

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

B.E., Electrical and Electronics Engineering

CURRICULUM AND SYLLABUS

REGULATION – 2022

CHOICE BASED CREDIT SYSTEM

	1	Board of Studies	07.10.2022	Academic	08.10.2022						
Curriculum	/	recommendation	10.04.2023	Council	21.04.2023						
Revision No:	10	data	19.09.2023	Approved	23.09.2023						
	14	uale.	03.04.2024	date:	09.05.2024						
/	01	The Program Spec	ific Outcomes	is revised wh	ich focuses on						
	01.	Automation with sr	nart Design and	Development	•						
	02	Two Tamil language courses are introduced in semesters I and									
	02.	II with a total of 3 credits.									
	03	New theory course "Measurement and Instrumentation" has									
1	05.	been introduced.									
	04	Four new hybrid Th	eory - Laborato	orv courses are	introduced						
	01.		Laborate								
	05.	Mini project has be	en introduced.	0/							
		Special Elective	courses are	grouped und	er vertical I.						
Salient Points of	06.	Professional Elective courses are grouped under six verticals (II									
the revision		to VII) of different domains.									
	07	One Laboratory con	One Laboratory course is introduced in each of the six verticals								
	07.	of the Professional elective courses.									
	08.	Industry supported	course included								
		Specialization in	same discipl	ine (Honors	degree) and						
	09.	Specialization in	other discipline	e (Minor deg	ree) has been						
	07.	introduced.									
	10	Two Value added a	ourses (1 gradit	s) is made as r	nandatory						
	10.	I wo value audeu c	ourses (4 credit	s) is made as I	nanualory.						
	11	Industrial Training	g/Internship fo	or 2 credits	is made as						
	11.	mandatory.									

SRI VENKATESWARA COLLEGE OF ENGINEERING

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

REGULATIONS 2022

B. E ELECTRICAL AND ELECTRONICS ENGINEERING

CHOICE BASED CREDIT SYSTEM

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- I. Graduates will serve as engineering contributors in the emerging fields of Electrical and Electronics Engineering.
- II. Graduates will become entrepreneurs through human centered design thinking and innovation.
- III. Graduates will be successful in pursuing higher studies in engineering or management.
- IV. Graduates will be effective and ethical team player in the field of green energy management and sustainability.

PROGRAM OUTCOMES (POs)

GRADUATE ATTRIBUTES:

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations** of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Design, analyse and implement Power Electronics circuit with smart control systems for Industrial drives and Electric Vehicles.

2. Analyse safety, stability, control and protection of vertical and deregulated Smart systems and interconnection of microgrid comprising Renewable, Storage and Nano technologies.

POs			PEOs	
Z	Ι	II	ш	IV
1	✓	✓	~	1/5
2	~	✓	\checkmark	12
3	\checkmark	1	 Image: A start of the start of	0
4	~	5	~	in /
5		1	1	1
6	140	$T \checkmark T$	TGU	1
7		1		✓
8		\checkmark		✓
9		✓	\checkmark	✓
10		✓	\checkmark	✓
11		✓	\checkmark	✓
12	✓	✓	\checkmark	
SOs				
1	✓		\checkmark	✓
2	\checkmark		\checkmark	✓

PEO's – PO's & PSO's MAPPING:

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025) REGULATIONS 2022 CHOICE BASED CREDIT SYSTEM

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

CURRICULUM FOR SEMESTERS I TO VIII

SEMESTER I

SL.	COURSE	COURSE TITLE	CATEGO		PERIOD WEF	SPER EK		TOTAL	PREREQ-	POSITION
NO.	CODE		RY [#]	L	Т	Р	С	HOUKS	UISITE	
1.	IP22151	Induction Program (Common to all branches)	00	LLI	GA	-	-	-	NIL	F
Theory	Subjects	JAN /	line i			0	2			
2.	HS22151	Tamil language and Heritage of Ancient Tamil Society (Common to all branches)	HS	1	0	0	1	1	NIL	F
3.	HS22152	Communicative English (Common to all branches)	HS	3	0	0	3	3	NIL	F
4.	MA22151	Applied Mathematics I (Common to all branches except MR)	BS	3	1	0	4	4	NIL	F
5.	PH22151	Applied Physics (Common to AD, CS, EE, EC, IT)	BS	3	0	0	3	3	NIL	F
6.	CY22151	Applied Chemistry (Common to AD, CS, EE, EC, IT)	BS	3	0	0	3	3	NIL	F
7.	CM22151	Basic Civil and Mechanical Engineering	ES	3	0	0	3	3	NIL	F
8.	IT22101	Programming for Problem Solving (Common to IT, AD, CS, EE, EC)	ES	3	0	0	3	3	NIL	F
Practic	al Subjects	000	1	2	1	(/			
9.	EE22111	Basic Electrical and Electronics Engineering Laboratory (Common to all branches except EC)	ES	0	0	2	1	2	NIL	F
10.	ME22161	Basic Civil and Mechanical Engineering Laboratory (Common to CE, EE, EC)	ES	0	0	2	1	2	NIL	F
11.	IT22111	Programming for Problem Solving Laboratory (Common to IT, AD, CS, EE, EC)	ES	0	0	3	1.5	3	NIL	F
			Total	19	1	7	23.5	27		

SL.	COURSE	COURSETITLE	CATEGO]	PERIO WE	DSPER EK	2	TOTAL	PREREQ-	POSITION
NO.	CODE		N1 #	L	Т	Р	С	nours	UISITE	
Theory	Subjects									
1.	HS22251	Science and Technology in Ancient Tamil Society (Common to all branches)	HS	2	0	0	2	2	NIL	F
2.	HS22252	Technical English (Common to all branches)	HS	3	0	0	3	3	NIL	F
3.	MA22251	Applied Mathematics II (Common to all branches except MR)	BS	3	1	0	4	4	NIL	F
4.	PH22252	Physics of Materials (Common to EE and EC)	BS	3	0	0	3	3	NIL	F
5.	ME22252	Fundamentals of Engineering Graphics	ES	2	0	2	3	4	NIL	F
6.	EE22201	Electric Circuit Analysis	PC	3	1	0	4	4	NIL	F
Practic	al Subjects	101	1999	175		10	5	0	·	
7.	PH22161	Physics Laboratory (Common to all branches except BT)	BS	0	0	2	In	2	NIL	F
8.	CY22161	Chemistry Laboratory (Common to all branches except AD, CS, IT)	BS	0	0	2	12	2	NIL	F
9.	EE22211	Electric Circuits Laboratory	PC	0	0	3	1.5	3	NIL	F
		Z	Total	16	2	9	22.5	26		
		山 57.	SEM	ESTE	R III	× 65	-//	TT		
				1	DEDIO	OCDED		72		

SL.	COURSE	COURSE TITLE	CATEGO RV#	-	WE	DSPER EK	15	TOTAL	PREREQ-	POSITION
110.	CODE		KI "	L	Т	Р	С	nooks	CIDITE	
Theory	Subjects	151		1.5		/	9)			
1.	MA22354	Mathematics For Electrical Engineers	BS	3	1	0	4	4	NIL	F
2.	EE22301	Electrical Machines I	PC	3	0	0	3	3	NIL	F
3.	EE22302	Electric Power System	PC	3	0	0	3	3	NIL	F
4.	EE22303	Electromagnetic Theory	PC	3	0	0	3	3	NIL	F
5.	EE22308	Digital Logic Circuits: Theory and Practices	PC	3	0	2	4	5	NIL	F
6.	EE22309	Electron Devices and Circuits: Theory and Practices	PC	3	0	2	4	5	NIL	F
Practic	al Subjects									
7.	EE22311	Electrical Machines I Laboratory	PC	0	0	3	1.5	3	NIL	F
			Total	18	1	7	22.5	26		

SEMESTER IV

SL.	COURSE	COURSETITI E	CATEGO		PERIC WI	DSPEI EEK	R	TOTAL	PREREQ-	POSITION
NO.	CODE	COURSEITTLE	RY#	L	Т	Р	С	HOURS	UISITE	10511101
Theory	y Subjects									
1.	MA22452	Numerical Methods (Common to CH and EE)	BS	3	1	0	4	4	NIL	F
2.	GE22451	Environmental Sciences and Sustainability (Common to all branches)	BS	3	0	0	3	3	NIL	F
3.	EE22401	Analog Electronics	PC	3	0	0	3	3	NIL	F
4.	EE22402	Control Systems	PC	3	0	0	3	3	NIL	F
5.	EE22403	Electrical Machines II	PC	3	0	0	3	3	NIL	F
6.	EE22404	Measurement and Instrumentation	PC	_33	0	0	3	3	NIL	F
Practi	cal Subjects	1				ς.,				
7.	EE22411	Analog Electronics Laboratory	PC	0	0	3	1.5	3	NIL	F
8.	EE22412	Control Systems and Instrumentation Laboratory	PC	0	0	3	1.5	3	NIL	F
9.	EE22413	Electrical Machines II Laboratory	PC	0	0	3	1.5	3	NIL	F
		A I	Total	18	2)	9	23.5	28		
			SEMES	TER V	Z	6	-	\leq		
GT	COURSE	E 53.	CATEGOR	PERIODSPER TECOR WEEK TOTAL DDEN	DDEDEO					
SL. NO.	CODE	COURSETITLE	Y#	L	Т	Р	С	HOURS	UISITE	POSITION
Theory	y Subjects	15/2	4		-	2)	13			1
1.	EE22501	Microcontrollers and Programming	PC	3	0	0	3	3	NIL	F
2.	EE22502	Power Electronics	PC	3	0	0	3	3	NIL	F
3.	EE22503	Power System Analysis	PC	3	0	0	3	3	NIL	F
4.	IT22551	Programming and Data Structures	PC	3	0	0	3	3	NIL	F
5.		Professional Elective I	PE	3	0	0	3	3	NIL	М
6.		Open Elective I	OE	3	0	0	3	3	NIL	М
Praction	cal Subjects									
7.	EE22511	Microcontrollers and Programming Laboratory	PC	0	0	3	1.5	3	NIL	F
8.	EE22512	Power Electronics Laboratory	PC	0	0	3	1.5	3	NIL	F
9.	IT22561	Programming and Data Structures Laboratory	PC	0	0	3	1.5	3	NIL	F
			Total	18	0	9	22.5	27		

SEMESTER VI

SL.	COURSE	COUDSETUDIE	CATEGO		PERIO WE	DSPER EK		TOTAL	PREREQ-	POSITION
NO.	CODE	COURSETTILE	RY#	L	Т	Р	С	HOURS	UISITE	
Theory	Subjects									
1.	EE22601	Digital Signal Processing	PC	3	0	0	3	3	NIL	F
2.	EE22602	Industrial Automation and Networking (Industry supported)	PC	3	0	0	3	3	NIL	F
3.	EE22603	Power System Operation and Control	PC	3	0	0	3	3	NIL	F
4.		Professional Elective II	PE	3	0	0	3	3	NIL	М
5.		Open Elective II	OE	3	0	0	3	3	NIL	М
6.		Mandatory Courses	MC	3	0	0	0	3	NIL	М
Practica	l Subjects	(AC)				0	1			
6.	HS22511	Interview and Career Skills Laboratory (Common to all branches except CE)	HS	0	0	3	2	3	NIL	F
7.	EE22611	Industrial Automation Laboratory	PC	0	0	4	2	4	NIL	F
8.	EE22612	Power System Laboratory	PC	0	0	3	1.5	3	NIL	F
		7	Total	15	0	10	20.5	28		
		LU 53.	SEMEST	TER VI	1	9-74 1	-/.	m/		
SL.	COURSE	121	CATEGO	/	PERIO	DSPER	13	TOTAL	PREREO	
NO.	CODE	COURSETITLE	RY#	L	T	P	C	HOURS	UISITE	POSITION
Theory	Subjects	131		1.1		/	9)			
1.	EE22701	Protection and Switchgear	PC	3	0	0	3	3	NIL	F
2.	EE22708	Smart Grid: Theory and Practices	PC	3	0	2	4	5	NIL	F
3.	EE22709	Electric Vehicles: Theory and Practices	PC	3	0	2	4	5	NIL	F
4.		Professional Elective III	PE	3	0	0	3	3	NIL	М
5.		Professional Elective IV	PE	3	0	0	3	3	NIL	М
Practica	l Subjects									

6.	EE22711	Mini Project	EEC	0	0	4	2	4	NIL	F
7.	EE22712	Industrial Training/Internship	EEC	0	0	0	2	4 weeks	NIL	М
Total					0	4	21	25		

SEMESTER VIII

SL.	COURSE		CATEGO		PERIO WE	DSPER EK	2	TOTAL	PREREQ-	POSITION
NO.	CODE	COURSEITTLE	RY#	L	Т	Р	С	HOURS	UISITE	
Theory S	Subjects									
1.		Professional Elective V	PE	3	0	0	3	3	NIL	М
2.		Professional Elective VI	PE	3	0	0	3	3	NIL	М
Practica	l Subjects									
3.	EE22811	Project work	EEC	0	0	16	8	16	NIL	F
			Total	6	0	16	14	22		
		WARF	co	LL	EG	100	2		Total Cre	edits:170

SL.	COURSE CODE	17 + T	CATEGO	CATEGO PERIODS P WEEK		DS PE EEK	R	TOTAL	
NO.	CODE	COURSETTTLE	RY#	L	Т	Р	С	HOURS	POSITION
1.	SE22001	Financial Statement Analysis (Common to All Branches)	EEC	3	0	0	3	3	М
2.	SE22002	Introduction to Securities Market (Common to All Branches)	EEC	3	0	0	3	3	М
3.	SE22003	Option Trading Strategies (Common to All Branches)	EEC	3	0	0	3	3	М
4.	SE22004	Corporate Finance (Common to All Branches)	EEC	3	0	0	3	3	М
5.	SE22005	Managerial Economics (Common to All Branches)	EEC	3	0	0	3	3	М
6.	SE22006	Project Management (Common to All Branches)	EEC	3	0	0	3	3	М
7.	SE22007	Mathematics for AI and ML (Common to All Branches)	EEC	3	0	0	3	3	М

WARA VERTICALS I: SPECIAL ELECTIVE GROUP

	PROFESSIONAL ELECTIVE COURSES: VERTICALS										
VERTICAL II	VERTICAL III	VERTICAL IV	VERTICAL V	VERTICAL VI	VERTICAL VII						
Power System	Electrical Drives and	Electric Vehicle	Renewable Energy	Semiconductor	Diversified Group-I						
Engineering	Control	Technology	and Engineering	Technology							
Restructured Power	Modeling and Analysis of	Hybrid Electric Vehicles	Distributed Generation	Solid State Devices	Analog and Digital						
Systems	Electrical Machines		and Microgrid		Controllers						
Substation	Special Electrical	Vehicle Dynamics	Solar Energy	Microelectronic	Biomedical						
Automation	Machines and Drives		Conversion System	circuits	Instrumentation						
HVDC and FACTS	Computer Aided Design	Automotive Power	Wind Energy	Semiconductor	Ethics in Electrical						
	of Electrical Apparatus	Electronics	Conversion System	Technology	Engineering						
Power System	SMPS and UPS	Energy Storage System	Hybrid Renewable	Physical VLSI	IoT in Automation and						
Dynamics		and Management in EV	System and Storage	Design (Common to	Control						
		2 2 3 5	Technologies	EC and EE)							
High Voltage	Analysis of Power	Electric Vehicle Control	Power Quality	MEMS Technology	Computer						
Engineering	Converters	7.9	121		Organization and						
	121		10 101		Architecture (Common						
	A				to IT and EE)						
Soft Computing	Programming for	Automotive Embedded	Electrical Safety	Wide Bandgap	Artificial and						
Techniques for Power	Embedded System	Systems		Semiconductors	Computational						
Systems	5				Intelligence						
Power System	Microcontroller based	Vehicle Communication	Energy Management	Sensor Technology	Principles of						
Management	System Design		and Auditing		Management						
		G. 1			(Common to ME, AE,						
	12	the second secon	212		AM, EE, IT and MN)						
Digital Protection of	Control System design for	Sustainable EV	Electrical Energy	Embedded System	Robotics and						
Power System	Power Electronics	Charging Infrastructure	Conservation and	Design	Automation (Common						
		a p	Utilization		to EC and EE)						
Power System	Electric Drives Laboratory	Electric Vehicle	Renewable Energy	IC Design	Design Thinking						
Protection		Laboratory	System Laboratory	Laboratory	Laboratory						
Laboratory											

SL.	COURSE		CATEGO		PERIO WE	DS PER EK	ł	TOTAL	PREREQ-	POSITION
NO.	CODE	COURSETTTLE	RY#	L	Т	Р	С	HOURS	UISITE	
Theory S	bubjects									
1.	EE22021	Restructured Power Systems	PE	3	0	0	3	3	NIL	М
2.	EE22022	Substation Automation	PE	3	0	0	3	3	NIL	М
3.	EE22023	HVDC and FACTS	PE	3	0	0	3	3	NIL	М
4.	EE22024	Power System Dynamics	PE	3	0	0	3	3	NIL	М
5.	EE22025	High Voltage Engineering	PE	3	0	0	3	3	NIL	М
6.	EE22026	Soft Computing Techniques for Power Systems	PEO	3	0	0	3	3	NIL	М
7.	EE22027	Power System Management	PE	3	0	0	3	3	NIL	М
8.	EE22028	Digital Protection of Power System	PE	3	0	0	3	3	NIL	М
Practical	Subjects	151-			1		0	1		
9.	EE22020	Power System Protection Laboratory	PE	0	0	4	2	4	NIL	М

VERTICALII: POWER SYSTEM ENGINEERING

VERTICAL III: ELECTRICAL DRIVES AND CONTROL

SL.	COURSE		CATEGO	1	PERIC W)DS PH EEK	ER	TOTAL	PREREQ-	POSITION
NO.	CODE	COURSEITTLE	RY#	L	Т	Р	C	HOUKS	UISITE	
Theory S	Subjects		_	2	10	_/	20	/		
1.	EE22031	Modeling and Analysis of Electrical Machines	PE	3	0	0	3	3	NIL	М
2.	EE22032	Special Electrical Machines and Drives	PE	3	0	0	3	3	NIL	М
3.	EE22033	Computer Aided Design of Electrical Apparatus	PE	3	0	0	3	3	NIL	М
4.	EE22034	SMPS and UPS	PE	3	0	0	3	3	NIL	М
5.	EE22035	Analysis of Power Converters	PE	3	0	0	3	3	NIL	М
6.	EE22036	Programming for Embedded System	PE	3	0	0	3	3	NIL	М
7.	EE22037	Microcontroller based System Design	PE	3	0	0	3	3	NIL	М
8.	EE22038	Control System design for Power Electronics	PE	3	0	0	3	3	NIL	М
Practica	l Subjects									
9.	EE22030	Electric Drives Laboratory	PE	0	0	4	2	4	NIL	М

SL.	COURSE	COURSETITLE	CATEGO	Р	ERIOI WE	DS PEI EK	R	TOTAL	PREREQ-	POSITION
NO.	CODE	COURSETTTLE	RY#	L	Т	P	С	HOURS	UISITE	POSITION
Theory S	Subjects									
1.	EE22041	Hybrid Electric Vehicles	PE	3	0	0	3	3	NIL	М
2.	EE22042	Vehicle Dynamics	PE	3	0	0	3	3	NIL	М
3.	EE22043	Automotive Power Electronics	PE	3	0	0	3	3	NIL	М
4.	EE22044	Energy Storage System and Management in EV	PE	3	0	0	3	3	NIL	М
5.	EE22045	Electric Vehicle Control	PE	3	0	0	3	3	NIL	М
6.	EE22046	Automotive Embedded Systems	O _{PE} L	3	0	0	3	3	NIL	М
7.	EE22047	Vehicle Communication	PE	3	0	0	3	3	NIL	М
8.	EE22048	Sustainable EV Charging Infrastructure	PE	3	0	0	3	3	NIL	М
Practical	Subjects	121 -	and Marca		10	1	0			
9.	EE22040	Electric Vehicle Laboratory	PE	0	0	4	2	4	NIL	М
					100 C					

VERTICAL IV: ELECTRIC VEHICLE TECHNOLOGY

VERTICALV: RENEWABLE ENERGY AND ENGINEERING

SL.	COURSE		CATEGO		PERIO WI	DS PE EEK	R	TOTAL	PREREQ-	DOSITION
NO.	CODE	COURSEITILE	RY#	L	Т	Р	С	HOUKS	UISITE	POSITION
Theory S	Subjects		- CI - B	-		1	2	/		
1.	EE22051	Distributed Generation and Microgrid	PE	3	0	0	3	3	NIL	М
2.	EE22052	Solar Energy Conversion System	PE	3	0	0	3	3	NIL	М
3.	EE22053	Wind Energy Conversion System	PE	3	0	0	3	3	NIL	М
4.	EE22054	Hybrid Renewable System and Storage Technologies	PE	3	0	0	3	3	NIL	М
5.	EE22055	Power Quality	PE	3	0	0	3	3	NIL	М
6.	EE22056	Electrical Safety	PE	3	0	0	3	3	NIL	М
7.	EE22057	Energy Management and Auditing	PE	3	0	0	3	3	NIL	М
8.	EE22058	Electrical Energy Conservation and Utilization	PE	3	0	0	3	3	NIL	М
Practica	l Subjects									
9.	EE22050	Renewable Energy System Laboratory	PE	0	0	4	2	4	NIL	М

	VERTICAL VI	SEMICONDUCTOR	TECHNOLOGY
--	-------------	---------------	------------

SL.	COURSE		CATEGO]	PERIO WE	DS PE EEK	R	TOTAL	PREREQ-	DOGUTION
NO.	CODE	COURSETITLE	RY#	L	Т	Р	С	HOURS	UISITE	POSITION
Theory	Subjects									
1.	EE22061	Solid State Devices	PE	3	0	0	3	3	NIL	М
2.	EE22062	Microelectronic Circuits	PE	3	0	0	3	3	NIL	М
3.	EE22063	Semiconductor Technology	PE	3	0	0	3	3	NIL	М
4.	EC22504	Physical VLSI Design (Common to EC and EE)	PE	3	0	0	3	3	NIL	М
5.	EE22064	MEMS Technology	PE	3	0	0	3	3	NIL	М
6.	EE22065	Wide Bandgap Semiconductors	OPEL	3	0	0	3	3	NIL	М
7.	EE22066	Sensor Technology	PE	3	0	0	3	3	NIL	М
8.	EE22067	Embedded System Design	PE	3	0	0	3	3	NIL	М
Practica	l Subjects	121 -	Naca Naca	1	-	1	2)	6		
9.	EE22060	IC Design Laboratory	PE	0	0	4	2	4	NIL	М

VERTICALVII: DIVERSIFIED GROUP-I

SL.	COURSE		CATEGO	Р	ERIO WI	DS PE EEK	R	TOTAL	PREREQ-	DOCITION
NO.	CODE	COURSEITTLE	RY#	L	Т	P	С	HOURS	UISITE	POSITION
Theory	Subjects		12 1		3	1.	51			
1.	EE22071	Analog and Digital Controllers	PE	3	0	0	3	3	NIL	М
2.	EE22072	Biomedical Instrumentation	PE	3	0	0	3	3	NIL	М
3.	EE22073	Ethics in Electrical Engineering	PE	3	0	0	3	3	NIL	М
4.	EE22074	IoT in Automation and Control	PE	3	0	0	3	3	NIL	М
5.	IT22201	Computer Organization and Architecture (Common to IT and EE)	PE	3	0	0	3	3	NIL	М
6.	EE22075	Artificial and Computational Intelligence	PE	3	0	0	3	3	NIL	М
7.	ME22087	Principles of Management (Common toME, AE, AM, EE, IT and MN)	PE	3	0	0	3	3	NIL	М
8.	EC22066	Robotics and Automation (Common to EC and EE)	PE	3	0	0	3	3	NIL	М
Practica	al Subjects									
9.	EE22070	Design Thinking Laboratory	PE	0	0	4	2	4	NIL	М

MANDATORY COURSES (Course should be completed between 3rd and 6th semester)

SL.	COURSE		CATEGO	I	PERIO WI	DSPE EEK	R	TOTAL	DOSITION
NO.	CODE	COURSEITTLE	RY#	L	Т	Р	С	HOURS	POSITION
1.	MC22001	Indian Constitution (Common to all branches)	МС	3	0	0	0	45	М
2.	MC22002	Essence of Indian Traditional Knowledge (Common to all branches)	МС	3	0	0	0	45	М
3.	MC22003	Gender Sensitization (Common to all branches)	МС	3	0	0	0	45	М

GENERAL ELECTIVE COURSES

SL.	SL. COURSE NO CODE COURSETITLE		CATEGO	F	PERIO WI	DS PE EEK	R	TOTAL	DOGUTION
NO.	CODE	COURSEITILE	RY#	L	Т	Р	С	HOURS	POSITION
1.	GN22001	Introduction to NCC for Engineers (Common to all branches)	GE	2	0	2	3	60	М
2.	GN22002	Yoga and physical culture (Common to all branches)	GE	0	0	2	1	30	М
3.	GN22003	Introduction to Fine arts (Common to all branches)	GE	2	0	0	2	30	М

VALUE ADDED COURSES (for EEE Branch)

(Course should be completed between 3rd and 6th semester and Students must earn at least 4 credits (Two value added courses))

SL.	COURSE		CATEGO PERIODS PER WEEK				R	TOTAL	DOGITION
NO.	CODE	COURSETTILE	RY#	L	Т	P	С	HOURS	POSITION
1.	VD22601	Industrial applications of Microcontrollers	VAD	1	0	2	2	45	М
2.	VD22602	Nano-device Manufacturing	VAD	(9)	0	2	2	45	М
3.	VD22603	Modeling and simulation of Electrical Systems	VAD	1	0	2	2	45	М
4.	VD22604	Electric Vehicle Design	VAD	1	0	2	2	45	М
5.	VD22605	Electronic circuits design and PCB Fabrication	VAD	1	0	2	2	45	М
6.	VD22606	Design and Fabrication of Photovoltaic Systems	VAD	1	0	2	2	45	М
7.	VD22607	Smart grid Cybersecurity	VAD	1	0	2	2	45	М
8.	VD22608	Applied Industrial IoT	VAD	1	0	2	2	45	М
9.	VD22609	Smart Switchgear and Protection	VAD	1	0	2	2	45	М
10.	VD22610	Content Writing	VAD	1	0	2	2	45	М

11.	VD22611	Intellectual Property Rights	VAD	2	0	0	2	30	М
12.	VD22612	Block chain technology	VAD	1	0	2	2	45	М
13.	VD22613	Digital twin and Deep learning	VAD	1	0	2	2	45	М

VALUE ADDED COURSES (Common for all Branches)

SL.	COURSE		CATEGO PERIODS PER WEEK			R	TOTAL	DOGUTION	
NO.	CODE	COURSEITILE	RY#	L	Т	Р	С	HOURS	POSITION
1.	VC22001	Basics of Entrepreneurship Development (Common to all branches)	VAC	2	0	0	2	30	М
2.	VC22002	Advances in Entrepreneurship Development (Common to all branches)	VAC	2	0	0	2	30	М
3.	VC22003	Communicative German (Common to all branches)	VAC	2	0	0	2	30	М
4.	VC22004	Communicative Hindi (Common to all branches)	VAC	2	0	0	2	30	М
5.	VC22005	Communicative Japanese (Common to all branches)	VAC	2	0	0	2	30	М
6.	VC22006	Design Thinking and Prototyping laboratory (Common to all branches)	VAC	1	0	2	2	30	М

OPEN ELECTIVES

m

1

OPEN ELECTIVES OFFERED IN ODD SEMESTER*

SL.	COURSE		CATEGO	FEGO PERIODS				TOTAL	DOGUTION	
NO.	CODE	COURSEITILE	RY#	L	Т	T P		HOUKS	POSITION	
1.	OE22601	Biomedical Engineering	OE	3	0	0	3	3	М	
2.	OE22603	Control system Engineering	OE	3	0	0	3	3	М	
3.	OE22605	Micro and Smart Grid	OE	3	0	0	3	3	М	
4.	OE22607	Electric Vehicle Technology	OE	3	0	0	3	3	М	
5.	OE22609	Energy Conservation Practices	OE	3	0	0	3	3	М	
6.	OE22611	Industrial Electrical Systems	OE	3	0	0	3	3	М	
7.	OE22613	Autonomous Vehicle	OE	3	0	0	3	3	М	

SL.	COURSE		CATEGO	I	PERIO WI	DSPE EEK	TOTAL		
NO.	CODE	COURSEITILE	RY#	L	Т	Р	С	HOURS	POSITION
1.	OE22602	Industrial Automation	OE	3	0	0	3	3	М
2.	OE22604	Digital Systems	OE	3	0	0	3	3	М
3.	OE22606	Motors for Industries	OE	3	0	0	3	3	М
4.	OE22608	Indian Power Grid	OE	3	0	0	3	3	М
5.	OE22610	Industrial IoT	OE	3	0	0	3	3	М
6.	OE22612	Electrical Automation and Robotics	OE	3	0	0	3	3	М
7.	OE22614	Industrial Nanotechnology	OE	3	0	0	3	3	М

OPEN ELECTIVES OFFERED IN EVEN SEMESTER*

ELECTRICAL AND ELECTRONICS ENGINEERING										
			Total	Credits						
Subject Area	Ι	II	III	IV	V	VI	VII	VIII	Credits	in %
Humanities and Social Sciences (HS), including Management	4	5				2			11	6.47
Basic Sciences (BS) including Mathematics, Physics, Chemistry, Biology	10	9	4	7					30	17.64
Professional Subjects-Core (PC), relevant to the chosen specialization/branch; (May be split into Hard (no choice) and Soft (with choice), if required)		5.5	18.5	16.5	16.5	12.5	11		80.5	47.35
Engineering Sciences (ES), including Materials, Workshop, Drawing, Basics of, Electrical / Electronics/ Mechanical / Computer Engineering, Instrumentation	9.5	3							12.5	7.35
Professional Subjects – Electives (PE), relevant to the chosen specialization/ branch					3	3	6	6	18	10.58
Open Subjects - Electives (OE), from other technical and/or emerging subject area					3	3			6	3.52
Project Work, Seminar and/or Internship in Industry or Elsewhere (EEC)							4	8	12	7.05
Total Credits	23.5	22.5	22.5	23.5	22.5	20.5	21	14	170	100

SYLLABUS FOR SEMESTERS I TO VIII SEMESTER I

r				
HS221	51	தமிழ்மொழியும்தமிழர்மரபும்	LTPC	
		Tamil language and Heritage of Ancient Tamil Society		
(Common to all branches)				
பாடத்தின்	நோக்கங்	រនតាំ:		
1. தமிழ்மொழி	யின்தோற்	றம்பற்றியும்,		
திணைகருத்து	க்கள்வாயி	லாகவாழ்வியல்முறைகளைபற்றியும்கற்றுக்கொள்வார்கள்.		
2. இந்தியதேசி	யசுதந்திர(இயக்கத்தில்தமிழர்களின்பங்களிப்புமற்றும்தமிழர்களின்மேலாண்மைடு	றறைகளைப	
ற்றியும்கற்றுக்	கொள்வார்	ர்கள்.		
Course Object	tives:			
		0.011		
•	They will	learn about the origin of the Tamil language and the ways of life throug	h five types of	
	lands.	A. Col		
•	They will	also learn about the contribution of Tamils in the Indian National Freed	om Movement	
	and the ma	anagement methods of Tamils.		
அலகு 1	தமிர	ஓக்கும்தொழில்நுட்பக்கல்விக்கும் உள்ளதொடர்பு	3	
தமிழ்ஒருசெம் பங்களிப்பு – ெ UNIT -1 LA Language fam Tamil – Contr education.	மொழி – த தாழில்நுட் NGUAGE ilies in Inc ibution of	மிழில்செம்மொழிஇலக்கியம் - உ.வே சாமிநாதய்யர். ஆறமுகநாவலர் பக்கல்வியில்தமிழ்மொழியின்முக்கியத்துவம். CAND HERITAGE lia – Dravidan Languages – Tamil as a Classical language – Classica U.Ve.Saminathaiyar. ArumukaNavalar – Importance of Tamil languag	ஆகியோரின் l Literature in ge in technical	
அலகு2	0	திணைகருத்துக்கள்	9	
திணைகருத்த நடனம், தொல்காப்பிய கல்விமற்றும்எ சங்ககாலத்தில் UNIT -2 THIN Five types of	பக்கள்: -ஜ உன ம்மற்றும்ச முத்தறிவுச பஏற்றுமதிட NAI CON(lands arit	ந்துவகைநிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்கைமுன எவுமுறை, தமிழர்களின்தாவரங்கள்மற்றும்விலங்கினங்கள் ங்கஇலக்கியங்களில்இருந்துஅகம்மற்றும்புரம்கருத்து – தமிழ்பற்றிய ங்ககாலம் – சங்ககாலத்தின்பண்டையநகரங்கள்மற்றும்துறைரு மற்றும்இறக்குமதி – சோழர்களின்வெளிநாட்டுவெற்றி. CEPTS mals Gods occupation life styles music dance food style Floore	றைகள், இசை, – அறம்கருத்து – அகங்கள் – and Fauna of	
Five types of	lands, anii	mais, Gods, occupation, life styles, music, dance, food style, Floara	and Fauna of	
Tamils - Agan	n and pura	im concept from Tholkappiyam and Sangam Literature – Aram conce	pt of Tamil –	
Education and	Literacy d	luring Sangam Age – Ancient cities and Ports of Sangam Age – Expe	ort and Import	

அலகு3	3						
வாஞ்சிநாதன், சுப்பிரமணியசிவா, வீரபாண்டியகட்டபொம்மன், வாஊசிதம்பரம்பிள்ளை, தீரன்சின்னமலை,							
மருதுபாண்டியசகோதரர்	கள், பூலிதேவர்,	திருப்பூர்குமரன்,	வீரமங்கைவேலு	^ப நாச்சியார் -			
,தமிழர்இலக்கியங்களில்மேலாண்மைகருத்துக்கள் (கி. மு. 500 முதல்கி. பி 200 வரை) – அகநானூறு, புறநானூறு,							

during Sangam Age - Overseas Conquest of Choloas.

திருக்குறள்ஆகியவற்றில்மேலாண்மைக்கருத்துகள்.

UNIT -3 HERITAGE OF TAMILS

Contribution of Tamils to Indian National Freedom Movement and Indian Culture: Contributions of Subramanya Bharathi, Vanchinathan, Subramaniya Siva, VeerapandiyaKattabomman, V O Chidambaram Pillai, Dheeran Chinnamalai, The Maruthu Pandiyar, Puli Thevar, Tiruppur Kumaran, Veera Mangai Velunachiyar.

பாடநெறிமுடிவுகள்

படிப்பைவெற்றிகரமாகமுடித்தவுடன்

மாணவர்கள்பின்வருவனவற்றைச்செய்யமுடியும்.

COURSE OUTCOMES: On the successful completion of the course, the student will be able to

பா .வெ . எண் CO No	பாடத்திட்டத்தின்வெளிப்பாடு Course Outcomes	RBT level
1	மாணவர்கள்தமிழ்மொழித்தோற்றம்பற்றித்தெரிந்துகொள்வார்கள். Students will learn about the origin of the Tamil language.	1
2	தமிழர்களின்வாழ்வியல்முறைகளைத்தெரிந்துகொள்வார்கள். They will know the ways of life of Tamils.	2
3	தமிழர்களின்சுதந்திரபோராட்டவீரர்களைபற்றியும், மேலாண்மைகளைபற்றியும்தெரிந்துகொள்வார்கள். They will know about the freedom fighters of Tamils and the management of Tamils.	2

பாடநூல்கள்:

1.பொன். முத்துகுமாரன்(2002), "தமிழ்மரபு", காந்தளகம், 68, அண்ணாசாலை, சென்னை 600 002

विद्या

2.பி. டிஜீனிவாசஐயங்கார்(தமிழக்கமும்திறனாய்வும்) புலவர்கா. கோவிந்தன் (1988), "தமிழர்வரலாறு (முதல்பகுதி)", திருநெல்வேலிதென்னிந்தியசைவசித்தாந்தநூற்பதிப்புகழகம் ,154, TTK சாலை, சென்னை 18.

3.டாக்டர். கே. கே. பிள்ளை(2009), "தமிழகவரலாறுமக்களும்பண்பாடும்", உலகதமிழாராய்ச்சிநிறுவனம், தரமணி , சென்னை 600113

4.முனைவர். ச. இராஜேந்திரன்(2004), "தமிழில்சொல்லாக்கம்", தஞ்சாவூர்தமிழ்பல்கலைக்கழகம்வெளியீடு

HS22152	COMMUNICATIVE ENGLISH	LT P C
	(COMMON TO ALL BRANCHES)	3003
COURSE (OBJECTIVES	
• Enal	ble learners to interact fluently on everyday social contexts.	
• Trai	n learners to engage in conversations in an academic/scholarly setting.	
• Insti	l confidence in learners to overcome public speaking barriers.	
• Dev	elop learners' ability to take notes and in the process, improve their listening skills.	
• Enh	ance learners' reading skill through reading text passages for comprehension and com	templation.
• Imp	rove learners' skills to write on topics of general interest and drafting correspondence	ndences for
gene	eral purposes.	
UNIT I		9
Listening -	short video clips - conversational scenes form movies, celebrities' speeches	/interviews.
Speaking -	several ways of introducing oneself at several situations, introducing others at severa	l situations,
inviting peo	ople for several occasions, describing people and their places. Reading - short con	prehension
passages - r	naking inferences, critical analysis. Writing - completing the incomplete sentences -	developing
hints from	the given information. Grammar - Wh-Questions and Yes or No questions - Parts	of speech.
Vocabulary	development - prefixes - suffixes - articles - countable / uncountable nouns.	
UNIT II	41.8	9
Listening -	customer care voice files, short narratives - identifying problems and developing	g telephone
headlines of headlines, s Vocabulary	n news magazines - slogans and taglines from advertisements. Writing - free writing logans and taglines individual inspirations. Grammar- conjunctions, idioms, phra development - guessing the meanings of words in different contexts.	g - writing - ses, quotes.
UNIT III		9
language an different sit appliances, reference w degrees of c single word	d tone for arguments, discussion, deliberation, contemplation, expressing opinions, tuations in an alien country. Reading - language used in instruction manuals of cookery and other basic instructions. Writing- understanding the structure of tex ords, discourse markers- coherence, rearranging the jumbled sentences. Grammar - comparison, framing direct and indirect questions. Vocabulary development - concis substitution.	reacting to reacting to household tts - use of adjectives - e approach,
UNIT IV		9
Listening - promoting a system; Wr and Future, phrasal verb	Sports commentaries, advertisements with users' criticisms; Speaking - for social a concept, negotiating and bargaining; Reading - review of a product, movie, movie, writing for advertisements, selling a product; Grammar – Tenses - Simple P Continuous - Past, Present and Future; Vocabulary Development - synonyms, an os.	causes, for vement or a ast, Present tonyms and
UNIT V Listoning	video loctures video demonstration of a concent. Speaking presenting and	y malaonaanta
delivering s and respon- requests, ba Vocabulary	hort speeches, discourses on health, suggesting natural home remedies, cleanliness, sibilities; Reading - columns and articles on home science; Writing - correspondence asic enquiry/observation and basic complaints; Grammar - modal verbs, perfedevelopment - collocations.	rs/concepts, civic sense indences of ct tenses -
	TOTAL PE	RIODS: 45

	REFERENCE BOOKS
1.	Department of English, Anna University, Mindscapes: English for Technologists and Engineers. Orient Black Swan, Chennai, 2017.
2.	Downes and Colm, " Cambridge English for Job-hunting ", Cambridge University Press, New Delhi, 2008.
3.	Murphy and Raymond, " Intermediate English Grammar with Answers " Cambridge University
4.	Press, 2000. Thomson, A.J., " Practical English Grammar 1 & amp; 2" Oxford, 1986.
	WEBSITES
1.	http://www.usingenglish.com
2.	http://www.uefap.com3
3.	https://owl.english.purdue.edu/owl/
4.	www.learnenglishfeelgood.com/esl-printables-worksheets.html
	SOFTWARES
1.	Face 2 Face Advance – Cambridge University Press, 2014.
2.	English Advance Vocabulary- Cambridge University Press.
3.	IELTS test preparation – Cambridge University Press 2017
4.	Official Guide to the TOEFL Test with CD-ROM, 4th Edition.
5.	Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.

	COURSE OUTCOMES	
Upon the	successful completion of the course, the students will be able to	
COs	STATEMENTS	RBT
	The The Star	LEVEL
1	Acquire adequate vocabulary for effective communication.	3
2	Listen to formal and informal communication and read articles and infer meanings from specific contexts from magazines and newspapers.	3
3	Participate effectively in informal/casual conversations; introduce themselves and their friends and express opinions in English.	4
4	Comprehend conversations and short talks delivered in English.	6
5	Write short write-ups and personal letters and emails in English.	6
Bloom's Ta	axonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6

COURSE ARTICULATION MATRIX													
	POs							PS	Os				
1	2	3	4	5	6	7	8	9	10	11	12	1	2
									3				
									3				
									3				
									3			2	2
									3			2	2
	1			COUR 1 2 3 4	COURSE AB 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COURSE ARTICU P 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COURSE ARTICULATI POs 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COURSE ARTICULATION M POs 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 1 1 <</th1<>	COURSE ARTICULATION MATRI POs 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1	COURSE ARTICULATION MATRIX POs 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 3 3 1 1 1 1 1 3 3 3 1 1 1 1 1 3 3 3	COURSE ARTICULATION MATRIX POs 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 3 3 3 3 1 1 1 1 1 3 3 3 3 3	COURSE ARTICULATION MATRIX POs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1	COURSE ARTICULATION MATRIX POs POs PSo 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 1 1 </td

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

3 means 'a strong correlation' as the students will use all the four skills (Listening, Speaking, Reading and Writing) with appropriate body language in formal and informal environment.

LT P C
3 10 4
in classifying real
ns.
and their usage.
9+3
s of Eigen values and
lization of matrices-
e of quadratic forms.
9+3
- Envelopes- Evolute
9+3
implicit functions –
Minima of functions
0.2
9+3 Proportion Solids of
method
- Area enclosed by
olids
T·15) PERIODS· 60
anced Engineering
uneea Engineering
rdEdition. Khanna
cs". Nineth Edition.
Pearson Education.
······································
ublishing Company.
8 1 5,

WEBLINKS						
1.	https://home.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf					
2.	https://www.sydney.edu.au/content/dam/students/documents/mathematics-learning- entre/integration-definite-integral.pdf					

					COU	RSE (OUTC	OMES	5					
Upon the s	uccessfu	ll comp	letion	of the	course	e, the s	tudents	s will t	be able	to			1	
CO's		STATEMENTS									RB	Ъ		
								LEV	'EL					
1	Solve	Solve the Eigen value problems in matrices.									3			
2	Apply the basic notion of calculus in Engineering problems and to tackle for different geometries.								3					
3	Perfor Engin	m calc eering p	ulus roble	for r ms.	nore t	han o	one va	riable	and	its ap	plicatio	ns in	3	3
4	Apply	definit	e inte	grals fo	or desig	gn of t	hree di	mensi	onal co	ompone	ents.			3
5	Evalua	ate mult	iple i	ntegral	l in Ca	rtesian	and po	olar co	ordina	tes.	01		3	3
Bloom's Ta	axonomy	(RBT)	Level	Reme	mber-1	; Under	rstand-2	2; Appl	y-3; Aı	nalyze-4	4; Evalua	te-5; Cre	eate-6	
		V	70	COUR	SE AF	RTICU	JLATI	ON M	IATRI	X	01			
COs		X	1	1.	1	Р	Os		140	0.1	5		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	1		10		80	-1	m	3	3	3
2	3	3	1	15		_	_	-			21	3	2	2
3	3	3	3	3		12	al.		13	13	S/	3	2	2
4	3	3	20	1		1.25	Dise:		1	0	1	3	2	2
5	3	3	2	2		1	V	~	4	-/		3	2	2
3- High Ma	pping; 2-	Moderat	e Map	oping; 1	-Low N	Mappin	g	30	191	/				4
L					19	11	RI	60	/					

PH22151	APPLIED PHYSICS	L T P C
	(COMMON TO AD, CS, EE, EC, IT)	3 00 3
COURSE O	BJECTIVE	
• To	enhance the fundamental knowledge in Physics and its applications relevant	to various
Stre	eams of Engineering and Technology.	
UNIT I	LASERS AND FIBER OPTICS	9
Lasers: pop	ulation of energy levels, Einstein's A and B coefficients derivation - resonant car	vity, optical
amplificatio	n (qualitative) - Nd-YAG laser - CO ₂ Laser - Exceimer Laser - Applications. F	Fiber optics:
principle, n	umerical aperture and acceptance angle - types of optical fibres (material, refractive	e index, and
mode) – los	ses associated with optical fibers-Fiber optic communication - fibre optic sensors: I	pressure and
displacemer	nt - Endoscope.	
UNIT II	QUANTUM PHYSICS	9
Black body	radiation - Planck's theory (derivation)- deduction of Wien's and Rayleigh Je	ean's law –
Compton e	ffect: theory and experimental verification - wave particle duality - electron d	liffraction –
concept of v	wave function and its physical significance - Schrödinger's wave equation - time	independent
and time de	ependent wave equations - particle in a one-dimensional - three dimensional pot	tential box-
Fermi distri	bution function - Effect of temperature on Fermi Function - Density of energy sta	tes – carrier
concentratio	on in metals.	
UNIT III	CRYSTAL PHYSICS	9
Single cryst	talline, polycrystalline and amorphous materials - single crystals: unit cell, crys	tal systems,
Bravais latt	ices, directions and planes in a crystal, Miller indices – interplanar distances- c	coordination
number and	d packing factor for SC, BCC, FCC, HCP and Diamond structure (qualitative	e) - crystal
imperfection	ns: point defects, line defects – Burger vectors, stacking faults.	
UNIT IV	WAVES AND OSCILLATIONS	9
Travelling	waves, Wave equation for string, Energy and momentum, Resonance Super	position &
Reflection,	Standing waves, Harmonic oscillations, Damped harmonic motion- Forced	oscillations,
amplitude r	esonance - Expression for Resonant frequency, Electrical analogy of mechanical	oscillations,
Quality fact	or and sharpness of resonance, Electrical analogy of mechanical oscillators.	
UNIT V	ELECTROMAGNETIC WAVES	9
Maxwell's I	Equations. Vector and Scalar Potentials. Plane waves in Dielectric media. Poyntin	ng Theorem
and Poyntin	ng Vector- Electromagnetic (EM) Energy Density. Physical Concept of Electroma	gnetic Field
Energy Der	nsity, EM Wave Propagation in Unbounded Media, Plane EM waves through v	acuum and
isotropic die	electric medium, transverse nature of plane EM waves, refractive index and dielectric	c constant.
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Gaur R.K., Gupta S.L, 'Engineering Physics', Dhanput Publications, 2015.	
2.	Shatendra Sharma, Jyotsna Sharma, 'Engineering Physics', Pearson, 2006.	
3.	Rajendran V, 'Engineering Physics', Tata McGraw Hill, 2009.	
4.	Arumugam M, 'Materials Science', Anuradha Publications, 2015.	

