo	instrum ormance	entation e unde	n softw r diffe	are, rent	4
CO	5	Evaluate robustne	e the poess, and	erforma adaptal	ance o oility, c	f intell compar	ligent c ing then	ontrol	systen onventic	ns in t onal con	erms o itrol me	f stabil thods.	lity,	4
TEX	ГВОО	KS:												
	Dale	E. Sebo	org, Du	ncan A	A. Mel	licham	p, Tho	nas F	. Edga	r and]	Francis	J. Do	yle "I	Process
1.	Dyna	mics and	l Contro	l", Joh	n Wile	y and S	ons, 20	10.	U					
2.	Ernes Editio	t O. Doe ons, 2006	ebelin, " 5.	Measu	rement	Syster	ns Appl	ication	n and D	esign",	McGra	w Hill	Intern	ational
3.	Bose	N. K.	and Li	ang P.	., "Nei	ural N	etwork	Fund	amental	ls with	Graph	ns, Alg	orithn	ns and
	Klir G. J. and Folger T. A., "Fuzzy Sets, Uncertainty and Information". Prentice Hall of India.													
4.	4. 2006.													
2000.														
REFERENCES:														
1.	1. Johnson D Curtis, "Process Control Instrumentation Technology", Prentice Hall India, 2013.													
2.	2. Robert Fuller, "Advances in Soft Computing, Introduction to Neuro Fuzzy Systems", Springer, 2000.													
3. Laxmidhar Behera and Indrani Kar, "Intelligent Systems and Control", Oxford University Press, 2009.														
4.	Jeffre	y Travis	and Jin	n Kring	, "Lab'	VIEW	for Ever	yone"	, Prenti	ce Hall	, 2007.			
			X	1	. 1	1.1		-	1 260	\$3	3			
E-RE	SOUI	RCES:	2		2	1	14	7	1-1-1		177			
1.	https:	//nptel.a	c.in/cou	rses/10	310303	37	1	1	1.5.	5	ITT			
2	https:	//onlinea	courses	nntel ac	in/noc	24 ee	56/previ	ew		- /	271			
	inceps:	, 0111100					00, pro , 1		1	1	31			
COU	RSE A	RTICI	ILATIC)N MA	TRIX		Ť		100	15	=/			
				0	-	P	Oc	1	1	- 9	/		P	SOs
COs	1	2	2	100	120	6	-	0	1	10	11	12	1	203
	1	2	3	4	3		11.11	0	9	10	11	12	1	4
1	3	3			-	-1	44	Y	/			1	3	
2	3	2										1	3	
3	3	2										1	3	
4	3	2			2							1	3	
5	3	2			2							1	3	
1: Sli														

ME 22086	POWER PLANT ENGINEERING	L	Т	Р	С							
	(Common to ME and MN)	3	0	0	3							

COURSE OBJECTIVES:

1. To teach the concepts of coal based thermal power plants.

2. To teach the principles of operations in diesel and gasifier system.

3. To impart overall knowledge on different types of nuclear power plants,

4. To teach the various renewable energy resources.

5. To teach the energy, economic, and environmental issues of power plants.

UNIT I COAL BASED THERMAL POWER PLANTS

Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, All types of valves, Boiler Safety valves and relief valves, Pipes and tubes for boiler pressure parts, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

UNIT III NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

UNIT IV POWER FROM RENEWABLE ENERGY

Hydro Electric Power Plants –Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, OTEC, Solar Photo Voltaic (SPV), Solar Thermal, Geothermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants - ESP- Electrostatic Preceptor - Repair & Maintenance cost and selling cost.

TOTAL: 45 PERIODS

CO No.	COURSE OUTCOMES	RBT Level						
At the end of the course, students will be able to:								
CO1	Understand the layout, construction and working of the components inside a coal based thermal power plant.	2						
CO2	Describe the working of diesel and integrated gasifier power plants.	2						
CO3	Interpret various types of nuclear reactors and hydraulic power plant and their components.	2						

9

9

9

9

CO	4	Descr	ibe vario	ous sourc	ces of re	enewab	le energ	y and t	ypes of	f power pla	nts.		2	
CO	5	Evalu	ate vario	ous perfo	ormance	e paran	neters as	ssociate	ed with	power pla	ntsystems	and	3	
	C	interp	ret econ	omics of	power	genera	tion and	pollut	ion cor	ntrol metho	ds		5	
TEV	трл	JVG.												
ТЕЛ	Nag	JKS: PK "	Power	Plant Fn	gineeri	na" F	ourth E	lition	Tata N	AcGraw Hi	ll Publish	ing Ca	mnany	
1.	Ltd.	2017.	TOwer		ignicen	ng , r		innon,	Tata Iv			ing Co	mpany	
2.	R.K.	Rajput	., "A Te	xtbook o	f Powe	r Plant	Enginee	ering",	Fifth H	Edition, Lay	mi Public	ations	.,2016	
REF	REFERENCES:													
1.	1. El-Wakil. M.M, "Power Plant Technology", Tata McGraw –Hill Publishing Company Ltd., 2010. 2 Black & Veatch "Power Plant Engineering" Springer Publications 1006													
2.	2. Black & Veatch, "Power Plant Engineering", Springer Publications, 1996. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering" Second													
3.	Edition, Standard Handbook of McGraw Hill, 1998.													
4.	Godi 2012	Godfrey Boyle, "Renewable energy, Power for a Sustainable Future", Oxford University Press, 2012.												
5.	5. N.K. Bansal, "Non-Conventional Energy Resources", Vikas Publishing House, 2014.													
E-RESOURCES:														
1.	https	://npte	.ac.in/co	ourses/11	121072	91/	_	1	N	12	1			
2.	https	://onlir	necourse	s.nptel.a	c.in/noo	c24_me	e57/prev	riew	in s	10	21			
3.	https	://nptel	.ac.in/co	ourses/10	031032	06		-	1250	0.15	2			
			2		12	1	14	7			-			
COU	RSE	ARTI	CULAT	ION MA	ATRIX		1	1	Q.	8-1 h	51			
			13	1	55.	P	Os	/		120	1	P	SOs	
COs	1	2	3	4	5	6	7	8	9	10 1	1 12	1	2	
1	2	2	2	80	-		- The		~	01	66	3		
2	2	2	2	10		-	V	2	1	-/		3		
3	2	2	2	6	19	1		30	191	/		3		
4	2	2	2		1	41	15	6	/			3		
5	2	2	2	1								3		
1: Sli	ght (l	Low), 2	2: Mode	rate (M	edium)	, 3: Su	bstantia	l (Hig	h)	<u> </u>				

ME22087		PRINCIPLES OF MANAGEMENTLT	P	С			
WIE22007		(Common to ME, AE, EE, IT and MN) 3 0	0	3			
COU	U RSE	OBJECTIVES:					
1.	Imple minir	ement management principles to optimize resource utilization, streamline procentive waste, ultimately increasing operational efficiency and productivity.	esses,	and			
2	Utiliz	e management principles to align organizational activities with strategic objectives	, ensu	iring			
^{2.} that tasks are prioritized and executed efficiently to achieve desired outcomes.							
	Apply	y management principles to foster employee development, providing training, su	oport,	and			
3. opportunities for growth, thereby enhancing individual and team performance and contributing							
	organ	izational success.					
UNI	<u>TI</u>	Management		7			
Defi	nition,	Nature, Importance, Evolution of Management thought, Contributions made t	y Ta	ylor,			
Fayo	ol, Hav	wthorne Experiment, Maslow Theory, Is management art or science, Functions of	mana	ager,			
Ethi	es and	social responsibility in Management.					
TINI	тп	Planning Controlling and Decision Making		10			
Plan	$\frac{1}{ning}$	Training, Controlling and Decision Making		tive			
nlan	ning ()	operational planning strategic planning McKinsey's 7S Framework approach) SV	VOT			
anal	vsis N	IBO controlling (Concept Relationship with planning Process of controlling Dim	ension	ns of			
cont	rol and	thuma response to control). Decision Making (Nature, process, Certainty and u	icerta	intv.			
decis	sion tre	ee, group aided decisions, brainstorming)					
UNI	T III	Organizing & Staffing		10			
Orga	nizing	(Concept, Nature, Process, Authority and Responsibility, Delegation and Emp	owern	nent,			
Cent	ralizat	ion and Decentralization, Departmentation), Staffing (concept, manpower plan	ning,	Job			
Desi	gn, rec	cruitment and selection, training and development, performance appraisal)					
				1			
UNI	TIV	Leadership and Communication		10			
Leac	lership	- role of leadership and definition, should managers lead, style of leadership, devel	opme	nt of			
leade com	ership, munica	leadership behavior. Communication - Process, tools of communication, electroni ation.	: med	1a 1n			
UNI	ΤV	Group Dynamics and Recent Trends in management		8			
Cone	cept of	f groups, stages in group formation, types of groups, group synergy, work team'	s vs v	work			
grou	ps, En	vironment friendly management, changes in management, Crisis management, TC	M, S	tress			
man	ageme	nt, international management.					
		TOTAL: 45 I	PERI	ODS			
СО	No.	COURSE OUTCOMES	R L	BT evel			
At th	ne end	of the course, students will be able to:					
CO	01	Understand the basic concepts and theories of management		2			
CO	02	Understanding the Functions of management		2			
CO)3	Understand the impact of communication and Leadership on the management style	;	2			