	REFERENCE BOOKS
1.	David Halliday, Robert Resnick, Jearl Walker, 'Principles of Physics', Wiley, 2015, 10th
	Edition.
2.	Peter Atkins, Julio De Paula, 'Physical Chemistry', Oxford University Press, 2014, 10th
	Edition.
3.	Arthur Beiser, Shobhit Mahajan, Rai Choudhury S, 'Concepts of Modern Physics', McGraw
	Hill Education, 2017, 7 th Edition.
4.	Raghavan V, 'Materials Science and Engineering', PHI Learning Pvt. Ltd., 2010.

COURSE OUTCOMES

CO's				2	S	STATE	CMENT	TS	-				RI LEV	BT VEL
1	Devel syster	lop an n.	unders	standin	ıg aboı	ut pho	tonics	and F	iber C	ptic c	ommuni	ication		2
2	Acqui	ire the k	nowle	edge of	f Quant	tum m	echani	cs.	1	~				3
3	Class	ify and	demor	nstrate	the fun	ıdameı	ntals of	crysta	als and	their o	lefects.			3
4	Gain	knowle	dge in	waves	and os	scillati	ons.		15	1	21			2
5	Enabl	e to exp	olore tl	he theo	ory of e	lectro	magnet	tic way	ves and	l its pr	opagatio	on.		3
						1000								
loom's T	axonomy	(RBT)	Level:	Reme	mber-1;	Under	stand-2	; Appl	y-3; Ar	nalyze-4	4; Evalua	ate-5; Cro	eate-6	
loom's T	axonomy	7 (RBT)	Level:	Reme COU	mber-1; RSE AI	Under	stand-2 J LATI	2; Apply ON MA	y-3; Ar ATRIX	alyze-4	4; Evalua	ate-5; Cro	eate-6	
loom's T COs	axonomy	7 (RBT)	Level:	Reme COU	mber-1; RSE AI	Under RTICU P	stand-2 J LATI(Os	2; Apply	y-3; Ar ATRIX	alyze-4	4; Evalua	ate-5; Cro	eate-6 PS	Os
loom's T COs	axonomy	2 (RBT)	Level:	Reme COU	mber-1; RSE AI	Under RTICU P	rstand-2 JLATI Os 7	2; Appl <u>y</u> ON MA	y-3; Ar ATRIX 9	10	4; Evalua	12	PS	Os 2
loom's T COs 1	Taxonomy	2 (RBT)	Level:	Reme COU	mber-1; RSE AI 5 2	Under RTICU P 6 2	rstand-2 JLATIC Os 7	2; Appl <u>y</u> ON MA	y-3; Ar ATRIX 9	10	4; Evalua	12	PS 1 2	Os 2 2
loom's T COs 1 2	Taxonomy	2 3	3	Reme COU	mber-1; RSE AI 5 2 2 2	Cunder RTICU P 6 2 2 2	rstand-2 JLATIO Os 7	2; Appl <u>1</u> ON MA	y-3; Ar ATRIX 9	10 1 1	4; Evalua 11	12 2	PS 1 2 2	Os 2 2 3
loom's T COs 1 2 3	I 3 3 3 3	2 3	2	Reme COUJ 4 2	mber-1; RSE AI 5 2 2	Construction of the second sec	rstand-2 JLATI Os 7	2; Appl ON MA	y-3; Ai ATRIX 9	10 1 1	4; Evalua 11	12 2	PS 1 2 2 2 2	Os 2 2 3 2
loom's T COs 1 2 3 4	I 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3	2 2	Reme COU	mber-1; RSE AI	Contraction of the second seco	rstand-2 JLATIC Os 7	2; Appl ON MA	9	10 1 1 1 1	4; Evalua 11	12 2	PS 1 2 2 2 3	Os 2 2 3 3 3

CY22151	APPLIED CHEMISTRY	L T P C						
	(COMMON TO AD, CS, EE, EC, IT)	3003						
COURSE O	BJECTIVES							
• To :	make the students conversant with basic electrochemistry and batteries.							
• To	develop an understanding of the laws of photochemistry and basics.							
• To	• To acquaint the students with the basics of nanomaterials, their properties and uses.							
• To	• To acquire the basic knowledge on sensors which are essential for the software engineers for							
dev	elop new devices.	, ,						
• To	enable the students to understand the types of instruments for material analysis	and their						
WOI	king principle.							
UNIT I	ELECTROCHEMISTRY	9						
Electrodes a	and electrochemical cells – electrode potential, standard electrode potential, singl	e electrode						
potential an	d its determination, types of electrodes – calomel, quinhydrone and glass electro	ode. Nernst						
equation - I	Determination of pH of a solution by using quinhydrone and glass electrode. Elec	trochemical						
series and i	ts applications. Batteries – Primary (dry cell) and secondary batteries (Lead – a	cid storage						
battery and	Lithium ion battery) and next generation batteries.	C						
UNIT II	PHOTOCHEMISTRY	9						
Laws of p	hotochemistry – Grotthuss-Draper law, Stark-Einstein law and Lambert Be	er Law –						
determinatio	on iron by spectrophotometer. Quantum efficiency – Photo processes - internal	conversion,						
inter-system	inter-system crossing, fluorescence, phosphorescence and photo-sensitization-quenching of fluorescence							
and its kinet	ics, Stern-Volmer relationship. Applications of photochemistry.							
UNIT III	NANOCHEMISTRY	9						
Basics and	scale of nanotechnology, different classes of nanomaterials, Distinction between	molecules,						
nanoparticle	s and bulk materials; size-dependent properties. Synthesis of nanomaterials,	fabrication						
(lithography) and its applications - Basics of nanophotonics and quantum confined materia	als (surface						
plasmon res	onance).							
UNIT IV	CHEMICAL SENSOR	9						
Sensors, sen	sor science and technology, types of sensors. Chemical Sensors - characteristics an	d elements.						
Electrochem	nical sensors - voltammetry, potentiometric sensors, amperometric sensors, j	polarization						
techniques.	Obt my tac							
UNIT V	INSTRUMENTATION TECHNIQUES	9						
Treatment o	f analytical data, including error analysis. Classification of analytical methods and	the types of						
instrumental	method - Electromagnetic radiation-UV-visible and IR spectroscopy:	principles,						
instrumentat	ion (Block diagram only) and applications. Separation techniques chromatog	raphy: Gas						
chromatogra	phy, liquid chromatography - importance of column technology (packing,	capillaries),						
separation b	ased on increasing number of factor (volatility, solubility, interactions with statio	nary phase,						
size).								
	TOTAL PE	RIODS: 45						
	TEXT BOOKS							
1.	Jain P.C. and Monica Jain, 'Engineering Chemistry', Dhanpat Rai Publishing Co	mpany (P)						
	Ltd., New Delhi, 2010.							
2.	Dara S.S, Umare S.S, 'Engineering Chemistry', S. Chand & Company Ltd., New Delhi 20	10.						
3.	B.K.Sharma, 'Instrumental Methods of Chemical Analysis', Goel Publishing Ho	use, 2012,						

	28 th Edition,.					
4.	Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage					
	Learning India Ed.					
REFERENCE BOOKS						
1.	Ozin G. A. and Arsenault A. C., 'Nanochemistry: A Chemical Approach to Nanomaterials',					
	RSC Publishing, 2005.					
2.	B.R. Puri, L.R. Sharma, M.S. Pathania., 'Principles of Physical Chemistry', Vishal					
	Publishing Company, 2008.					
3.	John Vetelino, Aravind Reghu, 'Introduction to Sensors', Taylor & Francis Group, CRC					
	Press, 1st edition, 2010.					
4.	Peter Gründler, 'Chemical Sensors, An Introduction for Scientists and Engineers', Springer-					
	Verlag Berlin Heidelberg 2007.					

				/	_	00	11	-	/					
			1	a	COU	RSE O	UTCC	MES	A	1				
Upon the su	accessful o	complet	ion of	the cou	rse, the	studen	ts will	be able	to	0)	S			
COs			0	5/	S	STATE	MENT	S	1	1			RI	BT
		1	2	/				S			. \		LEV	EL
1	Identify electrochemical cells, corrosion and fundamental aspects of batteries 2													
2	Interpret the photochemical reactions and make use of spectroscopic techniques								,	2				
3	Realiz	e the st	ructur	es, pro	perties	and ap	oplicat	ions of	f nanoj	particle	es.			2
4	Acquin interdi softwa	re the sciplin re engi	basi ary ap neers.	c kno proacl	owledg n amo	ge on ng the	chen stude	nical ents wi	sensor hich a	rs to are ess	develo ential f	op an or the		2
5	Develo separa	op a t tion teo	heoret chniqu	ical pı es.	rinciple	es of	UV-vi	sible	and II	R spec	troscop	y and		3
Bloom's Ta	axonomy	(RBT)	Level:	Remer	nber-1;	Under	stand-2	; Apply	y-3; An	alyze-4	; Evalua	ate-5; Cre	ate-6	
		1	The second	COUF	RSE AI	RTICU	LATIO	ON MA	ATRIX	9	1			
COs			1	1	~	P	Os	/	1	-/			PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	2	1	121	8				3	3	3
2	3	3				3	3					3	2	2
3	3	3	3			3	3	1				3	3	3
1	2		2		1	2	2	-				2	2	2
4	5	5	3		1	5	5					5		
5	3	3		2		3	3					3	2	2
2 Uich Mo	nning 21	Madara	ta Man	ning 1	LOWN	Inning	~							

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

CM22151	BASIC CIVIL AND MECHANICAL ENGINEERING	LTPC
		3003
COURSE O	BJECTIVES	
• To Eng	provide the students an illustration of the significance of the Civil and I gineering Profession in satisfying the societal needs.	Mechanical
• To cor	help students acquire knowledge in the basics of surveying and the material astruction.	s used for
• To fac	provide an insight to the essentials of components of a building and the infilities.	frastructure
• To wo	explain the component of power plant units and detailed explanation to IC en rking principles.	gines their
• To	explain the Refrigeration & Air-conditioning system.	
UNIT I	PART A: OVERVIEW OF CIVIL ENGINEERING	5
Civil Engin	eering contributions to the welfare of Society - Specialized sub disciplines in Civil	Engineering
- Structural	, Construction, Geotechnical, Environmental, Transportation and Water Resources	Engineering
– National	building code - terminologists: Plinth area, Carpet area, Floor area, Buildup area,	Floor space
index - Typ	es of buildings: Residential buildings, Industrial buildings.	
UNIT I	PART B: OVERVIEW OF MECHANICAL ENGINEERING	4
Overview of	of Mechanical Engineering - Mechanical Engineering Contributions to the welfare	of Society –
Specialized	sub disciplines in Mechanical Engineering - Manufacturing, Automation, Auto	mobile and
Energy Eng	ineering - Interdisciplinary concepts in Mechanical Engineering.	
UNIT II	SURVEYING AND CIVIL ENGINEERING MATERIALS	9
Surveying:	Objects - Classification - Principles - Measurements of Distances and angles -	Leveling -
Determinati	ion of areas– Contours.	
Civil Engin	neering Materials: Bricks - Stones - Sand - Cement - Concrete - Steel - Timbe	er – Modern
Materials,	Thermal and Acoustic Insulating Materials, Decorative Panels, Water Proofing	g Materials.
Modern use	es of Gypsum, Pre-fabricated Building component (brief discussion only)	
UNIT III	BUILDING COMPONENTS AND INFRASTRUCTURE	9
Building pl	ans - Setting out of a Building - Foundations: Types of foundations - Bearing of	capacity and
settlement	- Brick masonry - Stone Masonry - Beams - Columns - Lintels - Roofing	Flooring –
Plastering.	Types of Bridges and Dams – Water Supply Network - Rain Water Harvesting –	Solid Waste
Managemen	nt - Introduction to Highways and Railways - Introduction to Green Buildings.	
UNIT IV	INTERNAL COMBUSTION ENGINES AND POWER PLANTS	9
Classification	on of Power Plants- Working principle of steam, Gas, Diesel, Hydro -electric a	and Nuclear
Power plan	ts- Internal combustion engines as automobile power plant – Working principle o	f Petrol and
Diesel Engi	ines - Four stroke and two stroke cycles - Comparison of four stroke and two stro	oke engines.
Working p	rinciple of Boilers-Turbines, Reciprocating Pumps (single acting and double	acting) and
Centrifugal	Pumps, Concept of hybrid engines. Industrial safety practices and protective devices	S.
UNIT V	REFRIGERATION AND AIR CONDITIONING SYSTEM	9
Principles of	of Refrigeration and Air Conditioning. Vapour compression and absorption system	n–Layout of
typical don	nestic refrigerator-Window and Split type room Air conditioner. Tonnage calc	ulations for
refrigerator	and air conditioning systems.	
	TOTAL PF	RIODS: 45

	TEXT BOOKS
1.	G Shanmugam, M S Palanichamy, 'Basic Civil and Mechanical Engineering', McGraw Hill
	Education; First edition, 2018.
2.	P.Selvaraj, M. Periyasamy, S. Selvakumar, 'Basic Civil and Mechanical Engineering',
	Scitech Publications Pvt. Ltd., 2013.
	REFERENCE BOOKS
1.	Palanikumar, K. 'Basic Mechanical Engineering', ARS Publications, 2018.
2.	Ramamrutham S., 'Basic Civil Engineering', Dhanpat Rai Publishing Co.(P) Ltd, 2013.
3.	Seetharaman S., 'Basic Civil Engineering', Anuradha Agencies, 2005.
4.	Shantha Kumar SRJ., 'Basic Mechanical Engineering', Hi-tech Publications, Mayiladuthurai,
	2000.
5.	Nag P.K, 'Power Plant Engineering', Tata McGraw Hill Publishing Co., New Delhi, 2014.
6.	Ganesan V, 'Internal Combustion Engines', Tata McGraw Hill Publishing Co., New Delhi,
	2012,4th edition,.
7.	Arora C.P, 'Refrigeration and Air Conditioning', Tata McGraw Hill Publishing Co, New
	Delhi, 2009.

TT .1	<u> </u>	1	34		COL	JRSE O	UTCO	OMES	5	19	2			
CO's		comple	tion of	the cou	irse, the	e studen STATE	ts will MEN	be able	to		GIN		RB LEV	T EL
1	Summ welfar	arise tree of sc	he impociety.	portan	ce of C	Civil ar	nd Me	chanica	al eng	ineerin	g towa	ds the	2	
2	Apply proper	the pr ties an	rinciple d uses	es and of var	the di ious co	ifferent onstruct	meth tion m	ods of aterials	surve 5.	ying ar	nd discu	uss the	3	
3	Descri	ibe abo	out the	buildi	ng con	ponent	s and	commo	on infi	astruct	ures.		2	
4	Explai combu	in abou stion o	ut the vengine	various s used	s powe in auto	r plants omotive	s and the vehic	the wor	rking	princip	les of in	nternal	2	
5	Elabor	rate the	e work	ing of	domes	tic refri	igerato	or and a	air cor	ditione	ers.		2	
Bloom's T	axonomy	(RBT)	Level	Reme	mber-1	; Under	stand-2	2; Apply	y-3; Ai	nalyze-4	; Evalua	ate-5; Cre	eate-6	
				COU	RSE A	RTICU	LATI	ON MA	TRIX	Σ				
COs						P	Os						PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3					3		3					2	2
2	3					3		3					2	2
3	3				_	3		3		_			2	2
4	3					3		3					2	3

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

IT22101 PROGRAMMING FOR PROBLEM SOLVING	L T P C						
(COMMON TO IT, AD, CS, EE, EC)	3 00 3						
COURSE OBJECTIVES							
• Learn the organization of a digital computer.							
• Learn to think logically and write algorithms or draw flow charts for problems.							
• Be exposed to the syntax of C.							
• Be familiar with programming in C.							
• Learn to use arrays, strings, functions, pointers, structures and unions in C.							
UNIT I INTRODUCTION TO PROBLEM SOLVING	6						
Simple model of a Computer - Hardware - Software - Data Representation, Introductio	n to Computer						
Networks and Internet, Problem Solving Techniques - Bottom up design and top c	own design -						
applications, Introduction to Algorithms and Flow Chart.							
Suggested Activities:							
Case study - Understanding the analysis and design of the Student Management System (SM	S).						
UNIT II C PROGRAMMING BASICS	12						
Introduction to 'C' programming - structure of a 'C' program - Conversion of simple	e algorithm to						
program. Constants, Variables - Data Types - Expressions using operators in 'C' - Mana	ging Input and						
Output operations - Decision Making and Branching - Looping statements - solving simple scientific and							
statistical problems.							
Suggested Activities:							
Case study: Dataset creation and Grade calculation in SMS.							
UNIT III ARRAYS AND STRINGS	9						
Array: declaration, initialization. Multi dimensional arrays. Strings: Strings vs Character	arrays, string						
operations.							
Suggested Activities: Grade sheet generation in SMS.							
UNIT IV FUNCTIONS AND STRUCTURES	9						
Need for Modular programming, Functions: definition, call, arguments, call by value. Cal	by reference,						
Recursion. structures and unions: Need, declaration, Accessing Structure elements, Arrays o	fstructures						
Suggested Activities: Redesigning SMS in terms of modules.							
UNIT V POINTERS AND FILE HANDLING IN C	9						
Pointers: Introduction, pointers to primitive datatypes, pointers to user defined datatype	s: arrays and						
structures, array of pointers, Dynamic Memory Allocation. Files: Read/Write of binary	and text files.						
Preprocessor directives.							
Suggested Activities: Mange I/O in SMS using Files.							
TOTAL	PERIODS: 45						
TEXT BOOKS							
1. Pradip Dey, Manas Ghosh, 'Programming in C', Oxford University Press, 2018	, 1 st Edition.						
2. R G Dromey, "How to Solve it using Computer", Pearson,2006.							
REFERENCE BOOKS							
1. Kernighan,B.W and Ritchie,D.M, "The C Programming language", Pearson Ed 2 nd Edition,.	ucation, 2015,						
2. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.							
3. Byron S Gottfried, "Programming with C", Schaum's Outlines, Tata McGr	awHill, 2010,						

	3 rd Edition.
4.	Reema Thareja, "Programming in C", Oxford University Press, 2016, 2 nd Edition.

Upon the su		oomnlot	on of	the cour	COURSE (UTCC	MES	to						
COs	STATEMENTS											RB LEV	ST TEL	
1	Identify input and output from the real word problem scenarios.											3		
2	Represent the design flow using Flow-charts and application logic using pseudo code.											3		
3	Apply appropriate programming constructs to implement a given design using C.										3			
4	Debug	g and cu	stomi	ze an e	xisting softv	vare de	velope	d in C.				5	5	
5	Develop a modularised software application In C for the given user requirements									6				
Bloom's Ta	axonomy	(RBT)	Level:	Remen	nber-1; Under	rstand-2	; Apply	/-3; An	alyze-4	4; Evalua	ate-5; Cre	ate-6		
		1	5	COUR	SE ARTICU	JLATI	ON MA	TRIX		1				
COs		POs												
	1	2	3	4	5 6	7	8	9	10	11	12	1	2	
1	1	3	1	A.,		1	2	3	. 1		2	3	3	
2	1	3		2.	1. 7	1	2	3		2	2	3	3	
3	1	E	3	2	1	16	2	3		111	2	3	3	
4	1	12	3	2	1		2	3		51	2	3	3	
5	1	1	3	2	1	0	2	3	1	51	2	3	3	
3- High Mapping; 2-Moderate Mapping; 1-Low Mapping										1				
L			2	270	TETT 7	V	10	al	/	/				

EE22111	BASIC ELECTRICAL & ELECTRONICS ENGINEERING LABORATORY	LTPC
	(COMMON TO ALL BRANCHES EXCEPT EC)	0 02 1
COURSE	OBJECTIVES	
• To	p provide exposure to the students with hands on experience in basic of Elect	rical and
El	ectronics wiring connection and measurements.	
• To	o introduce the students to Electrical Machines and basic laws of Electrical Circuits.	
	LIST OF EXPERIMENTS	
1.	Wiring – Residential house wiring and Stair case wiring.	
2.	(a) AC Analysis- Measurement of electrical quantities-voltage, current, power, and	d power
	factor using RLC.	
	(b) Study of three phase system.	
3.	Energy conservation - Measurement and comparison of energy for incandescent la	imp and
	LED lamp.	
4.	(a) Identification of circuit components (Resistor, Capacitor, Diode and BJT) and	soldering
	(b) Signal Measurement, Measurement of peak to peak RMS average period free	auency of
	signals using CRO.	quency of
5.	(a) VI Characteristics of Solar photovoltaic panel.	
	(b) Design of Solar PV Array and Battery sizing for Residential solar PV system.	
6.	Design a 5V/12V Regulated Power Supply using FWR and IC7805 / IC7812.	
7.	DC Analysis- Verification of Ohm's Law and Kirchhoff's Laws.	
8.	Study of Transformer and motor characteristics.	
	TOTAL PE	RIODS:30
	REFERENCE BOOKS	
1.	Mittle V.N, Arvind Mittal, 'Basic Electrical Engineering', Tata Mc Graw Hill (Ind	lia), 2013,
	2 nd Ediiton.	
2.	Sedha R.S., 'A Text Book of Applied Electronics', S.Chandand Co., 2014.	

COURSE OUTCOMES

Upon the successful completion of the course, the students will be able to

0

COs	STATEMENTS	RBT LEVEL					
1	Wiring of basic electrical system and measurement of electrical parameters.	4					
2	Verify the basic laws of Electric circuits and select various Electrical Machines.	4					
3	Construct electronic circuits and design solar photovoltaic system.	4					
4	Apply the concept of three-phase system.	4					
5	Construct a fixed voltage regulated power supply.	4					
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6							

COURSE ARTICULATION MATRIX														
COs	POs											PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3					2			2	3	3
2	3	3	3	3					2			2	3	3
3	3	3	3	3					2			2	3	3
4	3	3	3	3					2			2	3	3
5	3	3	3	3					2			2	3	3
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	Mappin	g							

ME22161	BASIC CIVIL AND MECHANICAL ENGINEERING LABORATORY	LTPC
	(COMMON TO CE, EE, EC)	0021
COURSE	OBJECTIVES	
• To	provide an exposure and hands on experience to the students on various civil and me	echanical
en	gineering processes.	
	LIST OF EXPERIMENTS	
1.	Carpentry – Preparation of Cross half lap joint and Tee joint using power tools.	
2.	Plumbing – Basic pipe line connection used in houses with PVC pipes, valves, taps, o unions, reducers, elbows.	couplings,
3.	Welding - Butt joint and lap joint using Electric Arc welding.	
4.	Machining – Turning and facing using Centre Lathe.	
5.	Sheet metal work – Making of a cylinder using GI sheet and finishing using rivets.	
6.	Fitting – Preparation of metal pieces by grinding and filing to maintain flat sides at rig	tt angles.
7.	Drilling and Tapping – Drilling of holes precisely and making internal threads by Tavarious sizes.	apping for
8.	Casting – Mould preparation using simple solid pattern and casting.	
9.	Automation – Basic pneumatic circuit using single and double acting cylinder.	
10	3D printing –Demonstration of printing of simple solids using Additive Manufac printing.	turing/3D
	TOTAL PE	RIODS:30
	TEXT BOOKS	
1.	Jeyachandran K., Natarajan S. and Balasubramanian S., 'A Primer on Engineering Laboratory', Anuradha Publications, 2007.	Practices
2.	Jeyapoovan T., Saravanapandian M. and Pranitha S., 'Engineering Practices Lab Vikas Publishing House Pyt I td. 2006	Manual',
3.	Bawa H.S., 'Workshop Practice', Tata McGraw Hill Publishing Company Limited, 20)07.
4.	Ian Gibson, David W Rosen, Brent Stucker., 'Additive Manufacturing Technologi	ies: Rapid
	Prototyping to Direct Digital Manufacturing', Springer, 2010.	1
5.	Anthony Esposito, 'Fluid Power with Applications', Pearson Education, 2009, 7thEdit	ton.
6.	Civil and Mechanical Engineering Practices Lab Manual, SVCE, 2022.	

	COURSE OUTCOMES						
Upon the st	accessful completion of the course, the students will be able to						
COs	STATEMENTS	RBT					
		LEVEL					
1	Prepare various joints used for assembling wooden parts	3					
2	Make required pipeline connection by selecting the suitable components	3					
3	Fabricate components by various manufacturing processes	3					
4	Understand the principles of low-cost automation using pneumatic circuits	2					
5	Understand the principle of additive manufacturing/3D printing	2					
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6							
	COURSE ARTICULATION MATRIX						
COs	POs	PSOs					

005				/	Ph	00	05	1-1	1				I D	05
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		12	Y		1000	1		1	2			2	2
2	2	/	3	/		5 8	3.	1		1	1		2	2
3	2	12	51	1		- 60-5			17	10	51		2	2
4	1	1.2	-/	44	2	6		1	R		51		2	2
5	1	A	1	1	2	1	$) \leq$	-		. 1	22		2	2
3- High Map	ping; 2-	Modera	ite Map	ping; 1	-Low N	Mappin	g		- AP	<u></u>	Z			
		THE	1HS	2	100		IT U	121/20/	in the	100	ERIA			

IT22111	PROGRAMMING FOR PROBLEM SOLVING LABORATORY	LTPC												
	(COMMON TO IT, AD, CS, EE, EC)	0 0 3 1.5												
COURSE	OBJECTIVES													
• B	e exposed to the syntax of C.													
• B	e familiar with programming in C.													
• L	earn to use arrays, strings, functions, pointers, structures and unions in C.													
	LIST OF EXPERIMENTS													
1.	Usage of Basic Linux commands.													
2.	C Programming using Simple statements and expressions.													
3.	Scientific problem solving using decision making and looping.													
4.	Simple programming for one dimensional and two dimensional arrays.													
5.	Solving problems using Strings.													
6.	C Programming using Pointers.													
7.	C Programming using user defined functions (Pass by value and Pass by reference)).												
8.	C Programming using Recursion.													
9.	C Programming using structures and union.													
10.	C Programming using enumerated data types.													
11.	C Programming using macros and storage classes.													
12.	C Programming using Files.													
13.	Develop modularized application for any one of the following scenarios.													
	Scenarios: • Student Management System • Stock Management System • Banking Application • Ticket Reservation System													
	TOTAL	PERIODS:45												
	TEXT BOOKS													
1.	Pradip Dey, Manas Ghosh, 'Programming in C', Oxford University Press, 2018, 1s	^t Ediiton.												
2.	Byron S Gottfried, "Programming with C", Schaum's Outlines, Third H McGrawHill, 2010.	Edition, Tata												
					COU	RSE O	OUTCO	OMES						
--	--	---------	----------	----------	----------	----------	---------	----------	---------	----------	-----------	-------	-------	---
Upon the su	iccessful	comple	tion of	the cou	rse, the	e studen	ts will	be able	to					
COs	STATEMENTS												RBT	
1													LEVEL	
1	Apply appropriate programming constructs to solve problems												3	
2	Desig	n, impl	ement,	test ar	nd deb	ug prog	grams	that us	e the b	oasic fe	atures of	f C	5	
3	Desig	n modu	llarized	l appli	cations	s in C t	o solv	e real v	world p	probler	ns		6	
4	Use C	pointe	rs and	dynam	ically	allocat	ted me	mory t	o solv	e comp	lex prob	olems	4	
5	Apply	file op	eration	ns to de	evelop	solutio	ons for	real-w	vorld p	roblen	ıs		3	
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6														
				COUF	RSE A	RTICU	LATI	ON MA	ATRIX					
COs				/	_	P	Os	-	-				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1	3	1	29	-		1.55	2	3	0.		2	3	3
2	1	3	2	/		0.0	31-	2	3	1		2	3	3
3	1	11	3	2	1	1505	1.1.1	2	3	11	12	2	3	3
4	1	14	3	2	1	6		2	3		21	2	3	3
5	1	V	3	2	1) ~	2	3	- /	01	2	3	3
3- High Ma	pping; 2-	Modera	te Map	ping; 1	-Low N	Mapping	g		14	0.0	Z			
		NEN	145	2	1000		K L	ノビーお	1 AL	0	EERIN			

SEMESTER II

HS22251அறிவியல் மற்றும் தொழில் நுட்பத்தில் தமிழ் LTPC Science and Technology in Ancient Tamil Society 2002 (COMMON TO ALL BRANCHES)

பாடத்தின்நோக்கங்கள் :

- 🔄 அறிவியலில் தமிழின் பயன்பாடு பற்றி தெரிந்து கொள்வார்கள்.
- 🔄 தொழில்நட்பத்தில்தமிழ் பாரம்பரியத்தின் தாக்கம் பற்றிஅறிந்துகொள்வார்கள்.

Course Objectives:

- They will know about the use of Tamil in science.
- Learn about the impact of Tamil heritage on technology.

அலகு 1 அறிவியல் தமிழ் :

கருவி உருவாக்கம் - ஆராய்ச்சி மேம்பாடு - கல்வி வளர்ச்சி - அறிவியல் தமிழ் சொற்கள் உருவாக்கம்.

UNIT I Scientific Tamil

Tool Development - Research Development - Educational Development - Scientific Tamil words Creation.

அலகு 2 தொழில் நட்பத்தில் தமிழ்

வடிவமைப்பு மற்றும் கட்டுமான தொழில்நுட்பம் :சங்க காலத்தில் கட்டுமானப் பொருட்கள் - சோழர்களின் பெரிய கோவில்கள் மற்றும் பிற வழிபாட்டு தலங்கள் - பல்லவர்களின் சிற்பங்கள் மற்றும் கோவில்கள் (மாமல்லபுரம்) - நாயக்கன் கால கோவில்கள் (மதுரை மீனாட்சி அம்மன் கோவில்), திருமலை நாயக்கர் மஹால், செட்டி நாட்டு வீடுகள்.

UNIT II Tamil in Technology

Design and Construction Technology: Building materials in Sangam age – Great temples of Cholas and other workship places – Sculptures and Temples of Pallavas (**Mamallapuram**) – Temples of Nayakas period (**Madurai Meenakshi amman temple**), Thirumalai Nayakar Mahal, Chetti Nadu Houses.

உற்பத்தி தொழில்நுட்பம் :கப்பல் கட்டும் கலை, உலோகவியல் ஆய்வுகள், தங்கம், தாமிரம், இரும்பு பற்றிய அறிவு - தொல்பொருள் சான்றுகள் – சுட்டக்களிமண் மணிகள், சங்கு மணிகள், எலும்பு மணிகள்.

Manufacturing Technology: Art of Ship building, Metallurgical studies, Knowledge about Gold, Copper, Iron – Archeological evidences – Terracotta beads, Shell beads, Bone beads.

விவசாயம் மற்றும் நீர்ப்பாசன தொழில்நுட்பம் : அணைகள், ஏரிகள், குளங்கள், மதகுகள், சோழர் கால குமுழி தூம்பு ஆகியவற்றின் முக்கியத்துவம் - கால்நடை பராமரிப்பு, கால்நடைகளின் பயன்பாட்டிற்காக வடிவமைக்கப்பட்ட கிணறுகள். விவசாயம் மற்றும் வேளாண் செயலாக்கம் - கடல் பற்றிய அறிவு - மீன்பிடித்தல், முத்து குளித்தல், சங்கு சேகரித்தல்.

Agriculture and Irrigation Technology: Dams, Tank, ponds, sluice, Significance of KumuzhiThoompu of Cholas period- Animal Husbandry, Wells designed for cattle use. Agriculture and Agro processing, - Knowledge about Sea – Fisheries, Pearl, Conche diving.

3

தமிழ் கணினி: அறிவியல் தமிழ் வளர்ச்சி - தமிழ் கணினி, தமிழ் புத்தகங்களின் டிஜிட்டல் மயமாக்கல், தமிழ் டிஜிட்டல் நூலகம், தமிழ் மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அகாடமி - சொற்குவை திட்டம்.

Tamil Computing: Development of Scientific Tamil – Tamil Computing, Digitization of Tamil books, Tamil Digital Library, Development of Tamil Softwares – Tamil virtual Academy – Sorkuvai project.

தமிழின் எதிர்காலமும் தகவல் தொழில்நுட்பமும்- உலகமயமாக்கலும் தகவல் தொழில்நுட்பமும்-கணினிக்கு தமிழ் கற்று கொடுத்தல்-தமிழ் மொழித் தொழில்நுட்பத்தில் வளங்கள்.

Future of Tamil and Information Technology- Globalization and Information Technology-Teaching Tamil for Computer-Resources in Tamil Language Technology.

பாடநெறி முடிவுகள் :

பா .வெ எண்													
. 616001	பாடத்துட்டத்தின் வெளிப்பாடு												
	A D CULLEGA	level											
CO 1	அறிவியலில் தமிழ் மொழியின் பயன்பாடு பற்றி தெரிந்து கொள்வார்கள்	2											
CO 2	பல்வேறு தொழில்நுட்பத்தில் தமிழ் மொழியின் தாக்கம் பற்றி அறிந்து	3											
	கொள்வார்கள்												

பாட நூல்கள்:

1.**டாக்டர், வா.செ .குழந்தைசாமி (1985)**,"அறிவியல் தமிழ் 126/108, உஸ்மான் சாலை, பாாகி பகிப்பகம், தியாகராய நகர் , சென்னை 600017

2.**சுப. திண்ணப்பன், (1995),** "கணினியும் தமிழ் கற்பித்தலும்", புலமை வெளியீடு, 38-B மண்ணத்நதோட்டத் தெரு, ஆழ்வார்பேட், சென்னை 600018

பொன்னவைக்கோ, (2003), தமிழில் அறிவியல் З.**(ഥ.** "வளர் இணையத்தமிழ்", அனைத்திந்திய அறிவியல்தமிழ்க்கழகம், தஞ்சாவூர் 615 005.

4.**துரை. மணிகண்டன், (2008), "**இணையமும் தமிழும்", நல் நிலம் பதிப்பகம், 7-3, சிமேட்லி சாலை, கியாகாாய நகர், சென்னை 600 017. े विह्या

HS22252	TECHNICAL ENGLISH	L T P C
	(COMMON TO ALL BRANCHES)	3003

COURSE OBJECTIVES

- Enable learners to define and understand technical communication and scientific writing
- Expose learners to the technicalities of seminar presentation, group discussion, and public speaking
- Develop learners' writing skills for scientific and documenting purposes
- Improve learners' ability to draft correspondences for business purposes
- Cultivate learners' ability to holistically understand the nuances of job interviews and recruiting process.

UNIT I

Listening - AV files pertaining to manufacturing processes of products, scientific documentaries; Speaking - syllable division and word stress, intonation, sharing opinions; Reading - news articles related to science and technology; Writing - definitions, instruction, recommendation, data interpretation, resume; Grammar - tenses and their aspects, sentence connectors – discourse markers, sequential words, active and passive voice, subject-verb agreement.

UNIT II

Listening - AV pertaining to marketing strategies, peer reading and pronunciation; Speaking- turn taking, sharing opinions; conducting and attending a meeting, understanding the nuances of spoken communication among internal audience and external audience; Reading - analytical documents, descriptive documents; Writing - fliers, brochures, resume - letter of application, checklists; Grammar - modal verbs, clauses - types and uses, conditional clauses, articles.

UNIT III

Listening - AV related to how to use components, scientific description, Speaking - speaking for motivation and initiation, speaking at a seminar presentation; Reading - scientific journals, papers; Writing - Technical descriptions - process description, purpose and function, PowerPoint, Google forms, user manuals; Grammar - phrasal verbs, prepositions, technical and scientific affixes.

UNIT IV

Listening - scientific debates, crisis management; Speaking - handling conflicts, speaking about the loss of benefits, progress or decline of business, identifying the connotative meanings, Reading- documented evidences of uses and functions of a product, review of a product, Writing - memos, follow-up letters, reports - proposal, project, progress reports, sales reports, reports on industrial visits, executive summary. Grammar - reported speech and tag questions, sentence structure - comparative, imperative, cause and effect, infinitive of result.

UNIT V

Listening - AV of Group discussions, panel discussions, face to face interviews for recruitment purposes; Speaking- speaking at group discussions, interviewing a personality, answering at the interviews; Reading -WebPages of top notch engineering companies, Writing - blogging, e-mails, letter of complaint, minutes of the meeting; Grammar - one word substitution, collocations, better word/sentence substitution (rephrasing the content/improvising ideas).

TOTAL PERIODS: 45

9

9

9

	REFERENCE BOOKS												
1.	Department of English, Anna University. Mindscapes: English for Technologists and												
	Engineers. Orient Blackswan, Chennai. 2012.												
2.	Downes, Colm, Cambridge English for Job-hunting, Cambridge University Press, New Delhi.												
	2008.												
3.	Murphy, Raymond, Intermediate English Grammar with Answers, Cambridge University												
	Press 2000.												
4.	Thomson, A.J., Practical English Grammar 1 & 2, Oxford, 1986.												
5.	Herbert A J, The Structure of Technical English, Longman, 1965.												
WEBSITES													
1.	http://www.usingenglish.com												
2.	http://www.uefap.com3												
3.	https://owl.english.purdue.edu/owl/												
4.	www.learnenglishfeelgood.com/esl-printables-worksheets.html												
	SOFTWARES												
1.	Face 2 Face Advance – Cambridge University Press, 2014.												
2.	English Advance Vocabulary- Cambridge University Press.												
3.	IELTS test preparation – Cambridge University Press 2017.												
4.	Official Guide to the TOEFL Test with CD-ROM, 4th Edition.												
5.	Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.												

Upon the s	COURSE OUTCOMES uccessful completion of the course, the students will be able to						
CO's	O's STATEMENTS						
1	Understand the nuances of technical communication and scientific writing	3					
2	Present papers and give seminars	3					
3	Discuss in groups and brainstorm	6					
4	Draft business correspondences and write for documenting purposes	6					
5	Face job interviews with confidence	6					
Bloom's T	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5;	Create-6					

	COURSE ARTICULATION MATRIX													
COs		PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1										3			2	2
2										3				
3										3			2	2
4										3			2	2
5										3			2	2
3- High Maj	pping; 2-	Modera	ite Map	ping; 1	-Low I	Mappin	g	-			1	1	1	

3 denotes 'a strong correlation' as the students will use all the four skills (Listening, Speaking, Reading and Writing) with appropriate body language in technical and professional situations.

MA22251	APPLIED MATHEMATICS II	L T P C							
	(COMMON TO ALL BRANCHES EXCEPT MR)	3 1 0 4							
COURSE O	BJECTIVES								
• Acc	uire the concepts of vector calculus needed for problems in all engineering disci	plines and							
con	pute different types of integrals using Green's, Stokes' and Divergence theorems.								
• Skilled at the techniques of solving ordinary differential equations that model engineering									
pro	plems.								
• Extend their ability of using Laplace transforms to create a new domain in which it is easier to									
han	dle the problem that is being investigated.								
• Explain geometry of a complex plane and state properties of analytic functions.									
• Understand the standard techniques of complex variable theory so as to apply them with									
con	fidence in application areas such as heat conduction, elasticity, fluid dynamics ar	nd flow of							
elec	tric current.								
UNIT I	VECTOR CALCULUS	9+3							
Gradient. di	vergence and curl - Directional derivative - Vector identities – Irrotational and solend	oidal vector							
fields - Line	integral over a plane curve – Surface integral - Area of a curved surface - Volum	e integral -							
Green's the	forem in a plane. Gauss divergence theorem and Stokes'theorem (excluding	proofs) –							
Verification	and application in evaluating line, surface and volume integrals.	proces)							
UNIT II	ORDINARY DIFFERENTIAL FOUATIONS AND ITS APPLICATIONS	9+3							
Differential	equations of first order – Equations of the first order and first degree – Linear	equations –							
Higher orde	r linear differential equations with constant coefficients - Method of variation of n	arameters -							
Cauchy's a	ad Legendre's linear equations - Simultaneous first order linear equations wi	th constant							
coefficients	- Applications of Linear differential equations - Oscillatory electrical circuit - D	eflection of							
beams	representations of Emetal enforcement equations observatory electrical encart								
	LAPLACE TRANSFORM	9+3							
Conditions	for existence - Transform of elementary functions - Transforms of unit step fu	unction and							
impulse fun	ctions – Basic properties – Shifting theorems - Transforms of derivatives and i	integrals of							
functions - I	Derivatives and integrals of transforms - Initial and final value theorems - Transform	of periodic							
functions I	verse Laplace transforms - Convolution theorem – Application to solution of line	ear ODE of							
second orde	with constant coefficients using Laplace transformation techniques								
UNIT IV	ANALYTIC FUNCTIONS	9+3							
Analytic fu	actions - Necessary and sufficient conditions (Cauchy-Riemann equations) - Pt	operties of							
analytic fun	ction - Harmonic conjugates - Construction of analytic functions - Conformal	mapping _							
Mapping by	functions $W = Z + C_{c}CZ_{c} 1/Z_{c}Z^{2} - Joukowski's transformation- Bilinear transform$	ation.							
UNIT V	COMPLEX INTEGRATION	9+3							
Cauchy's in	tegral theorem - Cauchy's integral formula - Taylor's and Laurent's series ex	xpansions -							
Singular poi	nts - Residues - Cauchy's Residue theorem – Application of residue theorem for ex	valuation of							
real integral	s - Use of circular contour and semi-circular contour.								
	TOTAL (L:45+T:15) PF	ERIODS: 60							
	TEXT BOOKS								
1.	Erwin Krevszing, Herbert Krevszing, Edward Norminton, 'Advanced H	Engineering							
	Mathematics', John Wiley, (2015), 10 th Edition.	0							

2.	Grewal B.S, Grewal J.S, "Higher Engineering Mathematics",43rdEdition, Khanna											
	Publications, Delhi, (2015).											
	REFERENCE BOOKS											
1.	Dass, H.K., and Rajnish Verma, 'Higher Engineering Mathematics', S.Chand Private Ltd.,											
	2011.											
2.	Ramana B.V, 'Higher Engineering Mathematics', Tata McGraw Hill Publishing Company,											
	New Delhi, (2013).											
3.	Bali N. P and Manish Goyal, 'A Text book of Engineering Mathematics', Laxmi											
	Publications(p) Ltd., 2014, 9 th Ediiton.											
	WEB LINKS											
1.	https://nptel.ac.in/courses/111/105/111105134/											
2.	https://nptel.ac.in/courses/111/105/111105121/											
	COLLEGE											

			1.	DC	COU	RSE (OUTCO	OMES	2	0)	8				
Upon the suc	ccessful o	complet	tion of t	he cour	rse, the	stude	nts will	be able	e to	~					
COs	STATEMENTS												RB LEV	T EL	
1	Interpret the fundamentals of vector calculus and execute evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems											3			
2	Solve first order linear, homogeneous differential equations and use series solution method to solve second order differential equations											3			
3	Determine the methods to solve differential equations using Laplace transforms and Inverse Laplace transforms												3		
4	Explain Analytic functions and Categorize transformations												3		
5	Perform Complex integration to evaluate real definite integrals using Cauchy integral theorem and Cauchy's residue theorem											3			
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1;	Unde	rstand-2	2; Appl	y-3; Ar	nalyze-4	; Evalua	te-5; Cre	ate-6		
			1	COUR	RSE AH	RTICU	JLATI	ON MA	ATRIX	- /					
COs			1	27	20	F	Os	Os							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	2								3	3	3	
2	3	3	3	3								3	3	3	
3	3	3	3	3								3	3	3	
4	3	3										3	3	3	
5	3	3										3	3	3	
3- High Map	ping; 2-1	Modera	te Map	ping; 1-	-Low N	/lappin	g								

PH22252	PHYSICS OF MATERIALS	L T P C								
	(COMMON TO EE and EC)	3003								
COURSE O	BJECTIVES									
• To	understand the physical properties of materials like electrical and thermal conductivity	ty.								
• To	understand various types of semiconducting materials, their applications in the	e field of								
Eng	Engineering and understand the concept of Fermi energy.									
• To	understand the different types of dielectric materials and their applications in Ei	ngineering								
field	ds.	0 0								
• To	understand the phenomena of superconductor, properties and their application	s and the								
diff	erent types of magnetic materials.									
• Abi	lity to understand different types of Transistors and its characteristics and to const	ruct Basic								
Log	tic Gates and simplification of circuits using K-map.									
UNIT I	CONDUCTING MATERIALS	9								
Introduction	- Classification of materials based on the electrical resistivity - Classical Free electrical	tron theory								
– Electrical	and thermal conductivity of metal (derivation) – Wiedemann – Franz law – Lorent	z number –								
Drawbacks	of Classical Free electron theory – Quantum Free electron theory – Fermi distributi	on function								
– Effect of t	emperature of Fermi function – Density of energy states (derivation) – Carrier conc	entration in								
metals – Er	mission of electrons from metals – Thermionic emission – Photoelectric emissi	on – Field								
emission.	E ++ ON IOI									
UNIT II	SEMICONDUCTING MATERIALS	9								
Introduction	- Classification of materials based on band theory (metals, semiconductors and in	ısulators) –								
Intrinsic and	d extrinsic semiconductors - Carrier concentration in intrinsic semiconductor (de	erivation) -								
Effect of ter	nperature on Fermi level - Compound semiconductors - Variation of electrical con-	ductivity in								
intrinsic sen	niconductors with temperature - Band gap determination of intrinsic semiconductor	(derivation								
and Experin	nent to determine Band Gap) - Hall effect (derivation and experiment).Tunnel diod	e, Schottky								
diode.	I T T									
UNIT III	DIELECTRIC PROPERTIES OF MATERIALS	9								
Introduction	to dielectric materials - Dielectric constant - Polarization of dielectric materials	- Types of								
Polarization	(Polarisability) - Equation of internal fields in solid (One- Dimensional) (De	erivation) -								
Clausius –	Mossotti Relation for elemental dielectric materials - Dielectric Breakdown -	Frequency								
dependence	of dielectric constant, Dielectric Losses - Important applications of dielectric mate	rial - Ferro								
and Piezo el	ectricity (Qualitative).									
UNIT IV	MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES	10								
Temperature	e dependence of resistivity in superconducting materials - Meissner effect – Pr	operties of								
superconduc	ctors - Type I and Type II superconductors - BCS theory (Qualitative) – Low Tc and	nd High Te								
(alloy) supe	erconductors – Ceramic superconductors (oxide superconductors) - LaBaCuO,	YBaCuO,								
BiSrCaCuO	- Josephson's effect (AC and DC) $-$ - Applications of Superconductors-S	SQUIDS -								
CRYOTRO	N – MAG LEV.									
Dia, Para a	nd Ferro magnetic material – Domain theory for Ferro magnetic materials - Phe	nomena of								
Hysteresis a	nd its applications – Magnetic Semiconductor- Ferrites and its structures.									
UNIT V	FUNDAMENTALS OF ELECTRONIC SCIENCE	8								
JFET-Drain	and Transfer Characteristics- Electronic Transistor (SET), Spintronics-Electronic	devices vs								
Spintronic L	Devices-Design of Basic Logic gates using transistor, Karnaugh map SoP and PoS for	rms.								