CO	94	To understand the formation of groups and group dynamics								3					
CO	To understand the recent trends in management in the modern world										3				
TEX'	TBO	OK	S:												
1.	Rob	bins	& Ca	ulter, "I	Manage	ement"	, Prentie	ce Hall	of Indi	a, 8th I	Edition				
2.	Koo	ntz,	"Prin	ciples of	f Mana	gemen	t", Tata	McGre	ew Hill,	, 1st Ec	dition 2	008			
REF	ERE	NCE	ES:									~ .			
1.	L.M	. Pra	asad, ʻ	Princip	les & F	Practice	es of Ma	anagem	$\frac{1}{2}$ ent", S	ultan c	hand &	Sons, I	New De	elhi.	
2.	Para	$\log D$	iwan,	"Manag	gement	Princip	ples and	Practi	$\frac{\cos^2}{4}$, Ez	$\frac{\text{xcel Bo}}{11 \text{ cl}}$	$\frac{1}{1}$ (1)	ew Del	h1.		
3.	Stor	ier, I	reem	an, Gilt	bert. Jr,	Mana	agement	t", Prer	itice Ha	ll of Ir	1018, 611	1 Eaitio	n		
			F C						-						
E-RE		RC	ES:			1	C	OL	LF,		_				
1.	https://onlinecourses.nptel.ac.in/noc23_mg33/preview														
2.	https://archive.nptel.ac.in/Harddisk/Direct_Download.html														
				1:	51		1.5	11.12			1.				
COU	RSE	AR	TICU	LATIC	ON MA	TRIX	: 12			1-0	1	01			
COa		POs											PSOs		
COS	1		2	3	4	5	6	7	8	9	10	11	12	1	2
1	1		2	2	2		2	1	0	2	1	P	1	3	
2	1	-	1	2	1		1	1	1	1	2	2	1	3	
3	1	-		4	18	3		2	3	3	-	2	1	3	
4	1		- 8	V	1	1	2	3	1	Ŷ	1	3	1	3	
5	1	-	3	3	2	3	2	100		12	3	21	1	3	
4 011						dium)	2. Sub	stanti	al (Hig	\mathbf{n}	(4)	1			
1: Sli	ght (Low	y) , 2: I	Modera	te (Me	ululli)	, 5 . Sui	stantia		1)		/			
1: Sh	ght (Low	7) , 2: I	Modera	ite (ivie	aiuiii)	, 5. Sui	stantia	ii (iiigi		5/	/			
1: Sh	ght (Low	7) , 2: I	Modera	te (Me	78	, 5. Sui	stantia		101	/				
1: Sh	ght (Low	7) , 2: I	Modera	te (Me	179	e17	TR	i (ingi	101	1				

VIBRATION AND NOISE CONTROL L Т Р С **ME22088** 3 (Common to ME and MN) 0 0 3 **COURSE OBJECTIVES:** To select appropriate sensors and techniques for diagnosing typical machinery malfunctions. 1. To isolate the affected machinery components, recognize various common problems, and make 2. recommendations for continued operation or scheduled repairs. 9 **UNIT I FUNDAMENTALS OF VIBRATION** Introduction -Sources of vibration- Types of vibration, Types of Damping - Single degree freedom systems with and without damping -Determination of Natural frequency for single degree freedom systems.

UNIT II TWO DEGREE FREEDOM SYSTEM

Free vibration of two-degree freedom system, determination of natural frequency. Forced vibration – Transmissibility. Vibration isolation - Vibration Isolation methods - Dynamic Vibration Absorber.

UNIT III MULTI-DEGREE FREEDOM SYSTEM

Multi Degree Freedom System –Influence Coefficients and stiffness coefficients, influence coefficients – Eigen values and Eigen vectors – Flexibility Matrix and Stiffness Matrix -Matrix Iteration Method – Approximate Methods: Dunkerley, Rayleigh's, and Holzer Method

UNIT IV ENGINEERING NOISE AND ITS CONTROL

Introduction-Sound Power, Sound Intensity and Sound pressure level. Sound spectra. The decibel scale-Decibel addition, subtraction, and averaging- Loudness, Weighting networks, Equivalent sound level. Noise: Effects, Ratings and Regulations. Noise: Sources, Isolation and control-Industrial noise sources-Industrial noise control strategies-Noise control at the source, along the path and at the receiver