	TOTAL PERIODS: 45
	TEXT BOOKS
1.	Arumugam M, 'Materials Science', Anuradha Publications, 2015.
2.	Rajendran V, 'Engineering Physics', Tata McGraw Hill, 2015.
3.	Suresh R, Jayakumar V, 'Materials Science', Lakshmi Publications 2003.
4.	Palanisamy P.K, 'Materials Science', SciTech publications, 2015.
5.	V.K. Mehta, Rohit Mehta, 'Principles of Electronics'' 2020
6.	M. Morris Mano, 'Digital Design', Pearson Education, 2014, 3 rd Edition.
	REFERENCE BOOKS
1.	Gaur R.K, Gupta S.L, 'Engineering Physics', Dhanpat Publications, 2015.
2.	Avadhnaulu M.N, Kshirsagar P.G, 'A Textbook of Engineering Physics', S. Chand, 2006.
3.	Kittel C, 'Introduction to Solid State Physics', Wiley Eastern Ltd, 2004, 7th Ediiton.
4.	Azaroff L.V, Brophy J.J., 'Electronic Processes in Materials', McGraw Hill., 1963.
5.	A.B. Gupta, Nurul Islam, 'Solid State Physics and Electronics', 2017.
6.	John F. Wakerley, 'Digital Design-Principle and practice', Pearson, 2008, 3rd Edition.

COURSE OUTCOMES

Unon the su	aaaaful (omnlot	ion of	the ees	COU maa tha	KSE U		JNIES ha ahla	to.	10	01				
COs	STATEMENTS													T TEL	
1	Comp	rehend	the be	havior	of ele	ctrons	in soli	ds	125.08	2.1	2		2	2	
2	Demonstrate an understanding of various properties of Semiconducting materials and their internal structure												3	3	
3	Analyse the properties of dielectric materials and apply them in various fields 3												3		
4	Summarize basics of magnetism and superconductivity. Explore a few of their technological applications											2	2		
5	Develop an understanding the Fundamentals of Electronic Science and its applications												3	3	
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1;	; Under	stand-2	2; Apply	y-3; An	alyze-4	; Evalua	ate-5; Cre	ate-6		
			2	COUH	RSE AI	RTICU	LATI	ON MA	TRIX						
COs	POs													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3			1						1		2	3	3	
2	3									1		2	3	3	
3	3									1		2	3	3	
4	3	2	2	1	2				2	1		2	3	3	
5	3	2	2	1		2			2	1		2	3	3	

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

ME22252	FUNDAMENTALS OF ENGINEERING GRAPHICS	LTPC
		2023
COURSE O	BJECTIVES	
• Thi	s course will introduce students to build their ability to read drawings and in	terpret the
pos	ition and form of simple geometries.	
• Thi	s course will familiarize the students in drafting drawings with CAD software.	
UNIT 0	CONCEPTS AND CONVENTIONS (NOT FOR EXAM)	2
Importance	of graphics in engineering applications - Use of drafting instruments - BIS conv	entions and
specification	ns - Size, layout and folding of drawing sheets - Lettering and dimensioning.	
UNIT I	CONICS, CYCLOIDAL CURVES, AND INVOLUTES	7
Geometric of	construction - Curves used in engineering practices: Conics - Construction of ellipse	se, parabola
and hyperbo	ola by eccentricity method - Drawing of tangents and normal to the above curves - C	Construction
of cycloid, of	epicycloid and hypocycloid - Drawing of tangents and normal to the above curves. C	Construction
of involutes	of square, pentagon and circle - Drawing of tangents and normal to the above involu	utes.
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFACES	9
Orthograph	ic projection - principles - Principal planes - First angle projection-projection	1 of points.
Projection	of straight lines (only First angle projections) inclined to both the principa	al planes -
Determinati	on of true lengths and true inclinations by rotating line method.	
Projection	of planes (polygonal and circular surfaces) inclined to one of the principal	planes and
perpendicul	ar to other by rotating object method.	
UNIT III	PROJECTION OF SOLIDS	9
Projection of	of simple solids like prisms, pyramids, cylinder, cone when the axis is inclined to	o one of the
principal pla	anes and parallel to the other by rotating object method. Projections of hollow prism	and hollow
cylinder wit	th centrally drilled hole or square through its ends by rotating line method - axis is	s inclined to
one of the p	rincipal planes and parallel to the other.	
UNIT IV	BLOCK FLOW DIAGRAM USING CAD	9
Introduction	n to Computer Aided Drafting hardware - Overview of application software -2	2D drafting
commands	(AutoCAD) for simple shapes - Schematic components in electrical systems -	Connectors,
Point to Pin	t Wiring diagrams – Terminals – Dimensioning and Plotting.	
UNIT V	ORTHOGRAPHIC AND ISOMETRIC VIEWS USING CAD	9
Annotation	in CAD - Isometric views - Orthographic views - 3D Modelling basics - 3D to 2D co	onversion.
	TOTAL (30L+30P) Pl	ERIODS: 60
	TEXT BOOKS	
1.	Bhatt N.D. and Panchal V.M., 'Engineering Drawing', Charotar Publishing Hous	e,2019, 53 rd
	Edition.	
2.	Dhananjay M. Kulkarni, A.P. Rastogi, Ashoke K. Sarkar, 'Engineering Gra	aphics with
	AutoCAD', PHI Learning Private Ltd., 2009.	
3.	Venugopal K. and Prabhu Raja V., 'Engineering Drawing + AutoCAD',	New Age
	International (P) Limited, 2022, 6 th Ediiton.	

	REFERENCE BOOKS
1.	Dhananjay A Jolhe, 'Engineering Drawing with an Introduction to AutoCAD', Tata McGraw-
	Hill Publishing Company Limited., 2008.
2.	Parthasarathy N. S. and Vela Murali, 'Engineering Graphics', Oxford University, Press, New
	Delhi, 2015.
3.	Shah M.B., and Rana B.C., 'Engineering Drawing', Pearson Education India, 2nd Edition,
	2009.
4.	Natrajan K.V., 'A Text Book of Engineering Graphics', Dhanalakshmi Publishers, Chennai,
	2018.
5.	Sham Tickoo, 'AutoCAD Electrical 2019 for Electrical Control Designers', Cadcim
	Technologies, 2019.
	WEB LINKS
1.	AutoCAD tutorials - https://www.thesourcecad.com/autocad-tutorials/
2.	https://nptel.ac.in/courses/112105294
3.	https://nptel.ac.in/courses/112103019
	6
	COURSE OUTCOMES
Upon the si	accessful completion of the course, the students will be able to

COURSE	OUTCOMES
--------	----------

Upon the st	uccessful completion of the course, the students will be able to							
COs	STATEMENTS	RBT LEVEL						
1	Construct conic sections and as per drawing standards	2						
2	Obtain orthographic projections of lines and plane surfaces and simple solids in various positions	3						
3	Obtain projections of simple and hollow solids	3						
4	Employ the CAD software for drafting and modelling of simple components	2						
5	Construct 2D views from 3D models using CAD software	3						
Bloom's T	axonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Creation of the standard stand	ate-6						
	COURSE ARTICULATION MATRIX							
COs	POs							
	1 2 3 4 5 6 7 8 9 10 11 12	1 2						

	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1										1			2	2
2										2			2	2
3										2			2	2
4					2				1	3			2	2
5					2				1	3			2	2
3- High Map	ping; 2-N	Modera	te Map	ping; 1-	-Low N	/lapping	g							

EE22201	ELECTRIC CIRCUIT ANALYSIS	LTPC
		3 1 0 4
COURSE O	BJECTIVES	
• To	familiarize the principles of passive circuit elements and analyze circuit parameters.	
• To	solve complex circuits using network theorems and reduction methods.	
• To	impart knowledge on analysis of 3 phase circuits and its phasor diagrams.	
• To	analyze the transient response of circuits with DC and AC input.	
• To	introduce the phenomenon of resonance in coupled circuits.	
UNIT I	BASIC CIRCUITS ANALYSIS	12
Ohm's Law	r - Kirchoff's laws - DC and AC Circuits - Resistors, Inductances and Capacitance	es in series
and parallel	- Mesh, Super mesh, Node and Super node method of analysis for DC and A	C circuits -
Dependent	voltage and current sources.	
UNIT II	NETWORK REDUCTION AND THEOREMS FOR DC AND AC CIRCUITS	12
Network re	eduction: Voltage and Current division, Source transformation - Star delta	conversion,
Thevenin's	and Norton's Theorems - Superposition Theorem - Maximum power transfer	theorem -
Millman's t	heorem – Reciprocity Theorem.	
UNIT III	THREE PHASE CIRCUITS	12
Phasor Diag	gram – Power, Power factor and Energy–Three phase balanced / unbalanced voltag	ge sources –
Analysis of	three phase 3-wire and 4-wire circuits with star and delta connected, balanced &	unbalanced
loads – Pow	er and power factor measurements in three phase circuits.	
UNIT IV	TRANSIENT RESPONSE FOR DC, AC CIRCUITS	12
Transient re	sponse of RL, RC and RLC Circuits for DC input and AC sinusoidal input – Char	acterization
of two-port	networks in terms of Z, Y, h and transmission parameters.	
UNIT V	RESONANCE AND COUPLED CIRCUITS	12
Series and j	parallel resonance – Frequency response – Quality factor and Bandwidth –Low and	d High pass
filters –Self	and mutual inductance – Coefficient of coupling – Singly tuned circuits.	
	TOTAL PI	ERIODS: 60
1		<u> </u>
1.	William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, 'Engineeri	ng Circuits
	Analysis', McGraw Hill Education, New Delni, 2013, 8 th Edition.	
2.	Charles K. Alexander, Mathew N.O. Sadiku, 'Fundamentals of Electric Circuits	s', McGraw
	Hill Education, 2013, 5 th Eduton.	
3.	Joseph A. Edminister, Mahmood Nahri, 'Electric circuits', Schaum's series, M	cGraw Hill
	Education, New Delhi, 2017, 5 th Edition.	
	REFERENCE BOOKS	~
1.	Sudhakar A and Shyam Mohan SP, 'Circuits and Network Analysis and Synthesis	s', McGraw
	Hill Education, 2017, 5 th Edition.	
2.	Chakrabati A, 'Circuits Theory (Analysis and synthesis)', Dhanpath Rai and Sons,	New Delhi,
	1999.	

					COL	JRSE (OUTCO	MES						
Upon the su	ccessful	complet	ion of	the cou	rse, the	e studer	nts will	be able	e to					
COs	STATEMENTS											RE LEV	iT 'EL	
1	Apply circuit	Apply circuit laws to analyze steady-state parameters of given electrical circuits												ł
2	Simplify DC and AC electrical circuits by applying suitable reduction methods and network theorems												3	}
3	Analy power	Analyze three phase balanced and unbalanced circuits to determine power and power factor												ł
4	Analyze transients of electrical circuits and parameters of two-port networks											4		
5	Realiz applic	Realize resonance phenomenon and the effect of magnetic coupling in real time applications										-	5	
Bloom's Ta	xonomy	(RBT)	Level	Reme	nber-1	; Under	rstand-2	; Appl	y-3; Ana	alyze-4	; Evalua	te-5; Cre	ate-6	
		10	1.	COU	RSE A	RTICU	JLATI	ON MA	ATRIX	21	8			
COs		1	5	1		P	Os	2	1	~	/		PS	Os
	1	2	3	4	5	6	7	8	9	10	n	12	1	2
1	3	3	3	2	2	/	-	1	1	1	21	2	3	3
2	3	3	3	2	2	-)	-/-	1	1	01	2	3	3
3	3	3	3	2	2	10			1		2	2	3	3
4	3	3	3	2	2		14	11	1		111	2	3	3
5	3	3	3	2	2		10		1	-1	m	2	3	3
3- High Mar	oping; 2-	Moderat	e Mar	ping; 1	-Low I	Mappin	g	/			21/			

हिंदा परा हैवता के

PH 22161	PHYSICS LABORATORY	LTPC
	(COMMON TO ALL BRANCHES EXCEPT BT)	0 0 2 1
COURSE	OBJECTIVES	
• To	o introduce different experiments to test basic understanding of physics concepts a	pplied in
op	otics, thermal physics and properties of matter.	
	LIST OF EXPERIMENTS (Any EIGHT Experiments)	
1.	a) Determination of Wavelength, and particle size using Laser.	
	b) Determination of acceptance angle in an optical fiber.	
2.	Determination of velocity of sound and compressibility of liquid – Ultrasonic Interference	ometer.
3.	Determination of wavelength of mercury spectrum – spectrometer grating.	
4.	Determination of thermal conductivity of a bad conductor – Lee's Disc method.	
5.	Determination of Young's modulus by Non uniform bending method.	
6.	Determination of specific resistance of a given coil of wire - Carey Foster's Bridge.	
7.	Determination of Rigidity modulus of a given wire -Torsional Pendulum.	
8.	Energy band gap of a Semiconductor.	
9.	Determine the Hysteresis loss of a given Specimen.	
10.	Calibration of Voltmeter & Ammeter using potentiometer.	
	TOTAL PE	RIODS:30
	REFERNCE BOOKS	
1.	"Physics Laboratory practical manual", 1st Revised Edition by Faculty members, 2018	3.
	うかいて月一日	

Jpon the s	uccessful completion of the course, the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Analyze the physical principle involved in the various instruments; also relate the principle to new application	4
2	Comprehend the Experiments in the areas of optics, mechanics and thermal physics to nurture the concepts in all branches of Engineering	3
3	Apply the basic concepts of Physical Science to think innovatively and also improve the creative skills that are essential for engineering	3
4	Evaluate the process and outcomes of an experiment quantitatively and qualitatively	3
5	Extend the scope of an investigation whether or not results come out as expected	3

	COURSE ARTICULATION MATRIX													
COs		POs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	3	2				3	1		2		2
2	3	3		3		2			3	1		2		2
3	3	3	2	3	2	2			3	1		2		
4	3	3		3					3	1		2		
5	3	3		3	2				3	1		2	2	2
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	Mappin	g							

CY22161	CHEMISTRY LABORATORY	LTPC
	(COMMON TO ALL BRANCHES EXCEPT AD, CS, IT)	0 0 2 1
COURSE	OBJECTIVE	
The object of chemist	ive of the Chemistry Laboratory is to acquaint the students with the basic phenomenor ry, the student face during course of their study in the industry and Engineering field.	1/concepts
• To	p appreciate the need and importance of water quality parameters for industrial and	domestic
us	e.	
• To	gain the knowledge on electrochemical instrumentation techniques like potential and	d current
m	easuring used in electrochemistry applications	
• To	o impart knowledge on separation of components using paper chromatography.	
• To	enhance the thinking capability about polymer and properties like molecular weight.	
	LIST OF EXPERIMENTS (Minimum EIGHT Experiments)	
1.	Determination of DO content of water sample by Winkler's method.	
2.	Determination of strength of given hydrochloric acid using pH meter.	
3.	Determination of strength of acids in a mixture using conductivity meter.	
4.	Estimation of iron content of the water sample using spectrophotometer (phenar thiocyanate method).	throline /
5.	Determination of total, temporary & permanent hardness of water by EDTA Method.	
6.	Estimation of iron content of the given solution using potentiometer.	
7.	Determination of alkalinity in water sample.	
8.	Determination of Single electrode potential.	
9.	Separation of components from a mixture of red and blue inks using Paper chromatog	raphy.
10.	Determination of molecular weight of polymer by using Ostwald's/Ubbelohde viscome	eter
	TOTAL PE	RIODS:30
	REFERENCE BOOKS	
1.	Daniel R. Palleros, 'Experimental organic chemistry' John Wiley & Sons, Inc., N 2001.	√ew York
2.	Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., 'Vogel"s Textbook o	f practical
	organic chemistry', LBS Singapore 1994.	
3.	Kolthoff I.M., Sandell E.B. et al. 'Quantitative chemical analysis', Mcmillan, Madras	1980
4.	Jeffery G.H., Bassett J., Mendham J.and Denny vogel"s R.C, 'Text book of quanalysis chemical analysis', ELBS 5th Edn. Longman, Singapore publishers, Singapore	uantitative e, 1996.

Upon the g	uaaaaful	oomnlot	ion of	the cou	COU	IRSE O	UTCO	MES	to					
COs		compiet	1011 01	the cou	irse, the	STATE	MENT	S	10				RI LEV	3T /EL
1	Distin purific	Distinguish hard and soft water, solve the related numerical problems on water, purification and its significance in industry and daily life												
2	Interpret the knowledge of instruments to measure potential and current related parameters													2
3	Demo	Demonstrate the basic principle for separation of components using paper chromatography												3
4	Evalua viscon	Evaluate the molecular weight of polymer using Ostwald's/Ubbelohde viscometer											3	
5	Distin purific	guish h cation a	ard ar nd its	nd soft signifi	water, cance	solve t in indu	the related stry an	ited nu d daily	merica v life	al prol	olems on	water,		3
Bloom's T	axonomy	(RBT)	Level	: Remen	mber-1	; Under RTICU	stand-2 LATI	; Apply DN MA	7-3; An TRIX	alyze-	4; Evalua	te-5; Cre	ate-6	
COs		1	2	87		P	Os		1	2			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	41	1		3	3	3	1	1	21	2		
2	3	2	1	-	1	3	3	3	1		01		2	2
3	3	10	1	4	1	3	3	21	102.8		5	2		
4	3	2		1	11	3	3	3			E			
5		IW	1	5%.	1			1	23	-	m			
3- High Ma	apping; 2-1	Modera	te Map	oping; 1	-Low N	Mapping	3	/		1	201		1	
			C.B.S	101	100	τ	् रा	100	T	10	Int			

EE22211	ELECTRIC CIRCUITS LABORATORY										
		0 0 3 1.5									
COURSE	OBJECTIVES										
•	• To provide practical exposure in constructing and solving electrical circuits										
•	• To simulate various electrical circuits using simulation software.										
	LIST OF EXPERIMENTS										
1.	Simulation and experimental verification of electric circuits by mesh and nodal anal	ysis.									
2.	Simulation and experimental verification of Thevenin's and Norton's theorems.										
3.	Simulation and experimental verification of Maximum power transfer theorem.										
4.	Simulation and experimental verification of Superposition and Millman's theorems.										
5.	Simulation of three phase, balanced and unbalanced, star and delta networks.										
6.	Simulation and experimental verification of DC transient analysis of electric circuits										
7.	Simulation of AC transient analysis (RL, RLC) of electric circuits.										
8.	Determination of Z & Y two-port network parameters.										
9.	Design, simulation and experimental verification of series resonant circuit.										
10.	Design, simulation and experimental verification of parallel resonant circuit.										
11.	Design, Simulation and experimental verification of low pass and high pass filters.										
12.	Design and develop a PCB layout of given electrical circuit using software package.	(Mini-									
	Project										
	TOTAL F	PERIODS:45									

Upon the s	COURSE OUTCOMES uccessful completion of the course, the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Apply circuit laws and theorems to analyze steady-state parameters of given electrical circuits	4
2	Simulate and compute power and power factor in balanced and unbalanced three-phase circuits	3
3	Analyze the transient parameters of the given DC and AC electrical circuits	4
4	Model and evaluate two-port network parameters	5
5	Design and estimate parameters of resonant and filter circuits and verify through experiments and simulation	5
Bloom's T	axonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6

COURSE ARTICULATION MATRIX															
COs		POs PSOs													
	1	1 2 3 4 5 6 7 8 9 10 11 12												2	
1	3	3	2	2	3				3	2		2	3	3	
2	3	3	2	2	3				3	2		2	3	3	
3	3	3	2	2	3				3	2		2	3	3	
4	3	3	2	2	3				3	2		2	3	3	
5	3	3	2	2	3				3	2		2	3	3	
3- High Map	ping; 2-1	Modera	te Map	ping; 1	-Low I	Mappin	g								

SEMESTER III

MA22354	MATHEMATICS FOR ELECTRICAL ENGINEERS	L T P C
		3 1 0 4
COURSE O	BJECTIVES	
• Intr	oduce the Fourier series analysis.	
• Intr	oduce the basic concepts of the Fourier transform techniques and its appl	lication in
eng	ineering.	
• Intr	oduce the effective mathematical tools for the solutions of partial differential equ	ations that
mo	del several physical processes and to develop Z transform techniques for dis	crete time
syst	tems.	
UNIT I	PARTIAL DIFFERENTIAL EQUATIONS	9+3
Formation of	of partial differential equations - Singular integrals - Solutions of standard types o	f first order
partial diffe	erential equations - Lagrange's linear equation - Linear homogeneous partial	differential
equations of	second and higher order with constant coefficients.	
UNIT II	FOURIER SERIES	9+3
Dirichlet's	conditions - General Fourier series - Odd and even functions - Half range sine s	series –Half
range cosine	e series –Parseval's identity – Harmonic analysis	T
UNIT III	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS	9+3
Classificatio	on of PDE – Method of separation of variables - Solution of one dimensional wave	equation –
One dimens	ional equation of heat conduction – Steady state solution of two dimensional equa	tion of heat
conduction	(excluding insulated edges).	1
UNIT IV	FOURIER TRANSFORMS	9+3
Statement of	of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine the	ansforms –
Properties –	Transforms of simple functions – Convolution theorem – Parseval's identity	
UNIT V	Z - TRANSFORMS AND DIFFERENCE EQUATIONS	9+3
Z- transform	h - Elementary properties – Inverse Z - transform (using partial fraction, long division). Consider the second	sion method
and residue	technique) – Convolution theorem - Formation of difference equations – Solution of $\frac{1}{2}$	anterence
equations us	sing Z - transform.	
	TEVT DOOKS	5+1:15): 60
1	IEAT BOOKS	tion
1.	Erwin Kreyszig, Advanced Engineering Mathematics, whey India, 2011, 10 Edi	$\frac{1001}{2017}$
2.	Grewal. B.S., Higner Engineering Mathematics, Khanna Publishers, Deini	2017, 44**
2		
3.	Narayanan.S., ManicavachagomPillay.T.K and Ramanaiah.G'Advanced Mathe	matics for
	Engineering Students' Vol. II & III, S. Viswanathan Publishers Pvt. Ltd. 1998.	
1	REFERENCE BOOKS	11
1.	Ball.N.P and Manish Goyal, 'A Textbook of Engineering Mathematics', Laxmi P	ublications
	Pvt Ltd., 2007, 7 th Edition.	2 011 4th
2.	Given James, 'Advanced Modern Engineering Mathematics', Pearson Education	, 2011, 4 th
	Edition.	1011
3.	Veerarajan. T., 'Transforms and Partial Differential Equations', Tata McGraw Hill	I Publishing
	Company Ltd., New Delhi, 2012.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
4.	Ray Wylie. C and Barrett.L.C, 'Advanced Engineering Mathematics', Tata Mc	Graw Hill

	Education Pvt Ltd, New Delhi, 2012.
5.	Peter V.O'Neil, 'Advanced Engineering Mathematics', Cengage Learning India Pvt. Ltd. 7th
	Edition, New Delhi, 2012.

Upon the s	uccessful	complet	ion of	the cou	COU	J RSE (OUTCO	OMES	to					
COs		complet			150, 110	STATI	EMEN'	TS					RBT LEVEL	
1	Expres	ss profi	ciency	/ in har	ndling	highe	r order	Partial	differ	ential	equation	IS	4	
2	Acquire the skill in examining a signal in another domain rather in the original domain by handling Full and Half Range Fourier Series													
3	Develop skills in classification, formulation, solution, and interpretation of PDE models													
4	Develo using t	Develop the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms 5												
5	Apply describ	the sys	stemat differe	ic metlence ec	hod fo juatior	r findi 1s: par	ng the tial fra	impuls	se resp xpansi	onse o on	of LTI sy	stems	5	
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1	; Unde	rstand-	2; Appl	y-3; Aı	nalyze-4	4; Evalua	te-5; Cre	eate-6	
		14	ũ.	COUR	RSE A	RTICU	JLATI	ON MA	ATRIX	10	12			
COs		12	1	12	2		POs	1	R	1	21		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	à.,	1	100		10	PP-		Z	3	3	3
2	3	3	3	3	11		16	11	10-	. 1	ITT	3	3	3
3	3	3	3	1. 1			-				m	3	3	3
4	3	3	3	3		-	_	-		1	201	3	3	3
5	3	3	3	1			1	-	10	15	2/	3	3	3
3- High M	apping; 2-l	Moderat	te Map	ping; 1	-Low I	Mappir	ıg		/	9	1			
L				27	92	7 1	म	20	ar	/				

EE22301	ELECTRICAL MACHINES I	LTPC
		3003
COURSE O	BJECTIVES	
• Intr	oduce techniques of Magnetic-circuit analysis and introduce Magnetic materials.	
• Imp	part the principle of Operation, Construction, Testing of Single Phase Transformers	and Three
Pha	use Transformer Connections.	
• Illu	strate the theory of Electromechanical energy conversion and the concept of Co-energy	rgy.
• Far	niliarize the working principle of different types of DC machines and analyze the lo	sses in DC
ma	chines to improve the efficiency by conducting various tests.	
• Stu	dy the characteristics and speed control methods of DC machines.	
UNIT I	MAGNETIC CIRCUITS AND MAGNETIC MATERIALS	9
Magnetic ci	rcuits – Laws governing magnetic circuits –Flux linkage, Inductance and energy –	Statically &
Dynamicall	y induced EMF - Torque - Properties of magnetic materials, Hysteresis and Ed	ldy Current
losses – AC	excitation, Introduction to permanent magnets.	
UNIT II	TRANSFORMERS	9
Construction	n – Principle of operation on no load and load – Equivalent circuit – Phasor diagram	n – Losses –
Testing – E	fficiency and Voltage regulation - All day efficiency - Sumpner test, Per unit repr	esentation –
Three phase	e transformers - Connections and their comparative features, Scott Connection	ı – Parallel
operation of	transformers – Auto transformer – tap changing transformers.	
UNIT III	ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN	9
	ROTATING MACHINES	
Energy in 1	nagnetic system – Field energy and co-energy – Force and torque equations –	Singly and
multiply ex	cited magnetic field systems – Generated EMF – MMF of distributed windings	 Magnetic
fields in rot	ating machines – Rotating MMF waves – Magnetic saturation and leakage fluxes	– Torque in
round rotor	machine.	
UNIT IV	DC GENERATORS	<u>9</u>
Construction	n & Components of DC Machines – Cooling, Mounting, Standards & Specification	is, Principle
of operation	L – Lap and wave windings – EMF equations – Circuit model – Armature reaction –	Methods of
excitation -	- Commutation – Compensating winding – Losses, Efficiency and Power sta	iges in DC
Generator –	Characteristics of DC generators – Parallel operation of shunt generator – Application	ons.
UNIT V Dringinla of	DC MOTORS	9 and Torqua
Characterist	ics Starting Types of Starters Speed control Testing and efficiency Swin	burne's test
and Honkin	son's test. Testing standards IEC NEMA Applications	outrie 5 lest
	TOTAL PE	DIODS: 15
	TEXT BOOKS	NIUDS: 4 3
1.	Nagrath I I and Kothari D P 'Electric Machines' Tata McGraw Hill Publishing	Company
1.	I to 2017 5 th Edition	, company
2.	P S Bimbhra 'Electrical Machinery' Khanna Publishers 2021	
	REFERENCE BOOKS	
1.	M.N.Bandyopadhyay, 'Electrical Machines Theory and Practice' PHI Learning	Pyt Ltd
	New Delhi, 2009.	<u>, , , , , , , , , , , , , , , , , , , </u>
2.	P. C. Sen, 'Principles of Electrical Machines and Power Electronics', John Wiley	and Sons,

	1997.
3.	Deshpande M. V, 'Electrical Machines', PHI Learning Pvt. Ltd., New Delhi, 2011.
4.	Fitzgerald. A.E., Charles Kingsely Jr, Stephen D.Umans, 'Electric Machinery', Tata McGraw
	Hill Books Company, 2003, 6th Edition.
5.	S.SarmaandK.Pathak, 'Electric Machines', Cengage Learning India (P) Ltd., Delhi, 2011.
6.	Richard C Dorf, 'Electrical Power Engineering hand book', CRC Press, 1998.

					COU	JRSE C	OUTCO)MES						
Upon the s	uccessful	complet	ion of	the cou	rse, the	e studen	ts will	be abl	e to					
COs					5	STATE	MEN	ſS					RBT	
					/			_					LEVEL	
1	Analy	ze mag	netic d	circuits	and d	etermi	ne the	perfor	mance	param	eters		4	
2	Compute the performance parameters of single phase and three phase transformers													
3	Derive	Derive torque of rotating machines and analyze the machine performance 3												
4	Estimate the electro-mechanical performance of DC Generators												4	
5	Apply different methods of starting & speed control and determine the performance of DC Motors											4		
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1	; Under	stand-2	2; App	ly-3; Aı	nalyze-4	4; Evalua	te-5; Cre	eate-6	
		X		COUI	RSE A	RTICU	LATI	ON M	ATRIX	K	Z			
COs		Z	1	181	11	Р	Os	11	-U-	2.1	m		PSO	Js
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	3			2	5	5	1	51	3	3	3
2	3	2	2	3			T.		100	15	2/	3	3	3
3	3	2	2	3		1 E	2		/	5		3	3	3
4	3	2	2	3	a		2	-	2	9/		3	3	3
5	3	2	2	3	48	3	2	22	10			3	3	3
3- High Ma	apping; 2-1	Modera	te Map	ping; 1	-Low I	Mappin	g	-						

EE22302	ELECTRIC POWER SYSTEM	L T P C
		3003
COURSE O	BJECTIVES	
• Lea	rn about various components of Power systems.	
• Cal	culate the transmission line parameters for various conductor configurations.	
• Pre	dict the performance of Transmission lines.	
• Uno	derstand about different Insulators and Underground cables.	
• Fan	niliarize the basic concepts related to Substation and Distribution system.	
UNIT I	STRUCTURE OF POWER SYSTEM	9
Structure of	f Electric Power System- Conventional, Deregulated Structure, Micro-grid and	Smart Grid
Structure -	Methods of electric power generations - Conventional (Thermal and Hydro Power	er Plants) –
Renewable	Energy based generation - Trends in Transmission and Distribution: EHVAC,	HVDC and
FACTS – In	idian Electricity (IE) Rules and Acts – Tariff – Types – Electrical Safety.	
UNIT II	TRANSMISSION SYSTEM PARAMETERS	9
Resistance,	Inductance and Capacitance calculations -solid, stranded, and bundled conductors- S	ingle-phase
and three p	phase lines - single and double circuit lines - Typical configuration, conduc	tor types -
Symmetrica	l and unsymmetrical spacing and transposition – application of self and mutual GMI	D - skin and
proximity ef	ffects- effect of earth on transmission line capacitance-Distribution line model	
UNIT III	MODELLING AND PERFORMANCE OF TRANSMISSION LINES	9
Classificatio	on of lines- Performance of Transmission lines – short line, medium line and long li	ne – ABCD
constants -	equivalent circuits, phasor diagram - real and reactive power flow in lines - Pe	ower Circle
diagrams –	Ferranti effect- shunt and series compensation- surge-impedance loading, loadal	bility limits
based on the	ermal loading – Formation of Corona – Critical Voltages – Effect on line Performance	ce.
UNIT IV	INSULATORS, CABLES AND SAG CALCULATION	9
Insulators: 7	Types – voltage distribution in insulator string – improvement of string efficiency	 testing of
insulators, U	Underground cables: Underground cables – Types of cables – insulation resistance	e –potential
gradient – c	capacitance of single-core and three-core cables- Grading of cables - DC cables,	Mechanical
designs of the	ransmission line: sag and tension calculations for different weather conditions – Tow	wer spotting
& Types of	towers.	
UNIT V	SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM	9
Classificatio	on, major components of substations - Bus-bar arrangements - Importance of ea	arthing in a
substation -	Qualitative treatment to neutral grounding and earthing practices in substations -	Distribution
Systems – K	Kelvin's Law – AC and DC distributions –Concentrated and Distributed loading- Te	chniques of
Voltage Con	ntrol and Power factor improvement - Distribution Loss- Anti-theft measures - D	emand side
managemen	t (Qualitative)	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Gupta B.R, 'Power System Analysis & Design', S.Chand and Company Ltd,	2014, 7 th
	Edition.	
2.	Metha.V.K, and Rohit Metha., 'Principles of Power System', S.Chand and Com	pany Ltd.,
	2020.	
	REFERENCE BOOKS	
1.	Hadi Saadat, 'Power System Analysis,' PSA Publishing; 2011, 3rdEdiiton.	

2.	Wadwa. C.L., 'Electric Power Systems, New Age International (P) Ltd', New Delhi, 2022,
	8 th Edition.
3.	John J. Grainger and Stevenson Jr. W. D, 'Power System Analysis', McGraw Hill
	International edition, 2016.
4.	S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of
	India Pvt. Ltd, New Delhi, Second Edition, 2011.
5.	D.P.Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw-Hill, 2019, 3rd
	Edition.
6.	Central Electricity Authority (CEA), "Guidelines for Transmission System Planning", New
	Delhi.

Upon the s	uccessful	complet	tion of	the cou	COU urse, the	J RSE (e stude:	DUTCO nts will	DMES be able	e to						
COs	STATEMENTS												RH LEV	3T /EL	
1	Understand the major components of power system and its practical significance												-	4	
2	Determine transmission line parameters for various conductor configurations													5	
3	Model the transmission lines to determine the line performance and analyze the impact of Ferranti and coronaeffects												-	4	
4	Calculate electrical parameters of overhead and underground cables and perform sag calculations												4	4	
5	Analy	ze subs	station,	, grou	nding a	nd dis	tributio	on syst	ems	2.1	m		4	4	
Bloom's T	`axonomy	(RBT)	Level:	Reme	mber-1	; Unde	rstand-2	2; Appl	y-3; Ai	nalyze-4	; Evalua	ate-5; Cre	eate-6		
		1-		COU	RSE A	RTICU	JLATI	ON MA	ATRIX		21				
COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	2	0	2	8	-	5	0/		3	3		
2	3	3	2	2	98	7 1	DT	22	10			3	3	2	
3	3	3	2	2	-	-	141	-				3	3	2	
4	3	3	2	2								3	3	2	
5	3	3	2	2								3	3		
3- High Ma	apping; 2-	Modera	te Map	ping; 1	l-Low I	Mappir	ıg								

EE22303	ELECTROMAGNETIC THEORY	L T P C
		3003
COURSE O	BJECTIVES	
• Intr	oduce the basic mathematical concepts related to Electromagnetic vector fields.	
• Imp	part the concepts of Electrostatics, Electrical potential and boundary conditions.	
• Inc	ulcate the concepts of Magnetostatics, Magnetic flux density, scalar and vector po	tential and
its a	applications.	
• Inv	estigate the equations of Electrodynamic field and EM wave.	
UNIT I	BASICS OF ELECTROMAGNETIC VECTOR FILEDS	9
Sources and	l effects of Electromagnetic fields - Vector algebra - Scalars, Vectors, Dot pro	duct, Cross
product - C	Coordinate Systems - Cartesian, Cylindrical and Spherical Coordinate system -	Coordinate
transformati	ons - Line, Surface and Volume integrals - Gradient, Divergence, Curl - The	eorems and
Application	s. <u>COLLE</u>	
UNIT II	ELECTROSTATICS – I	9
Coulomb's	Law – Electric field intensity – Field due to discrete and continuous charges – Gaus	ss's law and
Application	s. Electric potential due to discrete and continuous charges – Electric field and e	quipotential
plots, Electr	ic dipole - Uniform and Non-Uniform field, Utilization factor.	
UNIT III	ELECTROSTATICS – II	9
Electric fiel	d in free space, conductors, dielectrics – Dielectric polarization – Dielectric strengt	h – Electric
field in mu	ltiple dielectrics – Boundary conditions - Poisson's and Laplace's equations,	Uniqueness
Theorem, G	eneral procedure for solving Poisson's and Laplace's equations–Capacitors and Cap	pacitance of
Parallel, Co	axial, Spherical conductors– Energy density–Case study on real time applications.	
UNIT IV	MAGNETOSTATICS	9
Lorentz force	e, magnetic field intensity (H) – Biot–Savart's Law – Ampere's Circuit Law – H du	e to straight
conductors,	circular loop, infinite sheet of current, Magnetic flux density (B) – Magnetic	materials-
Magnetizati	on, Magnetic field in multiple media Magnetic force, Torque, Self and mutual in	nductance –
	of a solenoid, Energy density, Applications.	
UNIT V	ELECTRODYNAMIC FIELDS AND WAVES	9
Magnetic C	ircuits – Faraday's Law– Transformer and motional EMF – Displacement current –	- Maxwell's
equations (d	(FIM and integral form) – Applications – Time harmonic fields – Electromagne	etic waves –
Properties o	TEM waves in Lossy medium.	
	TOTAL PE	RIODS: 45
1	IEAT BOOKS	TT.::::
1.	Mathew N. O. Sadiku, S.V.Kulkarni Principles of Electromagnetics, Oxford	University
	Press Inc,Asian edition,2015, 6 th Edition.	7 1
2.	K.A. Gangadhar, P.M. Ramanthan 'Electromagnetic Field Theory (Including Ante	innae's and
	wave propagation', Khanna Publications, 2013, 16 th Edition.	
	KEFEKENCE BOOKS	a
1.	William H. Hayt and John A. Buck, 'Engineering Electromagnetics', Tata Mc Special Indian edition, 2014.	Graw Hill
2.	Karl E Lonngren, Sava V Savov, Randy J Jost, 'Fundamentals of Electromag	netic with
	MATLAB'. Prentice Hall of India. 2012.	

				.1	COU	RSE (DUTCO	MES						
Upon the su	ccessful c	completi	ion of	the cour	rse, the	studer	nts will	be able	e to				DD	т
COS	STATEMENTS								LEVEL					
1	Apply	Apply basic mathematical concepts to solve electromagnetic vectors in 4												
2.	Orthog	onal co	ordina	the pro	em blems	relate	d to ele	octrost	atics				4	
2								44 2 4 2	unes	1		un and	4	
5	analyz	e Electi	ric fie	ld in m	aterial	s to co	mpute	the bo	undary	value	problem	ns and	4	
4	Analyz	ze and s	solve t	the pro	blems	relate	d to ma	igneto∙	-statics				4	
5	Solve wave e	time-v	arying n	g fields	s usin	g Ma	xwell'	s equa	ation a	nd El	ectroma	gnetic	4	
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1;	Under	rstand-2	; Appl	y-3; An	alyze-4	4; Evalua	te-5; Cre	ate-6	
				COUR	RSE AI	RTICU	JLATI	ON MA	ATRIX					
COs			/	32	5	P	Os		16	1			PSC)s
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2			Red	1	2		1	3	2	3
2	3	3	3	2		-	_		2		21	3	2	3
3	3	3	3	2	- /	-	0	1	2	1	01	3	2	3
4	3	3	3	2	1	1	1	21	2		_	3	2	3
5	3	3	3	2	1	100	1		2		2	3	2	3
3- High Map	oping; 2-l	Moderat	e Map	ping; 1-	-Low N	Aappin	g	//	U-2	2	11			
			185	12	1000		L IT	121/20/20/	ar	0	RIN			

EE22308	DIGITAL LOGIC CIRCUITS: THEORY AND PRACTICES	LTPC
		3024
COURSE O	BJECTIVES	
• To	impart knowledge on concepts of binary representation, logic gates, and Boolean alg	gebra.
• To	design and analyze digital circuits using combinational and sequential logic.	
• To	develop skills in HDL coding and simulate digital circuits.	
UNIT I	NUMBER SYSTEMS, CODES AND BOOLEAN REDUCTION	9+6
Review of	number systems, Signed binary numbers - Binary Arithmetic - Fixed and flo	pating point
representati	on - Boolean Algebra - laws and theorems - Simplification of Boolean expression	ıs – Sum of
Products (S	OP) and Product of Sums (POS) forms - Logic Minimization using K-map - Bin	ary codes –
BCD code,	Gray code, Error detection and Error correction codes.	
Experiment	<u>s:</u>	
1. Reduction	n and Implementation of Boolean Expression using logic gates (K-map).	
2. Implement	ntation of Code Converters (Binary to Gray, and Gray to Binary) using logic gates.	
UNIT II	COMBINATIONAL CIRCUITS	9+6
Combinatio	nal logic – Adders, Ripple carry adder, Carry lookahead adder, Subtractor, I	Multiplexer,
Demultiplez	ker, Encoder, Decoder, Parity generator and checker – Introduction to VHDL coding	•
Experiment	$\frac{1}{2}$	
1. Implement	ntation of Adder and Multiplexer.	
2. Design a	nd simulation of Adder/ Subtractor circuits.	
3. Design a	nd simulation of Multiplexer and Demultiplexer.	
UNIT III	SEQUENTIAL CIRCUITS	9+6
Sequential I	ogic – SR, JK, D and T flip flops –Synchronous counter – Ripple Counter – Modul	lo-n counter
-Sequence	generator – Design of synchronous sequential circuits – Moore and Mealy mo	dels – state
diagram, sta	te reduction, state assignment.	
Experiment	s:	
1. Implement		
2. Design, i	mplementation and simulation of Synchronous counter.	
UNIT IV	ASYNCHRONOUS SEOUENTIAL CIRCUITS	9+6
Design of A	Asynchronous sequential circuits – Transition table, flow table – race conditions,	hazards and
errors in di	gital circuits; Analysis of asynchronous sequential logic circuits – Design of as	synchronous
controller fo	or vending machine.	5
Experiment	S:	
1. Design, i	mplementation and simulation of Asynchronous counter.	
UNIT V	MEMORY DEVICES AND DIGITAL LOGICAL FAMILIES	9+6
Implementa	tion of combinational logic circuits using PROM. PLA. PAL – Introduction to FPG	JA – Digital
Logic Fami	lies: Logic gates using TTL, ECL and MOS families – operation and characteristic	cs of digital
logical fami	lv.	
Experiment		
1. Implement		
)DS+ 45+30
	IUIALTERIC	JD9. 43+30

	TEXT BOOKS
1.	M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education,
	2013.
2.	John M.Yarbrough, 'Digital Logic, Application & Design', Thomson, 2012.
	REFERENCE BOOKS
1.	Salivahanan, Arivazhagan, 'Digital Circuits & Design', Vikas Publishing House, 2012.
2.	William Kleitz, 'Digital Electronics-A Practical Approach with VHDL', Pearson, 2014.
3.	Floyd and Jain, 'Digital Fundamentals', 8th edition, Pearson Education, 2013.
4.	Anand Kumar, 'Fundamentals of Digital Circuits', PHI,2013.
5.	Gaganpreet Kaur, 'VHDL Basics to Programming', Pearson, 2013.
6.	Mandal, 'Digital Electronics Principles & Application', McGraw Hill Education, 2014.

				/	COL	DCE	OUTC	OMEG	-					
Unon the s	uccessful	comple	tion of	the cou	urse the	stude	ource nts will	be able	to					
CO's		comple			si se, tile	STAT	EMEN'	TS		2			RB LEV	T EL
1	Apply logic e	the co	oncepts sions	of Bo	olean	algeb	ra and	reducti	on tec	hniques	s to mi	nimize	3	
2	Analy	ze and	desigr	vario	us com	binat	ional lo	ogic cire	cuits		21		4	
3	Invest	igate a	nd des	ign syı	nchron	ous ai	nd asyr	chrono	us seq	uential	circuit	s	4	
4	Comp familie	rehend es and	the o	peration uct dig	on, cha ital cir	racter cuits	ristics with m	of men emory	nory d device	levices, s	digita	l logic	3	
5	Design HDL o	n, debu codes,	ig and schem	verify atic ca	simpl	le dig ools a	ital cir nd sim	cuits an ulation	nd syst tools	tems w	ith the	aid of	4	
Bloom's T	'axonomy	(RBT)	Level	Reme	mber-1	; Unde	erstand-	2; Appl	y-3; Ar	alyze-4	; Evalua	ate-5; Cre	eate-6	
			1	COU	RSE AI	RTIC	ULATI	ON MA	TRIX	12	5/			
COs		1	ST I	1]	POs	2	1	9	/		PSC	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3		<	927	7 -		53	3	3			3	
2	3	3	2	2	3	1	परा	2	3	3		2	3	2

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

	LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS							
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED						
1.	IC Trainer kit	10						
2.	IC Tester	4						
3.	Bread board	10						
4.	ICs - Logic gates, Flip-flops	Each 10						
5.	Connecting wires	As required						

EE22309	ELECTRON DEVICES AND CIRCUITS: THEORY AND PRACTICES	L T P C
		3024
COURSE O	BJECTIVES	
• To	understand the structure, operation, characteristics and applications of basic electron	ic devices.
• To	gain knowledge about biasing circuits.	
• To l	earn the required functionality of positive and negative feedback systems.	
• To :	study about Optoelectronic devices.	
• To (construct various electronic circuits and understand the theoretical concepts by pract	ices.
UNIT I	PN JUNCTION DEVICES AND APPLICATIONS	9+6
Construction	and operation of PN junction diode, Current equations, Transition capacitance an	d Diffusion
capacitance,	Reverse recovery time, Temperature Effects-Construction and operation of Ze	ener diode,
Varactor dic	de.	
Experiments	COLLE	
1. V-I chara	cteristics of PN Junction diodes and Zener diode	
2. Clippers a	nd Clampers using Diodes	
3. Simulatio	n study of Rectifiers with and without filters	
4. Zener dio	de as voltage regulators	
UNIT II	BIPOLAR JUNCTION TRANSISTORS	9+6
Construction	and operation of Transistor, Modes of operation, Different types of configuration	ns, Thermal
runaway an	d Stabilization, AC and DC load lines, Need for biasing a Transistor and varie	ous biasing
techniques-I	BJT small signal model-Analysis of CE, CB, CC amplifiers-Determination of h para	meters.
Experiments		
1. Input and	Output characteristics of Common Emitter.	
2. Frequency	analysis of Common Emitter.	
UNIT III	FIELD EFFECT TRANSISTORS	9+6
Construction	and Principle of operation of JFET and MOSFET, Biasing circuits for MOSFET	-Fixed bias,
Self bias, V	oltage divider bias-Small signal model of FET/MOSFET - Analysis of CS, CG	and Source
Follower-Co	onstruction and Principle of operation of UJT.	
Experiments		
1. Character	istics of MOSFET, UJT.	
UNIT IV	MULTISTAGE AND FEEDBACK AMPLIFIERS	<u>9+6</u>
Two stage I	C coupled amplifier – Analysis of Differential amplifier, Single tuned amplifier	s-Gain and
Frequency r	esponse – Neutralization methods, power amplifiers – Types (Qualitative analysis).	Advantages
of negative i	eedback – Analysis of Voltage/ Current, Series, Shunt feedback Amplifiers using 11	ansistor.
Experiments		
1. I ransfer (Characteristics of Differential amplifier	0.(
UNIT V Desitive fee	dback Condition for oscillations Phase shift Wien bridge Hartley Colnitte	9+6 and Crystal
Oscillators-	Construction and Operation of Optoelectronic devices: LED LCD Photo Di	and Crystan ode Photo
Transistor (The Coupler and Solar Cell	
Experimento		
1 Design or	<u>-</u> d testing of RC phase shift and LC oscillators	
2 Character	istics of LED	
2. Character		

3. Experimental study of Opto-isolator (IC 4N28).

	TOTAL PERIODS: 45+30
	TEXT BOOKS
1.	Boylestead L R and Nashelsky L, 'Electronic Devices and Circuit theory', Pearson Prentice
	Hall, New Delhi, 2018, 11 th edition.
2.	Salivahanan, Suresh kumar, 'Electronic Devices and Circuits', Tata McGraw Hill 2013, 3rd
	edition.
	REFERENCE BOOKS
1.	Thomas L Floyd, 'Electronic Devices', Prentice Hall of India, New Delhi, 2013, 7th edition.
2.	Donald A Neamen, 'Electronic Circuit Analysis and Design', Tata McGraw Hill 2007, 3rd
	edition.
3.	G.K.Mithal, 'Electronic devices and circuits', Khanna Publishers, New Delhi, 2010, 23rd
	edition.
4.	Millman J, Christos C Halkias, SatyabatraJit, 'Electronic devices and circuits', Tata
	McGraw-Hill Publishing Company Ltd., New Delhi, 2012, 3rd edition.
5.	Theodore F Bogart Jr, Jefffrey S Beasley, Guillermo Rico' 'Electronic devices and circuits',
	Prentice Hall of India, New Delhi, 2004, 6th edition.
6.	For datasheets: https://www.alldatasheet.com/

IN SEAN	151	COURSEOU	TCOMES	
	ILI		- 1	2.

COs	STATEMENTS	RBT LEVEL
1	Apply the concepts of PN junction devices and analyse its various electronic circuits	4
2	Analyse the various configurations of bipolar junction transistors and amplifiers	4
3	Analyse the various configurations of field effect transistors and amplifiers	4
4	Analyse the performance of multistage and feedback amplifier circuits	4
5	Understand the operation of oscillators and Optoelectronic devices and analyse its behaviour using practices	4

				COUR	RSE AI	RTICU	JLATI	ON MA	ATRIX					
COs POs											PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	3				3	3		2	3	
2	3	3	3	2	3				3	3		2	3	
3	3	3	3	2	3				3	3		2	3	
4	3	3	3	2	3				3	3		2	3	
5	3	3	3	2	3				3	3		2	3	
3- High Map	ping; 2-I	Modera	te Map	ping; 1	-Low N	Iappin	g							

SL.NO	DESCRIPTION OF EQUIPMENTS	QUAN	TITY REQUIRED
1.	Regulated Power supply		15
2.	CRO 30MHz	~ /	6
3.	DSO	10	2
4.	Function Generator	5	6
5.	Digital Multimeter	01	6
6.	Bread board	2	10
7.	Diode, Zener diode, BJT, UJT, JFET, MOSFET, UJT, LED, Photodiode, Phototransistor and Opto-coupler IC	E	Each 10
8.	Ammeter in various milli and micro ampere ranges	21	15
9.	Voltmeter in various ranges between 0-30V	21	15
10.	Resistors of various ranges	2/	50
11.	Capacitors of various ranges	1	25
12.	Connecting wires	/	As required

EE22311	ELECTRICAL MACHINES I LABORATORY	LT PC					
		0 0 3 1.5					
COURSE (DBJECTIVES						
• Ev	aluate the Load characteristics of DC machines and transformers.						
• Ex	amine the performance characteristics of DC machines and Transformers using	Direct and					
Inc	lirect tests.						
• Inv	vestigate different Speed control methods of DC Shunt Motor.						
• Ur	iderstand the need for starters.						
• Ot	btain the Load test plots for Three Phase Transformers.						
	LIST OF EXPERIMENTS						
	DC Machines						
1.	Open circuit and Load characteristics of DC Separately Excited and Self Ex	ccited Shun					
	Generator						
2.	Load characteristics of DC Compound Generator with differential and cumulative of	connections					
3.	Load test on DC Shunt, Series and Compound motor						
4.	Swinburne's test						
5.	Hopkinson's test on DC Motor – Generator set						
6.	Study of Starters, Regenerative and Dynamic braking for DC motors						
7.	Speed control of DC shunt Motor and its 4 Quadrant operation						
	Transformers						
8.	Load test on Single-Phase Transformer and Three Phase Transformers						
9.	Open circuit and Short circuit tests on Single Phase Transformer						
10.	Polarity Test and Sumpner's test on Single Phase Transformers						
11.	Separation of no-load losses in Single Phase Transformer						
	TOTAL	PERIODS:4					
	5						
	COURSE OUTCOMES						

	COURSE OUTCOMES						
Upon the successful completion of the course, the students will be able to							
COs	STATEMENTS						
1	Determine the performance characteristics of a DC machine operating as a Generator or Motor	3					
2	Estimate the performance of a DC machine by Indirect methods	4					
3	Identify and apply suitable method of starting, speed control and braking of a DC motor	3					
4	Determine the performance characteristics of Single and Three Phase Transformers	4					
5	Pre-determine the performance of Single phase Transformer	4					
Bloom's T Create-6	Caxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; E	Evaluate-5;					

COURSE ARTICULATION MATRIX														
COs	Os POs										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	2	2		2	3	2		2	3	
2	3	3	3	2		2		2	3	2		2	3	
3	3	3	3	2	2	2		2	3	2		2	3	
4	3	3	3	2	2	2		2	3	2		2	3	2
5	3	3	3	2		2		2	3	2		2	3	2
3- High Mapping; 2-Moderate Mapping; 1-Low Mapping														

	COLLE						
LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS							
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED					
1.	DC Separately excited generator coupled with DC Shunt Motor	1					
2.	DC Shunt generator Coupled with DC Shunt Motor	A 1					
3.	DC Shunt Motor Coupled with DC Compound Generator	1					
4.	DC Shunt Motor with loading Arrangement	5 1					
5.	DC Series Motor with loading Arrangement	67 1					
6.	DC Compound motor with loading Arrangement	7 1					
7.	DC drive for 4 quadrant operation of dc motor	1					
8.	Dynamic braking panel for dc motor	1					
9.	Single Phase Transformer	6					
10.	Three phase Transformer	2					
11.	Single Phase Resistive Loading Bank	2					
12.	Three Phase Resistive Loading Bank	2					
13.	Tachometer -Digital/Analog	8					
14.	Single Phase Auto Transformer	5					
15.	Three Phase Auto Transformer	1					
16.	SPST switch	3					
17.	Wattmeter	10					
18.	Lamp loading arrangement	3					
19.	Ammeters	20					
20.	Voltmeters	20					
21.	Rheostats	15					
SEMESTER-IV

MA 22452	NUMERICAL METHODS	ITPC
WIA22732	(COMMON TO CH ANDEE)	3104
COURSE OB	IFCTIVES	3107
• Lear	n the solution of algebraic transcendental equations, system of linear equations	
• Unde	erstand the concept of Interpolation and approximation	
• Lear	n how to apply numerical differentiation and Integration	
• Fami	iliarize in solving IVP	
• Unde	arstand how to solve RVP in ODE and PDE	
	SOLUTION OF FOULTIONS AND FIGEN VALUE PROBLEMS	12
Introduction	to computation software for numerical methods solution of algebraic and tra	nscendental
equations – N	Newton Raphson method- Solution of linear system of equations – Gauss elimination	n method –
Pivoting - G	auss Jordan method. Solution of Tri-diagonal system of equations – Gauss Seic	lel iterative
method – Ma	trix Inversion by Gauss Jordan method – Eigen values of a matrix by Power method	l and Jacobi
Method for sy	ymmetric matrix. Solving equations and Eigen value problems using computational	tools.
UNIT II	INTERPOLATION AND APPROXIMATION	12
Finite differe	nce operators and its relations - Interpolation with equal intervals - Newton's f	orward and
backward dif	ference formulae – Interpolation with unequal intervals – Lagrange's interpolation	– Newton's
divided differ	rence interpolation–Interpolation and Approximation using computational tools.	
UNIT III	NUMERICAL DIFFERENTIATION AND INTEGRATION	12
Approximation	on of derivatives using interpolation polynomials – Numerical integration using 7	Trapezoidal,
Simpson's 1/	/3 rule, Romberg's Method – Two point and three-point Gaussian quadrature	formulae –
Evaluation of	f double integrals by Trapezoidal and Simpson's 1/3 rules-Application of computa	tional tools
for numerical	differentiation and integration.	
UNIT IV	INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS	12
Single Step	methods - Taylor's series method, Modified Euler's method - Fourth order R	lunge-Kutta
method for s	olving first order equations, second order equations and simultaneous first order	equations –
Multi step m	ethods - Milne's and Adams- Bash forth predictor corrector methods for solving	g first order
equations-So	olving Initial value problems using computational tools.	
UNIT V	BOUNDARY VALUE PROBLEMS	12
Finite differe	ence solution of ODE. Finite difference techniques for the solution of two-	limensional
Laplace's and	l Poisson's equations on rectangular domain - One dimensional heat flow equation	by explicit
and implicit	(Crank Nicholson) methods - One dimensional wave equation by explicit methods	od-Solving
Boundary val	ue problems using computational tools.	
	TOTAL PERIODS:60	
	TEXT BOOKS	
1.	Grewal. B.S., 'Numerical Methods in Engineering and Science with Programs	in C, C++
	&MATLAB', Khanna Publishers, New Delhi, 2013, 11th Edition.	
2.	Jain M.K., Iyengar. S.R.K., and Jain. R.K, 'Numerical Methods for Scie	ntific and
	Engineering Computation', New Age International Publishers, New Delhi, 2015.	
3.	Chapra. S.C., and Canale.R.P., 'Numerical Methods for Engineers', Tata McGraw	Hill, New
	Delhi, 2015, 7 th Editon.	

	REFERENCE BOOKS
1.	Sankara Rao. K., Numerical methods for Scientists and Engineers, Prentice Hall of India,
	New Delhi, 2007, 3 rd Edition.
2.	Gerald. C. F., and Wheatley. P. O., 'Applied Numerical Analysis', Pearson Education, Asia,
	New Delhi, 2009.
3.	Venkataraman. M.K. 'Numerical Methods in Science and Engineering', National Publishers,
	2001.
4.	Kandasamy. K., Thilagavathy. K., and Gunavathi. K., 'Numerical Methods', S. Chand
	&Company Ltd., New Delhi, 2008.
5.	Sastry, S.S., 'Introductory Methods of Numerical Analysis', Prentice Hall of India, 2010.
	WEBLINKS
1.	https://nptel.ac.in/courses/111/107/111107105/
2.	https://nptel.ac.in/courses/111/107/111107063/

Inon the a	uses of the source the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Have the fundamental knowledge of solving an algebraic or transcendental equation, linear system of equations	3
2	Appreciate the numerical techniques of interpolation in various intervals	4
3	Apply the numerical techniques of differentiation and integration for engineering problems	3
4	Solve Initial value problems using an appropriate numerical technique	5
5	Solve Boundary value problems using finite difference method	5
Bloom's T	Caxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6

COs			1	w 7	0	Р	Os	/	1	0/			PSC)s
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2				1.01	-				2	3	3
2	3	3	2									2	3	3
3	3	3	2										3	3
4	3	3	2	2									3	3
5	3	3	2	2									3	3
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	Aappin	g	-						

GE22451	ENVIRONMENTAL SCIENCES AND SUSTAINABILITY	L T P C
	(COMMON TO ALL BRANCHES)	3003
COURSE OB	JECTIVES	
• To in	ntroduce the basic concepts of environment, ecosystems and biodiversity and emp	hasize the
biodi	versity of India and its conservation.	
• To in	npart knowledge on the causes, effects and control or prevention measures of envi	ronmental
pollu	tion.	
• To st	udy and understand the various types of renewable sources of energy and their appli	cations.
• To f	amiliarize the concept of sustainable development goals, economic and social	aspects of
susta	inability, recognize and analyze climate changes, and environmental management cl	nallenges.
• To i	nculcate and embrace sustainability practices, develop a broader understanding	of green
mate	rials and energy cycles, and analyze the role of sustainable urbanization.	
UNIT I	ENVIRONMENT AND BIODIVERSITY	9
Definition, so	cope and importance of environment - need for public awareness. Eco-system a	and Energy
flow- food c	hains, food webs and ecological pyramids, ecological succession. Biodiversity- typ	es-genetic,
species and e	ecosystem diversity- values of biodiversity, India as a mega-diversity nation - h	ot-spots of
biodiversity -	- threats to biodiversity: fragmentation and habitat loss, poaching of wildlife, hum	1an-wildlife
conflicts - en	dangered and endemic species of India -conservation of biodiversity: In-situ and ex	-situ.
UNIT II	ENVIRONMENTAL POLLUTION	9
Definition, ca	auses, effects and preventive measures of air, water and soil pollution. Marine a	and thermal
pollution – c	causes, effects and control measures. Light and noise pollution-effect on flora	and fauna.
Nuclear pollu	tion-Sources, effects and control measures. Disposal of radioactive wastes (Nucle	ar hazards).
Pollution cas	e studies. Role of an individual in the prevention of pollution. Solid, hazardous a	nd E-waste
management.	Occupational health and safety management system (OHASMS). Environmental	protection,
Environmenta	al protection acts, categorization of spices according to IUCN.	
UNIT III	RENEWABLE SOURCES OF ENERGY	9
Energy resou	rces: Growing energy needs, Non renewable resources - types, uses. Energy mana	gement and
conservation	- New energy sources, Need of new sources - geo suitability of establishing renew	able energy
sources, diffe	rent types new energy sources. Applications of hydrogen energy, ocean energy reso	urces, Tidal
energy conve	ersion. Concept, origin and power plants of geothermal energy. Role of an in	dividual in
conservation	of energy.	
UNIT IV	SUSTAINABILITY AND MANAGEMENT	9
Development	, GDP, Sustainability- concept, needs and challenges-economic, social and	aspects of
sustainability	-from unsustainability to sustainability-millennium development goals, and	protocols,
Sustainable I	Development Goals-targets, indicators and intervention areas –Principles of green	chemistry,
Climate chan	ge- Global, Regional and local environmental issues and possible solutions-case stu	.dies – Role
of non-gover	nmental organization, Concept of carbon credit, carbon footprint – Environmental n	nanagement
in industry–A	case study.	
UNIT V	SUSTAINABILITY PRACTICES	9
Zero waste	and R concept, circular economy, ISO 18000 series, material life cycle	assessment,
environmenta	al impact assessment. Wasteland reclamation, Sustainable habitat: green build	ings, green
materials, end	ergy efficiency and energy audit, sustainable transports. Energy cycles, carbon cycl	e, emission
and sequestra	tion, Green engineering: sustainable urbanization- socio-economical and technologi	cal change.

Rain water	harvesting, watershed management environmental ethics: Issues and possible solutions.
	TOTAL PERIODS: 45
	TEXT BOOKS
1.	Anubha Kaushik and C. P. Kaushik's 'Perspectives in Environmental Studies', NewAge International Publishers, 7 th Edition, 2022.
2.	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
3.	Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', Pearson Education2 nd edition, 2004.
4.	Allen, D. T. and Shonnard, D. R., 'Sustainability Engineering: Concepts, Design and Case Studies', Prentice Hall.
5.	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
6.	'Environment Impact Assessment Guidelines, Notification of Government of India', 2006.
7.	Mackenthun, K.M., 'Basic Concepts in Environmental Management', Lewis Publication London, 1998.
	REFERENCE BOOKS
1.	R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media.
2.	Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ. House, Mumbai, 2001.
3.	Dharmendra S. Sengar, 'Environmental law', Prentice Hall of India PVT. LTD, New Delhi 2007.
4.	Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press 3 rd edition, 2015.
5.	Erach Bharucha "Text book of Environmental Studies for Undergraduate Courses" Orien Blackswan Pvt. Ltd, 2021, Edition.

COs	STATEMENTS	RBT
		LEVEI
1	Recognize the fundamental role of ecosystems and suggest an appropriate method for the conservation of biodiversity	3
2	Describe the different types of pollution, their effects and strategies to control pollution	3
3	Identify the various renewable energy resources and use the appropriate one thereby conserving non-renewable resources for future generation	3
4	Explain the various goals of sustainable development applicable to suitable technological advancement and societal development	2
5	Summarize the various sustainability practices, green materials, energy cycles, and the role of green engineering in sustainable urbanization	2

				COUR	SE AR	TICU	LATIC	ON MA	TRIX					
COs						Р	Os						PSO	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3					3	3	2		2		1	2	2
2	3					3	3	2		2		2	2	2
3	3		1			3	3	1		2		1	2	2
4	3					3	3	3		2		2	2	2
5	3					3	3	3		2		2	2	2
3- High Mapp	ing; 2-Mo	oderate	Mappi	ng; 1-I	Low Ma	apping					- -			-

EE22401	ANALOG ELECTRONICS	L T P C
		3003
COURSE OB	JECTIVES	
• To u	nderstand the Monolithic IC Fabrication process.	
• To p	erform mathematical operations using Op-amp.	
• To le	earn about various applications of Op-amp.	
• To u	nderstand the functioning of ICs-Voltage regulators and amplifiers	
UNIT I	IC FABRICATION	9
Monolithic I	C technology-Basic planar processes-Fabrication of Monolithic transistors, FET,	Monolithic
diodes, Integr	rated resistors, Integrated capacitors, and PV cell, Thin and Thick film technology.	
UNIT II	LINEAR IC – OPERATIONAL AMPLIFIER	9
Basic of Op-	Amp, Internal Block Diagram and Ideal characteristics, DC characteristics, AC characte	acteristics –
Basic Applic	cations: Inverting Amplifier, Inverter, Scale changer, Inverting summer - No	n Inverting
Amplifier, V	oltage follower, Non Inverting summer, Differential Amplifier, Subtractor, Instructor, Ins	rumentation
amplifier, Dif	fferentiator, Integrator.	
UNIT III	APPLICATIONS OF OPERATIONAL AMPLIFIER	9
Instrumentati	on amplifier V to I, I to V Converters, Comparator, Clipper, Clamper, Peal	k Detector,
Multivibrator	s, Waveform Generation: Triangular, Saw tooth, Sinusoidal, Schmitt Trigger - I of	order and II
order active f	ilters – A/D converters (Dual Slope, Successive Approximation and Flash), D/A converters	nverters (R-
2R ladder and	l weighted resistor) – Precision Rectifiers –Sample and Hold circuit.	
UNIT IV	SPECIAL ICs	9
555 Timer-F	unctional Block Diagram, Characteristics, Monostable and Astable modes of ope	ration– 565
Phase Locke	d Loops (PLL) - Block Diagram, operation - 566 Voltage controlled Oscil	lator, PLL,
Applications	–Analog multiplier and Divider, AD633-Analog multiplier ICs.	
UNIT V	APPLICATION ICs	9
IC voltage re	egulators, LM78XX, 79XX– Fixed and adjustable three terminal regulators, LM7	23 General
purpose volta	ge regulator, Block diagram, Circuit configurations, Current limiting schemes, Ou	tput current
boosting, Sw	itching regulators-SMPS-LM324 Single Supply Quad Operational amplifiers-LM	1380 Power
amplifier-AD	0623 Instrumentation amplifier and its application.	
	TOTAL PER	IODS: 45
	TEXT BOOKS	
1.	D.RoyChoudhary, ShailB.Jain, 'Linear Integrated Circuits', New Age, 2017, 4th Ec	lition.
2.	Ramakant A.Gayakward, 'Operational amplifiers and Linear Integrated Circuits	s', Pearson
	Education, PHI. 2015, 4 th Edition.	
	REFERENCE BOOKS	
1.	David A.Bell, 'Operational amplifiers and Linear ICs', Oxford, 2013, 3 rd Edition.	
2.	Robert F.Coughlin, Fredrick F. Driscoll, 'Operational amplifier and linear	integrated
	circuits", Prentice Hall of India 2014, 6th Edition.	
3.	Sergio Franco, 'Design with Operational Amplifiers and Analog Integrated	Circuits',
	McGraw Hill, 2017, 4 th Edition.	

					COU	RSE (OUTCO	OMES						
Upon the s	uccessful	complet	tion of	the cou	rse, the	studer	nts will	be able	to					
COs					S	STATI	EMENT	ГS					RB LEV	T EL
1	Comp	rehend nts and	the device	fundar es.	nental	techr	niques	for fa	bricat	ions of	f Mon	olithic	4	
2	Demo	nstrate	the ba	sic app	olicatio	ons of	Op-am	p.					4	
3	Constr	ruct wa	veform	n gene	ration	circuit	ts of O	p-amp	and co	nverter	s.		4	
4	Exami	ine the	interna	al sche	matic l	layout	and op	peration	n of Sp	ecial IO	Cs.		4	-
5	Practio	ce with	differ	ent app	olicatio	ons bas	sed on	Applic	ation I	C's.			4	_
Bloom's T	'axonomy	(RBT)	Level:	Reme	mber-1;	Unde	rstand-2	2; Apply	y-3; An	alyze-4	; Evalua	ate-5; Cre	eate-6	
				COU	RSE AI	RTICU	JLATI	ON MA	TRIX					
COs		POS												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	2	÷ .,	3.	2	2	2		2	2	
2	3	3	3	2	2		New S	2	2	2	11	2	2	2
3	3	3	3	2	2	/	-	2	2	2	21	2	2	2
4	3	3	3	2	2	P	0	2	2	2	01	2	2	2
5	3	3	3	2	2	-		2	2	2	-	2	2	2

परा

tradit of

533223- High Mapping; 2-Moderate Mapping; 1-Low Mapping

125 0 100

W

EE22402	CONTROL SYSTEMS	L T P C
		3003
COURSE O	BJECTIVES	
• Uno	derstand the use of transfer function models for analysis of physical systems and in	troduce the
con	trol system components.	
• Imp	part adequate knowledge on the time response of various systems and steady	state error
ana	lysis.	
• Acc	cord basic knowledge in obtaining the open loop and closed loop frequency re	sponses of
syst	tems and stability analysis.	
• Stat	te the need of controller in closed loop system and design the compensators.	
• Lea	rn state variable representation of physical systems and study the effect of state feed	lback.
UNIT I	SYSTEMS AND THEIR REPRESENTATION	9
Basic eleme	ents in control systems – Open and closed loop systems – Transfer function $-N$	lodelling of
mechanical	and electrical systems – Analogy – Synchros – AC and DC servomotors – overall sy	/stem gain –
Block diagra	am reduction techniques – Signal flow graphs – Thermal and pneumatic system.	_
UNIT II	TIME RESPONSE	9
Type and or	der of the system – Types of test input – Time response of first and second order system	stem – Time
domain spec	cifications static and dynamic Error coefficients – Steady state error – Root locus tec	hnique.
UNIT III	FREQUENCY RESPONSE	9
Frequency r	esponse – Frequency domain specifications – Correlation between frequency domain	ain and time
domain spec	cifications – Determination of closed loop response from open loop response – Stabi	lity analysis
– Bode plot	-Polar Plot- Routh Hurwitz criterion – Nyquist stability criterion.	
UNIT IV	CONTROLLERS AND COMPENSATORS DESIGN	9
Needs of Co	ontroller–Implementation of P,PD,PI and PID controller using OPAMP, Effects of	controller in
feedback sy	stem, Effect of adding poles and zeros – Lag, lead and lag-lead networks – Lag, le	ead and lag-
lead comper	isators design using Bode plot – Design of state feedback controller.	0
UNIT V	STATE VARIABLE ANALYSIS	9
Concept of	state variables – State models for linear and time invariant Systems – Different fo	rms of state
model - S	olution of state equation - State transition Matrix and properties – Control	lability and
Observabilit	ty – State model for Discrete time system.	
	TOTAL PER	IODS: 45
1	IEXI BUUKS	1
1.	Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age In	iternational
	Publishers, 2017, 6 th edition.	
2.	Norman S Nise, 'Control Systems Engineering', Wiley, 2015, 7"Edition.	
	REFERENCE BOOKS	XX'11 XX
1.	M. Gopal, "Control Systems, Principles and Design", 4th Edition, Tata McGraw	Hill, New
2.	S K Bhattacharva Control System Engineering 3rd Edition Pearson 2013	
3.	Richard C. Dorf and Robert H. Bishon "Modern Control Systems" Prentice Hall	2012
4.	K Ogata "Modern Control Engineering" PHI 2012 5 th edition	2012.
5	S Palani Anoonk Jairath "Automatic Control Systems including MATI AD" A	NF Rooks
J.	2013	TYLE DOUKS,
	2013.	

6. Benjamin C. Kuo, "Automatic Control systems", Wiley, 2014.

100 101

					COU	JRSE (OUTCO	OMES						
Upon the s	uccessful c	complet	ion of	the cou	rse, the	e stude	nts will	be able	e to					
COs						STATI	EMENI	S					RB LEV	T EL
1	Derive	transf	er fun	ctions f	for ele	ctrical	and m	echani	cal sys	tems			4	
2	Analyz	Analyze the root locus for a transfer function and interpret time response												
3	Sketch system	Bode by Ro	and Po outh-H	olar plo urwitz	ots for and N	a tran Iyquist	sfer fui t criteri	nction a	and ve	rify th	e stabili	ty of a	4	
4	Impler	nent a	Contro	oller ar	nd Des	ign a (Compe	nsator	using I	Bode p	lots		4	
5	Solve	a physi	cal sy	stem w	vith sta	ate var	iables	_	-				4	
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1	; Unde	rstand-2	; Appl	y-3; An	alyze-4	4; Evalua	ate-5; Cro	eate-6	
			/	COUR	RSE A	RTIC	ULATI	ON MA	ATRIX	1	2			
	POs										PSOs			
COs		1	6	1			OS			1			P30	Us
COs	1	2	3	4	5	6	20s	8	9	10	11	12	1	$\frac{0}{2}$
COs	1	2	3	4	5	6	7	8	9 2	10	I	12 3	1 3	$\frac{2}{3}$
COs 1 2	1 3 3	2 3 3	3 3 3	4 3 3	5	6	7	8	9 2 2	10	N N	12 3 3	PS 1 3 3	2 3 3
COs 1 2 3	1 3 3 3	2 3 3 3	3 3 3 3	4 3 3 3	5	6	7 7	8	9 2 2 2 2	10	RNGI	12 3 3 3	PS 1 3 3 3	2 3 3 3
COs 1 2 3 4	1 3 3 3 3 3	2 3 3 3 3	3 3 3 3 3	4 3 3 3 3	5	6	7 7	8	9 2 2 2 2 2 2	10	MGINI	12 3 3 3 3	PS 1 3 3 3 3 3	2 3 3 3 3 3

tant

EE22403	ELECTRICAL MACHINES II	LTPC						
		3003						
COURSE OB	JECTIVES							
• Con	struction, principle of operation and performance of induction machines.							
• Star	ting and speed control of three-phase induction motors.							
• Cons	truction, principle of operation and performance of single phase induction motors a	and special						
mach	nines.							
• Con	struction and performance of salient and non – salient type synchronous generators.							
Prince	tiple of operation and performance of synchronous motor.							
UNIT I	THREE PHASE INDUCTION MOTOR	9						
Constructiona	al details – Types of rotors - Principle of operation – Slip – Equivalent circuit –	Forque-Slip						
characteristic	s – Condition for maximum torque – Three phase windings – Cogging and crawlin	ng – Losses						
and efficiency	y – No load and blocked rotor tests – Circle diagram – Double cage induction motors	– Induction						
Generator.	AUULLEGE							
UNIT II	STARTING, BRAKING AND SPEED CONTROL OF THREE PHASE	9						
	INDUCTION MOTOR							
Need for starting – Types of starters – DOL, Rotor resistance, Auto transformer and Star-delta starters –								
Speed control – Voltage control, Frequency control and Pole changing – Cascaded connection – V/F control								
- Slip power recovery scheme – Braking of three phase induction motor: Plugging, dynamic braking and								
regenerative braking.								
	SINGLE PHASE INDUCTION MOTORS	9						
Constructional details – Double field revolving theory and operation – Equivalent circuit – No load and								
blocked rotor	test – Performance analysis – Starting methods – Capacitor- start & run Inducti	on motor –						
Shaded pole	induction motor- AC series motor - Hysteresis motor - Synchronous reluctan	ce motor –						
Stepper moto								
Construction	SYNCHRONOUS GENERATOR	9 reactance						
Armatura rac	n details – Types of fotors winding factors – EWF equation – Synchronous f	mothoda						
Synchronizat	- Finason diagram – voltage regulation – EWF, WWF, ZFF and A.S.A	neration -						
The Conditio	ns Required for Paralleling - The General Procedure for Paralleling Generators T	wo reaction						
theory – Slip	test – Transient reactance	wo reaction						
UNIT V	SYNCHRONOUS MOTOR	9						
Principle of	$\frac{1}{1}$	V curves –						
Power input	and power developed equations – Starting methods – Current loci for constant p	ower input.						
constant excit	tation and constant power developed – Hunting – frequency of oscillation – damper	windings -						
Synchronous	condenser.	0						
	TOTAL PER	IODS: 45						
	TEXT BOOKS							
1.	A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mo	Graw Hill						
	publishing Company Ltd, 6th Education 2017.							
2.	Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.							
3.	Stephen J. Chapman, 'Electric Machinery Fundamentals', McGraw Hill Education Provide Action Prov	vt. Ltd, 4th						
	Edition 2017.							

	REFERENCE BOOKS										
1.	D.P. Kothari and I.J. Nagrath, 'Electric Machines', McGraw Hill Publishing Company Ltd, 5th										
	Edition 2017.										
2.	P.S. Bhimbhra, 'Electrical Machinery', Khanna Publishers, 2 nd Edition, 2021.										
3.	M.N. Bandyopadhyay, 'Electrical Machines Theory and Practice, PHI Learning PVT LTD', New										
	Delhi, 2009.										
4.	B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers, 3rd										
	Edition, Reprint 2015.										
5.	Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, 2002.										

					COU	RSE O	UTCC	OMES						
Upon the su	ccessful c	complet	ion of	the cour	rse, the	studen	ts will	be able	to					
COs STATEMENTS										RB LEV	T EL			
1 Determine the performance parameters of a Three phase Induction Motor by suitable tests										tor by	3			
2	2 Evaluate different types of Starters and classify the Speed control schemes of Three phase Induction Motors										nes of	3		
3	Characterize different types of Single phase Induction Motors and special machines									3				
4	Predict the Regulation of an Alternator by different methods									3				
5 Describe the Operation and Characteristics of Synchronous Motors									3					
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Creat											ate-6			
		12	1	COUF	RSE AI	RTICU	LATI	ON MA	TRIX		51			
COs		1-				PO	D's	2	524	13	21		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3		E.	19		2	5		3	3	3
2	3	3	3	3	0		2	1	2	-/		3	3	3
3	3	3	3	3	98]	7 τ	TCI	20	2			3	3	3
4	3	3	3	3	_		1.51	-	2			3	3	3
5	3	3	3	3					2			3	3	3

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

EE22404	MEASUREMENT AND INSTRUMENTATION	L T P C								
		3003								
COURSE O	BJECTIVES									
• Edu	ucate the fundamental concepts and characteristics of measurement and errors.									
• Imj	part the knowledge on the functional aspects of measuring instruments.									
• Inf	• Infer the importance of various bridge circuits used with measuring instruments.									
• Edu	ucate the fundamental working of sensors and transducers and their applications.									
• Un	derstand the structure of overall measurement and instrumentation with the know	owledge of								
dig	ital Instrumentation principles.	-								
UNIT I	INTRODUCTION TO MEASUREMENTS	9								
Measureme	nts -types-Classification and applications of instruments - Elements of a	generalized								
measuremen	nt system - Static and Dynamic characteristics - Errors in measurement -Statistica	l evaluation								
of measurer	nent data- Instrument standards.									
UNIT II	ANALOG INSTRUMENTS	9								
Classification	on of instruments - Moving Coil and Moving Iron meters - Induction type, Dynam	ometer type								
Wattmeters	- Energy meter - Megger - Instrument transformers (CT & PT), Instrumentation Au	nplifier.								
UNIT III	COMPARATIVE METHODS OF MEASUREMENTS	9								
D.C potentiometers, D.C (Wheat stone, Kelvin and Kelvin Double bridge) & A.C bridges (Maxwell,										
Anderson and Schering bridges), transformer ratio bridges, self-balancing bridges. Interference & screening										
– Multiple e	earth and earth loops – Electrostatic and electromagnetic Interference – Grounding te	chniques.								
UNIT IV	DIGITAL INSTRUMENTS, STORAGE AND DISPLAY DEVICES	9								
Digital Multimeter, Energy meter, frequency meter, Phase meter, SD Card and tape – Recorders, digital										
plotters and	printers, digital CRO, LED, LCD & Dot matrix display – Data Loggers.	1								
UNIT V	TRANSDUCERS AND DATA ACQUISITION SYSTEMS	9								
Classificatio	on and selection of Transducers – Resistive, Inductive and Capacitive transducer	, Ultrasonic								
sensor, Piez	zoelectric, Hall effect and Optical Transducer – Smart Sensors. DSO – Introduct	ion to PLC								
SCADA, IC	of and Introduction to Virtual Instrumentation using Lab view.	DIODG 4								
	TOTAL PE	RIODS: 45								
1	TEXT BOOKS									
1.	A.K. Sawhney, PuneetSawhney 'A Course in Electrical & Electronic Measu	rements &								
	Instrumentation', Dhanpat Rai and Co, New Delhi, Edition 2015.									
2.	H.S. Kalsı, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2017.									
1	REFERENCE BOOKS									
1.	M.M.S. Anand, 'Electronics Instruments and Instrumentation Technology', Pro	entice Hall								
	India, New Delhi, 2013.									
2.	W.Bolton, Programmable Logic Controllers, Elseiver, 2010, 5 th Edition.									
3.	R.B. Northrop, 'Introduction to Instrumentation and Measurements', Taylor & Fra	ncis, New								
	Delhi, 2008.									
4.	E. O. Doebelin and D. N. Manik, "Measurement Systems - Application and De	sign", Tata								
	McGraw-Hill, New Delhi, 2007.									
5.	R. K. Rajput, "Electrical and Electronics Measurements and Instrumentation", C	Chand Pub,								
	2016.									

					COU	RSE (OUTCO	OMES						
Upon the suc	ccessful c	complet	ion of	the cour	se, the	stude	nts will	be able	to					
COs					S	STATI	EMENI	ſS					RBT LEVEL	
1	Explai	n the N	/leasur	ements	in En	iginee	ring						5	
2	Exami	ne the	structu	ıral elei	ments	of var	ious In	strume	ents				4	
3	Estimate the unknown resistance, Inductance and Capacitance by using Bridges												5	
4	Categorize the concept of Digital Instrumentation and Virtual Instrumentation													
5	Apply	the co	ncepts	of Sen	sors/T	ransd	ucers						4	
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6														
COURSE ARTICULATION MATRIX														
COs	PO's										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	3		Rec	2	3	2	10	3	2	3
2	3	3	2	2	3	-	-	2	3	2	21	3	2	3
3	3	3	2	2	3	0	0	2	3	2	01	3	2	3
4	3	3	2	2	3	×		2	3	2	-	3	2	3
5	3	3	3	2	3	1000	V	2	3	2	<	3	2	3
3- High Map	ping; 2-l	Modera	te Map	ping; 1-	Low N	Mappin	g	11	0.	1	10			
		1=	1			-					21			
		1-	1			_	201	1		1:	~/			
		1	3	12		1	÷.		10	15	2/			
			U)	1		÷	11		/	5	/			
			1	~ Y	0		Y.	/	1	-/				
			0	1	181	7 7		55	0.	/				
					-	1	1-(1	T	_					

0 0 0 3 1.5 COURSE OBJECTIVES • To familiarize students with the basic operation of operational amplifier and its design. • To Provide knowledge on non-linear applications of op-amp, active filter design and A/D and D/A converter. • To develop the acquaintance on the various applications of 555 Timer /PLL/Regulator ICs. • To enrich the students with concepts of PCB fabrication and simulators. LIST OF EXPERIMENTS Linear applications of Op-amp 1. Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier 2. Instrumentation Amplifier 3. Differentiator and Integrator Non-Linear applications of Op-amp 4. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC	EE22411	ANALOG ELECTRONICS LABORATORY	LTPC
 COURSE OBJECTIVES To familiarize students with the basic operation of operational amplifier and its design. To Provide knowledge on non-linear applications of op-amp, active filter design and A/D and D/A converter. To develop the acquaintance on the various applications of 555 Timer /PLL/Regulator ICs. To enrich the students with concepts of PCB fabrication and simulators. Linear applications of Op-amp Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier Instrumentation Amplifier Instrumentation and Integrator Non-Linear applications of Op-amp Comparator Clipper and Clamper Clipper and Clamper Precision rectifier Nultivibrators and Triangular wave generator. Data converters Low pass filter and High pass filter Special ICs Applications Astable and Monostable Multivibrators using NE/SE 555 Timer IC Frequency multiplication using NE/SE 565 PLL IC Design and Implementation of High and Low Voltage Regulator using IC723 			0 0 3 1.5
 To familiarize students with the basic operation of operational amplifier and its design. To Provide knowledge on non-linear applications of op-amp, active filter design and A/D and D/A converter. To develop the acquaintance on the various applications of 555 Timer /PLL/Regulator ICs. To enrich the students with concepts of PCB fabrication and simulators. LIST OF EXPERIMENTS Linear applications of Op-amp Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier Instrumentation Amplifier Differentiator and Integrator Non-Linear applications of Op-amp Comparator Clipper and Clamper Clipper and Clamper Clipper and Triangular wave generator Data converters Analog to digital converter and Digital to analog converter Active Filters Low pass filter and High pass filter Special ICs Applications Prequency multiplication using NE/SE 555 Timer IC Frequency multiplication using NE/SE 565 PLL IC Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 	COURSE C	DBJECTIVES	
 To Provide knowledge on non-linear applications of op-amp, active filter design and A/D and D/A converter. To develop the acquaintance on the various applications of 555 Timer /PLL/Regulator ICs. To enrich the students with concepts of PCB fabrication and simulators. LIST OF EXPERIMENTS Linear applications of Op-amp Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier Instrumentation Amplifier Instrumentation Amplifier Operator Comparator Comparator Clipper and Clamper Clipper and Clamper Clipper and Triangular wave generator Data converters Analog to digital converter and Digital to analog converter Active Filters Low pass filter and High pass filter Special ICs Applications Astable and Monostable Multivibrators using NE/SE 555 Timer IC Frequency multiplication using NE/SE 565 PLL IC Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 	• To	familiarize students with the basic operation of operational amplifier and its des	sign.
D/A converter. • To develop the acquaintance on the various applications of 555 Timer /PLL/Regulator ICs. • To enrich the students with concepts of PCB fabrication and simulators. LIST OF EXPERIMENTS Linear applications of Op-amp 1. Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier 2. Instrumentation Amplifier 3. Differentiator and Integrator Non-Linear applications of Op-amp 4. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	• To	Provide knowledge on non-linear applications of op-amp, active filter design	and A/D and
 To develop the acquaintance on the various applications of 555 Timer /PLL/Regulator ICs. To enrich the students with concepts of PCB fabrication and simulators. LIST OF EXPERIMENTS Linear applications of Op-amp Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier Instrumentation Amplifier Instrumentation and Integrator Non-Linear applications of Op-amp Comparator Clipper and Clamper Clipper and Clamper Precision rectifier Multivibrators and Triangular wave generator Data converters Low pass filter and High pass filter Special ICs Applications Astable and Monostable Multivibrators using NE/SE 555 Timer IC Frequency multiplication using NE/SE 565 PLL IC Design and Implementation of High and Low Voltage Regulator using IC723 	D/.	A converter.	
To enrich the students with concepts of PCB fabrication and simulators. LIST OF EXPERIMENTS Linear applications of Op-amp Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier Instrumentation Amplifier Instrumentation Amplifier Instrumentation and Integrator Instrumentation of Op-amp Comparator Comparator Clipper and Clamper Comparator Clipper and Clamper Second Clamper Inverting Amplifier Inverting A	• To	develop the acquaintance on the various applications of 555 Timer /PLL/Regula	ator ICs.
LIST OF EXPERIMENTS Linear applications of Op-amp A. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	• To	b enrich the students with concepts of PCB fabrication and simulators.	
1. Inverting Amplifier, Non-Inverting Amplifier and Differential Amplifier 2. Instrumentation Amplifier 3. Differentiator and Integrator Non-Linear applications of Op-amp 4. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	Lincon ann	LIST OF EXPERIMENTS	
1. Inverting Ampiniter, Non-Inverting Ampiniter and Differential Ampiniter 2. Instrumentation Amplifier 3. Differentiator and Integrator Non-Linear applications of Op-amp 4. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	Linear app	Incations of Op-amp	
 Instrumentation Ampriller Differentiator and Integrator Non-Linear applications of Op-amp Comparator Clipper and Clamper Clipper and Clamper Precision rectifier Multivibrators and Triangular wave generator Data converters Analog to digital converter and Digital to analog converter Active Filters Low pass filter and High pass filter Special ICs Applications Astable and Monostable Multivibrators using NE/SE 555 Timer IC Frequency multiplication using NE/SE 565 PLL IC Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 	1.	Instrumentation Amplifier	
3. Differentiator and integrator Non-Linear applications of Op-amp 4. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 114	2.		
A. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	3. N. T.	Differentiator and Integrator	
 4. Comparator 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 	Non-Linear	applications of Op-amp	
 5. Clipper and Clamper 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 	4.	Comparator	
 6. Precision rectifier 7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 	5.	Clipper and Clamper	
7. Multivibrators and Triangular wave generator Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	6.	Precision rectifier	
Data converters 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation article of DN besetion diade using COMEOL Multivibration of furticle science of the s	7.	Multivibrators and Triangular wave generator	
 8. Analog to digital converter and Digital to analog converter Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 	Data conve	rters	
Active Filters 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	8.	Analog to digital converter and Digital to analog converter	
 9. Low pass filter and High pass filter Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 13 Simulation study of DN Insertion diada using COMSOL Multiplexice as form 	Active Filte	rs	
Special ICs Applications 10. Astable and Monostable Multivibrators using NE/SE 555 Timer IC 11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design	9.	Low pass filter and High pass filter	
10.Astable and Monostable Multivibrators using NE/SE 555 Timer IC11.Frequency multiplication using NE/SE 565 PLL IC12.Design and Implementation of High and Low Voltage Regulator using IC723Simulation and PCB DesignSimulation and PCB Design	Special ICs	Applications	
11. Frequency multiplication using NE/SE 565 PLL IC 12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 13. Simulation study of DN braction diade using COMSOL Medicinhering of the	10.	Astable and Monostable Multivibrators using NE/SE 555 Timer IC	
12. Design and Implementation of High and Low Voltage Regulator using IC723 Simulation and PCB Design 13 13 Simulation study of DN Insertion diada using COMSOL Matrix business for	11.	Frequency multiplication using NE/SE 565 PLL IC	
Simulation and PCB Design	12.	Design and Implementation of High and Low Voltage Regulator using IC723	
12 Cimulation study of DN Instign diade using COMCOL Mathintensing of the	Simulation	and PCB Design	
13. Simulation study of PN Junction diode using COMSOL Multiphysics software.	13.	Simulation study of PN Junction diode using COMSOL Multiphysics software	
14. Design and develop a PCB Layout for given op-amp circuit using suitable software and	14.	Design and develop a PCB Layout for given op-amp circuit using suitable	e software and
fabrication tool.		fabrication tool.	
TOTAL PERIODS:45		ΤΟΤΑ	L PERIODS:45

	COURSE OUTCOMES							
Upon the successful completion of the course, the students will be able to								
COs	STATEMENTS	RBT						
		LEVEL						
1	Design and implement the various linear and non- linear circuits operational amplifier	4						
2	Analyze the frequency response characteristics of active filter	4						
3	Design and analyze the application circuits of 555Timer/ NE/SE 565 PLL /Regulator (723)ICs and implement A/D converter	4						
4	Simulate and analyze various electrical behaviors of PN diode and FET using COMSOL Multiphysics tool	4						
5	Design the PCB layout using Proteous simulator and fabricate PCB for any given application	4						
Bloom's Ta	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6							

		/	0	COUR	RSE AI	RTICU	LATI	ON MA	TRIX	A				
COs	PO's	1	5	/			2.5	2 14			1		PSO	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	3	-	0	2	2	2	51	2	2	
2	3	3	3	2	3		1	2	2	2	11	2	2	
3	3	3	3	2	3	-	-	2	2	2	Z	2	2	
4	3	3	3	2	3		16	2	2	2	m	2	2	
5	3	3	3	2	3			2	2	2	1	2	2	
High Ma	apping; 2-1	Modera	te Map	ping; 1	-Low N	/apping	S	0	0.4	1	21		1	

LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS									
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED							
1.	Regulated Power supply	15							
2.	CRO 30MHz	6							
3.	DSO	4							
4.	Function Generator	5							
5.	Digital Multimeter	10							
6.	Bread board	10							
7.	Various IC	Each 10							
8.	Resistors of various ranges	10							
9.	Capacitors of various ranges	10							
10.	Simulation software	1							
11.	Connecting wires	As required							

EE2241	2 CONTROL SYSTEMS AND INSTRUMENTATION LABORATORY	LTPC							
		0 0 3 1.5							
COURS	C OBJECTIVES								
•	Identify the transfer function parameter and state space equation of the system and	to assess the							
	system dynamic response.								
•	Assess the system performance using frequency and time domain analysis and	methods for							
	improving it.								
• Design various controllers and compensators to improve system performance.									
•	 Measure unknown passive parameters using bridges and understand ladder program 								
•	Assess the dynamic characteristics of sensors and understand the calibration	of measuring							
	instruments.								
	LIST OF EXPERIMENTS								
Control	systems:								
1.	Determination of Transfer function parameters of DC shunt Motor and DC Gen	erator							
2.	a)Determination of speed – torque characteristics of AC Servomotor and	to obtain its							
transfer function parameters									
	b)Study of Synchro transmitter and receiver								
3.	3. Time response analysis of first and second order system for various standard input and								
	stability analysis of linear time invariant system using MATLAB software.								
4.	Design of Lag and Lead compensator								
5.	Simulation and Experimental Verification to study the effect of P, PI, PD and P	ID controller							
	on the step response of a feedback control system								
6.	Controllability and Observability tests for continuous time domain systems using the sector of the s	ng MATLAB							
T 4	software.								
Instru	mentation:								
7.	Measurement of the unknown Resistance(Wheat stones and Kelvin's Bridge)								
8.	Measurement of the unknown inductance and capacitance (Anderson's a	and Schering							
	Bridge)								
9.	Calibration of Measuring Instruments and current transformer								
10.	Dynamic characteristics of Sensors/Transducers								
11	(a) Temperature (b) Pressure (c) Displacement (d) Optical (e) Strain (f) Flow	mable Logia							
11.	Study and development of the Ladder program for Logic gates using Program	infable Logic							
	тоты	PERIODS-45							
	REFERNCE BOOKS	21 ERIOD5.43							
1.	K. Ogata, 'Modern Control Engineering', Pearson Education India publisher, 2015.	5 th edition.							
2.	A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Me	asurements &							
	Instrumentation', Dhanpat Rai and Co, New Delhi, Edition 2015.								