UNIT V MEASUREMENTS AND CONTROL OF VIBRATIONS

Vibration Measuring Devices: Transducers, vibration pickups-Vibration exciters: mechanical, hydraulic –Frequency measuring instruments: single reed, multi reed and stroboscope. Experimental modal analysis- FFT analyzers - Vibration control methods and devices- isolators, absorbers and balancing

TOTAL: 45 PERIODS

9

9

9

CO No.	COURSE OUTCOMES	RBT Level								
At the end	At the end of the course, students will be able to:									
CO1	Understand the importance of vibration in the design of Machine parts.	2								
CO2	Develop the mathematical model and determine the natural frequency of single degree and two degree of freedom vibrations.	3								
CO3	Develop the mathematical model, equation of motion and determine the natural frequency of multi degree of freedom.	3								
CO4	Discuss about Noise and its control.	2								
CO5	Advocate suitable methods for measuring and controlling the motions of mechanical systems.	3								

TEX	TBOOK	KS:														
1. Rao, S.S.," Mechanical Vibrations", Pearson Education; Sixth edition, 2018.																
2. G.K.Groover., "Mechanical Vibrations", New Chand &Bros, Roorkee, Reprint 2014.																
REF	REFERENCES:															
1.	Ramamurti. V, "Mechanical Vibration Practice with Basic Theory", Narosa, New Delhi,2000.															
2.	2. Dukkipati RV, Advanced Mechanical Vibrations, Narosa Publications, 2008															
3.	3. Kelly SG, Mechanical Vibrations, McGrawHill (India) Ltd., 2015															
E-RF	E-RESOURCES:															
1.	https://i	nptel.a	.c.in/cou	irses/11	12/107/	1121072	212/									
2.	2. https://nptel.ac.in/courses/112/103/112103111/															
					1	-	01		-							
COU	RSE AI	RTICU	JLATI	ON MA	ATRIX	0	OL.	LE(36	1						
~~~	POs													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
	-		-			-										
1	3	2	10	0/			No.	20	1	11	10	1	3			
1 2	3	2 2	14	0/	Ĩ.	5			5	1	CZ	1	3			
1 2 3	3 3 3	2 2 2	97.F	7	1. A	6		-	X	1 1 1	CNG	1 1 1	3 3 3			
1 2 3 4	3 3 3 3 3	2 2 2 2 2	(ATE	7	Ţ.	(1)	2	10	124 S	1 1 1 1	CNGIN	1 1 1 1	3 3 3 3			
1 2 3 4 5	3 3 3 3 3 3	2 2 2 2 2 2 2	NKATES		14		2	11		1 1 1 1 1	CNGINE	1 1 1 1 1	3 3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 3 ght (Lo	2 2 2 2 2 w), 2:	Modera	ate (Me	edium)	), 3: Sub	ostantia	al (High		1 1 1 1 1	CNGINEE	1 1 1 1	3 3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 3 3 ght (Lo	2 2 2 2 2 w), 2:	Modera	ate (Me	edium)	), 3: Sub	ostantia	d (High	n)	1 1 1 1	CNGINEER	1 1 1 1 1	3 3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 3 ght (Lo	2 2 2 2 2 w), 2:	Modera	ate (Me	edium)	), 3: Sub	ostantia	al (High	n)	1 1 1 1	CNGINEER,	1 1 1 1	3 3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 3 ght (Lo	2 2 2 2 w), 2:	Modera	ate (Me	edium)	), 3: Sub	ostantia	al (High	n)	1 1 1 1	CNGINEERIA	1 1 1 1	3 3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 3 ght (Lo	2 2 2 2 2 w), 2:	Modera	ate (Me	edium)	), 3: Sub	ostantia	al (High		1 1 1 1	CNGINEERIN	1 1 1 1	3 3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 3 ght (Lo	2 2 2 2 w), 2:	Modera	ate (Me	edium)	), 3: Sub	ostantia	al (High	n)	1 1 1 1	CNGINEERIN	1 1 1 1	3 3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 3 ght (Lo	2 2 2 2 w), 2:	Modera	ate (Me	edium)	), 3: Sub	ostantia	al (High		1 1 1 1	CNGINEERIN	1 1 1 1	3 3 3 3			
1 2 3 4 5 1: Sli	3 3 3 3 ght (Lo	2 2 2 2 w), 2: 1	Modera	ate (Me	edium)	), 3: Sub	ostantia	al (High			CNGINEERIN	1 1 1 1	3 3 3 3			