					COU	RSE (OUTCO	OMES								
Upon the s	successful o	complet	ion of	the cou	rse, the	e studer	nts will	be able	to							
COs		STATEMENTS											RBT LEVEL			
1	Predic	Predict the transfer function parameter of the DC Motor and Generator											4			
2	Apply stabili	Apply the various time and frequency domain techniques to assess the stability											4			
3	Test represe system	Test the system controllability and observability using state space representation and applications of state space representation to various 4 systems														
4	Use A	Use AC/DC bridge for accurate measurements of R, L and C values 4														
5	Calibr of sense	Calibrate various measuring instruments and draw the dynamic characteristics 4														
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1;	; Under	stand-2	2; Apply	7-3; An	alyze-4	4; Evalua	ate-5; Cre	eate-6			
			1	COUR	RSE AI	RTICU	JLATI	ON MA	TRIX	1						
COs			1	P		Р	Os		1	2			PSC	PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3	3	3	2	3	3		3	2	14	12	2	3	3		
2	3	3	3	2	3	3		3	2		21	2	3	3		
3	3	3	3	2	3	3		3	2		021	2	3	3		
4	3	3	3	2	3	3		3	2		Z	2	3	3		
5	3	3	3	2	3	3	16	3	2		111	2	3	3		
3- High M	apping; 2-1	Moderat	te Map	ping; 1	-Low N	Mappin	g	2		1	ER		·			

LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS									
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED							
1.	Design of PID controller kit	1							
2.	DC Shunt motor	1							
3.	DC Generator	1							
4.	AC Servo motor with load and speed sensor kit	1							
5.	Synchro -Transmitter and Receiver with voltmeter kit	1							
6.	MC/MI Voltmeter	6							
7.	MC/MI Ammeter	6							
8.	Lag-Lead compensator design kit	1							
9.	Digital storage Oscilloscope	4							
10.	2MHz Function Generator	2							
11.	Lamp Load	1							
12.	Personal computers with MATLAB software	10							
13.	Rheostats	6							
14.	CRO Probe	2							
15.	Bread board	3							

16.	Connecting wires/Patch cords	As required
17.	Kelvin Double bridge kit	1
18.	Wheat stone Bridge kit	1
19.	Anderson Bridge kit	1
20.	Schering Bridge kit	1
21.	LVDT Kit	1
22.	Kit assembly of Pressure Sensor/Temperature sensor/ Level	1
	sensor/Optical sensor	
23.	PLC with Process control kit	1
24.	Current Transformer	1
25.	Energy meter	1
26.	Multimeter	6
27.	Various range of Unknown Resistance/Inductance/Capacitance	Each 10
28.	Wattmeter	2
29.	Galvanometer	1
30.	Stopwatch	1
32.	Autotransformer	1
33.	Regulated Power Supply	3
34.	CRO/DSO	2
35.	WPL software 2.47	6
	THE THE FULL	INEERIA

EE22413	ELECTRICAL MACHINES II LABORATORY	L T P C
		0 0 3 1.5
COURSE (DBJECTIVES	
• Fa	miliarize the students with the operation of synchronous machines and induc	tion machines
an	d equip them with experimental skills.	
	LIST OF EXPERIMENTS	
1.	Regulation of Three Phase Alternator by EMF and MMF methods	
2.	Regulation of Three Phase Alternator by ZPF and ASA methods	
3.	Regulation of Three Phase salient pole Alternator by slip test	
4.	V and Inverted V curves of Three Phase Synchronous Motor	
5.	Load test on Single Phase and Three Phase Induction Motor (Cage & Slip ring)
6.	Equivalent circuit parameters of Three Phase Induction Motor by no load and	blocked rotor
	tests	
7.	Equivalent circuit parameters of Single Phase Induction Motor by no load and	blocked rotor
	tests	
8.	Study of braking methods of Three Phase Induction Motor	
9.	Speed control of Induction motor by different methods	
10.	Synchronization of Alternator with Infinite Bus-bar	
11.	Load Test on Three Phase Alternator	
12.	Study of Induction Generator (Stand-alone and Grid-connected)	
	ТОТА	L PERIODS:45

	COURSE OUTCOMES						
Upon the su	ccessful completion of the course, the students will be able to						
COs	STATEMENTS	RBT LEVEL					
1	Understand and analyze EMF and MMF methods	5					
2	Analyze the characteristics of V and Inverted V curves	4					
3	Hands-on experience of conducting various tests on alternators and obtain their performance indices using standard analytical as well as graphical methods	3					
4	Hands-on experience of conducting various tests on induction motors and obtaining their performance indices using standard analytical as well as graphical methods	5					
5	Calculate different types of losses	5					
Bloom's Ta	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6						

COURSE ARTICULATION MATRIX														
COs	COs PO's										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	2	2		2	3	3		3	3	3
2	3	3	3	3	2	2		2	3	3		3	3	3
3	3	3	3	3	2	2		2	3	3		3	3	3
4	3	3	3	3	2	2		2	3	3		3	3	3
5	3	3	3	3	2	2		2	3	3		3	3	3
3- High Map	ping; 2-l	Modera	te Map	ping; 1	-Low N	Aappin	g							

LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS									
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED							
1.	DC Shunt Motor Coupled with Three phase cylindrical rotor	2							
	alternator								
2.	DC Shunt Motor Coupled with Three phase salient-pole	1							
	alternator	21							
3.	DC Shunt Motor Coupled with Three phase cage induction motor	2 1							
4.	Synchronous Induction motor	Q 1							
5.	Single Phase Induction Motor with Loading Arrangement	2							
6.	Three Phase cage Induction Motor with loading Arrangement	4							
7.	Three phase slip ring induction motor with loading arrangement	2							
8.	Rotor resistance panel for slip ring induction motor	1							
9.	AC drive for speed control of induction motor	-0/ 1							
10.	Static Kramer drive	S/1							
11.	Dynamic braking panel	1							
12.	Tachometer -Digital/Analog	12							
13.	Single Phase Auto Transformer	2							
14.	Three Phase Auto Transformer	5							
15.	Single Phase Resistive Loading Bank	2							
16.	Three Phase Resistive Loading Bank	3							
17.	Three phase Capacitor Bank	2							
18.	Three phase Inductive load	1							
19.	TPDT switch	2							
20.	Wattmeter	12							
21.	Rheostats	15							
22.	Ammeters	20							
23.	Voltmeters	20							

SEMESTER-V

EE22501	MICROCONTROLLERS AND PROGRAMMING	L T P C
		3003
COURSE O	BJECTIVES	
• To re	ealize the architecture and programming aspects of 8051 microcontrollers.	
• To in	mpart in depth knowledge on functional aspects and develop the programming skills	using 8051
mic	procontrollers.	
• To a	cquire skills in Embedded 'C' programming of 8051 microcontrollers.	
• To a	cquire knowledge on architecture of ARM 32-BIT microcontrollers.	
• To	build application programs of ARM 32-BIT microcontrollers.	
UNIT I	8051 MICROCONTROLLERS	9
Historical I	background of Microprocessor based personal computer system. Difference	between a
microproces	sor and a microcontroller. 8051 Architecture – Pin details- Timing Diagram - Me	emory – I/O
Ports - Cour	nters/Timers – Interrupts - Serial communication.	
UNIT II	8051 ASSEMBLY LANGUAGE PROGRAMMING	9
Instruction	set of 8051 - Addressing modes - Assembly language Programming: Arithmetic	operations,
logic operat	ions, Look up tables, Subroutines, Timer and Serial Port. Interfacing 8051 microcont	troller with:
Keyboard a	nd Display (LED, LCD), Stepper Motor, AC servo motor, Washing Machine Con	ntrol, LM35
Temperature	e Sensor, IR Sensor, PIR Motion Sensor, Traffic Light Control and Waveform Gener	ration.
UNIT III	8051 EMBEDDED 'C' PROGRAMMING	9
Introduction	to IDE – Embedded C Data types- Programming structure- reading and writing c	lata from/to
parallel por	ts – Timer/Counter programming – Interrupt handling – Serial port programm	ing - 8051
Interfacing	with peripherals using Embedded 'C': Matrix Keyboard, LCD, 7-segment LED) Display -
Familiarizat	ion with tools (Keil uVision IDE, STM32CUBE IDE, Flash Magic and Proteus Simu	ulator).
UNIT IV	ARM 32-BIT MICROCONTROLLER	9
ARM – AR	M Design Philosophy and RISC Architecture, Programmer's Model - ARM Cortex	K M, Cortex
M Architect	ure - ARM Cortex-M Internals and Debugging - Pipelining – Instruction set, thumb	o instruction
- ARM cort	ex M0 architecture - I2C, SPI Protocol configuration, its Peripheral and Modules	- Study of
CAN.		0
UNIT V	INTERFACING ARM (SIM32)	9 Switches
GPIO Com	iguration, Driving De-Initialization, interfacing to devices and its type – LEDS	s, Switches,
Buzzer. Inte	the manual province of the second of the sec	
and interrup	of Mode, Timers, PWM, ADC. Analog Sensors and its Types (Ourasonic Sensor, To	emperature,
Humaily, S	oli Moisture Sensor, PIK sensor).	DIODC. 45
	IUIAL PE	KIUD5: 45
1	IEAT BOOKS	M hard
1.	Alexander G Dean, Embedded Systems Fundamentals with Arm Cortex	-IVI Dased
	Relition	, 2021, 2 nd
•		T1 00 5 1
2.	Munammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinley,	The 8051
	Microcontroller and Embedded Systems', Pearson Education, 2008, Fifth impres	sion 2011,
	2 nd Edition.	

REFERENCE BOOKS										
1.	Ariel Lutenberg, Pablo Gomez and Eric Pernia, 'A Beginner's Guide to Designing Embedded System Applications on Arm Cortex-M Microcontrollers', Arm Education Media, 2021, 2 nd Edition.									
2.	Warren Gay, 'Beginning STM32: Developing with Free RTOS, libopencm3 and GCC', Apress,2018, 1 st Edition.									
3.	Donald Norris, 'Programming with STM32: Getting Started with the Nucleo Board and C/C++ (ELECTRONICS)', McGraw Hill TAB, 2018, 2 nd Edition.									
4.	Shujen Chen, Eshragh Ghaemi, Muhammad Ali Mazidi, 'STM32 Arm Programming for Embedded Systems', Microdigitaled, 2018,1 st Edition.									
5.	Kenneth J. Ayala., 'The 8051 Microcontroller', Thompson Delmar Learning, 2012, 3rd Edition									

					COU	RSE (OUTCO	OMES	5					
Upon the	successfu	ll comp	oletion	of the	course	e, the s	tudents	will b	be able	to			1	
COs	STATEMENTS												RE LEV	BT /EL
1	Analyze the interconnection of peripherals with CPU, RAM and ROM of 8051 microcontroller.												4	4
2	Analyze and apply the knowledge if instructions and programming model of 8051 microcontroller to develop programs.											4	4	
3	Analyze and apply the Embedded C programming concepts to 8051 microcontroller applications and develop the systems using simulation software.												4	4
4	Analyze the architecture difference between 8051 microcontroller and ARM Microcontroller.												4	4
5	Develop a suitable programming model using Embedded C programming in ARM 32-bit microcontroller for various applications.											4	4	
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1	; Unde	rstand-2	; Appl	y-3; A	nalyze-4	; Evalua	ate-5; Cre	eate-6	
			1	COUI	RSE A	RTICU	JLATI	ON M.	ATRIX	K/				
COs				21	00	P	Os	37	191	/			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2											
2	3	3	2	3	3									
3	3	3	2										3	2
4	3	3	2	2	3	3	2				2	3	3	2
5	3	3	2	2	3	3	2				2	3	3	2
3- High Ma	apping; 2-	Modera	ite Map	ping; 1	-Low N	Mappin	g				1		1	

EE22502	POWER ELECTRONICS	L T P C
		3003
COURSE (OBJECTIVES	
• Co	nceptualize the principles underlying various Power Semiconductor Devices.	
• Ac	quire analytical skills for designing a Power converter circuit.	
• Lea	arn the operation, switching techniques and basics topologies of DC-DC switching re-	egulators.
• An	alyse the operation of inverters, switching techniques implemented in recent technol-	ogy.
• Ac	quire knowledge about application of Power Electronic converters in Powe	er Control
app	olications.	
UNIT I	POWER SEMI-CONDUCTOR DEVICES	9
Study of sy	witching devices, Diode, SCR, TRIAC, GTO, BJT, MOSFET, IGBT- Static and	nd dynamic
characterist	ics - Triggering and commutation methods for SCR - design of driver and snubber ci	ircuit.
UNIT II	PHASE-CONTROLLED CONVERTERS	9
1-pulse, 2-p	pulse, 3-pulse and 6-pulse converters with R. R-L and R-L-E loads- performance	parameters-
detailed ana	alysis –Effect of source inductance –gate circuit schemes for phase control-dual	converters -
Introduction	to design of converter for DC motor speed control.	1
UNIT III	DC - DC CONVERTERS	9
Step-down	and step-up chopper-control strategy- non-isolated dc-dc converters: Analysis of buc	k and boost
converters,	Isolated dc-dc converters: fly-back and forward topologies - Introduction to design	of converter
for SMPS to	opologies.	
UNIT IV	INVERTERS	9
Single phase	se and three phase voltage source inverters (both 120° mode and 180° mode)–Voltage&
harmonic c	ontrol - PWM techniques: Sinusoidal PWM, modified sinusoidal PWM – multip	ple PWM –
Current sou	rce inverter- Introduction to Multilevel Inverters- Design and Application of Inverter	rs.
UNIT V	AC - AC CONVERTERS	9
Single phas	e and three phase AC voltage controllers– Power Factor Control –Multistage sequer	ice control -
single phase	e and three phase cyclo-converters –Introduction to Matrix converters - Introducti	on to speed
control of I	nduction Motor -Design of AC voltage controller.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	M.H. Rashid, 'Power Electronics Circuits, Devices and Applications', Pearson	Education,
	PHI, New Delhi, 2017, 4 th Edition.	
2.	Dr. P.S.Bimbhra, 'Power Electronics' Khanna Publishers, 2022, 7 th Edition.	
	REFERENCE BOOKS	
1.	L. Umanand, 'Power Electronics Essentials and Applications', Wiley, 2010.	
2.	Joseph Vithyathil, 'Power Electronics, Principles and Applications', McGraw H 6 th Reprint, 2013.	Hill Series,
3.	M.D. Singh and K.B. Khanchandani, 'Power Electronics', Mc Graw Hill India, 20	13.
4.	Philip T. Krein, 'Elements of Power Electronics', Oxford University Press, 2009 I	Edition.
5.	Ned Mohan, Tore. M. Undeland, William. P.Robbins. 'Power Electronics: (Converters.
	Applications and Design', John Wiley and sons, 2007, 3 rd edition.	,
l		

					COU	RSE (DUTCO	MES						
Upon the su	ccessful c	completi	on of	the cours	se, the	stude	nts will b	be able	to:					
COs		STATEMENTS											RBT LEVEL	
1	Choose suitable power electronic devices for high power applications and to design driver and snubber circuits.											4		
2	Evalua	ate the p	berfor	mance p	baram	eters o	of phase	contr	olled c	onvert	ers.		5	
3	Analys	se and c	lesign	various	SDC-	DC co	onverter	topol	ogies.				4	
4	Evalua technic	te the ques.	perf	formanc	e pa	ramet	ers of	Inve	rters a	and v	arious	PWM	4	
5	Unders AC-A	stand and C conve	nd des erters.	sign spe	ed co	ntrol 1	methods	s for n	notors	throug	h the stu	ıdy of	4	
Bloom's Ta	xonomy	(RBT)	Level:	Remem	ber-1;	Unde	rstand-2;	; Apply	y-3; An	alyze-4	; Evaluat	te-5; Cre	ate-6	
				COUR	SE AF	RTICU	JLATIC	ON MA	TRIX					
COs			/	28	-	F	POs	-	6	1	0		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	2	2	2.0	1	1	2	1	3	3	3
2	3	3	3	2	3	-	_	1	1	2	21	3	3	3
3	3	3	3	2	3	-	0	11	1	2	51	3	3	3
4	3	3	3	2	3	1		1	1	2	-	3	3	3
5	3	3	3	2	3	100	1	1	1	2	2	3	3	3
3- High Maj	oping; 2-1	Moderat	e Map	ping; 1-1	Low M	/appin	ıg	//	U-	-	21			
			1851	1 200			TT IT	121/20/	AL AL	10	RIA			

EE22503	POWER SYSTEM ANALYSIS	LTPC
		3003
COURSE O	DBJECTIVES	
• De	velop power system network models under steady state conditions	
• Ac	quire knowledge on power flow solution methods	
• Mc	odel and analyze the power system under faulted conditions	
• Mc	odel and analyze the stability of power system	
UNIT I	POWER SYSTEM MODELLING	9
Introduction	n of Modern Power System – Power system components - Single line diagram - As	sumptions –
Per phase e	equivalent circuit - Per unit representation - Formation of Network Admittance Ma	trices using
Bus inspect	ion and Singular transformation – Formation of Impedance Matrices- Zbus Building	Algorithm.
UNIT II	LOAD FLOW STUDIES	9
Overview -	Real and Reactive Power Injected in a Bus - Classification of Buses - Preparation	of Data and
Load Flow	Study by Gauss-Seidel Method - Newton-Raphson Method - Fast Decoupled method	d- Slack bus
real and rea	ctive power, line flow and loss calculation – Case studies through Simulation softwa	ure.
UNIT III	SYMMETRICAL FAULT ANALYSIS	9
Overview -	Fault in an AC Circuit - Short Circuit in an Unloaded Synchronous Generator - S	Symmetrical
Fault in a l	Power System - Calculation of Fault Current using Impedance Diagram and Z b	us Matrix -
Current lim	iting reactor - Circuit Breaker Selection - Case studies through Simulation software.	
UNIT IV	UNSYMMETRICAL FAULT ANALYSIS	9
Overview	- Symmetrical Components and Representation of Faulted Networks - Fa	ult Current
Computatio	on using Sequence Networks - Single-Line-to-Ground Fault - Line-to-Line Fault - L	ouble- Line
-to Ground	Fault - Open conductor fault - Case studies through Simulation software.	0
UNIT V	STABILITY ANALYSIS	9 lity Swing
Fountion - 1	Fought Area Criterion - Case study on sudden change in mechanical input loss of li	nty - Swing
circuit - Fo	x region of system state matrix Numerical solutions by Runga - Kutta A^{th} ord	er method
Multi-mach	ine Stability. Case studies through Simulation software	- memou -
	TOTAL PE	
	TEXT BOOKS	KIUD5, 4 5
1.	D P Kothari I I Nagrath and R K Saket 'Modern Power System Analysis' Tata	McGraw-
1.	Hill 2022 5 th Edition	
2	Hadi Saadat 'Power System Analysis' Tata McGraw Hill Education Pyt I td	New Delhi
2.	2010 3 rd Edition	New Denn,
	PEEPENCE BOOKS	
1	Kundur P 'Power System Stability and Control' Tata McGraw Hill Education	Pyt Itd
1.	New Delhi 2010 2 nd Edition	I I VI. LIU.,
2	John J. Grainger and W.D. Stevenson Jr. 'Dower System Analysis' Tata Ma	Graw_Hill
2.	Sixth reprint 2017 2 nd Edition	Jiaw-11111,
3	Dai M A 'Computer Techniques in Dower System Analysis' Tate Ma Grow Hill	Dubliching
5.	Company Ltd. New Delbi 2007	1 uonsinng
1	L Dungen Clover Mululattle S. Serme Themes I. Overheim (Derver Serter A.	alveia and
	Design' Congage Learning 2010 6 th Edition	larysis and
	Design, Cengage Learning, 2019, 6" Edition.	

COURSE OUTCOMES									
Upon the successful completion of the course, the students will be able to:									
COs	STATEMENTS								
		LEVEL							
1	Demonstrate modelling of power system components and construct network matrices.	3							
2	Formulate the power flow problem and apply numerical solution methods.	3							
3	Analyze symmetrical short circuit faults in a power system	4							
4	Analyze unsymmetrical short circuit faults in a power system	4							
5	Apply equal area criterion and numerical solution method to stability problem.	3							
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6									

	COURSE ARTICULATION MATRIX													
COs	POs											PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1	2	10	1	÷.,	1	1	2	2	1	3
2	3	3	3	2	2	150.5	1		1	2	2	2	1	3
3	3	3	3	2	2	2	1	1	1	2	2	2	1	3
4	3	3	3	2	2	2	1	-/	1	2	2	2	1	3
5	3	3	3	2	2	2	1		1	2	2	2	1	3
3- High Map	oping; 2-1	Modera	te Map	ping; 1	-Low N	lapping	3	11			177			

परा

tedan or

3- High Mapping; 2-Moderate Mapping; Tapping

THE STATE

(LL)

IT22551	PROGRAMMING AND DATA STRUCTURES	LTPC								
		3003								
COURSE O	BJECTIVES									
• To	comprehend the fundamentals of objectoriented programming, particularly in JAVA	•								
• To	explore advanced Java concepts such as inheritance, polymorphism, encapsul	ation, and								
abs	traction, and apply them in designing object-oriented solutions.									
• To :	introduce linear data structures and their applications.									
• To :	• To introduce non-linear data structures and their applications.									
• Lea	rn to implement sorting and searching algorithms.									
UNIT I	INTRODUCTION TO JAVA	9								
Basic of Ja	va – Class and Objects, Packages in Java, Data Types in Java, Variables	, Methods,								
Constructor	, Modifiers, Static Keyword, Final Keyword, Inner Class, Super and this	keyword,								
Encapsulation	on colle									
UNIT II	OOPS CONCEPTS	9								
Inheritance	in Java - Is-A-Relationship - Aggregation and Composition - Types of	Inheritance,								
Polymorphism in Java - Types of Polymorphism - Static and Dynamic Binding - Method overloading -										
Method Overriding, Abstraction in Java - Abstract Class - Abstract method - Interface in Java - Nested										
interface.	In a contract of the contract									
UNIT III	LINEAR DATA STRUCTURES	9								
Abstract Data Types (ADTs) - List ADT - array-based implementation - linked list implementation -										
singly linked lists -Polynomial Manipulation - Stack ADT - Evaluating arithmetic expressions- Queue										
ADT – Circular Queue implementation.										
UNIT IV	NON-LINEAR DATA STRUCTURES	9								
Trees – Bin	ary Trees - Binary tree representation and traversals - The Search Tree ADT - Bin	nary Search								
Trees- – Aj	pplication of trees - Graph and its representations - Graph Traversals - Repres	sentation of								
Graphs – Br	readth-first search – Depth-first search- Dijkstra's shortest path algorithm.									
UNIT V	SORTING AND SEARCHING	9								
Sorting algo	orithms: Bubble sort- Insertion sort - Quick sort - Merge sort - Selection sort, Search	ning: Linear								
search –Bina	ary Search.									
	TOTAL PE	RIODS: 45								
	TEXT BOOKS									
1.	Herbert Schildt, 'Java: The Complete Reference', McGraw-Hill Education, 2017.									
2.	Mark Allen Weiss, 'Data Structures and Algorithm Analysis in C++', Pearson	Education,								
	2017, 2 nd Edition.									
	REFERENCE BOOKS									
1.	Sierra, Kathy, and Bert Bates. 'Head First Java', O'Reilly Media, 2021.									
2.	Horstmann, Cay S., and Gary Cornell. 'Core Java VolumeIFundamentals'	. Pearson								
	Education, 2016.									
3.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, 'Ir	troduction								
	to Algorithms', MIT Press, 2009, 3 rd Edition.									
4.	Bjarne Stroustrup, 'The C++ Programming Language', Pearson Education, 2018, 4 ^t	^h Edition.								
5.	Ellis Horowitz, Sartaj Sahni and Dinesh Mehta, 'Fundamentals of Data Structure	s in C++',								
	Galgotia Publications, 2008, 2 nd Edition.									

	COURSE OUTCOMES								
Upon the successful completion of the course, the students will be able to:									
COs	STATEMENTS								
1	Evaluate the design of a Java program in terms of its class structure, object interactions, and encapsulation of data.								
2 Design and develop robust and scalable object-oriented solutions using inheritance, polymorphism, and abstraction.									
3 Develop programs to implement linear data structures such as stacks, queues, linked lists, etc									
4	Apply non-linear data structures to solve various problems.	3							
5	Analyze the different methods of organizing large amount of data.	4							
Bloom's Ta	xonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Crea	ate-6							
COURSE ARTICULATION MATRIX									
COs	POs	PSOs							
	1 2 3 4 5 6 7 8 9 10 11 12	1 2							

	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	1	130.0		1	17	14	12		2	
2	3	1.2	3	2	1	6	-	1	2		3		2	
3	3	V	3	2	1	1	1	-1	2	1	021			
4	3	\leq	1	4.	1	1	1	1	H -8	2.1	Z			
5	3	3		20	11	1	1	1			3			
3- High Map	ping; 2-l	Moderat	e Map	ping; 1-	-Low N	Mapping	g	1	0.00	1	m			
		1	14S	12	100	TT	I	121	AL	10	2111			

EE22511	MICROCONTROLLERS AND PROGRAMMING LABORATORY	LTPC						
		0 0 3 1.5						
COURSE C	DBJECTIVES							
• To	write ALP using instruction sets of 8051 microcontroller.							
• To	Interface 8051 microcontroller with LED, Keyboard and Motors.							
• To	establish connection with Personal Computer and 80851 microcontrollers.							
• To	• To practice Simulators/Emulators/open source (STM32CUBE IDE) with ALP and Embedded							
C.								
• To	write Embedded C coding to Program ARM microcontroller.							
	LIST OF EXPERIMENTS							
8051 Micro	controller							
1.	Simulation and hardware implementation of 16-Bit arithmetic operati	ons: addition/						
	subtraction/multiplication/division using 8051.							
2.	Simulation and hardware implementation of interfacing Experiments with 8051							
	(i)A/D Interfacing (ii) D/A Interfacing.							
3.	Simulation and hardware implementation of interfacing seven segment LED	and Keyboard						
	with 8051.							
4.	Simulation and hardware implementation of establishing Communication	between 8051						
	microcontroller and PC using UART.							
ARM contr	oller							
5.	Simulation and hardware implementation of read toggle switch and control LE	D.						
6.	Simulation and hardware implementation of change between color of multi-	color LED on						
	Button press (GPIO Interrupt)							
7.	Simulation and hardware implementation of set a timer and toggle LED	once a timer						
0	interrupt occurs.							
δ.	Simulation and hardware implementation of sequential count increment or	ver display on						
9	Simulation and hardware implementation of read binary number from swi	tch inputs and						
	display equivalent hexadecimal on 7 segment display.	ten inputs and						
10.	Simulation and hardware implementation of reading potentiometer value from	ADC and send						
	data over UART to PC.							
11.	Simulation and hardware implementation of read numeric data over UART	' from PC and						
	show over 7 segment display.							
12.	Simulation and hardware implementation of read key press from matrix keypa	d and show the						
12	digit over / segment display.	D (1						
13.	Simulation and hardware implementation of control fan speed using PWM.	Program three						
14	Simulation and hardware implementation of read temperature from I2C torr	paratura cancor						
14,	and send data over UART to PC.	Sciature sensor						
	ΤΟΤΑ	L PERIODS:45						

					COU	RSE C	OUTCO	MES						
Upon the su	ccessful o	completi	ion of	the cour	rse, the	studer	nts will	be able	to:					
COs					S	STATE	MENT	S					RBT	
													LEV	EL
1	Analyz 8051 r	Analyze and apply the knowledge if instructions and programming model of 8051 microcontroller to develop Arithmetic programs.											4	
2	Analyze and apply the knowledge if instructions and programming model of 8051 microcontroller to develop programs using stack, program counter, and status register.											4		
3	Interface 8051 microcontroller with Personal Computer through UART.										4			
4	Analyze and apply the Embedded C programming concepts to ARM microcontroller.									4				
5	Develop projects in ARM microcontroller using Embedded C programming.										4	4		
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1;	; Under	stand-2	; Apply	y-3; Ana	alyze-4	4; Evalua	te-5; Cre	ate-6	
			1	COUR	RSE AI	RTICU	LATIO	ON MA	TRIX	1				
COs			1	P		Р	Os		1	2			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1.7	e	1305		1	17	2	12	3		
2	3	3	2	3	3			1	2	2	EI	3		
3	3	3	2		3			-1		2	021	3	3	2
4	3	3	2	3	3	3	2	1	4	2	2	3	3	2
5	3	3	2	3	3	3	2	1		2	2	3	3	2

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED
1.	8051 Microcontroller Trainer Kit with power supply	15
2.	LED and Keyboard interfacing Kit.	5
3.	STM32 Arm Controller	10
4.	Personal Computer	10
5.	Temperature Sensor, DC fan, Keypad and seven segment display	Each 5

EE22512	POWER ELECTRONICS LABORATORY	LTPC
		0 0 3 1.5
COURSE (DBJECTIVES	
• Stu	dy the power electronics switching devices characteristics.	
• Sti	ndy the operation of various power converter circuits	
• De	sign and analyze AC voltage controller	
• Le	arn the operation of various converters and inverters through simulation.	
• De	sign, simulate and implement inverter for UPS application.	
	LIST OF EXPERIMENTS	
1.	Characteristics of SCR and TRIAC	
2.	Characteristics of MOSFET and IGBT	
3.	AC to DC half & fully controlled converter	
4.	IGBT based single phase PWM inverter	
5.	IGBT based three phase PWM inverter	
6.	Design of AC Voltage controller	
7.	Simulation of $1\Phi \& 3\Phi$ semi and full converters	
8.	Simulation of buck and boost DC – DC converter	
9.	Simulation of AC voltage controller, 1Φ sine wave inverter and 3Φ Inverter wand 120degree mode of operation	with 180 degree
10.	Design, simulation and implementation of forward converter	
11.	Design, simulation and implementation of fly-back converter	
12.	Design, simulation and implementation of inverter for UPS applications	
	тота	L PERIODS:45
	COURSE OUTCOMES	

COURSE	OUTC	OMES
COURSE	UUIU	UNIES

COs	STATEMENTS	RBT LEVEL
1	Analyse the performance characteristics of power semiconductor devices.	4
2	Illustrate the functioning of power converter circuits with different load conditions.	4
3	Devise various control techniques for DC and AC drives.	4
4	Simulate and evaluate the performance of power converter with various load conditions.	4
5	Design the converter, inverter and chopper for applications such as SMPS and UPS.	4

	COURSE ARTICULATION MATRIX													
COs		POs												Os
	1 2 3 4 5 6 7 8 9 10 11 12											1	2	
1	3	3	3	2	3			2	3	3		3	3	2
2	3	3	3	2	3			2	3	3		3	3	3
3	3	3	3	2	3			2	3	3		3	3	3
4	3	3	3	2	3			2	3	3		3	3	3
5	3	3	3	2	3			2	3	3		3	3	3
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	Iappin	g							

	LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS								
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED							
1.	Device characteristics (for SCR, MOSFET, TRIAC and IGBT kit with built- in / discrete power supply and meters)	2							
2.	Single phase SCR based half controlled converter and fully controlled converter alongside built-in/separate/firing circuit/module and meter	2							
3.	IGBT based single phase PWM inverter module/Discrete Component	2							
4.	IGBT based three phase PWM inverter module/Discrete Component	2							
5.	SCR &TRIAC based 1 phase AC controller along with lamp or rheostat load	2							
6.	MOSFET based Driver circuit for 3Φ Inverter	2							
7.	Isolated DC-DC Converter -Flyback converter kit	1							
8.	Isolated DC-DC converter -Forward Converter kit	1							
9.	MOSFET switches	10							
10.	Opto-couplers	10							
11.	Breadboard	10							
12.	Dual regulated DC power supply with common ground	5							
13.	Digital Storage Oscilloscope	10							
14.	Isolation Transformer	5							
15.	Single phase Auto transformer	3							
16.	Multi-meter	5							
17.	LCR meter	2							
18.	Rheostats of various ranges	2							
19.	Inductance, Capacitance of various ranges	2 each							
20.	DC and AC meters of required ranges	20							
21.	Connecting wires and Patch cords	As required							

IT22561	PROGRAMMING AND DATA STRUCTURES LABORATORY	LTPC
		0 0 3 1.5
COURSE	OBJECTIVES	
•	Be familiar with java programming language.	
•	Learn to implement linear and non linear data structures.	
•	To implement various applications using different data structures.	
•	Learn to implement sorting and searching algorithms.	
	LIST OF EXPERIMENTS	
1.	Basic Programs of Java	
2.	Programs on Inheritance	
3.	Programs on polymorphism	
4.	Programs on abstraction	
5.	Implementation of Singly Linked List operations	
6.	Implementation of Stack operations	
7.	Implementation of Stack Applications	
8.	Implementation of Queue operations	
9.	Implementation of Circular Queue operations	
10.	Implementation of Binary search Tree operations	
11.	Implementation of Dijkstra's algorithm for Single Source Shortest Path problem	n.
12.	Implementation of Linear Search and Binary Search.	
13.	Quick Sort, Merge Sort	
	ΤΟΤΑ	L PERIODS:45
	7	

	COURSE OUTCOMES	
Upon the suc	ccessful completion of the course, the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Design and implement JAVA programs.	5
2	Apply good programming design methods for program development on OOPS Concepts.	3
3	Implement operations in linear and non-linear data structures	3
4	Apply different data structures for solving real world problems.	3
5	Apply the various sorting and searching Algorithms	3
Bloom's Tax	xonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6

				COUR	RSE AF	RTICU	LATIO	ON MA	TRIX					
COs	POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	1			1					2	
2	3		3	2	1			1	2		3		2	
3	3		3	2	1	1	1	1	2					
4	3					1	1	1						
5	3	3				1	1	1			3			
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	Aapping	g							

	COLLEGE	
	LABORATORY REQUIREMENTS FOR A BATCH OF 30 S	TUDENTS
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED
1.	Standalone desktops with JDK (or) Server with JVM supporting 30 terminals or more.	30

SEMESTER VI

EE22(01	DIGITAL SIGNAL PROCESSING									
EE22001		3003								
COURSE O	BJECTIVES									
• Cla	ssify signals and systems, explain the mathematical representations and dete	rmine the								
res	ponse using Z transform.									
• Imp	blement Discrete Fourier Transform from FT, and learn about its frequency respo	onse using								
Fas	t Fourier Transform algorithms.									
• To	study about the design of FIR filters.									
• To	study about the design of IIR filters.									
• Intr	oduction about the general purpose digital signal processors and special instructions									
UNIT I	DISCRETE-TIME SIGNALS AND SYSTEMS	10								
Need and b	enefits of Digital Signal Processing - Sampling and Quantization of analog signa	als - Signal								
classificatio	n and basic operations - LTI system -Impulse response - Convolution sum and C	orrelation -								
I/O relation	ship - Determination of Impulse response and Step response using Z transformation	- A Typical								
DSP system										
UNIT II	DISCRETE TRANSFORMS	8								
Fourier Ser	ies and Fourier Transform - Discrete Fourier Transform (DFT) - Properties- DFT	frequency								
spectrum -	DIT - FFT and DIF - FFT radix2 algorithms- inverse FFT - linear filtering	via circular								
convolution	- Programs for DFT, FFT algorithms.									
UNIT III	DESIGN OF FIR DIGITAL FILTERS	10								
Characterist	ics and applications of FIR filters - FIR filter design using Window functions -	Canonical								
forms of Re	alization – Programs for design the FIR filters.									
UNIT IV	DESIGN OF IIR DIGITAL FILTERS	8								
Characterist	ics and applications of IIR filters - Design techniques for analog filters -	Frequency								
transformati	ion - Digital IIR filter design: impulse invariant and bilinear transform methods -									
forms of Re	alization: direct, cascade, and parallel forms- Program for design the IIR filters.	0								
UNIT V	GENERAL-PURPOSE DIGITAL SIGNAL PROCESSORS	<u>9</u>								
Computer a	rentectures for signal processors (TMS520C50 and TMS520C54A) - pipenning	- naroware								
nulliplier -	Einite word length offects in UP filters and EFT elegerithms	uper scalar								
processing -		DIODS. 15								
	TEXT BOOKS	KIUD5: 45								
	Lonnia C. Ludeman 'Eurodamental of Digital Signal Processing' Wiley India N	Jow Dolhi								
1.	2014 1 st Edition	lew Denn,								
	Emmanual Ifasahar Parria W Jarvis 'Digital Signal Processing A practical	opproach'								
2.	Partson Education New Delhi 2015 2 nd Edition	approach ,								
	REFERENCE BOOKS									
	John G Proakis Dimitris G Manolakis 'Digital Signal Processing: Principles A	loorithms								
1.	and Applications' Pearson Education New Delhi 2018 J^{th} Edition	.igoinnins,								
	Saniit K Mitra 'Digital Signal Processing A Computer based Approach' Mat	Graw Lill								
2.	New Delhi 2013 4 th Edition	JIAW-11111,								
2	Monson H Haves "Schaums Outline of Digital Signal Processing" McCrew Lill	Education								
J.	wonson II. Hayes, Schaunis Outline of Digital Signal Flocessing, Weofaw-Hill	Buucation,								

	USA, 2011, 2 nd Edition.											
4.	Dimitris G. Manolakis, Vinay K. Ingle, "Applied Digital Signal Processing: Theory and											
	Practice", Cambridge University Press, UK, 2011, 1st Edition.											

Lluou the s	f1	1 . 4	:	41	COU	RSE (OUTCO	DMES	4.0.1						
COs	STATEMENTS									RBT LEVEL					
1	Learn detern	Learn the classifications of signals with mathematical representation and determine the response of the system using Z transform												;	
2	Analy algori	Analyse discrete transforms and evaluate its advancements using FFT algorithms											4	ŀ	
3	Desig	Design and evaluate the performance of FIR filters											5	5	
4	Desig	Design and evaluate the performance of IIR filters										5	j		
5	Under finite	stand th word le	he bas ngth e	sic arcl	hitectu	re of	digital	signal	proce	ssors a	nd anal	yze the	4	ŀ	
Bloom's T	axonomy	(RBT)	Level:	Remen	mber-1; RSE AI	; Unde RTICU	rstand-2 U LATI	2; Appl ON MA	y-3; Ar ATRIX	nalyze-4	l; Evalua	ate-5; Cre	ate-6		
COs		X	1.	1 . A. (POs						Os		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	5%			$r \sim$		1853	-1	m				
2	3	3	2	3	3			/			21				
3	3	3	2				120	-	138	1:	5/		3	2	
4	3	3	2	3	3	3	2		-	0	2	3	3	2	
5	3	3	2	3	3	3	2	-	6		2	3	3	2	
3- High M	apping; 2-	Moderat	te Map	pping; 1	-Low N	Mappir	ıg	55	a	/					
EE22602	INDUSTRIAL AUTOMATION AND NETWORKING (INDUSTRY SUPPORTED)	L T P C													
--------------	---	---------------													
		3003													
COURSE O	BJECTIVES														
• Rec	capitulate the working of sensors and signal conditioning process.														
• Stu	dy of components and circuit design associated with pneumatics and electro-pneuma	tics.													
• Lea	rn the operation and programming of PLCs and human machine interfaces.														
• Obt	tain an overview of HMI, distributed control systems and SCADA.														
• Fan	niliarize with the interconnection and data exchange between PLCs, field of	levicesand													
sup	ervisory units with different bus structures.														
UNIT I	SENSORS AND MEASUREMENT SYSTEMS	9													
Industrial A	Automation: Need, Types and Levels (Automation pyramid) - Sensors and m	easurement													
systems: po	sition, temperature, pressure, force, displacement, speed, acceleration, flow and lev	vel - Signal													
conditioning	g and Processing of control variables - Concept of Industry 5.0: Smart sense	ors, IoT in													
automation.	ARUGELEGE														
UNIT II	PNEUMATICS AND ELECTRO-PNEUMATICS	9													
Introduction	n to Fluid power - classification of air actuators, single acting and double acting	cylinders -													
control valv	es for direction, pressure and flow - Air preparation - Circuit design: symbols, scher	natic, travel													
step diagran	n, control modes - sequence identification and control - Cascade method, KV mappi	ng and Step													
counter met	hod, simulation of drilling process - Electro-pneumatics: components, relay ladder d	iagram.													
UNIT III	PLCs	9													
PLC: Intern	al architecture, I/O modules, fixed and modular PLC - data types - memory	– basics of													
redundancy	- Scan cycle - Analog Scaling - PLC communication modules - Program develop	ment: Flow													
chart/Pseud	ocode, Bit instructions, Arithmetic functions, timers, counters, data transfer, PLC pro	ogramming:													
Maintaining	flow in oil refinery plant and Speed Control in Variable Frequency Drive.														
UNIT IV	HMI, DCS AND SCADA	9													
Control flow	w in Industry - HMI: Necessity and Role, configuring alarms, trends, basic design	of graphics													
using text,	numeric, toggle switches, sliders, function keys DCS: Architecture, local c	ontrol unit,													
programmin	ng language, communication facilities, operator interface, engineering interfaces, D	ata logging													
and alarm lo	ogging - SCADA: redundancy in SCADA, soft tags count, mimic creation for a case	study.													
UNIT V	NETWORKING AND ROBOTICS	9													
Networking	of sensors, actuators and controllers – Industrial Communication Protocols: Fieldbu	is, Profibus,													
Profinet, M	odbus, Ethernet IP, IEEE Standards - Introduction to Robotics, Work volume, End	d Effectors,													
Robotic sen	sors and Machine vision, Robotics in automation.														
	TOTAL PE	RIODS: 45													
1		. 1 1													
1.	S. Muknopadnyay, S. Sen and A. K. Deb, Industrial Instrumentation, Co	ontrol and													
	Automation, Jarco Publishing House, 2013.														
<i>L</i> .	Frank D Petruzella, 'Programmable Logic Controllers', McGraw Hill Inc, 2019.														
1	KEFERENCE BOOKS	C													
1.	5. K. Deb and S. Deb, 'Robotics Technology and Flexible Automation', Tata Mc	Graw Hill													
	Education PVI. Ltd, 2017.	1													
2.	Steve Mackay, 'Practical Industrial data networks: Design, Installation and Trouble	eshooting',													
	Elsevier Newnes, 2004.														

3.	William C. Dunn, 'Fundamentals of Industrial Instrumentation and Process control',
	McGraw Hill, 2005.
4.	Anthony Esposito, 'Fluid power with applications', Pearson New International Edition, 2014.

					COU	RSE (OUTC	OMES						
Upon the s	uccessful	completi	ion of	the cou	rse, the	e studei	nts will	be able	e to					
COs	STATEMENTS												RE LEV	T 'EL
1	Identify suitable sensors and design measurement system for process control applications													
2	Configure a pneumatic/electro-pneumatic circuit for automating a process													
3	Design and develop PLC ladder logic program for industrial sequence control cases													,)
4	Program HMI, SCADA and interface with PLC for process monitoring and control													í
5	Network field devices with PLCs and postulate the basics of robotics											3	;	
Bloom's T	`axonomy	(RBT)	Level	Remen	nber-1	; Under	rstand-	2; Appl	y-3; Ai	nalyze-4	4; Evalua	te-5; Cre	ate-6	
		TR	1	COU	RSE A	RTICU	JLATI	ON M	ATRIX		21			
COs	POs													Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	1	1	36	11	10.	1	ITT	2	3	
2	3	3	3	3	3	1	1	1		1	m	2	3	
3	3	3	3	3	3	1	_	-	10 Ja	1	21	2	3	
4	3	3	3	3	3	1	4	-	10	/15	2/	2	3	-
5	3	2	3	2	2	1	Da	2	/	P	/	2	3	
3- High Ma	apping; 2-	Moderat	e Mar	oping; 1	-Low N	Mappin	g	-	1	0/	-	1		<u> </u>
				21	00	7 -		32	14	/				
					19	/ 1	151	6	/					

EE22603	POWER SYSTEM OPERATION AND CONTROL	LTPC
		3003
COURSE O	BJECTIVES	
• Cha	aracterization of electrical power demand and understand load forecasting techniques	s.
• Dev	velop the Load frequency model of multi area power system and to perform static an	d dynamic
ana	lysis	
• Der	rive the Static excitation system model and to study the system level voltage control	technique.
• Co	mprehend economic operation of power system and control strategies on power syste	ems
• Acc	quire knowledge on computer control and operating states of power system	
UNIT I	INTRODUCTION TO POWER SYSTEM OPERATION AND CONTROL	9
Characterist	tics of Modern Power Systems - Importance of power system interconnection- Ma	jor concern
in power sy	stem design and operating criteria - Power to frequency (P-F) and Reactive power	to Voltage
(Q-V) contr	rol loops - Power system load variation - Load curves - Load forecasting - Qu	adratic and
Exponential	l curve fitting techniques of load forecasting.	
UNIT II	REAL POWER - FREQUENCY CONTROL	9
Primary Co	ontrol of Frequency: Governors -Secondary Control of Frequency: Automatic	Generation
Control - co	ontrol area concept - Load Frequency Control (LFC) of a single area system and	l multi-area
system – N	Aodeling - Static and dynamic analysis - State variable model - Integration of	f Economic
Dispatch Co	ontrol (EDC) with LFC control – LFC with distributed generation.	
UNIT III	REACTIVE POWER-VOLTAGE CONTROL	9
Generation	and absorption of reactive power - Voltage control -Static Excitation Systems -	Modeling -
Static and d	ynamic analysis - Stability compensation - Methods of voltage control: Shunt Com	pensation –
Static Var	Compensator (SVC) and Static Synchronous Compensator (STATCOM) - Ta	p changing
Transforme	r - Voltage control with distributed generation.	
UNIT IV	ECONOMIC OPERATION OF POWER SYSTEMS	9
Concepts of	of Unit Commitment and solution methods - Priority-list method - Forwar	d dynamic
programmir	ng approach -Unit commitment in deregulated environment. Economic Dispatch	Problem -
Control var	riables and constraints -Thermal System Dispatching with Network Losses Co	onsidered -
Lambda-Ite:	ration Method - Base point and Participation factors - Optimal Power Flow.	
UNIT V	COMPUTER CONTROL OF POWER SYSTEMS	9
Indian Scen	nario, Functions of Energy control center, Phasor Measurements Unit (PMU) and	Supervisory
Control An	d Data Acquisition (SCADA)- PLCs and DCS -State estimation-Security asse	ssment and
security enh	nancement - State transition diagram showing various state transitions and control	strategies -
Normal and	Alert State in a Power System - Preventive, Emergency and Restorative Control -	- Blackout -
Power Syste	em Restoration- Applications of Artificial Intelligence in power system operation,	control and
planning.		
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Olle.I.Elgerd, 'Electric Energy Systems theory - An introduction', Tata Mc	Graw Hill
	Education Pvt. Ltd., New Delhi, 2017, 2 nd Edition.	
2.	Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Con	trol', John
	Wiley & Sons, Inc., 2013, 3 rd Edition.	

	REFERENCE BOOKS
1.	Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, 2022,
	Fifth Edition.
2.	Kundur P., 'Power System Stability and Control, Tata McGraw Hill Education Pvt. Ltd.,
	New Delhi, 2022, 2 nd Edition.
3.	Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi,
	2010, 3 rd Edition.
4.	Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI
	learning Pvt. Ltd., New Delhi, 2010, 3 rd Edition.

					COU	RSE (OUTCO	OMES						
Upon the s	uccessful	complet	tion of	the cou	rse, the	studer	nts will	be able	e to:					
COs	s STATEMENTS											RB LEV	T EL	
1	Examine the plant level control loops and load forecasting techniques.											3		
2	Model and Analyze the load frequency control dynamics in power system												4	
3	Model and Analyze the Excitation system and system level voltage control methods												4	
4	Formulate and solve unit commitment and real power scheduling problems.											4		
5	Identify the operating states of power system and apply suitable control strategies in a practical power system network.									3				
Bloom's T	axonomy	(RBT)	Level:	Remen	mber-1;	Under	rstand-2	2; Appl	y-3; An	alyze-4	; Evalua	te-5; Cre	ate-6	
		1.00	1	COUI	RSE AF	RTICU	JLATI	ON MA	ATRIX	-1	11			
COs		1-	21			Р	Os	/		1	51		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	Sr.	1	2		1	1	1	0	1	2	1	3
2	3	3	3	2	2	1	1	2	1	2	1	2	1	3
3	3	3	3	2	2	1	1	2	15	2	1	2	3	3
4	3	3	3	2	2	1	21	2	1	2	1	2	1	3
5	2	2	1	1	2		1	1	1	2	1	2	1	3
3- High Ma	apping; 2-	Modera	te Map	ping; 1	-Low N	Iappin	g			1	1	1	1	

HS22511	INTERVIEW AND CAREER SKILLS LABORATORY	LTPC
	(COMMON TO ALL BRANCHES EXCEPT CE)	0 0 3 2
COURSE O	BJECTIVES	
• Buile	d confidence and develop learners' language proficiency.	
• Bette	er learners' performance in competitive examinations.	
• Impr	ove learners' employability skills.	
• Deve	elop entrepreneurship skills.	
• Exp	ose learners to the use of professional English.	
UNIT I	LISTENING AND SPEAKING SKILLS	12
Conversatio	n Skills – types small talk, face to face and telephonic, formal and informal conv	versations –
skills in pre	esenting ideas and collating information during conference calls (one -to one an	d technical
group /	team) - academic and workplace situations -conversing with fact	ulty/visiting
faculty/gues	ts/officials/employers and employees -group discussion - etiquette and dos and	don'ts, turn
taking -pres	sentation skills -seminars and projects using digital tools; mock interview - etique	ette and dos
and don'ts-	audio-visual interface for enhancement of listening and speaking skills. IELTS a	and TOEFL
(Listening re	elated exercises)	
UNIT II	READING / SPEED READING, CRITICAL THINKING AND WRITING SKILLS	12
Reading Co	mprehension - general and scientific texts/articles/case studies from different or rel-	evant fields
of study for	analysis and critical thinking; employability skills - writing job applications -	cover letter
accompanyi	ng résumé - types of business letters and email writing and etiquette; writing	g reports –
statement of	f purpose - writing articles for publication style and format - creating blogs of	or company
profiles – s	speed reading of voluminous reports / documents and exacting necessary inform	mation and
abstract prep	paration including dissemination. IELTS and TOEFL(Reading related exercises)	
UNIT III	ENGLISH FOR PROFESSIONAL EXAMINATIONS	12
Sentences, p	paragraphs and reading comprehension – vocabulary building – general and techni	cal terms –
contextual n	neaning – spelling – subject specific words – usage and user specific terminology.	IELTS and
TOEFL(Gra	mmar and verbal exercises)	
UNIT IV	ENTREPRENEURSHIP SKILLS	9
Introduction	to entrepreneurship - fundamentals of entrepreneurial skills - developing leadersh	ip qualities
and team we	ork; – marketing strategies microcosmic and macrocosmic levels of product sales an	nd survey –
sector / ind	ustry appraisal and appreciation (review and understanding state of the nation /	economy /
environmen	t / sector reports published) interaction and understanding the role of multilateral	financial /
institutional	/ industrial agencies such as World Bank, ADB, UNDP, CII - Influencing i	n Business
Meetings - A	Active Listening and responding - Role-play - Strengthening – Negotiating/ Argume	entative and
Persuasive S	Skills - Defend a character/idea or attack it Networking Skills - engaging str	angers in a
conversation	n - introducing themselves, making small talk.	
	TOTAL PE	RIODS: 45
	REFERENCE BOOKS	
1.	'Business English Certificate Materials', Cambridge University Press.	1 1 1 1
2.	'Graded Examinations in Spoken English and Spoken English for Work', do	wnloadable
3	Indentities from frinkly Conege, London.	raity Proce
<u>з.</u> Д	Interactive Multimedia Programs on Managing Time and Stress	1511y F1688.
5.	Personality Development (CD ROM) Times Multimedia Mumbai	

	WEB SOURCES
1.	http://www.slideshare.net/rohitjsh/presentationon group discussion
2.	http://www.washington.edu/doit/TeamN/present_tips.html
3.	http://www.oxforddictionaries.com/words/writingjobapplications
4.	http://www.kent.ac.uk/careers/cv/coveringletters.html
5.	http://www.mindtools.com/pages/article/newCDV_34.html

					COU	JRSE C	OUTCO	OMES						
Upon the s	uccessful	complet	ion of	the cou	urse, th	e studer	ts will	be able	e to:					
COs				2	_	STATE	MENT	rs	-				RI LEV	3T /EL
1	Develop approaches for mastering international English language tests such as IETLS and TOEFL, as well as national-level competitive exams.												6	5
2	Make presentations and participate in Group Discussions.												6	5
3	Face interviews with confidence and develop strategies for negotiating job offers.												6	5
4	Build effective resumes, cover letters and professional emails to enhance job application success.											6	5	
5	Explo	re strate	egies f	for sca	ling an	d grow	ving en	trepre	neurial	ventu	res.		6	5
Bloom's T	axonomy	(RBT)	Level:	Reme	mber-1	; Under	stand-2	2; Appl	ly-3; Aı	nalyze-	4; Evalua	ate-5; Cro	eate-6	
		14	1	COU	RSE A	RTICU	LATI	ON M	ATRIX		m			
COs		POs												Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		1	3	0			T		100	3	2/			
2			0			1.E	19		/	3	/			
3			1	0	P		2	-	2	3				
4				1	98	TT	T	22	10	3				
5					-	-	131	~	-	3				
3- High Ma	apping; 2-	Moderat	te Map	ping;	1-Low]	Mappin	g					1		

EE22611	INDUSTRIAL AUTOMATION LABORATORY	LTPC
		0 0 4 2
COURSE O	BJECTIVES	
• To	familiarize with the simulation and implementation of pneumatic/hydraulic circuits.	
• To	know the PC-PLC interfacing configuration procedure.	
• To	understand sensors, PLC and HMI interfacing for process automation.	
• To	learn the industrial processes implementation using PLC and SCADA	
• To	acquaint knowledge onrobotics components, communication and programming.	
	LIST OF EXPERIMENTS	
CIRCUIT D	DESIGN, SENSORS TECHNOLOGY AND PLC PROGRAMMING	1 .1
1	Design and implement the logic for the given pneumatic circuit in hardwar	e and with
	simulation software.	
2	Design and simulation of hydraulic circuit for a given sequential logic.	
3	Design and implement the logic in PLC for the given pneumatic circuit in hardwa	are and with
	simulation software.	
4	Interfacing of transducer with HMI and PLC for monitoring the process	s variables:
	Temperature, Pressure, Level, Weight, Flow and Position.	
5	Develop a PLC ladder logic program for a two-way traffic light control.	
INDUSTRIA	ALPROCESS AUTOMATION	
6	Develop and implement PLC ladder logic program to automate the bottle filling in	a beverages
	industry.	
7	Develop and implement PLC ladder logic program to automate the water level	control in a
	distillery plant.	
8	Develop a PLC ladder logic program to automate the rolling process by speed com	trol of a DC
	drive with optical sensor placed in feedback path in a steel rolling mill.	
9	Design and implement a PLC based automatic star-delta starter for an industrial dri	ive.
10	Design and implement a PLC based DOL starter for an industrial motor.	
INDUSTRIA	AL PROCESS CONTROL	
11	Mimic creation of the control flow in a process industry using SCADA.	
ROBOTIC	S	
12	Robotics - sensor, actuator, communication and programming for control actions is	n a pick and
	place robot.	
	TOTAL PE	RIODS: 60

Upon the su	COURSE OUTCOMES accessful completion of the course, the students will be able to						
COs	COs STATEMENTS						
1	Design and implement process automation using control valves and pneumatic/hydraulic actuators.	4					
2	Design and implement process automation using PLCs with electrical /pneumatic actuators.	4					
3	Interface PLCs with HMI systems for control.	4					
4	Network PLCs with field devices and supervisory control systems.	4					
5	Develop programs for robotics given an industrial use case.	4					
Bloom's Ta	xonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6					

COURSE ARTICULATION MATRIX

COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	3	3-	1	3	3		3	3		
2	3	3	3	3	3	3	1	1	3	3	01	3	3		
3	3	3	3	3	3	3		1	3	3	21	3	3		
4	3	3	3	3	3	3	1	1	3	3	0	3	3		
5	3	3	3	3	3	3	-	1	3	3	2	3	3		

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

	LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS					
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED				
1.	Pneumatic trainer kit	2				
2.	PLC based pneumatic trainer kit	2				
3.	PLC based hydraulics trainer kit	2				
4.	PLC trainer kit	4				
5.	PCs for interconnection with PLCs and for simulation	7				
6.	Automation Studio software	5 user licenses				
7.	PcVue SCADA software	250 tags				
8.	Siemens TIA Portal v17	5 user licenses				
9.	PLC application modules	2 sets				
10.	HMI trainer	2 sets				
11.	DC drive for PLC control	1				
12.	Transducers	1				
13.	Trainer kit for signal conditioning	1				
14.	Star delta starter for induction motor with PLC control	2				
15.	DOL Starter for induction motor with PLC control	2				
16.	Robotics trainer	1				

EE22612	POWER SYSTEM LABORATORY	L T P C
		0 0 3 1.5
COURSE (DBJECTIVES	
• De	evelop models of power system networks and analyze various methods of stea	ady state load
flo	w solution.	
• Pe	rform transient and small signal stability analysis for various faults in power s	systems using
dii	terent methods.	C
• De	evelop load frequency control model for single area and two-area systems and j	perform static
	d dynamic analysis for various cases.	
• Ur	derstand power system unit commitment and economic dispatch problem	and solution
	LIST OF EXPERIMENTS	
Modeling a	nd Analysis of Transmission Lines	
1.	Computation of Transmission Line Parameters	
2.	Modeling of Transmission lines	
3.	Performance analysis of transmission lines	
Steady Sta	te Modeling and Analysis of Power System Network	
4.	Formation of Bus Admittance and Impedance Matrices	
5.	Power Flow Analysis	
6.	Symmetrical and Unsymmetrical Fault Analysis	
Transient	Analysis of Power System	
7.	Transient and Small Signal Stability Analysis of SMIB system	
8.	Electromagnetic Transients in Power Systems – Simulation using PSCAD/ETA	ΑР
Plant Leve	el Control of Power System	
9.	Load - Frequency Control of Conventional Power Systems with/without WEC	S
10.	Design and Stability Analysis of Automatic Voltage Regulator	
Economic	Operation of Power System	
11.	Unit Commitment and Economic Load Dispatch	
12.	Weighted Least Square (WLS) State Estimation	
	ΤΟΤΑ	L PERIODS:45

COs	STATEMENTS	RBT		
		LEVEL		
1	Model the transmission lines, power network and obtain the solution for steady state power flow problem.	4		
2	Compute the short circuit capacity of power system and examine the stability conditions for various faults.	5		
3	Design and analyze a load frequency controller of the power system.	4		
4	Formulate and solve Unit commitment and Economic dispatch problem.	5		
5	Analyze the electromagnetic transient phenomenon in power systems caused due to switching and faults.	4		
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6				

COs		1	6	1		P	Os		1	X			PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	-	2		1	1	21	2	1	
2	3	3	3	3	3	2	0	1	1	1	01	2	1	
3	3	3	3	3	3	1	2	21	1	1	-1	2	1	
4	3	3	3	3	3		2	71	1	1	4	2	1	
5	3	3	3	3	3	2	16	//	1	1	1	2	1	
High Ma	pping; 2-	Modera	te Map	ping; 1-	-Low N	Aapping	g				21		1	

	LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS					
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED				
1.	Personal Computers (Intel Core i5 or i7, 500 GB, 8 GB RAM)	30				
2.	Printer HP Laser Jet 1020 Plus	2				
3.	Server (Intel Core i7, 2 TB, 8 GB RAM or higher) (High Speed	1				
	Processor)					
4.	Software: EMTP / ETAP / MIPOWER any Power system	5				
	simulation software					
5.	Compilers: C / C++ / MATLAB	30				

SEMESTER VII

EE22701	PROTECTION AND SWITCHGEAR	LTPC					
		3003					
COURSE O	BJECTIVES						
• To	realize the causes of abnormal operating conditions of the power system apparatus.						
• To	understand the operating characteristics and functions of relays.						
• To	impart knowledge on apparatus protection and circuit breakers						
• To	introduce static and numerical relays						
UNIT I	PROTECTION SCHEMES	9					
Principles a	nd need for protective schemes – Nature and causes of faults – Fault statistics - Typ	bes of faults					
and abnorm	al operating conditions – Types of protection - Primary and back up protection	– Zones of					
protection a	nd essential qualities of protection – Methods of Neutral grounding – Microgrid and	distributed					
generation p	generation protection - IEEE standards.						
UNIT II	ELECTROMAGNETIC RELAYS	9					
Types and	operating principles of relays - Recent developments - Desirable Qualities and	d Terms of					
Protective R	Relaying – Universal torque equation – R-X diagram – Electromagnetic Relays – O	ver current,					
Directional,	Distance, differential, Negative sequence and Under frequency relays.						
UNIT III APPARATUS PROTECTION 9							
Current tran	sformers and Potential transformers and their applications in protection schemes - P	rotection of					
transformer,	generator, motor, busbar and transmission lines.						
UNIT IV	STATIC RELAYS AND NUMERICAL PROTECTION	9					
Static relays	s – Phase, Amplitude Comparators – Duality of comparators – Synthesis of various r	elays using					
Static comp	arators - Numerical relays - Block diagram - Overcurrent protection, transformer	differential					
protection a	nd distance protection of transmission lines - Microcontroller based overcurrent p	protection –					
Introduction	to adaptive relays.						
UNIT V	CIRCUIT BREAKERS	9					
Arc Interrup	otion - Theories and methods - DC and AC circuit breaking - re-striking voltage and	nd recovery					
voltage - ra	ate of rise of restriking voltage - current chopping - interruption of capacitive	currents -					
resistance sy	witching - Types of circuit breakers - Air, Oil, SF6 and vacuum circuit breakers -	Rating and					
selection of	Circuit breakers.						
	TOTAL PE	RIODS: 45					
	TEXT BOOKS						
1.	Badri Ram, B.H.Vishwakarma, 'Power System Protection and Switchgear', Tata	a McGraw					
	Hill Education Pvt. Ltd., 2011, 2 nd Edition.	NT A					
2.	B.Rabindranath and N.Chander, 'Power System Protection and Switchgear',	New Age					
3	M I Soni PV Gunta US Bhatnagar A Chakrabarti 'A Tayt Book on Pow	or System					
5.	Engineering' Dhannat Rai & Co. 2016	ci System					
	REFERENCE BOOKS						
1.	Sunil S.Rao, 'Switchgear and Protection', Khanna Publishers, New Delhi, 2008.						
2.	Y.G.Paithankar and S.R.Bhide, 'Fundamentals of power system protection'. Prent	ice Hall of					
	India Pvt. Ltd., New Delhi, 2010, 2 nd Edition.						
3.	C.L.Wadhwa, 'Electrical Power Systems', New Age International (P) Ltd.,	2010, 6 th					
	Edition.						

4.	Ravindra P.Singh, 'Switchgear and Power System Protection', PHI Learning Private Ltd.,
	New Delhi, 2009.
5.	Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani,'Protection and Switchgear' Oxford
	University Press, 2011.
6.	C37 series of IEEE standards for power system protection.

Upon the s	uccessful	complet	ion of	the cou	COU	RSE (DUTCO	DMES be able	e to:					
COs					S	STATI	EMEN	ГS					RE LEV	ST /EL
1	Interp	ret the f	aults	in pow	ver syst	em an	d esser	ntial qu	alities	of pro	tection.		2	
2	Under	stand th	ie ope	ration	of vari	ous el	ectrom	agneti	c relay	vs.			2	
3	Analy	Analyze the protection schemes for power system apparatus.						4	ŀ					
4	Synthe	esize va	rious	relays	using	static o	compa	rators a	and mi	crocon	troller.		4	Ļ
5	Analy function	ze the oning or	circ f vario	uit bi ous typ	reaker bes of c	arcin circuit	ig pho breake	enomer ers.	non a	ind ur	nderstan	d the	4	ŀ
Bloom's T	axonomy	(RBT)	Level:	Reme	mber-1	; Unde	rstand-2	2; Appl	y-3; Aı	nalyze-4	4; Evalua	te-5; Cre	eate-6	
		11	21	COU	RSE AI	RTICU	JLATI	ON MA	ATRIX	1/1	12			
COs		IL	1	0.2	3)	F	POs	1	N		21		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	1	100			12		2	3		3
2	3	3	3	3	11		16	11			177	3	3	3
3	3	3	3	3	1		-			1	m	3	2	3
4	3	3	3	3	1355	-	-	-		1	201	3	3	3
5	3	3	3	3		100	12		12	15	5/	3		3
3- High Ma	apping; 2-	Moderat	e Map	ping; 1	-Low N	Mappin	ıg		/	9	/	1	1	
			1	2	9E	77	र	100	In	/				

EE22708	SMART GRID: THEORY AND PRACTICES	LTPC
		3 02 4
COURSE C	BJECTIVES	
 Incul 	cate the concept of smart grid technology, its significance and global initiatives.	
• Fami	liarize the smart grid transmission & distribution technologies emphasizing on ring infrastructures	the advanced
Expe	rtise the high performance computing and networking standards for smart grid applic	ations
IINIT I	INTRODUCTION TO SMART GRID	9+6
Evolution o	f Electric Grid - Conventional vs smart Grid - Environmental impact and Clim	ate Change -
Economic Is	sues - Smart grid: opportunities challenges and benefits - National and Internation	al Initiatives -
Introduction	to Distributed Generation - Microgrids - Storage Technologies - Electric Vehicles: G	rid to Vehicle
and Vehicle	to Grid charging concents	
Evnorimont		
1 Deci	s. an and simulation of Microgrid	
$\begin{array}{c} 1. Designation{}{l} \\ 2 Eorem$	and simulation of Microgrid.	
	SMART CRID TECHNOLOCIES TRANSMISSION SYSTEM	0+6
	SWART GRID TECHNOLOGIES – TRANSMISSION STSTEM	
Dhase Mass	i systems: FACIS and HVDC - Energy Management System: Data sources (SC.	ADA, IED) -
Phase Meas (ACC)	urement Unit (PMU) - EMS Applications: Unit Communent, Automatic Gener	DAC) Smort
(AUC) - sec	f distributed energy recommend	rAC) - Sillalt
Integration of	a distributed energy resources.	
<u>Experiment</u>	<u>s:</u>	
1. Desig	gn of virtual PWO and optimal placement for proper monitoring.	
2. Desig		0.6
	SMART GRID TECHNOLOGIES – DISTRIBUTION SYSTEM	9+0
Distribution	Automation: Modern smart substation, Substation automation equipment: SCAD	A, IED, Bay
controller, k	TU - Fault location - isolation and restoration in non-automated, partially automa	ited and fully
automated d	istribution network - Distributed Management System: structure and main componer	its (overview)
– CIS - Au	tomation of DMS – Applications: System monitoring, Integration of Micro Grid	s and Outage
Managemen	t System (OMS).	

Experiments:

- 1. Protection design of conventional ring-main power system.
- 2. Relay coordination in smart grid protection scheme.

UNIT IV SMART METERS AND ADVANCED METERING INFRASTRUCTURE 9+6

Evolution of electricity metering (Accumulation meters, AMR, Smart Meters, AMI) - Conventional meter v s Smart meter- Smart meters: Hardware, Communication Protocols - Advanced Metering Infrastructure (AMI): drivers and benefits, protocols, standards and initiatives, Application: Demand-side integration: Services, Implementation (price and incentive based) and hardware required.

Experiments:

- 1. Design of smart meters and Advanced Metering Infrastructure.
- 2. Develop Demand response programs for distribution system.

UNIT V	HIGH PERFORMANCE COMPUTING	9+6
Local Area N	etwork (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband	d over Power

Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing to make Smart Grids smarter,

Types of cyber-attacks in smart grid, Prevention of cyber-attacks by means of cyber security in smart grids. **Experiments:**

- 1. Cyber security coding for smart grid communications.
- 2. DC state estimation in Network protocol and Attack Detection.

TOTAL HOURS: 75

	TEXT BOOKS						
1.	Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart Grid:						
	Technology and Applications', Wiley and Sons Ltd., February 2012.						
2.	Stuart Borlase, 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press 2012.						
	REFERENCE BOOKS						
1.	G. Masters, 'Renewable and Efficient Electric Power System', Wiley–IEEE Press, 2013, 2 nd Edition.						
2.	Vehbi C. Gungor, DilanSahin, TaskinKocak, Salih Ergut, Concettina Buccella, Carlo Cecati, and						
	Gerhard P. Hancke, 'Smart Grid Technologies: Communication Technologies and Standards IEEE						
	Transactions on Industrial Informatics', Vol. 7, No. 4, November 2011.						
3.	James Momoh, Smart Grid Fundamentals of Design and Analysisl, IEEE Press, 2012.						
4.	Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang "Smart Grid – The New and Improved						
	Power Grid: A Survey", IEEE Transaction on Smart Grids.						
5.	Tony Flick, Justin morehouse, Securing the smart grid: Next generation power grid security, Elsevier,						
	2010.						
	A 0010						

	COURSE OUTCOMES	
Upon the s	uccessful completion of the course, the students will be able to:	
COs	STATEMENTS	RBT
		LEVEL
1	Analyze challenges and benefits of smart grids and its present developments.	4
2	Analyze the smart grid technologies in Transmission systems	4
3	Assess the role of automation and digitization in Distribution systems	4
4	Analyze the advanced metering infrastructure and hardware implementation.	4
5	Identify communication networks and cyberattack prevention for smart grid.	4
Bloom's T	Caxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cr	eate-6

	COURSE AN ITCULATION MATNIA													
COs		POs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3			2	3	3	2		2	2				3
2	3	2	3	3	3	3	2		2	2				3
3	3	2	3	3	3	3	2		2	2				3
4	3	2	3	3	3	3	3		2	2			3	3
5	3		2	3	3	3			2	2				3
3- High Map	ping; 2-l	Modera	te Map	ping; 1	-Low N	Aappin	g							

COUDSE ADTICULATION MATDIX

	LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS										
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED									
1.	Personal computer with MATLAB	30									

EE22709	ELECTRIC VEHICLES: THEORY AND PRACTICES	L T P C
		3024
COURSE O	BJECTIVES	
• To in	ntroduce the vehicle dynamics and architecture of electric vehicles.	
• To le	earn the motors used for Electric Vehicle applications.	
• To u	nderstand Energy storage technologies used in Electric Vehicles.	
• To re	ealize design of electric vehicle, drive train and subsystems.	
• To le	earn the battery charging and energy management strategies.	9 + 6
Fundamenta	ls of Vehicle Dynamics – Vehicle operating modes – Overview of IC Engine Veh	icle – Fuel
efficient ope	erating zones – Hybrid Electric Vehicle: Architecture, drive-train topologies and r	power flow
control – El	ectric Vehicle: Architecture, drive-train topologies and power flow control – EV pe	erformance
parameters (range, acceleration and maximum speed) – Standard Drive Cycles.	
Experiment	is:	
1. Modeling	the acceleration of electric vehicle	
2. Simulatio	n of GM-EV1 vehicle acceleration	
UNIT II	ELECTRIC PROPULSION SYSTEM	9+6
eMobility re	equirements – suitable motors – Overview on construction and working of EV	′ motors –
Modeling an	nd multi-quadrant control of DC Motor drives, Induction Motor drives, Permane	ent Magnet
Synchronou	s Motor drives, Switched Reluctance Motor drives – Comparison of spe	ed torque
characteristi	cs of IC engine and Electric drives - selection of motors and gears for fuel efficien	t operating
zones.		
Experiment		
1. Modeling	and Simulation of DC motor control	
2. Load test	on BLDC Hub Motor of Electric Vehicle Two-wheeler	
UNIT III	ENERGY STORAGE SYSTEM	9 + 6
Energy and	power requirement of vehicles – sizing of energy storage system (ESS) – ESS for E	Vs: Battery,
Super capa	citors, Fuel cell, Flywheel, Hydrogen Energy Storage - Comparison - Rag	one plot –
Hybridizatio	on of ESS: Need and different topologies - Battery conditions & Specification	ns – Range
prediction m	ethods: constant current discharge, power density approach.	
Experiment		
1. Range Sir	nulation of an Electric Vehicle	
2. Design an	d implementation of power electronic converter and control for hybridization of ene	rgy storage
in EV		
UNIT IV	DRIVE SYSTEM SIZING	9 + 6
Sizing the	drive system: Design requirement specifications, Tractive effort calculation -	Sizing the
propulsion 1	notor, Matching the electric machine and the internal combustion engine (ICE) -	- Operating
zones – Sele	cting type & size of the energy storage system – Design of the power electronic con	ntrol system
- Selecting of	communication protocols and design of supporting subsystems.	
Experiment	<u>ts:</u>	
1. Sizing of	f series, parallel hybrid electric drive train – Case Study	

2. Study and implementation of CAN for EV application

UNIT V	BATTERY CHARGING AND MANAGEMENT STRATEGIES 9+6									
Battery mo	dule and pack design - Battery management system (BMS) Hardware and Software: Cell									
balancing,	SoC measurement, Thermal management - Different Charging Methods (Regular, Fast,									
Opportunity	y) – Charging Algorithms: CCCV, Multistage charging, Pulse charging – Charging termination									
-Charger pr	otocols, OCPP, V2G, CHADEMO, Bharat charger – Standards used for chargers – Application									
of IoT to ch	arging infrastructure.									
<u>Experimen</u>	Experiments:									
1. Design and simulation of a DC charger circuit.										
2. Design and implementation of a BMS.										
TOTAL PERIODS: 75										
	TEXT BOOKS									
1.	Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, 'Hybrid Electric									
	and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2018, 3 rd Edition.									
2.	Iqbal Hussein, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC Press, 2021, 3rd									
	Edition.									
REFERENCE BOOKS										
1	John M Miller, 'Propulsion Systems for Hybrid Vehicles', Institution of Engineering and									
	Technolog, 2010, 2 nd Edition.									
2	C.C. Chan and K.T. Chau, 'Modern Electric Vehicle Technology', OXFORD University Press, 2001.									
3	James Larminie, John Lowry, 'Electric Vehicle Technology Explained', Wiley, 2012,									
	2 nd Edition.									
4	Sheldon S. Williamson, 'Energy Management Strategies for Electric and Plug-in Hybrid									
	Electric Vehicles', Springer, 2013.									
5	Chris Mi, M. Abulm Masrur, David WenzhongGao, 'Hybrid Electric Vehicles Principles and									
	Applications with Practical Perspectives', Wiley Publication, 2011.									
	COURSE OUTCOMES									

COURSE OUTCOMES								
Upon the successful completion of the course, the students will be able to								
COs	STATEMENTS	RBT						
	Opt - tac	LEVEL						
1	Identify and emulate the suitable drive-train topology of an electric vehicle for the designated application.	4						
2	Analyze the selection aspects of various propulsion units used for electric vehicle application.	4						
3	Develop practical skills to assess and optimize vehicle range under varying conditions.	4						
4	Analyze and optimize the sizing of drive systems of Electric and Hybrid vehicles.	4						
5	Analyze and apply charging technologies, algorithms, and battery management systems for efficient electric vehicle operation with optimized battery performance.	4						
Bloom's Tax	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6							

	COURSE ARTICULATION MATRIX													
COs		POs												Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	3	2	2	2	3				2	2		2	3	
2	3	3	3	3	3	2	2		2	2		3	3	
3	3	3	3	3	3	2	2		2	2		3	3	2
4	3	3	3	3	3	2	2		2	2		3	3	2
5	3	3	3	2	3	2	2		2	2		3	3	2
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	apping	5							

EE22711	MINI PROJECT	L T P C
		0 0 4 2
COURSE O • The Ele rea	BJECTIVES e main objective of this course is the culmination of the knowledge gathered in ectrical and Electronics Engineering through its application to the diagnosis and sol l-world problems which can be executed as a mini project.	the field of ution of the
GUIDELIN	NES	
Expectation	ns and Assessment	
 Min knov utili com revie 	i Project involves modeling, simulation, analysis and implementation by utilizing wledge acquired and it entails the application of fundamental principles to develop ty. The mini project may be a prelude to EE22811 Project work with the sin pleted or it can be an exclusive mini project. The progress is assessed through the ews and an end semester examination with the submission of project report.	the technica a product o nulation par hree interna
General		
 A p thro The stud the o The Stud test appl 	roblem can be identified in one of the thrust areas of Electrical & Electronics ugh in-depth survey and critical study of published literature. project work can be carried out as an individual work or a group project with ma ents in it with an identified supervisor who is an expert in the domain from among t department assigned as mentor of the team. identified problem can be segmented into modules to encourage individual contribu- lents are expected to model/formulate the problem, design appropriate solution n in the suitable simulation tool and analyze the results or a develop a product of u ication of principles learned and the practical skills acquired.	Engineering ximum three he faculty o ttion. nethodology utility by the
	TOTAL PI	ERIODS: 6
	विद्या परा देवता -	

					COU	RSE O	UTCO	MES							
Upon the su	accessful c	complet	ion of	the cour	rse, the	student	ts will	be able	to						
COs					S	STATE	MENT	'S					RBT LEVEL		
1	Identif interes	y and f	ormu	late the	proble	em and	perfo	rm lite	rature	search	in the a	rea of	4		
2	Evolve	e the mo	ethodo	ology to	o exec	ute the	projec	t throu	ıgh its	variou	s phases	5.	4		
3	Condu require	ct experiments.	erime	nts/ De	esign	and an	alysis	/ Solu	tion it	eration	ns as p	er the	5		
4	Work proble	Work in multi- disciplinary areas and provide solutions to the identified problems.												5	
5	Compile the findings and conclude with written report and oral presentation and to formulate solutions with the implementation of new technologies										4	4			
Bloom's Ta	axonomy	(RBT)	Level:	Remen	nber-1;	Unders	stand-2	; Apply	y-3; An	alyze-4	4; Evalua	te-5; Cre	eate-6		
			1	COUR	RSE AI	RTICU	LATIO	ON MA	TRIX	2	1				
COs	POs													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	P	2	2	3	3	01	3	3	3	
2	3	3	3	3	3	1		51	3	3	3	3	3	3	
3	3	3	3	3	3		1	71	3	3	3	3	3	3	
4	3	3	3	3	3	3	3		3	3	mil	3	3	3	
5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
3- High Ma	pping; 2-N	Moderat	e Map	ping; 1	-Low N	Aapping	<u>;</u>		Z)	13	5/				
			2	27	वैद्य	11	য	50	ar	/	/				

EE22712	INDUSTRIAL TRAINING/INTERNSHIP	LT P C							
		0002							
COURSE OBJECTIVES									
• Ent	er the realm of practical innovation, where theoretical knowledge intersects with ex	periential							

• Enter the realm of practical innovation, where theoretical knowledge intersects with experiential learning. This empowers students to tackle real-world challenges directly, harnessing state-of-the-art technologies to engineer impactful solutions.

PREREQUISITE

• Provide students with a robust preliminary foundation in Electrical and Electronics Engineering tailored to meet the current and future demands of the industrial sector.

GUIDELINES:

Expectations and Assessment:

• The Industrial Internship program entails hands-on experience with real-time prototype models, conducting simulation studies, and evaluating solutions in Electrical and Electronics Engineering through exposure to industrial practices. Students are required to complete their Internship/Training before the 6th semester and must accrue a minimum of 1 credit (equivalent to 2 weeks) or a maximum of 2 credits (equivalent to 4 weeks).

100

TOTAL:04 WEEKS

Jpon the s	successful completion of the course, the students will be able to	1						
COs	STATEMENTS	RBT LEVEL						
1	Unearth and redefine problems, applying creativity to craft innovative design solutions.	4						
2	Develop strategic methodologies to guide the projects through various phases, igniting progress with each step.							
3	Engineer circuits and systems, selecting components with precision to meet the demands of real-world applications.							
4	Utilize simulation tools and algorithms to illuminate pathways to solutions and refine the understanding.	4						
5	Communicate the findings effectively through compelling written reports and captivating oral presentations, showcasing the journey of growth and learning during the internship program.	4						

	COURSE ARTICULATION MATRIX													
COs						Р	Os						PSC	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	2	2	2	3	3	3	3	3	3	3
2	3	3	3	2	2	2	2	3	3	3	3	3	3	3
3	3	3	3	2	2	2	2	3	3	3	3	3	3	3
4	3	3	3	2	2	2	2	3	3	3	3	3	3	3
5	3	3	3	2	2	2	2	3	3	3	3	3	3	3
3- High Map	ping; 2-N	Modera	te Map	ping; 1-	-Low N	lapping	3				-			

SEMESTER VIII

EE22811	PROJECT WORK	LTPC
		00168

COURSE OBJECTIVE

• The main objective of the project work is the culmination of the knowledge gathered in the field of Electrical and Electronics Engineering through its application to the diagnosis of the real-world problems and to formulate solutions with the implementation of new technologies.

GUIDELINES

 The Program Consultative Committee (PCC) can recommend the students to carry out their final semester project work for six months in industry/research organizations provided that they should not have any standing arrears and underwent their eighth semester courses during the sixth and seventh semesters. The Project work can be internship to be carried out in industry as part of job offer obligation or it can be extension of Mini Project carried out in the previous semester or It can be an exclusive industry project or inhouse project.

Industry Projects

- A team is also encouraged to carry out the project work in industry that can inculcate in them the spirit of research and development and technical leadership while working with practical real time problems.
- The supervisor from industry reviews and finalizes the approach to solve the identified problem through field investigation.
- A permission letter, student periodical attendance report and project completion certificate provided by the industry are to be submitted to faculty supervisor in the department.

Expectations

- Project work is the validation of simulation through the design, development and implementation of the prototype or it can be an independent industry project or inhouse project or an internship carried out in the placed industry.
- The software-based project work has to be validated through application development/practical system.

Assessment

- Assessment involves three reviews to ensure the project progress and an end semester examination with the Project work report submission.
- Students are highly encouraged to publish their outcome in peer reviewed conferences, journals and to apply for patent to enrich the research milieu of the department
- The findings of the project work have to be analyzed, consolidated and can be presented as a final product.

TOTAL PERIODS: 240

					COU	JRSE (OUTC	OMES						
Upon the su	iccessful	complet	ion of	the cou	irse, the	e studer	nts will	be able	e to					
COs					5	STATE	'MEN'	ГS					RE	BT /FI
1	Identi	fication	and	formul	ation of	of the	proble	m thro	moh li	teratur	e search	n in the		4
_	area	of intere	st and	$\frac{1}{0}$ or (Condu	ct feasi	ihility	study	marke	et analy	vsis and	design		
	standa	ardizatio	on for	nroiec	t imnle	ementa	tion	study,	mance	, and	, sis und	uesign		
2	Perfor	m Deg	ran/Δ	nalvei	e and	Sim	ilation.	/Soluti	on it	eration	e ae r	er the		5
-	requir	ements	and	Selecti	on of	suitah	le har	lware	and as	sembl	e /ident	ify and	•	0
	extend software solution for real-time problem.													
3	Devel	$\frac{1}{2}$ on a dev	vice/n	rototy		tion to	est and	l chara	otorizo					5
4	5 Develop a device/prototype/solution, lest and enalacterize.													
4	Valid	ate the	proto	otype/r	eal th	ne pro	oblem	soluti	on/cha	racteri	zation f	nrough	-	5
	perfor	mance	analys	sis und	er diff	erent s	ystem	conditi	ons.			-		
5	Analy	ze the f	indin	gs, pro	pose tl	he suita	able so	olution	and do	ocumei	nt the re	sults as	4	4
	a tech	nical re	port f	or oral	preser	itation.			2	0)	÷			
Bloom's Ta	axonomy	(RBT)	Level	: Reme	mber-1	; Under	stand-	2; Appl	y-3; Ar	halyze-4	4; Evalua	ate-5; Cre	ate-6	
		1	5	COU	RSE A	RTICU	JLATI	ON MA	ATRIX		10			
COs		14	51		6.1	Р	Os		17	1	21		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	-		-	3	3	62 1	3	3	3
1	3	5		3	0	-		5		3		3		3
2	3	3	3	3	3		V		3	3	3	3	3	3
3	3	3	3	3	3			11	3	3	3	3	3	3
4	3	3	3	3	3	3	3	/	3	3	21	3	3	3
5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3 High Ma	nning: 2	Moderat	to Mar	ning: 1	Low	Mannin	a	1	1.3	13	5/			
5- Tilgii Ma	.pping, 2-	wiouera	ie maj	oping, i	-LOW I	viappin	g	_	1	0	-/-			
			10		-		V		/ .		/			
			1	97	0		×	-	2	9/				
				1	98	TT	111	22	10					
					-	0.0	1.01	-						

VERTICALII: POWER SYSTEM ENGINEERING

EE22021 RESTRUCTURED POWER SYSTEMS	LTPC									
	3003									
COURSE OBJECTIVES										
• To impart knowledge on various types of deregulated markets in power systems.										
• To analyze the technical and non-technical problems and possible solutions in the der	egulated power									
industry.										
• To familiarize different market mechanisms and summarize the role of various entities	in the market.									
• To analyze the energy and ancillary services management in the deregulated power ind	ustry.									
• To understand the restructuring framework in power sector.										
UNIT I INTRODUCTION TO RESTRUCTURING OF POWER INDUSTRY	9									
Reasons for restructuring - Understanding the restructuring process - Operating Experiences	of Deregulated									
Electricity Markets in various Countries - Consumer behaviour - Supplier behaviour - Mark	et equilibrium -									
Short-run and Long-run costs - Various costs of production - Market models based	on contractual									
arrangements - Market architecture.										
UNIT II TRANSMISSION CONGESTION MANAGEMENT	9									
Definition, reasons, importance, and features of congestion management Classification	of congestion									
management methods - Calculation of ATC - Non-market methods - Market based methods -	Nodal pricing -									
Inter-zonal Intra-zonal congestion management - Price area congestion management - Capacity alleviation										
method.										
UNIT III LOCATIONAL MARGINAL PRICES (LMP) AND FINANCIAL TRANSMISSIO	N 9									
RIGHTS										
Mathematical preliminaries - Fundamentals of locational marginal pricing - Lossless DCOPF	model for LMP									
calculation - Loss compensated DCOPF model for LMP calculation - ACOPF model for LM	IP calculation -									
Risk Hedging Functionality of financial Transmission Rights - FTR issuance process - Treat	nent of revenue									
shortfall - Secondary trading of FTRs - Flow Gate rights - FTR and market power - FT	R and merchant									
transmission investment.										
UNIT IV ANCILLARY SERVICE MANAGEMENT AND PRICING OF TRANSMISSION NETWORK	N 9									
Introduction - Types of ancillary services - Load-generation balancing related services - Vol-	age control and									
reactive power support services - Black start capability service - Mandatory provision of and	illary services -									
Markets for ancillary services - Co-optimization of energy and reserve services - Internatio	nal comparison.									
Pricing of transmission network: Power wheeling - principles of transmission pricing - trans-	mission pricing									
methods - Marginal transmission pricing paradigm - Composite pricing paradigm - loss allocati	on methods.									
UNIT V MARKET EVOLUTION	9									
International markets - US markets - ERCOT market - Standard Market Design (SMD) - PJM	market - Nordic									
power market -Comparison of power markets- Reforms in Indian power sector - Framework	of Indian power									
sector - Reform initiatives - Availability Based Tariff (ABT) - Electricity Act 2003 - Open	Access issues -									
Power exchange.										
TOTAL HOURS: 45										
IEAI BUUKS 1 Kankar Bhattacharya Maath H I Bollan and JaanE Daaldar. 'Onarction of rost	nctured nower									
systems'. Kluwer academic publishers USA 2012	uctured power									

	and Sons Ltd, 2004.
	REFERENCE BOOKS
1	Sally Hunt, 'Making competition work in electricity', John Wiley and Sons, Inc., 2002.
2	Dr. A.R. Abhyankar, Prof. S.A. Khaparde, 'Web course on Restructured Power Systems', IIT
	Delhi,IIT Bombay, under http://nptel.iitm.ac.in
3	LoiLeiLai, 'Power system Restructuring and regulation: Trading, Performance and Information
	Technology', John Wiley sons, 2001.
4	P.Venkatesh, B.V.Manikandan, S.Charles Raja and A.Srinivasan, 'Electrical power systems
	analysis', Security and Deregulation, PHI 2012.

					COU	JRSE O	UTCO	MES						
Upon the s	uccessful	complet	ion of	the cou	rse, the	e studen	ts will l	be able	to					
COs				/	-	STATE	MENT	S	1				RBT LEVEL	
1	Famili philos	arize to a contract of the con	he pro f mark	ocess o et moo	of rest lels	ructurii	ng of j	power	indus	try and	d analyz	ze the	4	ł
2	Analy: system	ze vari 1	ous m	ethods	s of c	ongesti	on ma	nagem	nent in	dereg	ulated j	power	4	ł
3	Analy	ze the l	ocatio	nal ma	rginal	pricing	g and fi	inancia	al trans	missio	n rights		4	ŀ
4	Analy	ze the a	ncilla	ry serv	vice ma	anagem	ent and	d whee	eling cl	harges	21		4	ŀ
5	Elucid	late the	evolu	tion of	India	n and U	S pow	er mar	kets	1	01		5	;
Bloom's T	axonomy	(RBT)	Level:	Remen	mber-1	; Under	stand-2	; Apply	y-3; An	alyze-4	; Evalua	te-5; Cre	eate-6	
		Z		COUI	RSE A	RTICU	LATIO)N MA	TRIX		177			
COs		10	1	1.	/	P	Os	1	1	-1	m		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2		3	3	1	2	18	2	1		3
2	3	3	3	3		3	3	1	2	D	2	1		3
3	3	3	3	3	-	3	3	1	2	-1/	2	1		3
4	3	3	3	3	9E	3	3	20	2	1	2	1		3
5	3	3	3	3	~	3	3	1	2	1	2	1		3
3- High Ma	apping; 2-1	Modera	te Map	ping; 1	-Low I	Mapping	3			1	1		I	

EE22022	SUBSTATIONAUTOMATION	L T P C
		3003
COURSE O	BJECTIVES	
• To	familiarize with the components and functions of substation automation systems (SA	ASs).
• To	understand the interfacing arrangements between substation and automation.	
• To	acquaint knowledge on substation and automation integration, communication pro	tocols and
sec	urity.	
• To	know the standards of IEC 61850 Communication Networks and Systems in Substat	ions
• To	learn the structured/unstructured tests on SAS components.	
UNIT I	INTRODUCTION	9
Evolution of	of Substation Automation Systems (SASs) - Functions of SASs - IEC 61850	substation
architecture	- Process Level - Primary equipment - Bay Level Components, Bay Controller (BC	C) - Process
Bus - Static	on Level - Station Controller - Human Machine Interface HMI - Protocol Conver	sion Task -
Station Bus.	AP CELEGE	
UNIT II	INTERFACE BETWEEN AUTOMATION AND THE SUBSTATION	9
Physical Cl	nallenges - Measurements- SA system electrical measuring interface, Measuren	nent sensor
placement,	Characteristics of Digitized Measurements, Measuring Devices, Scaling Measurements, Measurements, Measuring Devices, Scaling Measurements,	red Values,
Pulse Accur	mulators - State (Status) Monitoring - Control Functions - Communication Network	ksinside the
Substation.	IF CARLEN	
UNIT III	SUBSTATION INTEGRATION AND AUTOMATION	9
Introduction	a - Open Systems - Operational versus Nonoperational Data - Data Flow - Asset Ma	anagement -
Redundancy	/ - System Integration Issues - System Components - Cyber Security - OSI Com	nunications
Model - Pro	tocol Fundamentals - Synchrophasors	
UNIT IV	COMMUNICATION NETWORKS	9
IEC 61850	for interoperability in substations - Interoperability and opensystems - IEC 61850) as system
standard for	substations - Structure - Communication approach - Model approach - Engineering	g approach -
Seamless Co	ommunication for Utilities - Benefits.	
UNIT V	TESTS ON SAS COMPONENTS	9
Type Tests	- Acceptance Tests - Tests for Checking the Compliance with the Standard IEC 6185	50 - Factory
Acceptance	Tests: Test Arrangement - System Simulator - Hardware Description - Software Id	lentification
- Test Instru	iments - Documentation to be Available - Checking System Features - Planned Testi	ng Program
for $FAT - N$	Ion structured FATs – SAS: Future Technological Trends.	
	TOTAL PE.	RIODS: 45
1	TEXT BOOKS	1 - 11/1
1.	John D.McDonald, 'Electrical Power Substation Engineering', CRC Press, 2017, 31	rd Edition.
2.	DahiyaR.S, Sub-Station Engineering, Design, Concepts and Computer Application	tion', S.K.
	Kataria and Sons, Reprint 2022.	
1	KEFERENCE BOOKS	-1 117'1
1.	Evelio Padilla, "SubstationAutomation Systems: Design and Implementation", Je	ohn Wiley
	and Sons Ltd, 2016, 1 st Edition.	1.11
2.	Satnam, P.S., Gupta, P.V., 'Substation Design and Equipment', Dhanapat Rai Pu	iblications,
	1 st Edition, 2013.	
3.	'Network Protection and Automation Guide', Published by Alstom Grid, 2011, 2 nd	Edition.

	COURSE OUTCOMES	
Upon the suc	ccessful completion of the course, the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Demonstrate the functions of various levels in substation automation systems	3
2	Illustrate the measurements and interfacing between substation and automation system	3
3	Explore the substation integration system components and technical issues	3
4	Apply the substation communication standards and security	3
5	Describe the different testing procedure of SAS components	3
		-

Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

				COUR	RSE AF	RTICU	LATIO)N MA	TRIX					
COs			1	8	P	P	Os	20	6	1			PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	3	2	1	2	1		1	2	2	2	3
2	3	2	2	3	2	1	2	1	1	1	2	2	2	3
3	3	2	2	3	2	1	2	1	2	1	2	2	2	3
4	3	2	2	3	2	1	2	1		1	2	2	2	3
5	3	2	2	3	2	1	2	1	14-2	1	2	2	2	3
			-	1.00			h	- 10						

tantes

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

ILS STATE

EE22023	HVDC AND FACTS	L T P C								
		3003								
COURSE OB	JECTIVES									
To impart kno	owledge on									
• AC t	ransmission systems and DC transmission systems									
 Basic 	c operation and control of variable impedance type FACTS Controllers									
• Oper	ation and control of VSC based FACTS controllers									
• Basic	c operation of Line Commutated Converter(LCC) based HVDC links									
• Featu	ares of voltage source converter based HVDC control									
UNIT I	INTRODUCTION	9								
Reactive pow	er control in electrical power transmission lines - Load & System compensation - Un	compensated								
transmission	transmission line - Shunt and Series compensation - Need for HVDC Transmission - Comparison between AC									
and DC Trans	and DC Transmission - Types of HVDC transmission System.									
UNIT II	FACTS CONTROLLERS	9								
Concept of F	FACTS - Compensation of transmission systems - Types of FACTS controllers -	Static shunt								
compensators	s - SVC - Static series compensators - GCSC, TSSC, TCPAR - Static a	and dynamic								
performance	improvement with FACTS controllers – Applications.									
UNIT III	VOLTAGE SOURCE CONVERTER BASED FACTS	9								
Basic operati	ng principles and control approaches of STATCOM, SSSC, UPFC and IPFC - A	pplications -								
Enhancement	in Power transfer capability and transient stability - Prevention of voltage instability.									
UNIT IV HVDC TRASMISSION 9										
Evolution - Basic concept of HVDC transmission - Operation of Graetz bridge - Effect of delay in Firing Angle										
– Effect of co	ommutation overlap - Equivalent circuit - Model of operations and control of power	er flow - CC								
and CIA mod	e of operation.									
UNIT V	HVDC SYSTEM CONTROL	9								
HVDC system	m control feature - Control modes - Control schemes and Control comparison-	Starting and								
stopping of H	IVDC link - Mechanism of active and reactive power flow control - Harmonics & fi	lters - Faults								
and abnormal	operation and protection - Topologies of MTDC system.									
	TOTAL	HOURS: 45								
1	TEXT BOOKS	-1f								
1	Naran G Hingorani, LaszioGyugyi, Understanding FACTS Concepts and Teo	chhology of								
2	Flexible AC Transmission System, IEEE press and John Wiley and Sons, 2000.									
2	K.R.Padiyar, 'HVDC Power Transmission Systems', New Age International (P)Ltd.	, NewDelhi,								
	2017, 3 rd Edition,.									
1	REFERENCE BOOKS	r Electrical								
1	Transmission Systems' IEEE gross and John Wiley and Song 2002	Di Electrical								
2	I ransmission Systems, IEEE press and John Wiley and Sons, 2002.	N								
2	K.K.Padiyar, FACIS Controllers in Power Transmission and Distribution,	New Age								
2	International(P) Ltd., Publishers, New Delni, 2016, 2 nd Edition,.									
3	Vijay K.Sood, 'HVDC and FACTS controllers – Applications of Static Converte	ers in Power								
-	System', Springer-Verlag New York Inc, 2004.									
4	A.T.John, 'Flexible AC Transmission System', Institution of Engineering and	Technology,								
	1999.									

					COU	RSE (OUTCO	OMES						
Upon the su	ccessful o	complet	ion of	the cou	rse, the	studer	nts will	be abl	e to					
COs					S	STATE	EMENI	ГS					RB	Т
													LEV	EL
1	Identif FACT	Identify the problems in AC transmission systems and understand the need for FACTS and HVDC Transmission											2	
2	Analyze the basic operation and control of FACTS and its applications											4		
3	Analyz contro	ze basio llers	c oper	ation a	nd co	ntrol c	of volta	ige so	urce co	onverte	rbased	FACTS	4	
4	Demonstrate basic operation and control of Line Commutated HVDC Transmission								3					
5	Explai	n the V	SC ba	used H	VDC 7	Transn	nission	contro	ol				3	
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1	Under	rstand-2	2; App	ly-3; Ar	nalyze-4	l; Evalu	ate-5; Cre	ate-6	
				COUR	SE Al	RTICU	JLATI	ON M	ATRIX					
COs			/	OR	/	P	Os	-	5	~	5		PSC	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	3	1	-	New York	1	1-0	1	10	2	3	3
2	3	3	2	2	2	-	-		N	1	21	2	3	3
3	3	3	2	3	2	P	0	1.	100	1	0	2	3	3
4	3	3	2	2	2	100		51	100	1	1	2	3	3
5	3	3	2	3	2	122	11	7		1		2	3	3

परा

team or

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

125 THEI

EE22024	POWER SYSTEM DYNAMICS	LTPC
		3003
COURSE O	BJECTIVES	
• To :	impart knowledge on mathematical modelling of a synchronous machine in detail.	
• To	develop the mathematical model for excitation and speed governing systems	
• To	enhance the knowledge on transient stability concepts in power systems.	
• To :	analyze dynamic and voltage stability behavior of power systems	
UNIT I	SYNCHRONOUS MACHINE MODELLING	9
Conceptual	importance of power system transient and dynamic stability in the operation and des	sign - Basic
equations of	f a synchronous machine: stator circuit equations, stator self, mutual and stator to re-	otor mutual
inductances	- dq0 Transformation: flux linkage and voltage equations for stator and ro	tor in dq0
coordinates,	electrical power and torque, physical interpretation of dq0 transformation - Equival	lent circuits
- steady state	e analysis - Synchronous machine representation in power system studies.	
UNIT II	MODELLING OF EXCITATION SYSTEM	9
Excitation s	system requirements - Basic concepts and definitions of exciter and voltage r	egulators -
Elements, ty	ypes, control and protective functions of excitation system - Modelling of excitat	tion system
components	: Modelling of IEEE type 1 excitation system - Saturation function - Stabilizing circ	uit.
UNIT III	MODELLING OF SPEED GOVERNORS	9
Function of	speed governing systems - Block diagram and state space representation of IEEE	mechanical
hydraulic ar	nd electrical hydraulic governors for hydro and steam turbines - Block diagram of	of governor
with transie	nt droop compensation - Modelling of single reheat tandem compounded type stear	m turbine –
Generic spec	ed-governing system model.	
UNIT IV	TRANSIENT STABILITY ANALYSIS	9
Review of r	numerical integration methods: Euler and fourth order Runge - Kutta methods - M	Iodeling of
multi machi	ine power system with one axis machine model - Inclusion of excitation system	and speed
governing s	ystem - Power system stabilizer- Assumptions made in stability studies- Transie	ent stability
analysis sim	ulation using R-K method of fourth order (Gill's technique).	
UNIT V	DYNAMIC AND VOLTAGE STABILITY ANALYSIS	9
System resp	oonse to small disturbances - Simplified linear model of synchronous machine	- Effect of
excitation of	n dynamic stability - Approximate system representation - Supplementary stabiliz	ing signals.
Classificatio	on of voltage stability - Basic concepts related to voltage stability: Generator, the	ransmission
system and	load characteristics - Factors affecting voltage stability - Voltage collapse - Pro-	evention of
voltage colla	apse.	
	TOTAL PE	ERIODS: 45
	TEXT BOOKS	
1.	R.Ramanujam, 'Power System Dynamics: Analysis and Simulation', Prentice I 2009	Hall India,
2.	Prabha Kundur, 'Power System Stability and Control'. McGraw Hill. USA 2006.	
	REFERENCE BOOKS	
1.	M.A.Pai and W.Sauer, 'Power System Dynamics and Stability', Pearson Educa India, 2002.	ation Asia,
2.	P.M. Anderson and A.A.Fouad, 'Power System Control and Stability', GalgotiaPu New Delhi, 2003.	blications,

3.	J.Machowski,	Bialek,	Bumby,	'Power	System	Dynamics	and	Stability',	John	Wiley	and
	sons, 2020,3 rd	edition.									

¥7 .1	COURSE OUTCOMES	
COs	STATEMENTS	RBT LEVEL
1	Model the synchronous machines for stability analysis.	4
2	Develop dynamic model of excitation system.	4
3	Model the speed governing system for stability analysis.	4
4	Analyze stability condition synchronous machine for large disturbances.	4
5	Analyze dynamic and voltage stability conditions of power system.	4
Bloom's T	axonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5;	Create-6
	COURSE ARTICULATION MATRIX	

COs	POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	3	2	1		2	1	51	2		3
2	3	3	3	2	3	2	1	1	2	1	21	2		3
3	3	3	3	2	3	2	T	-	2	1	02	2		3
4	3	3	2	2	2	2	1		1	2	Z	2		3
5	3	3	2	2	2	2	1	11	1	2	m	2		3
8- High Ma	pping; 2-	Modera	te Map	ping; 1	-Low N	Aapping	g				17			
		1	1	N	1	-	0	e	54	1.	31			
		1	de la	13			T.		-	5	-/			
			10.		-	1	V	1	1		/			
			1	27	25		-	30	a.	/				
					101	/ τ	171	60	/					

125 State

EE22025	HIGH VOLTAGE ENGINEERING	L T P C									
		3003									
COURSE O	BJECTIVES										
To impart k	nowledge on										
• Sou	rces of transients like lightning, switching and temporary over voltages										
 Various breakdown mechanisms in gaseous, liquid and solid dielectrics 											
• Ger	neration of high AC/DC voltages and different techniques of measuring High voltage	es									
• Dif	ferent types of testing and insulation coordination										
• Ind	ustrial applications of Electrostatic fields.										
UNIT I	OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS	9									
Importance	of Electric Field Intensity in the Dielectrics - Causes of over voltages and its effect	ts on power									
system —	Lightning, switching surges and temporary over voltages - Reflection and Re	efraction of									
travelling w	aves - Theories of charge formation - Protection against overvoltage.										
UNIT II	DIELECTRIC BREAKDOWN	9									
Classificatio	on and properties of dielectrics - Gaseous breakdown in uniform and non-unifo	rm fields –									
Corona disc	harges - Vacuum breakdown - Conduction and breakdown in liquid dielectrics - Br	eakdown in									
solid and co	mposite dielectric - Application of insulating materials in electrical equipment.										
UNIT III	GENERATION AND MEASUREMENTS OF HIGH VOLTAGES AND HIGH	9									
	CURRENTS										
Methods of	f generation of high AC voltage, Transformers in Cascade - Resonance Transformers in Cascade - Resonan	sformers -									
Generation	of high DC voltage, Voltage multiplier circuits - Impulse voltage generator, sir	igle stage -									
Multistage i	mpulse generator and triggering methods - Peak high voltage measurement techniqu	ies - Sphere									
gap - Electro	ostatic Voltmeters - Potential dividers - Types and applications - IS and IEC Standar	ds.									
UNIT IV	HIGH VOLTAGE TESTING AND INSULATION COORDINATION	9									
Non-destruc	ctive high voltage testing and quality control on various power apparatus - Insulators	 Bushings 									
– Cables –	Isolators and Circuit Breakers - Transformers - Surge arresters- Insulation Co	oordination-									
IS/IEC/IEE	E standards and specifications.										
UNIT V	ELECTROSTATIC APPLICATIONS IN INDUSTRY	9									
Electrostatic	c applications- Electrostatic precipitation, separation, painting/coating, spraying	z, imaging,									
printing - T	ransport of materials – Manufacturing of sand paper – Smoke particle detector – I	Electrostatic									
spinning, pu	Imping, propulsion – Ozone generation – Biomedical applications.										
	TOTAL PE	RIODS: 45									
	TEXT BOOKS	e o e o sth									
1.	M S.Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill,	, 2020, 6 th									
	Edition.										
2.	E. Kuffel and W.S. Zaengl, J.Kuffel, 'High voltage Engineering func	lamentals',									
	NewnesElsevier, New Delhi, 2005, 2 nd Edition.										
	REFERENCE BOOKS										
1.	L.L. Alston, 'High Voltage Technology', Oxford University Press, 2011, 1st Indian	Edition.									
2.	C.L. Wadhwa, 'High Voltage Engineering', New Age International Publishers,	, 2020, 4 th									
	Edition										
3.	Subir Ray, 'An Introduction to High Voltage Engineering' PHI Learning Priva	ateLimited,									
	New Delhi, 2013, 2 nd Edition.										

COURSE OUTCOMES															
Upon the su	iccessfu	l compl	etion	of the	course	e, the st	udents	will b	e able	to:					
COs	STATEMENTS														
1	Describe the causes and types of overvoltage														
2	Explain various breakdown phenomena occurring in gaseous, liquid and solid dielectrics														
3	Illustra and cu	ate diffe rrents	erent n	nethod	ls of g	enerati	ng and	meas	uring v	arious	high vo	oltages	3		
4	Identify appropriate testing method(s) for various high voltage apparatus.														
5	Suggest the suitable applications of high electric fields in day-to-day life														
Bloom's T	axonon	ıy (RB	T) L	evel:	Reme	mber-1	; Und	erstan	d-2; A	pply-3	3; Anal	yze-4; E	Evaluat	e-5;	
Create-6			/	8	r	_	-	_	'E.	1					
			1	COUF	RSE A	RTICU	LATI	ON MA	ATRIX	2					
COs		1	2	/		Р	Os	£ .,		1	1		PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	1	1	-)	2	2	1	1	2	EI	2	2	3	
2	3	3	1	2	1	1	2	-	1	2	021	2	2	3	
3	3	3	2	2	1.	1	2		1	2	2	2	3	3	
4	3	3	2	2	11	2	2	11	1	2	2	2	3	3	
5	3	3	2	1		1	2	1	1	2	5	2	2	3	
3- High Ma	pping; 2	-Mode	rate M	apping	g; 1-Lo	ow Ma	pping	2	S.a	1	21				
- High Mapping, 2-Modelate Mapping															

EE22026	SOFT COMPUTING TECHNIQUES FOR POWER SYSTEMS	L T P C									
		3003									
COURSE O	BJECTIVES										
• To u	nderstand emerging area of soft computing techniques.										
• To le	earn the fundamentals of ANN and its application to electrical systems.										
• To interpret the ideas of fuzzy sets, fuzzy logic and fuzzy inference system											
• To g	ain knowledge on genetic algorithms while seeking global optimum in self-learning	situations									
• To p	rovide in-depth knowledge on Hybrid Soft computing techniques and Swarm intellig	gence									
UNIT I	SOFT COMPUTING TECHNIQUES IN POWER SYSTEMS	9									
Introduction	to Soft computing -Soft computing versus Hard computing - Types of Soft	computing									
techniques -	- Basics of Fuzzy Systems - Artificial Neural Networks - Evolutionary Computin	ng - Hybrid									
systems and	its applications - Single and Multi - objective optimization.										
UNIT II	ARTIFICIAL NEURAL NETWORKS	9									
Neuron - N	lerve structure and synapse - Artificial Neuron and its model-activation function	ns - Neural									
network arc	hitecture - Single layer and Multilayer feed forward networks - McCulloch Pitts net	uron model-									
Perceptron	model - Adaline and Madaline - Multilayer perception model - Back propagati	on learning									
algorithm -	Application of ANN Models to Electrical Machine Modelling - Electrical Load	Forecasting									
Problem - L	oad Frequency Controller.										
<u>UNIT III</u>	FUZZY LOGIC SYSTEM	9									
System's N	System's Modelling and Simulation Using Fuzzy Logic Approach - Selection of Variables, Range,										
Linguistic	Values, Shape of Membership Functions, Fuzzy Union and intersection	Operators-									
Defuzzificat	tion Method - Steady State and Transient Model of D.C. Machine - Fuzzy Contr	ol System -									
Power Syste	em Stabilizer Using Fuzzy Logic – Load Frequency Controller using Fuzzy Logic.										
UNIT IV	BIO INSPIRED COMPUTING	9									
Genetic algo	Original Basic Concepts - Working Principles – Encoding - Fitness Function - Rep	production -									
	Operators - Cross Over - Inversion and Deletion - Mutation Operator - Bit-wise	Operators -									
Application	s of Genetic Algorithms for voltage control, voltage stability, security assessment,	Teeder Toad									
balancing, P	INDER SOFTCOMPLETING (FEGUNIOLIES AND SWADA	0									
UNII V Neuro Euzz	HYBRID SOFTCOMPUTING TECHNIQUES AND SWARM	9 ng Swarm									
Intelligence	algorithm Particle swarm ontimization Art colony ontimization Artificial	lis - Swalli Roo, Colony									
ontimization	- Applications	Dee Cololly									
optimization	TOTAL DE	DIODS: 45									
TEVT BOOKS											
1.	Sivanandam S.N. Deepa S.N. 'Principles of Soft Computing' Wiley India Pyt	I td 2018									
1.	3 rd Edition	Ltd., 2010,									
2.	S Rajasekaran G A Vijavalakshmi Paj 'Neural Networks Fuzzy Sv	ustems and									
	evolutionary Algorithms: Synthesis and Applications' PHI Learning 2017 2^{nd} Ed	ition									
	REFERENCE ROOKS										
1.	Kosko B 'Neural Networks and Fuzzy Systems' Prentice-Hall of India Pyt I td	1994									
2	Timothy I Ross 'Fuzzy Logic with Engineering Applications' Wilay India	2010 2 rd									
<i>4</i> •	Fdition	2010, 3									
3	Coldberg D.E. 'Canatic algorithms in Search Ontimization and Machine learning	' Addison									
э.	Outdoorg D.E., Ochetic algorithms in Search, Optimization and Machine learning	, Audison									

	Wesley,	1989.
--	---------	-------

					COU	RSE O	UTCO	MES							
Upon the su	ccessful o	completi	on of	the cour	rse, the	studen	ts will	be able	to:						
COs	STATEMENTS														
1	Identify the soft computing techniques and their roles in building intelligent machines.														
2	Analyze a given computational task to solve it through neural network														
3	Design a fuzzy based soft computing system to address the engineering problems														
4	Apply Genetic Algorithm operations and other bio-inspired algorithms for solving a computational task.														
5	Design and implement a soft computing system for various power system applications.													4	
Bloom's Ta	ixonomy	(RBT)	Level:	Remen	nber-1;	Unders	stand-2	; Apply	y-3; An	alyze-4	; Evalua	te-5; Cre	ate-6		
		1	0	COUR	RSE AF	RTICU	LATIO	ON MA	TRIX	~					
COs		1	5	/	-	P	Os	5 14			1		PSOs		
	1	2 4	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	2	11	T	2	2	2	3	3	
2	3	3	3	3	3	2	2	1	1	2	2	2	3	3	
3	3	3	3	3	3	2	2	1	1	2	2	2	3	3	
4	3	3	3	3	3	2	2	1	1	2	2	2	3	3	
5	3	3	3	3	3	2	2	1	1	2	2	2	3	3	
3- High Ma	pping; 2-1	Moderat	e Map	ping; 1-	-Low N	lapping	3	~	-	1:	21	1	1	1	
		1	E	1			T		10	15	2/				
			2	27	ीहा	TT	म	20	al	/	/				
								-							
EE22027	POWER SYSTEM MANAGEMENT	LTPC													
------------------------	---	-------------------													
		30 0 3													
COURSE O	BJECTIVES														
•	Toidentify the roles and responsibilities of different entities in the power market														
•	Toeducatethedistributedsystemdesignbasedonforecasteddata														
•	To impart knowledge of power system planning														
•	To understand the electrical safety procedures and methods														
•	Todiscuss the need for energymanagement and energyconservation	1													
UNIT I	DEREGULATION AND POWER MANAGEMENT	9													
Introduction	n - Deregulation of electric utilities - Energy generation and transmission expansion	sion in new													
environmer	tt - Pricing electricity in deregulated environment - Availability based tariff adva	nces and its													
applications	s in online control of power system - Congestion management. Power scenario in	India - Grid													
and Load n	nanagement in power sector - Management of Electricity Demand Scenario in Tami	l Nadu state													
and India.	a P GE	1													
UNIT II	LOAD CHARACTERISTICSANDLOAD FORECASTING	9													
Basic defin	itions – load and load factor definitions - Methods of meeting the load – Intercor	inected grid													
system - Lo	ad shedding and islanding.	0' 1 <i>.</i> ''													
Load Forec	casting - Computational methods - Factors affecting load forecasting methods -	Simulation,													
trending, sp	atial and mixed load forecasting methods.														
UNIT III Ohioatiwaa	POWERSYSTEMPLANNING	9 distribution													
Objectives	of planning, long and shorterin planning, planning of generation, transmission and	distribution													
systems. B	asics of power system economics - Electricity price forecasting: issues of	pricing and													
Torecasting,	Categorisation, Factors, Price simulation model and volatility analysis.	0													
UNIT IV Hazards of	electricity Principles of safety management Safety precautions in electrical insta	9													
hazardous of	rease Methods of fire prevention Rescue and first aid procedures. Safety manage	ment policy													
- Regulator	wand legal safety requirements and standards - Safety audits	ment poney													
	FNFRGVMANAGEMENT	0													
Energy nee	ds of growing economy - Energy conservation and its importance - Energy conserv	ation versus													
energy effi	ciency - Electrical load management and maximum demand control Blackout m	echanism –													
prediction	and control of blackouts, cascading failures - Energy efficient appliances – En	ergy saving													
opportunitie	es - Case study.														
-11	TOTAL P	ERIODS: 45													
	TEXT BOOKS														
1.	S.Sivanagaraju,G.Sreenivasan, 'PowerSystemOperationandControl', Pearson	Education,													
	2009, 1 st Edition.														
2.	Hossein Seifi and Mohammad Sadegh Sepasian, 'Electric Power System Plannin	g – Issues,													
	Algorithms and Solutions', Springer, 2011.	- '													
	REFERENCE BOOKS														
1.	Loi Lei Lai. 'Power System Restructuring and Deregulation: Trading Po	erformance													
	andInformation Technology', John Wiley and Sons, Ltd., 2001, 1 st Edition.														
2.	Turan Goneu, 'Electric Power Distribution Engineering", CRC Press, 2014. 3rd Ed	ition.													
3.	John Cadick, MaryCapelli - Schellpfeffer. Dennis Neitzel and Al Winfield.	'Electrical													
	content, and corporation benchronter, bennis reacted and in whiteda,														

	SafetyHandbook', McGraw-Hill, 2012, 4th Edition.
4.	Craig B. Smith, Kelly E. Parmenter, 'EnergyManagementPrinciples:Applications, Benefits,
	Savings', Elsevier, 2015, 2 nd Edition.
5.	R. L. Sullivan, 'Power System Planning', McGraw-Hill, 1977.

Upon the s	COURSE OUTCOMES										
COs	COs STATEMENTS										
1	1 Analyze the deregulated environment and power management										
2 Realize the concepts of load characteristics and load forecasting											
3 Examine the role of planning in power systems											
4	Investigatetheelectricalsystemsafetyrequirements and management	4									
5	Develop knowledge on energy management	4									
Bloom's T	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cro	eate-6									
	COURSE ARTICULATION MATRIX										
COs	POs	PSOs									
	1 2 3 4 5 6 7 8 9 10 11 12	1 2									

	1	4	3	4	Э	0	1	ð	9	10	2011	14	1	2
1	3	2	1	2	2	3	2		2	2	Z	2		3
2	3	3	2	2	3	3	2	11	2	2	ITT	2		3
3	3	3	2	2	3	3	2	1	2	3	m	2		3
4	3	2	1	2	2	3	2	-	2	3	21	2		3
5	3	2	$\langle \mathbf{a} \rangle$	2	2	3	2		2	3	27	2		3
3- High Map	ping; 2-	Moderat	e Map	ping; 1	-Low N	Mapping	g		/	9	/			
			/	27	विद्य	7 τ	रा	\$0	ar	>/				

EE22028	DIGITAL PROTECTION OF POWER SYSTEM	L T P C
		3003
COURSE O	BJECTIVES	
• Exp	plore recent advancements in electrical power system protection emphasizing on ma	thematical
bas	is and DSP techniques.	
• Dev	vise and design digital protection for power system components.	
• Ap	ply decision making methodologies in protective relaying.	
UNIT I	INTRODUCTION TO DIGITAL RELAYING	9
Developmen	nt of digital relaying – Historical background – Expected benefits of digital relayi	ng –Digital
relay archite	ecture – Analog to digital converters – Successive approximation ADC, Delta-sig	,ma ADC –
Anti-aliasin	g filters – Substation computer hierarchy.	
UNIT II	MATHEMATICAL BASIS FOR PROTECTIVE RELAYING	9
Introduction	n –Fourier series – Exponential, Sine and cosine Fourier series, Phasors–Other	orthogonal
expansions-	-Walsh functions, Fourier transforms – Properties, uses – sampling –Discr	ete Fourier
transform-I	ntroduction to probability and random process–Filtering of random processes–Kalma	an filtering.
UNIT III	DIGITAL FILTERS	9
Introduction	n - Discrete time systems - Operations on discrete time sequences, Convolution - Z	Transforms
– Power ser	res, Inverse Z transforms, Properties of Z transforms, Discrete time fourier transfor	m – Digital
filters – Wi	ndows and windowing – Linear phase – Approximation – filter synthesis – Wavelets	 Elements
of artificial	intelligence.	
UNIT IV	TRANSMISSION LINE RELAYING	9
Introduction	n – Sources of error – Relaying as parameter estimation – Curve fitting algorith	ms, Fourier
algorithms v	with shorter windows, Walsh function algorithms, Kalman filter algorithms, Remova	al of the DC
offset – Rel	ay programs based upon fault classification - Symmetrical component distance rel	ay – Newer
analytic tech	nniques – Wavelet applications, Agent applications – Protection of series compensate	ed lines.
UNIT V	PROTECTION OF TRANSFORMERS, MACHINES AND BUSES	9
Introduction	n – Power transformer algorithms –Current derived restraints, Voltage based rest	raints, Flux
restraint –C	Generator protection –Differential protection of stator windings, Other generator	protection
functions, S	ampling rates locked to system frequency – Motor protection – Digital bus protection	l.
	TOTAL PE	RIODS: 45
1	TEXT BOOKS	
1.	Phadke, A.G. and J.S. Thorp, Computer Relaying for Power Systems, Research S	tudy Press
	Ltd, John Wiley and Sons, Taunton, UK, 2009.	1 2014
2.	Blackburn, J.L. and Domin, T.J., Applied Protective Relaying, CRC Press, New Yo	ork, 2014.
1	REFERENCE BOOKS	
1.	Anderson, P.M., Power System Protection, IEEE Press, New York, 1999.	
2.	Bnavesn Bnalja, R. P. Maneshwari, N. G. Chothani, 'Protection and Switchgea	r, Oxford
	University Press, New Delhi, India, 2018, 2 nd edition.	
3.	Uza, B. A., N. C. Nair, R. P. Mehta, et al., 'Power System Protection and Switch	gear', Tata
	McGraw Hill, New Delhi, 2010.	
4.	Bhavesh Bhalja and Vijay H. Makwana, 'Transmission Line Protection Usi	ng Digital
	Technology', Springer ScienceBusiness Media Singapore Pte. Ltd; Singapore, Janu	ary 2016.

					COL	JRSE O	OUTCO	MES						
Upon the s	uccessful	complet	tion of t	the cou	rse, the	e studen	ts will	be able	to:					
COs						STATE	MENT	S					RB	ST
	1												LEV	'EL
1	Understand and apply the concepts of digital relaying											3		
2	Formulate algorithms for protective relaying.												4	
3	Apply digital filtering concepts in developing protective relaying.											4		
4	4 Develop transmission line digital relaying.											4	4	
5 Develop digital protection systems for transformers, machines and buses.											4			
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1	; Under	stand-2	; Appl	y-3; An	alyze-4	l; Evalua	te-5; Cre	eate-6	
				COUI	RSE A	RTICU	LATIO	ON MA	ATRIX					
COs				/		CP	Os	E	1				PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	1	2		2	2	1	10	2	2	3	2	3
2	3	3	3	3		2	2	1	1	2	2	3	2	3
3	3	3	3	3	0	2	2	1	1	2	2	3	2	3
4	3	3	3	3		2	2	1	1	2	2	3	2	3
5	3	3	3	3		2	2	1	1	2	2	3	2	3
4 5	3	3 3	3 3	$\frac{3}{3}$		2 2	2	1	1	2	2	3	22	

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

EE22020	POWER SYSTEM PROTECTION LABORATORY	LTPC
		0 042
COURSE O	BJECTIVES	
To familiar v	vith	
• Fau	ilts occurring in power system components, associated protection schemes and cha	racteristics
of p	protective relaying.	
	LIST OF EXPERIMENTS:	
Electromag	netic relays Study and comparison of various protective devices	
2	Simulation of IDMT over current relay characteristics	
3	Design and testing of under voltage and over voltage relay	
4	Performance analysis of reverse power protection scheme	
Simulation	of relay coordination	
5	Simulation of relay coordination in radial feeder protection scheme using ETAP MATLAB Simulink	/ PSCAD /
6	Simulation of relay coordination in parallel feeder protection scheme using ETAP MATLAB Simulink	/ PSCAD /
Numerical	relays	
7	Design and implementation of Numerical Distance relay	
8	Design and implementation of Numerical over current Relay	
9	Design and implementation of Integrated Numerical under Voltage Relay	
Equipment	protection	
10	Differential protection of generator using conventional and electrostatic relay	
11	Differential protection of transformer using conventional and numerical relay	
12	Protection of three phase induction motor using numerical relay	
	TOTAL PI	ERIODS: 60
	वह्या परा देवले	

	COURSE OUTCOMES			
Upon the suc	ccessful completion of the course, the students will be able to:			
COs	STATEMENTS	RBT		
1	Study the various power system protective relaying concepts.	2		
2	Perform fault analysis and compute the relay design parameters.	4		
3	Simulate the characteristics of different relaying concepts.	4		
4	Implement protective relaying schemes.	4		
5	Analyse the performance of various power system component protection systems.	4		
Bloom's Ta	xonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6		

	COURSE ARTICULATION MATRIX													
COs	COs POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3		2	2	1	2	2	2	3	2	3
2	3	3	3	3	3	2	2	1	2	2	2	3	2	3
3	3	3	3	3	3	2	2	1	2	2	2	3	2	3
4	3	3	3	3	3	2	2	1	2	2	2	3	2	3
5	3	3	3	3	3	2	2	1	2	2	2	3	2	3
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	lapping	5							

		QUALITIT REQUIRE
1.]	IMDT over current relay	1
2.	Under voltage relay	1
3.	Over voltage relay	1
4.]	Radial feeder protection scheme	6 1
5.]	Parallel feeder protection scheme	1 1
6.]	Numerical Distance relay	3 1
7.]	Numerical over current Relay	1
8.]	Integrated Numerical under Voltage Relay	1
9.]	Reverse power protection	1
10.	Differential protection of generator using electrostatic relay	2/1
11.	Differential protection of transformer using numerical relay	2/1
12.	Protection of three phase induction motor using numerical relay	1

VERTICAL III: ELECTRICAL DRIVES AND CONTROL

EE22031	MODELING AND ANALYSIS OF ELECTRICAL MACHINES	LTPC					
		3003					
COURSE O	BJECTIVES						
• To mu	provide knowledge about the fundamentals of magnetic circuits, energy, force and lti-excited systems.	l torque of					
• To	analyze the steady state and dynamic state operation of DC machine						
• To	provide the knowledge of theory of transformation of three phase variables to two plants	hase					
• var	iables.						
• To	analyze the steady state and dynamic state operation of three-phase induction macl	nines using					
trar	sformation theory.						
• To	analyze the steady state and dynamic state operation of three-phase synchronous	s machines					
usi	ng transformation theory						
UNIT I	PRINCIPLES OF ELECTROMAGNETIC ENERGY CONVERSION	9					
Basics of m	nagnetic circuits - flux, mmf, reluctance - self, leakage, magnetizing and mutual	inductances.					
Analysis of	magnetic circuits with air gap and permanent magnets, stored magnetic energy,	co-energy -					
force and to	orque in singly and doubly excited systems - machine windings and air gap mm	f - winding					
inductances	and voltage equation.						
UNIT II	MODELING OF DC MACHINES	9					
Elementary DC machine and analysis of steady state operation - Voltage and torque equations- dynamic							
characteristi	cs of permanent magnet and shunt d.c. motors – Time domain blockDiagram	is and state					
equations -	solution of dynamic characteristic by Laplace transformation.	1					
UNIT III	REFERENCE FRAME THEORY	9					
Static and	rotating reference frames - transformation of variables -reference frames-tra	nsformation					
between ref	erence framestransformation of a balanced setbalanced steady state phasor relation	tionship and					
voltage equa	ations – variables observed from several frames of reference.	1					
UNIT IV	DYNAMIC ANALYSIS OF INDUCTION MACHINES	9					
Three phase	e induction machine, equivalent circuit and analysis of steady state operation –	voltage and					
torque equa	ations in machine variables and arbitrary- reference frame variables – free	acceleration					
characteristi	les -analysis of dynamic performance for load torque variations – Dynamic perform	ance during					
a 3 phase fa	ult at machine terminals.	0					
UNIT V	DYNAMIC ANALYSIS OF SYNCHRONOUS MACHINES	9 guations in					
machina ya	righted States voltage aquations in arbitrary reference frame variables. Voltage and torque	equations in totor					
roforonco fr	amo variables (Park's equations) Analysis of dynamic performance for load torque	voriationa					
Dynamic ne	and variables (Fark's equations) –Analysis of dynamic performance for foad torque	variations –					
Dynamic pc	TOTAL P	FRIODS: 45					
	TEXT BOOKS	LINDD, 43					
1	Paul C.Krause, Oleg Wasyzczuk Scott D. Sudhoff, 'Analysis of Electric Machiner	v and Drive					
_ ^	Systems'. John Wiley. IEEE Press, 2013, 3 rd Edition.	,					
	REFERENCE BOOKS						
1	PS Bimbhra 'Generalized Theory of Electrical Machines' Khanna Publishers 20	08					
1	i o Bintonia, "Ocheranized Theory of Electrical Machines", Kitalina i utilisitets, 20						
2	A F Fitzgerald Charles Kingeley Ir and Stanhan D Umany Electric N	Jachinamy?					

	TataMcGraw Hill, 1992, 5 th Edition.											
3	Chee-MunOng,	Dynamic	simulation	of	Electric	machinery	using	MATLAB	/			
	Simulink,Prentice Hall,1997.											

TT .1	6.1			6.4	COU	IRSE (OUTCO	OMES						
COs		compl	etion	of the	course	e, the s STATE	tudents EMENT	s will b F S	e able	to			RB	Т
1	Unders excited system	stand th l systen s.	ne con ns and	cept n l derive	nagnet e the v	ic circ oltage	euits, er and to	nergy, rque eo	force quation	and to n of dif	rque of a	multi- xcited	4	<u>EL</u> -
2	Derive	the m teristic	athen by La	natical place t	mode ransfc	el of a prmatic	DC n	notors	and a	nalyze	the dy	namic	4	ŀ
3	Unders machir	stand th	e refe	rence f	frame	theory	and its	s applic	cations	s to var	ious ele	ctrical	4	ŀ
4	Analyz variatio	the the con of lo	chara ad co	cteristi nditior	cs of is	induc	ction n	nachine	e in s	steady	and dy	namic	4	ŀ
5	Develo frames	p the and an	voltag alyze	ge equ its dyr	ations namic	of sy charac	nchror teristic	nous m s.	nachin	e in ro	otor refe	erence	5	,
Bloom's 7 Create-6	Faxonom	ıy (RB	ST) L	evel:	Reme	mber-1	l; Und	lerstand	1-2; A	Apply-3	3; Analy	yze-4; E	Evaluat	.e-5;
		V	1	COUF	RSE A	RTICU	JLATI	ON MA	TRIX		01			
COs		\leq	1	à.		P	Os		A2	2	Z		PSC	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3			1.00	1	1000	2	5	3	3	2
2	3	3	3	3				1		2	21	3	3	2
3	3	3	3	3			-	1	52	2	2/	3	3	2
4	3	3	3	3		1	1	1	/	2		3	3	2
5	3	3	3	3	0		1	1	X	2		3	3	2
3- High Ma	pping: 2-N	Aoderat	e Man	ping: 1	-Low	Mappin	g	-30	1.1	1				

((

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

FF22032	SPECIAL ELECTRICAL MACHINES AND DRIVES	
EE2052	STECTAL ELECTRICAL MACHINES AND DRIVES	
COURSE O	BIECTIVES	
• To	understand the steady state and transient dynamics of a motor- load system.	
• To	analyze and design a converter/chopper fed DC drive	
• To	study and understand the operation and performance of AC motor drives	
• To	learn the construction principle of operation performance characteristics of	ontrol and
apr	lications of stepper motors and switched reluctance motor.	shiror und
• To	acquire knowledge of the construction, principle of operation, performance char	acteristics.
con	trol and applications of permanent magnet brushless DC motor and synchronous mo	otors.
UNIT I	DRIVE CHARACTERISTICS	9
Electric dri	ve – Equations governing motor load dynamics – steady state stability – mu	lti quadrant
Dynamics:	acceleration, deceleration, starting & stopping - typical load torque characteristics	- Selection
of motors-H	Energy efficient operation. Introduction to Solar and Battery Powered Drive.	
UNIT II	DC MOTOR DRIVE	9
Modeling o	f DC motors, State space modeling, block diagram & Transfer function Single J	phase, three
phases fully	v controlled and half controlled converter fed DC drives. Dual converter control of	DC drives.
Power facto	r, supply harmonics and ripple in motor current chopper controlled DC motor drives	•
UNIT III	AC MOTOR DRIVES	9
Induction 1	notor drive: Stator voltage control- constant air gap flux – slip power recovery sch	heme. Pulse
width modu	lated inverter fed and current source inverter fed induction motor drive. Volts/He	rtz Control,
Vector or F	ield oriented control, Closed loop control.	
Synchrono	us motor drive: Permanent magnet motor -V/f control and self-control of synchron	nous motor-
load commu	atated thyristor inverter – Margin angle control and power factor control.	
UNIT IV	STEPPER MOTOR AND SWITCHED RELUCTANCE MOTOR DRIVES	9
Constructio	nal features - Principle of operation - Variable reluctance motor - Hybrid motor -	- Single and
multi-stack	configurations - Torque equations - Modes of excitation - Characteristics - Driv	ve circuits –
Types of SI	RM – Torque production – Steady state performance prediction – Power Converte	rs and their
controllers -	- Methods of Rotor position sensing – Sensor less operation – Characteristics and	Closed loop
control – ap	plications.	
UNIT V	PERMANENT MAGNET MOTOR DRIVES	9
Permanent	Magnet materials – Magnetic Characteristics – Principle of operation – Types – Mag	netic circuit
analysis –	EMF and torque equations – Power Converter Circuits and their controller	s – Motor
characterist	ics and control – Ideal PMSM – EMF and Torque equations – Synchronous Reactan	ice – Phasor
diagram – T	orque/speed characteristics – Power controllers – Digital controllers – Applications.	
	TUTAL P	ERIODS: 45
1	Concl K Dubou, 'Eurodomontolo of Electrical Drives', Norces, 2010, 2nd Edition	
1.	Gopai K.Dubey, Fundamentals of Electrical Drives, Narosa, 2010, 2 Edition.	
2.	E.G. Janardanan, 'Special Electrical Machines', PHI learning Private Limited, Dell	11, 2014.
1	REFERENCE BOOKS	0010 and
1.	S.K.Pillai,, 'A First course on Electrical Drives', New Age International publisher Edition.	s, 2012, 3 rd
2.	R.Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Pearson	Education

	India; 2015, 1 st Edition.
3.	T. Kenjo, 'Stepping Motors and Their Microprocessor Controls', Oxford Press, 1995.
4.	R.Krishnan, 'Permanent magnet synchronous and brushless dc motor drives', CRC press,
	2010.
5.	R.Krishnan, 'Switched Reluctance Motor Drives – Modeling, Simulation, Analysis, Design
	and Application', CRC Press, New York, 2001

					COU	RSE O	UTCO	MES						
Upon the su	uccessful	compl	etion	of the	course	, the st	udents	will b	e able	to				
COs					S	TATE	MENT	'S					RB LEV	T EL
1	Identify of load	y the m s and p	otor a erforn	nd clas	ssify ty charac	pes of teristic	electr s.	ic driv	es syst	ems ba	sed on r	nature	4	
2	Analyz	e conv	erter a	nd cho	opper c	control	led DC	^c drive	s.				4	
3	Illustra synchro	te the onous r	vario notor	ous sp drive.	eed co	ontrol	techni	ques	of inc	luction	motors	s and	4	
4	Evaluat drive at	te the nd swit	perfor	mance elucta	e and nce mo	analyz otor dr	e the ives.	charac	teristi	es of st	tepper 1	motor	4	
5	Analys perman	e a m ient ma	agneti gnet b	c circ orushle	uit an ss DC	d und and sy	erstand nchroi	the hous m	principotor d	ple of rives	operation	on of	4	
Bloom's T	axonom	y (RB	T) L	evel:	Remer	nber-1	; Und	erstand	1-2; A	pply-3	; Analy	ze-4; E	Evaluat	e-5;
Create-6		1	1	1.	1	°		51	102.0	0.1	5			
		2	1	COUR	RSE AF	RTICU	LATIO	ON MA	TRIX		5			
COs		in		5%	11	P	Os	//	9.	-	21		PSC)s
	1	2	3	4	5	6	7	8	9	10	11/	12	1	2
1	3	3	3	3			30	2		2	51	2	3	1
2	3	3	3	3			T	2	~	2	/	2	3	1
3	3	3	3	3	_	×.	U	2	1	2	1	2	3	1
4	3	3	3	3	9-	_	-	2	21	2		2	3	1
5	3	3	3	3	161	/ τ	R	2	/	2		2	3	1
3- High Ma	pping; 2	-Moder	ate M	apping	g; 1-Lo	ow Ma	pping	_			I			

EE22033	COMPUTER AIDED DESIGN OF ELECTRICAL APPARATUS	L T P C
		3003
COURSE O	BJECTIVES	
• To	introduce the fundamentals of Electrical machine design.	
• To	provide basic electromagnetic field equations and the problem formulation	
• To	get familiarized with Finite Element Method as applicable for Electrical Engineering	<u>z</u> .
• To	introduce analysis of Finite Element Method	
• To	explain the basic concepts of electrical machine design by using different	computer
opt	imization techniques.	
UNIT I	INTRODUCTIONTO MACHINE DESIGN	9
Convention	al design procedures - Limitations - Need for field analysisbased design - Revie	ew of Basic
principles of	f energy conversion – Development of Torque/Force.	
UNIT II	MATHEMATICAL FORMULATION OF FIELD PROBLEMS	9
Electromagn	netic Field Equations - Magnetic Vector/Scalar potential - Electrical vector /Scalar	r potential –
Stored energy	gy in Electric and Magnetic fields – Capacitance - Inductance- Laplace and Poisson	's Equations
– Energy fu	nctional.	
UNIT III	INTRODUCTION TO FEM	9
Mathematic	al models - Differential/Integral equations - Finite Difference method - Finite elen	nent method
– Energy n	ninimization - Variational method- 2D field problems - Discretization - Shape	functions -
Stiffness ma	atrix – Solution techniques.	
UNIT IV	FEM ANALYSIS	9
Elements of	f a CAD System -Pre-processing - Modeling - Meshing - Material properties	- Boundary
Conditions -	– Setting up solution – Post processing.	
UNIT V	CAD OF ELECTRICALMACHINE	9
Limitations	and assumptions in traditional designs –Need of CAD, analysis, synthesis– design of	optimization
methods, va	ariables, constraints and objective function, problem formulation –Analytical desi	gn module–
2D and 3D	machine models.	
	TOTAL P	ERIODS: 45
1	TEXT BOOKS	2000
1.	K. M. Vishnu, "Computer Aided Design of Electrical Machines", B.S. Publications	, 2008.
2.	S.J Salon, 'Finite Element Analysis of Electrical Machines', Springer, Yes DEE	publishers,
	Indian reprint, 2007.	
	REFERENCE BOOKS	
1.	Joao Pedro, A. Bastos and NelsonSadowski, 'Electromagnetic Modeling by Fini	te Element
	Methods', Marcell Dekker Inc., 2003.	
2.	M. G. Say, 'The Performance and Design of A.C. Machines', CBS Publ	ishers and
	distributors, Delhi, Reprint 2002, 3 ¹⁴ Edition.	
3.	M Ramamoorty, 'Computer-Aided Design of Electrical Equipment', John Wiley and	nd Sons.
4.	R. K. Agarwal, 'Principles of Electrical Machine Design', S. K. Kataria and Sons,	2016, New
1	Delhi, 5 th Edition	

					COU	JRSE (OUTCO	OMES						
Upon the suc	cessful c	complet	ion of	the cour	se, the	e stude	nts will	be able	e to					
COs					9	STATE	EMENI	ſS					RB	5T
						0							LEV	EL
1	Unders electro	electromagnetic field.												
2	Model	Model Electrical machines based on electromagnetic field equations.												
3	Unders methoo	stand t d to sol	he fur ve des	damen sign pro	tals c blem	of Fini s	te Eler	nent N	/lethod	/ Fin	ite Diffe	erence	3	
4	Model	ing and	l analy	sis of I	FEM a	and FI	DM usi	ng any	CAD	tool.			4	1
5	Apply machin	comp nes	uter a	aided o	optim	izatior	n techi	niques	for c	lesign	of ele	ctrical	3	3
Bloom's Tax	konomy	(RBT)	Level:	Remen	nber-1	; Unde	rstand-2	2; Appl	y-3; An	alyze-4	l; Evalua	te-5; Cre	eate-6	
				COUR	SE A	RTICU	JLATI	ON MA	ATRIX					
COs			/	R	5	F	POs		6	1	2		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	1.0	2.0	2		2	1	3	3	3
2	3	3	3	3	3			2	1º	2	51	3	3	3
3	3	3	3	3	3		0	2	R.S.	2	51	3	3	3
4	3	3	3	3	3	1) ~	2		2	1	3	3	3
5	3	3	3	3	3		1	2	_f)~	2	Z	3	3	3
3- High Map	ping; 2-N	Modera	te Map	ping; 1-	Low I	Mappin	ıg	11	U-,	2.1	m			
		BIN	S. H.S.	100	100		L IT	121/20/	A AT	Jul Jul	ERIA			

EE22034	SMPS AND UPS	LTPC
		3003
COURSE O	BJECTIVES	
•	To inculcate knowledge on steady state analysis of Non-Isolated DC-DC converter.	
•	To perform steady state analysis of Isolated DC-DC converter.	
•	To impart knowledge on the design of controllers for DC-DC converters.	
•	To provide conceptual knowledge in modern power electronic converters and its a	pplications
	in electric power utility.	
UNIT I	DC-DC CONVERTERS	9
Buck, Boos	t, Buck- Boost and Cuk converters: Principles of operation - Continuous conduc	ction mode-
Concepts of	Evolt-sec balance and charge balance – Analysis and design based on steady-state re	elationships-
Introduction	to discontinuous conduction mode - Applications to Battery operated vehicle.	
UNIT II	SWITCHING MODE POWER CONVERTERS	9
Analysis ar	nd state space modeling of fly-back, Forward, Luo, half bridge and full bridge	converters-
control circu	uits and PWM techniques, design of SMPS - Applications to Battery operated vehicl	e.
UNIT III	RESONANT CONVERTERS	9
Introduction	n- classification- basic concepts- Resonant switch- Load Resonant converters- ZV	S, Clamped
voltage topo	ologies- DC link inverters with Zero Voltage Switching- Series and parallel Resonant	nt inverters-
Voltage con	itrol.	
UNIT IV	AC-DC POWER FACTOR CORRECTION SUPPLIES	9
Single-Phas	e Single-Stage Non-isolated Boost PFC, Output Capacitor Size, DCM Boost Inducto	or Selection,
CCM Boost	t Inductor Selection, Design of mutual inductance, High-Power PFC and Load Sha	aring, Surge
Protection,	Load Short-Circuit Protection, Three-Phase PFC.	
UNIT V	UPS and FILTERS	9
Introduction	n- Power line disturbances- Power conditioners -UPS: offline UPS, Online UPS, Ap	plications –
Filters: Vol	tage filters, Series-parallel resonant filters, filter without series capacitors, filter for	PWM VSI,
current filte	r, Design of transformer for isolated topologies.	
	TOTAL P	ERIODS: 45
	TEXT BOOKS	
1.	M.H. Rashid, 'Power Electronics Circuits, Devices and Applications', Pearson Edu New Delhi, 2017, 4 th Edition.	cation, PHI
2.	Philip T. Krein, 'Elements of Power Electronics' Oxford University Press, 2009 E	dition.
	REFERENCE BOOKS	
1.	Kjeld Thorborg, 'Power Electronics - In theory and Practice', Overseas Press	s, 1 st Indian
	Edition 2005	
2.	Ned Mohan, Tore.M.Undeland, William.P.Robbins, 'Power	Electronics
	converters, Applications and design', John Wiley and Sons-2007, 3 rd Edition.	11 CT 1
3.	M.H. Rashid, 'Power Electronics circuits, devices and applications' Prentice H	all of India
1	Robert W. Frickson and Dragon Maksimovic, 'Fundamentals of Power Electronics	, 2020 3rd
4.	Edition.	, 2020, 5
5.	Simon Ang and Alejandra Oliva, 'Power-Switching Converters', CRC pres, 2011,	3 rd edition.

Upon the su	COURSE OUTCOMES accessful completion of the course, the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Analyze the behaviors of non isolated DC-DC converters and to design SMPS for battery operated vehicle	4
2	Compute state space averaged model and design Isolated DC-DC converters	4
3	Classification and analysis of resonant converters for SMPS	3
4	Analyze the power factor correction for DC-DC converters using different techniques	4
5	Compare the different topologies of UPS and design the Filters	4

Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6 COUDE ADDICIT ATION MATDIX

COs	POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	1	8 8	3	1		2		3	3	3
2	3	3	3	3	1	1505		1	1	2	21	3	3	3
3	3	3	3	3	1	6		1	2	2	21	3	3	3
4	3	3	3	3	1) ~	1		2	0	3	3	3
5	3	3	3	3	1	10	-	1	44	2	2	3	3	3

tantos

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

1000 101

EE22035	ANALYSIS OF POWER CONVERTERS	L T P C
		3003
COURSE (DBJECTIVES	
• To ope	provide the mathematical fundamentals necessary for deep understanding of power rating modes.	converter
• To con	introduce the electrical circuit concepts behind the different working modes verters so as to enable deep understanding of their operation.	of power
• To :	impart required skills to formulate and design inverters for generic load and for mac	hine loads.
• To basi	equip with required skills to derive the criteria for the design of power converters static fundamentals.	urting from
• To	inculcate knowledge to perform analysis and comprehend the various operating	modes of
diff	erent configurations of power converters.	
UNIT I	AC-DC CONVERTER	9
Single phase	e and three phase half controlled and fully controlled converters with R-L, R-L-I	E loads and
freewheeling	g diodes - continuous and discontinuous modes of operation- inverter operation an	d its limit –
Sequence co	ontrol of converters - performance parameters - reactive power and power balance	in converter
circuit.		
UNIT II	DC-DC CONVERTER DYNAMICS	9
Reactive El	ements in Power Electronic Systems, Types of inductor, Types of transformer	, Types of
Capacitors f	for power electronic applications - Exact and Approximate Analysis of DC-DC	converters,
Design and	analysis, steady state and dynamic model of Non-isolated DC to DC Power Conve	erter- Buck,
Boost, Buck	a-Boost, Cuk Converters, Isolated DC to DC Power Converter - Forward, Flybac	k, Half/Full
Bridge Conv	verters - Case Study - EMI-EMC Complaints.	
UNIT III	RESONANT CONVERTERS	9
Introduction	, resonant switch ZCS converter, principle of operation and analysis, resonant s	switch ZVS
converter, p	rinciple of operation and analysis, series resonant inverter, series resonant DC-DC	C converter,
parallel res	onant DC-DC converter, series- parallel resonant DC-DC converter, resonant	converters
comparison,	resonant DC link converter.	
UNIT IV	DC-AC CONVERTERS	9
Principle of	operation of single phase half and full bridge inverters - Performance parameter	s – Voltage
control of s	ingle phase inverters using various PWM techniques- Three Phase Inverters: 180	degree and
120 degree	conduction mode inverters - voltage control of three phase inverters. single, i	nulti pulse,
sinusoidal P	WM techniques.	
UNIT V	MODERN INVERTERS	9
Multilevel c	oncept - diode clamped - flying capacitor - cascaded type multilevel inverters -Con	mparison of
multilevel in	overters - application of multilevel inverters - PWM techniques for MLI -Single ph	ase &Three
phase Imped	lance source inverters – Filters.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Rashid M.H., 'Power Electronics Circuits, Devices and Applications', Pea Impression 2021, 4 th Edition.	arson, 10th
2.	Jai P. Agrawal, 'Power Electronics System Theory and Design', Pearson Education Edition.	on, 2015, 1 st

	REFERENCE BOOKS
1.	Bimal.K.Bose,'Modern Power Electronics and AC Drives', Pearson Education,2022, 2 nd
	Edition.
2.	Ned Mohan, T.M.Undeland and W.P.Robbins, 'Power Electronics: converters, Application and
	design', Wiley, 2007, 3rd edition.
3.	Philip T. Krein, "Elements of Power Electronics" Indian edition Oxford University Press-
	2017.
4.	P.C.Sen, 'Modern Power Electronics', S.Chand Publishing 2005.
5.	P.S.Bimbra, 'Power Electronics', Khanna Publishers, 2003, 11th Edition,

COURSE OUTCOMES

Upon the successful completion of the course, the students will be able to

CO's			2	/	S	TATE	EMEN	TS	1				RB LEV	T EL	
1	Under	stand t	ne con	cept ar	nd anal	yze th	e perfo	ormanc	e of va	arious o	converte	rs	4	ŀ	
2	Model conver	, analy	ze an	d und	erstanc	ł pow	er eleo	etronic	equip	oments	and DO	C- Dc	4	ļ	
3	Apply differe	Apply the concept of resonant converters and conduct performance studies of different resonant converters.													
4	Carry	out per	forma	nce an	alysis o	of inve	erters v	vith vai	rious F	WM to	echnique	es	4	ŀ	
5	Identif	y and o	compa	re the	various	s types	s of mo	odern ir	verter	:s	-		3	3	
Bloom's	Faxonom	y (RB	Г) Lev	el:Ren COUI	nember RSE AI	-1; Un RTICU	derstan J LATI	d-2; Ap ON M A	ply-3; TRIX	Analyz	e-4; Eval	luate-5; (Create-6	5	
COs	POs													Os	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	1	-	Ť	1	80	2	2/	3	3	2	
2	3	3	3	3	1	1 E	19	1		2	1	3	3	3	
3	3	3	3	3	61		8	1	3	2		3	3	3	
4	3	3	3	3	947	7 7	TIT	210	0	2		3	3	3	
5	3	3	3	3	1		131	1	-	2		3	3	3	
3- High M	Iapping; 2	2-Mode	erate M	Iappin	g; 1-Lo	ow Ma	apping		1		1	1	1	1	

EE22036	PROGRAMMING FOR EMBEDDED SYSTEM	L T P C
		3003
COURSE O	BJECTIVES	
• To	expose the students to the fundamentals of embedded Programming	
• To	Introduce the GNU C Programming Tool Chain in Linux.	
• To	study the basic concepts of embedded C.	
• To	impart the basics of Python Programming.	
• To	learn modules, packages and libraries in Python.	
UNIT I	BASIC C PROGRAMMING	9
Typical C I	Program Development Environment - Introduction to C Programming - Structure	ed Program
Developmen	nt in C - Data Types and Operators - C Program Control - C Functions - Introduction	to Arrays.
UNIT II	EMBEDDED C	9
'C' Code: O	bject oriented programming with C, Header files for Project and Port, Examples. Me	eeting Real-
time constra	aints: Creating hardware delays - Need for timeout mechanism - Creating loop	timeouts -
Creating has	rdware timeouts.	0
		9
CNUL Confi	r - Stages of Compliation - Introduction to GCC - Debugging with GDB - The Magura and Ruild System CNUL Binary utilities. Profiling using aprof. Introduction	ake utility -
Library	gure and Bund System - ONO Binary utilities - Froming - using gprof - Introduction	
UNIT IV	EMBEDDED PYTHON PROGRAMMING	9
Introduction	- Parts of Python Programming Language – Data types and variables. Co	ntrol Flow
Statements	– Functions and modules - Strings - Lists - Dictionaries - Tuples and Sets- fil	e handling-
Debugging	and Testing-Real time operating systems-Memory management	8
UNIT V	MODULES, PACKAGES AND LIBRARIES IN PYTHON	9
Python Mod	lules and Packages - Creating Modules and Packages - Practical Example - Libraries	s for Python
- Library fo	or Mathematical functionalities and Tools - Numerical Plotting Library - GUI L	ibraries for
Python - Im	aging Libraries for Python - Networking Libraries. Embedded related app	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Paul Deitel and Harvey Deitel, 'C How to Program', Pearson Education Lim	nited, 2018,
2	8"Edition. Ivan Cibraria Partalatti and Tingting Hu 'Embaddad Softwara Da	valonmont'
Ζ.	AddisonWesley CRC Press 2020	velopment,
	REFERENCE BOOKS	
1.	William von Hagen, 'The Definitive Guide to GCC', Apress Inc., 2006, 2 nd Edition.	
2.	Gowrishankar S and Veena A, 'Introduction to Python Programming', CRC Press,	Taylor and
	Francis Group, 2019.	5
3	John Paul Mueller, 'Beginning Programming with Python for Dummies', John	Wiley and
	Sons Inc., 2018, 2 nd Edition.	
4.	Fabrizio Romano, 'Learn Python Programming', Packt Publishing, 2018, 2 nd Editio	on.
5.	Noel Kalicharan, 'Learn to Program with C', Apress Inc., 2015.	

Upon the su	COURSE OUTCOMES accessful completion of the course, the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Apply C programming and its salient features for embedded systems.	3
2	Deliver insight into various programming languages/software compatible toembedded process development with improved design & programming skills.	5
3	Develop knowledge on C programming in Linux environment.	5
4	Apply the python programming language for Embedded systems	3
5	Investigate modules, packages and libraries in Python for embedded systems	5

Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

	COURSE ARTICULATION MATRIX														
COs	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	3	3	3	3	2	0	\$	1		2	1	3	2	3	
2	3	3	3	3	2	1.000		1	1	2	12	3	2	3	
3	3	3	3	3	2	6	0	1	2	2	51	3	2	3	
4	3	3	3	3	2)	1		2	11	3	2	3	
5	3	3	3	3	2		-	1	h [×]	2	Z	3	2	3	

tantos

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

INS THE

EE22037	MICROCONTROLLER BASED SYSTEM DESIGN	LTPC
		3003
COURSE O	BJECTIVES	
• To	impart the knowledge of architecture of ARM microcontroller and RISC processor.	
• To	introduce the programming concepts of ARM microcontroller.	
• To	provide knowledge on the microcontroller based control of permanent magnet sy	rnchronous
mo	tor.	
• To	gain knowledge on the microcontroller based control of induction motor.	
• To	provide knowledge on the microcontroller based control of BLDC motor.	
UNIT I	ARM MICROCONTROLLER	9
ARM M V	Vs ARM R - RISC V architecture, ARM Cortex M: architecture peripherals	– memory
organization	n – memory controller – Registers - Interrupts – Interrupt Structure – Timer and Cou	nter –GPIO
- SPI, I2C p	rotocol configuration – study of CAN - PWM – DAC – RTOS.	
UNIT II	PROGRAMMING ARM MICROCONTROLLER	9
Structures a	nd Pointers, Switches: MOSFET, SIC diodes, Sensor selection: Tachometer, encod	lers, Sensor
response tin	ne - Sensor interface with microcontroller - Analog to Digital converter, timers, SPI,	I2C, CAN.
UNIT III	MICROCONTROLLER BASED CONTROL OF PERMANENT MAGNET	9
	SYNCHRONOUS MOTOR	
Microcontro	oller selection: ADC type, resolution, number of GPIO, timers, peripherals - Pro-	ogram Flow
Chart - Me	easurement of non-electrical quantities like voltage current, speed and torque us	sing sensor,
representati	on of variables in digital domain – Implementation of feedback controller - Mic	rocontroller
based firing	scheme generation for converter and permanent magnet synchronous control.	
UNIT IV	MICROCONTROLLER BASED CONTROL OF INDUCTION MOTOR	9
Microcontro	oller selection: ADC type, resolution, number of GPIO, timers, peripherals - Pro-	ogram Flow
Chart - Mi	crocontroller based induction motor control: Measurement of non-electrical qua	antities like
voltage cur	rrent, speed and torque using sensor, representation of variables in digital	domain –
Implementa	tion of P, PI and PID controller. Microcontroller based firing scheme generation	for inverter
and Induction	on motor control.	
UNIT V	MICROCONTROLLER BASED CONTROL OF BLDC MOTOR	9
Microcontro	oller selection: ADC type, resolution, number of GPIO, timers, peripherals - Pro-	ogram Flow
Chart - Mic	crocontroller based BLDC motor control: Measurement of non-electrical quantities	like speed,
rotor position	on using Hall effect sensor, representation of variables in digital domain – Implen	nentation of
feedback. M	licrocontroller based firing scheme generation for converters and BLDC motor contr	ol.
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Alexander G Dean, 'Embedded Systems Fundamentals with Arm Cortex	-M based
	Microcontrollers: A Practical Approach Nucleo-F091RC', Nucleo-F091RC 2	2021, Arm
	Education Media, 2 nd Edition.	- ,
2.	Ariel Lutenberg, Pablo Gomez and Eric Pernia, 'A Beginner's Guide to Designing	Embedded
-	System Applications on Arm Cortex-M Microcontrollers', Nucleo-F091RC	202. Arm
	Education Media. 2 nd Edition.	_ ~_ ,
	REFERENCE BOOKS	
1.	Warren Gay 'Beginning STM32' Developing with Free RTOS libonencm3 and t	GCC' 2018
**	1 mater Suy, Beginning STRIS2. Developing with free KTOS, hoopenenis and	555,2010,

	Apress,1 st Edition.
2.	Sarat Kumar Sahoo, 'Speed Control of Induction Motor Using Microcontroller', 2012,
	Lambert Academic Publications.
3.	'www.Nuvoton .com/websites' on Advanced ARM Cortex Processors
4.	https://wiki.stmicroelectronics.cn/stm32mcu/wiki/STM32StepByStep:Getting_started_with_
	Motor_Control
5.	https://wiki.stmicroelectronics.cn/stm32mcu/wiki/STM32MotorControl:Introduction_to_Moto
	r_Control_with_STM32

					COUL	RSE C	OUTCO	OMES						
Upon the suc	ccessful c	complet	tion of t	he cou	rse, the	studen	ts will	be able	to					
COs					S	ТАТЕ	MENI	ſS				RB	Т	
								-				LEV	EL	
1	Analyze the interconnections of peripherals with CPU, RAM and ROM of													
	ARM microcontroller.													
2	Apply the knowledge of Programming concepts to the ARM microcontroller.													
3	Explore the requirements, connections and working of microcontroller based													
	control of Permanent Magnet Synchronous Motor.													
4	Investigate requirements, connections and working of the microcontroller													
	hased control of Induction Motor													
5	Dased control of induction Motor.													
3		gale li	ie iequ		ints, coi	mecu	ons a	ia won	king o		Jintonei	4		
based control of BLDC Motor.														
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1;	Under	stand-2	2; Apply	y-3; An	alyze-4; Evalu	ate-5; Cre	ate-6		
		In		COUR	RSE AR	TICU	LATI	ON MA	TRIX	-15	1			
COs		1-	1			Р	Os	/		121	1	PSOs		
	1	2	3	4	5	6	7	8	9	10 11	12	1	2	
1	3	3	3	3	3		T.	1	-	2	3	2	3	
2	3	3	3	3	3		0	1	1	2	3	2	3	
3	3	3	3	3	3	_	-	1	SI.	2	3	2	3	
4	3	3	3	3	3	τ	151	91	/	2	3	2	3	
5	3	3	3	3	3			1		2	3	2	3	
3- High Map	ping; 2-N	Modera	te Map	ping; 1-	-Low M	Iappin	g							

EE22038	CONTROL SYSTEM DESIGN FOR POWER ELECTRONICS	L T P C
		3003
COURSE OB	JECTIVES	
• Ap	ply mathematical skills and modelling methods to represent a physical system.	
• Des	sign and develop digital controllers to control Power Electronics systems parameters	
• Ap	ply basic concepts of modeling for DC Power Converters.	
• To	implement the sliding mode controller for DC-DC converters	
• Ana	alyze performance of various Power Electronics circuits.	
UNIT I	ANALOG CONTROL SYSTEM	9
Review of	classical feedback control Review of classical feedback control, Modeling	of simple
mechanical,	electrical, thermal, chemical systems, Transfer functions, Frequency response,	, Feedback
control, Clo	sed loop stability, Linearization of nonlinear models, PD, PI and PID controllers,	State space
approach fo	r analyzing the dynamic models.	
UNIT II	DIGITAL CONTROL SYSTEM	9
Introduction	to Digital Controllers: Continuous versus digital control, Sampling theorem, ZOI	H, effect of
sampling ra	ate, Difference Equations, Z transforms, and the Inverse Z transform Discret	etization of
continuous	transfer functions; Digital filters, digital controller design using transformation techn	iques.
UNIT III	MODELLING OF DC-TO-DC POWER CONVERTERS	9
Limitations	of linear power supplies, Switched Mode Power Conversion, Switch realization, M	lodelling of
Buck Conve	erter, Boost Converter, Buck-Boost Converter, CUK Converter, SEPIC Converter,	
UNIT IV	SLIDING MODE CONTROLLER DESIGN	9
Variable St	ructure Systems. Single Switch Regulated Systems Sliding Surfaces, Accessibility	ility of the
Sliding Sur	face Sliding Mode Control Implementation of Boost Converter, Buck-Boost Con	verter, Cuk
Converter, S	SEPIC Converter.	
UNIT V	PREDICTIVE CONTROL OF POWER CONVERTERS	9
Basic Conc	epts, Application of Predictive Control in Power Electronics, AC-DC-AC Conver	ter System,
Model Pred	lictive control for power electronic converters, Faults and Diagnosis Systems	in Power
Converters.	100	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Hebertt Sira-Ramírez PhD, Ramón Silva-Ortigoza, 'Control Design Technique Electronics Devices', Springer 2012	s in Power
2.	Mahesh Patil, PankajRodey, 'Control Systems for Power Electronics: A Practi Springer India, 2015.	cal Guide',
	REFERENCE BOOKS	
1.	R. Erickson and D. Maksimovic, 'Fundamentals of Power Electronics',2007 International Edition, 2 nd Edition.	1, Springer
2.	Blaabjerg José Rodríguez, 'Advanced and Intelligent Control in Power Elect Drives', Springer, 2014	tronics and
3.	Enrique Acha, Vassilios Agelidis, Olimpo Anaya, TJE Miller, 'Power Electron inElectrical Systems', Newnes, 2002	nic Control
4.	Marija D. Aranya Chakrabortty, Marija, 'Control and Optimization Methods 1 SmartGrids', Springer, 2012	for Electric
5.	Ned Mohan, Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Conver Applications and Design', John Wiley and sons, 2003, 3 rd Edition,	ters,
·		

	COURSE OUTCOMES										
Upon the successful completion of the course, the students will be able to:											
COs	COs STATEMENTS										
1	Design and apply Analog controller for applications	4									
2	Design and apply Digital controller for applications	4									
3	Proficient in utilizing advanced modeling techniques to design and analyze DC-DC converters										
4	Model modern power electronic converters for industrial applications	4									
5	Ability to design appropriate controllers for modern power electronicsdevices	4									
Bloom's T	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; C	Create-6									
COURSE ARTICULATION MATRIX											
COs	POs	PSOs									

	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	-	-	1.200	2		2	01	3	3	3
2	3	3	3	3		-		2	N	2	21	3	3	3
3	3	3	3	3	1		0	2	1202	2	01	3	3	3
4	3	3	3	3		1		2	2508	2	3	3	3	3
5	3	3	3	3	11		16	2		2	m	3	3	3

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping tan Shi

THE SET

EE22030	ELECTRIC DRIVES LABORATORY	LTPC
		0 0 4 2
COURSE	OBJECTIVES	
• E [*]	valuate the Load characteristics of DC machines and transformers.	
• T	o impart knowledge on Performance of the fundamental control practices associated	d with AC
ar	nd DC machines (starting, reversing, braking, plugging, etc.) using power electronics	
• T	o impart industry oriented learning	
• T	o evaluate the use of computer-based analysis tools to review the major classes of ma	chines and
th	eir physical basis for operation.	
	LIST OF EXPERIMENTS	
1.	Speed control of Three phase Slip ring motor using static rotor resistance cont	trol through
	rectifier and chopper circuit.	
2.	Design and simulation of three phase induction motor for different load condition.	
3.	Control of 3-Phase Induction Motor in constant V/f mode using 3- phase inverter	
4.	DC and AC Motor Electrical braking system - study using software / Hardware	
5.	Open loop and closed loop speed control of BLDC motor.	
6.	PLC based speed control of DC machines	
7.	PLC based speed control of AC machines	
8.	Induction generator (standalone and grid connected)	
9.	To perform the speed control test on slip ring induction motor by rotor resistant method Using VIRTUAL LAB	ance control
	TOTAL P	PERIODS:60

	171 201	
Upon the	COURSE OUTCOMES successful completion of the course, the students will be able to	
COs	STATEMENTS	RBT LEVEL
1	Identify relevant information to supplement to the Electric Drives.	3
2	Set up control strategies to synthesize the voltages in DC and AC motor drives.	4
3	Develop testing and experimental procedures applying basic knowledge in electronics, electrical circuit analysis, electrical machines, microprocessors, and programmable logic controllers.	4
4	An ability to use standard methods to determine accurate modelling /simulation parameters for various generalpurpose electrical machines and power electronics devices required for designing a system and solve drives related problems	3
5	Combine the use of computer based simulation tools relevant to electrical Drives with practical laboratory experimentation	4
Bloom's	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6

	COURSE ARTICULATION MATRIX															
COs	POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3	3	3	3	1	3	2	1	3	2	1	2	3			
2	3	3	3	3	2	2	2	1	3	2	2	3	3			
3	3	3	3	3	3	3	2	1	3	2	3	3	3			
4	3	3	3	3	3	3	2	1	3	2	3	3	3			
5	3	3	3	3	3	3	2	1	3	2	3	3	3			
		3	8- High	Mappi	ng; 2-N	Aoderat	e Map	oing; 1-	Low N	lapping	5		-			

OP COLLEGE

	LABORATORY REQUIRMENTS FOR A BATCH OF 30 STUDENTS:											
S.NO.	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED										
1.	AC Drives -5 HP	1										
2.	IGBT based single phase PWM inverter module/Discrete Component	2										
3.	IGBT based three phase PWM inverter module/Discrete Component	2										
4.	Microcontroller	3										
5.	SIEMENS PLC	2										
6.	DC shunt Motor(1HP),	2										
7.	Single phase Squirrel cage induction motor (1HP),	2										
8.	Slip ring induction motor (2HP)	1										
9.	Phase Induction Motor (1HP),	2										
10.	Experimental set up for study the closed loop control of BLDC Motor.	1										
11.	Computers (I5 processor, 2.7Ghz, 8 GB RAM)	10										
12.	Three phase inverter, Power Module and motor drive	2										
13.	Isolated Programmable DC power supply	2										
14.	Digital multimeter	5										
15.	Digital signal oscilloscope	5										
16.	Software: MATLAB, SIEMENS PLC software	Each 5 users										

VERTICAL IV: ELECTRIC VEHICLE TECHNOLOGY

EE22041	HYBRID ELECTRIC VEHICLES	L T P C								
		3003								
COURSE OBJECTIVE	S									
• To understand	the basic concepts in vehicle dynamics and its performance.									
• To acquire proficiency in analyzing and controlling various hybrid electric drive-train topologies.										
• To understand and explore electric propulsion and energy storage units for efficient utilization in										
hybrid electric	vehicles.									
• To develop sk	• To develop skills in component matching, motor sizing, electronics selection, and subsystem									
integration for	efficient drive system design in hybrid and electric vehicles.									
To demonstrat	e proficiency in understanding and applying control systems, brake confi	igurations,								
and testing pro	cedures in hybrid electric vehicles.	-								
UNIT I	VEHICLE TRANSMISSION AND PERFORMANCE	9								
History of hybrid elec	tric vehicles - Social and environmental importance of hybrid electric	vehicles -								
Performance characteri	stics of vehicles: Drive cycle characteristics, Basic vehicle dynamics -	Calculation								
of road load – Brief r	eview of Spark Ignition engine, alternative fuel engines - Vehicle tra	ansmission:								
Basics of vehicle perfor	rmance, vehicle power source characterization, transmission characteristic	cs.								
UNIT II	HYBRID ELECTRIC DRIVETRAIN ARCHITECTURE	9								
Concept of hybrid elec	tric drivetrains - Architectures of hybrid electric drivetrains: Series hybrid	orid electric								
drivetrain – Parallel hy	brid drivetrain with torque coupling, speed coupling and both - Comp	plex hybrid								
drivetrain – Fuel-cell h	ybrid drive train – Plug-in HEV.									
UNIT III	ELECTRIC PROPULSION AND ENERGY STORAGE	9								
Introduction to electric	components used in hybrid vehicles - Overview of Electric drive system	1: Brushless								
DC and AC machine,	Interior Permanent magnet machine, Asynchronous Machine, Variable	reluctance								
machine - Overview o	f Energy Storage: Battery system, Capacitor systems, Hydrogen storage	e, Flywheel								
systems, Pneumatic sys	stems – Battery model.									
UNIT IV	DESIGN OF DRIVE SYSTEM	9								
Matching the electric 1	machine and the internal combustion engine (ICE) - Sizing the propul	sion motor,								
sizing the power electr	ronics, and selecting the energy storage technology - Case study: Desig	n Principle								
and parametric design	n of Series (electrically coupled) and Parallel (mechanically coupl	ed) hybrid								
drivetrain.	Ver TITI Ga									
UNIT V	CONTROL AND BRAKE SYSTEM	9								
Function of control system	stem in HEV - Electronic Control Unit (ECU) - Control Area Networ	'k (CAN) –								
Control variables - Br	ake system of HEV: Parallel hybrid brake system, fully controllable hy	ybrid brake								
system – Anti-locking	brake system – Hybrid vehicle test and validation – Retrofitting of 2-who	eeler and 3-								
wheeler vehicle.										
	TOTAL PERI	ODS: 45								
	TEXTBOOKS									
1. Mehrdad	Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, 'Modern Electric	ic, Hybrid								
Electrican	d Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press,	, 2018, 3 rd								
edition.										
2. John M M	liller, 'Propulsion Systems for Hybrid Vehicles', IET, 2010, 2 nd edition.									

	REFERENCE BOOKS										
1.	NPTEL web course: 'Introduction to Hybrid and Electric Vehicles'										
2.	Wei Liu, 'Hybrid Electric Vehicle System Modeling and Control', General Motors, USA, John Wiley and Sons, Inc., 2017.										
3.	James Larminie, John Lowry, 'Electric Vehicle Technology Explained', Wiley, 2012, 2 nd Edition.										
4.	Iqbal Hussein, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC Press, 2021, 3 rd Edition.										
5.	Teresa Donateo, 'Hybrid Electric Vehicles', In-tech Open, 2017.										

					COU	JRSE O	UTCC	MES						
Upon the su	accessful o	complet	ion of	the cou	rse, the	e studen	ts will	be able	to:					
COs	STATEMENTS												Т	
	ADDELEGE												EL	
1	Understand vehicle performance characteristics, and apply knowledge in designing efficient transmission systems for optimized vehicle performance.													
2	Comprehend and differentiate various hybrid electric drivetrain architectures													
3	Select suitable electric drive system and energy storage for hybrid electric vehicles.													
4	Apply design principles and parametric analysis to develop hybrid drivetrains.													
5	Comprehend and analyze the functions of HEV control systems, brake technology of hybrid electric vehicles.											4		
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Creat											eate-6			
		111	1	COUH	RSE A	RTICU	LATIO	ON MA	TRIX	m	1			
COs		17	2 \		1	Р	Os	-		120	/	PSOs		
	1	2	3	4	5	6	7	8	9	10 11	12	1	2	
1	3	2	2	2		2	2		2	2	3	3		
2	3	2	3	2	2	2	2	/	2	2	3	3		
3	3	2	3	2	de)	2	2	20	2	2	3	3		
4	3	2	3	2	-	2	2	4	2	2	3	3		
5	3	3	3	3		2	2		2	2	3	3		
3- High Ma	pping; 2-1	Modera	te Map	ping; 1	-Low I	Mapping	5							

EE22042	VEHICLE DYNAMICS	LTPC
		3003
COURSE O	BJECTIVES	
• To	understand the dynamics of vehicle ride under different riding condition.	
• To	calculate and refer the loads and forces associated to vehicles.	
• To	analyze the behavior of vehicles under acceleration, ride and braking	
UNIT I	BASICS OFVEHICLE DYNAMICS	9
History – V	ehicle classifications – Fundamental approaches to vehicle dynamics modelling – S	AE Vehicle
axis system	- Forces & moments affecting vehicle - Earth fixed coordinate system - Dynamic	axle loads –
Equations of	f motion – Transmission characteristics – Vehicle performance.	
UNIT II	ACCELERATION AND BRAKING PERFORMANCE	9
Power train	components - Power and traction limited acceleration - Transverse weight shift -	Front wheel
drive, rear w	vheel drive, all-wheel drive vehicles.	
Braking for	ce analysis - Rolling resistance, Aerodynamic drag, Grading resistance, Gradeabil	ity – Brake
design and	analysis - Antilock braking system - Wheel lock-up - Tire/road friction -	Safety and
maintenance	e issues in braking.	
UNIT III	ROAD LOADS AND TIRE DYNAMICS	9
Wind drag a	nd car body design - Breakdowns of total road loads - Gas mileage analysis and dr	riving styles
– Aerodyna	mics	
Tire specifi	cations and constructions - Tire motion analysis - Tire force analysis - Tire co	ontact stress
analysis – T	ire vibration analysis – Tire models.	
UNIT IV	STEERING SYSTEM	9
Riding com	fort -Vibration sources - Vibration transmission to the passengers - Lower speed	cornering -
High speed	corner – Cornering bicycle model– Quasi-static rollover of a rigid vehicle, Quasi-static	atic rollover
of a suspend	led vehicle – Transient rollover.	
UNIT V	CHASSIS AND SUSPENSION SYSTEMS	9
Vehicle and	body centre of gravity–Mass moments of inertia– Stiffness and strength–Vibrationa	al behavior-
External loa	ds - Chassis structure and components - Multi body models for vehicles - Ride d	comfort and
NVH.		
Introduction	to suspension system – Components of suspension system – Dependent and	independent
suspension -	- Suspension control.	
	TOTAL PE	RIODS: 45
1	IEXI BOOKS	
1.	Reza N. Jazar, Venicle Dynamics, Theory and Application', Springer, 2009	
2.	Rajesh Rajamani, 'Vehicle Dynamics and Control', Springer, 2012.	
1	REFERENCE BOOKS	
1.	Inomas Gillespie, 'Fundamentals of Vehicle Dynamics', SAE Publication, 2021.	<u> </u>
2.	Mike Blundell and Damian Harty, The Multibody Systems Approach to Vehicle I	Jynamics',
-	Elsevier, 2004.	.1.51
3.	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, 'Modern Electric, Hybr	rıd Electric
	and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2018, 3 rd E	dition.
4.	Iqbal Hussein, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC Pr	ress, 2021,
	3 rd Edition.	

Upon the	waaaafu	1.00mm	lation	oftho	COL	JRSE (DUTCO	MES	o oblo f					
COs		STATEMENTS												T EL
1	Analyz	Analyze the dynamics of vehicle under different riding condition												
2	Analyze acceleration and braking performance in electric vehicle to understand the vehicle dynamics under these conditions												4	
3	Articu	late roa	nd loac	ls and	tire dy	namic	s in ele	ctric v	ehicles				4	
4	Interpr vehicle	Interpret riding comfort & vibrations, cornering and roll over in electric vehicles to understand the vehicular dynamics											4	
5	Unders used in	Understand the suspension kinematics and controllable suspension elements used in electric vehicles											2	,
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6														
COURSE ARTICULATION MATRIX														
COs		- 18	12	Y/		P	Os		1	2			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	5		2		2	2	12	3	3	
2	3	3	2	2	- /	6	2	1	2	2	21	3	3	
3	3	3	2	2	1	1	2	-	2	2	021	3	3	
4	3	3	2	2	1	100	2	01	2	2	Z	3	3	
5	3	3	2	2	11		2	11	2	2	ITT	3	3	
3- High Ma	apping; 2-1	Modera	te Map	ping; 1	-Low]	Mappin	g	1		1	m		1	1
		1	185	12/2	100	1 1	L III	24	ar	101	PIA			

125 100

EE22043	AUTOMOTIVE POWER ELECTRONICS	LTPC
		3003
COURSE O	BJECTIVES	
• To	introduce the modern automotive electronics systems based on the application are	eas and to
stuc	dy about the electronics control engines.	
• To	impart knowledge of AC-DC, DC-DC and DC-AC converters with emphasize of	on various
auto	omotive applications.	
• To	provide insight on control of various power converter circuits.	
• To	gain the knowledge automotive standards to design the converters for EVs.	
UNIT I	INTRODUCTION TO AUTOMOTIVE ELECTRONICS	9
Introduction	to Modern Automotive Systems – Evolution of Automotive Electronics – Need for	electronics
in automob	iles - Application areas of electronic systems in modern automobiles: Electroni	cs Engines
Control, Ele	ectronics Fuel Control, Electronics Ignition, Automotive transmissions - Electron	nic Control
Unit (ECU)	design cycle - Components of ECU - Examples of ECU's in automotive.	
UNIT II	AC-DC AND DC-DC CONVERTERS FOR EVs	9
AC-DC con	verters - Uncontrolled rectifiers - Performance parameters (power factor correction	ı, harmonic
factor) – DO	C-DC converters for automotive applications – Design and analysis of Buck-Boost	converter -
Four quadra	ant DC-DC converter - PWM control of DC-DC converters - Low voltage electric	cal loads in
EV and Aux	ciliary Power Modules – Case study on control techniques of converters.	
UNIT III	CONVERTER TOPOLOGIES	9
Converter	topologies for auxiliary power modules – Fly-back, forward, push-pull, F	ull bridge,
Bidirectiona	al DC-DC converters for EV charging applications – Typical specifications of power	converters
– Design of	F power circuit to meet the specifications - Case study on topologies of the conve	rter and its
significance		
UNIT IV	DC-AC CONVERTERS FOR EVs	9
DC-AC con	verters – Voltage source inverters – Single and three phase inverter – Sinusoidal	PWM and
Space vecto	r PWM – DC side current of PWM inverter – Current regulated PWM – Rectifier a	ind inverter
Mode of op	peration – G2V and V2G operation in EVs – Introduction to Cascaded H-bridge	Multilevel
inverters.		
UNIT V	DESIGN CONSIDERATIONS AND AUTOMOTIVE STANDARDS	9
Design of	Heat sinks – Snubber circuits and driver circuits – Magnetic design – Ener	gy storage
requirement	s for EV – Battery management systems – Simulation tools for power converters	– Relevant
automotive	standards – Automotive design considerations – Power conditioning in power c	onverters –
High temper	rature applications – Case study on converter design for EVs with its automotive star	idards.
	TOTAL PE	CRIODS: 45
1	TEXT BOOKS	
1.	Emadi,Ali, 'AdvancedElectricDriveVehicles',CRCPress,2014.	
2.	William Ribbens, 'Understanding Automotive Electronics', Butterworth Heinem	iann, 2017,
	8 th edition.	
	KEFEKENCE BOOKS	¬· 11
1.	Randall Shafter, 'Fundamentals of Power Electronics with MATLAB', I Media,2013.	irewall
2.	Weng ang Wayne Bi, Haochung Henry Kuo, Peicheng Ku, and BoShen, eds.,	

	'HandbookofGaNSemiconductorMaterialsandDevices,CRCPress,2017.													
3.	DanielHart, 'PowerElectronics', McGraw-Hill,2011.													
4.	Ned Mohan, Tore M. Undeland and William P.Robbins, 'Power Electronics, Converters, Applications and Design', John Wiley and Sons Inc., 2006, 3 rd edition.													
5.	MuhammadH.Rashid, 'PowerElectronics,Circuits,Devicesand Applications',Pearson, 2014, 4 th edition.													

					COU	RSE ()UTC(OMES						
Upon the suc	ccessful o	completi	on of	the cour	rse, the	e studei	nts will	be able	to					
CO's	STATEMENTS													BT YEL
1	Understand the concept of automotive electronics and control of various subsystems.													
2	Analyze the performance parameters of DC-DC converters for automotive applications.												4	-
3	Analyze the various topologies for power electronic converters and their auxiliary elements for automotive applications.												4	-
4	Understand the operation of dc-ac converters and analyze the suitability for automotive applications.													-
5	Evaluate the performance of various power electronic components with relevant automotive standards										5			
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Creat										eate-6				
		\leq	1.	COUR	RSE A	RTICU	JLATI	ON MA	ATRIX	2.5	2			
COs		Z		57	11	P	Os	11			m		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	1055	-	_	-	2	2	201	3	3	
2	3	3	2	2			1	-	2	2	5/	3	3	
3	3	3	2	2		1	D.		2	2	/	3	3	
4	3	3	2	2	2		P.	/	2	2		3	3	
5	3	3	2	2	981	7 7		50	2	2		3	3	
3- High Map	pping; 2-1	Moderate	e Map	ping; 1	-Low N	Mappin	g	2						

EE22044	ENERGY STORAGE SYSTEM AND MANAGEMENT IN EV	L T P C
		3003
COURSE O	BJECTIVES	
• To ur	derstand the fundamentals of EV batteries and analyze different battery technolog	gies used in
EVs,	their characteristics and limitations.	
• To ex	plore charging infrastructure systems, including types, standards, and smart charging	g strategies.
• To d	iscuss the latest advancements and future trends in EV battery technology	and energy
mana	gement.	
UNIT I	EV BATTERIES	9
Overview o	f Electric Vehicles (EVs) – Importance of Energy Storage in EVs – Comparison	of different
energy stora	age technologies - Role of batteries in EVs - Battery basics: electrochemical prin	nciples, cell
components	- types of batteries (lead-acid, NiMH, Li-ion, solid-state) - Selection of battery	for EVs &
HEVs – I	Battery performance parameters: capacity, energy density, power density,	cycle life,
charging/dis	scharging characteristics.	
UNIT II	BATTERY TECHNOLOGIES FOR EVs	9
Lithium-ion	Batteries - Chemistry, characteristics, types (LCO, LFP, NMC, etc.), performance	advantages
and limitati	ons - Solid-state battery technology: advantages and challenges, potential fo	r improved
performance	e and safety – Lithium-sulfur batteries – Advanced battery technologies – Battery r	nanagement
systems (BN	MS): Importance of BMS in EVs, functions, components, cell balancing, thermal m	nanagement,
safety featur	res – Battery degradation and aging mechanisms – methods for extending battery life	Э.
UNIT III	CHARGING INFRASTRUCTURE AND STANDARDS	9
EV Chargin	g Infrastructure - Types of charging stations: AC and DC chargers - Charging stan	idards (SAE
J1772, CH	AdeMO, CCS), charging speeds and power levels, deployment strategies. Sma	art charging
concepts: g	rid-to-vehicle (G2V), vehicle-to-grid (V2G), dynamic pricing, load balancing -	Renewable
energy integ	gration with EV charging infrastructure: solar, wind, and other sources.	
UNIT IV	SUPERCAPACITOR AND FUEL CELL	9
Supercapaci	tors: Working principle, types of supercapacitors - cycling and performance char	acteristics –
difference b	etween battery and supercapacitors - Introduction to Hybrid electrochemical supe	ercapacitors.
Fuel cell: O	perational principle of a fuel cell, types of fuel cells - hybrid fuel cell-battery syst	ems, hybrid
fuel cell-sup	percapacitor systems.	
UNIT V	CHALLENGES AND FUTURE TRENDS IN ENERGY STORAGE	9
Environmen	tal impact of battery production and disposal, life cycle assessment - Safety conc	erns – Cost
consideratio	ns - Research and Development in EV Energy Storage - Next-generation material	s, improved
capacity and	d safety, recycling and sustainability Innovations in battery technology - Policy and	d regulatory
frameworks	for promoting EV technology and infrastructure development.	
	TOTAL P	ERIODS: 45
	TEXT BOOKS	
1.	James Larminie and John Lowry, 'Electric Vehicle Technology Explained', Wiley	v, 2012, 2 nd
	edition.	
2.	David Linden and Thomas Reddy, 'Handbook of Batteries', Tata McGraw Hil	l, 2001, 3 rd
	edition.	
1	REFERENCE BOOKS	
1.	Gianiranco Pistola and Boryann Liaw, Behaviour of Lithium-Ion Batteries	in Electric
	venicies: Battery Health, Performance, Safety, and Cost (Green Energy and Te	cnnology),

	Springer 2018.
2.	Albert Link, Alan O'Connor, Troy Scott, 'Battery Technology for Electric Vehicles: Public
	Science and Private Innovation,' Routledge, 2015.
3.	MehrdadEhsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, 'Modern Electric, Hybrid Electric
	and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2018, 3rd edition.
4.	Iqbal Hussein, 'Electric and Hybrid Vehicles: Design Fundamentals', 3rd edition, CRC Press,
	2021.
5.	Electric Vehicle Charging Technology and Standards by IEEE Standards Association
6.	Joao Abel Pecas Lopes, Rodrigo Garcia-Valle, 'Electric Vehicle Integration into Modern
	Power Networks', Springer, 2016

				2	COU	RSE (OUTCO	OMES	-					
Upon the suc	ccessful c	complet	ion of	the cou	rse, the	stude	nts will	be able	to					
COs	STATEMENTS												RB LEV	ST 'EL
1	Understand the basics of various energy storage systems and analyze its suitability for electric vehicles.												4	
2	Apply the concepts of battery management system and design the battery pack.												4	
3	Understand the design and deployment considerations of charging infrastructure and discuss interoperability challenges and solutions.											arging	3	
4	Design and develop hybrid energy storage systems to improve EV range and performance.											ge and	4	
5	Identify and analyze challenges related to energy storage for electric vehicles and suggest suitable solutions.										4			
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Crea											eate-6			
		1	E.	COUI	RSE AI	RTICU	JLATI	ON MA	TRIX	15	?/			
COs		1	0	1		F	Os		/	0	/		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	3	3	2	2	98]	7 1	2	20	2	2		3	3	2
2	3	3	3	2	_		2	~	2	2		3	3	2
3	3	3	2	2			2		2	2		3	3	2
4	3	3	3	2			2		2	2		3	3	2
5	3	3	2	2			2		2	2		3	3	2
3- High Map	oping; 2-1	Modera	te Map	ping; 1	-Low N	Aappin	g							

EE22045	ELECTRIC VEHICLE CONTROL	L T P C							
		3003							
COURSE O	BJECTIVE								
• Un	derstand the control architectures of electric vehicle drivetrain and concept	of power							
cor	verters in electric vehicle.								
• Ac	quire knowledge on drivetrain characteristics and analysis on electric vehicles	based on							
vel	nicle parameters and types of loads.								
• Stu	dy about the various control strategies of electric vehicles.								
UNIT I	REVIEW OF CONVENTIONAL VEHICLE	9							
Introduction	n to electric vehicles: Electric drivetrain – Tractive effort in normal driving	; – Energy							
consumptio	n concept of Electric drivetrain and its architecture - Electric propulsion unit	– Various							
Hybrid/EV	architectures - Various switched mode DC/DC converters for EV drive - Const	ruction and							
operation of	f speed control using acceleration pedal.	1							
UNIT II	ROLE OF POWER CONVERTERS IN DRIVES	9							
DC-DC co	nverters: Buck-boost, bidirectional DC-DC converters - Effect of parasitic	elements							
performanc	e analysis - Controllers design for DC-DC converters - Single-phase and three-pha	ase inverter							
VSI and CS	SI topologies - PWM techniques - Hysteresis control - Comparison of PWM tech	nniques and							
closed loop	control of drives.								
UNIT III	CHARACTERISTICS – MODELING AND ANALYSIS OF EV	9							
Transmissio	on and drivetrain characteristics - Regenerative braking characteristics - Drivir	ng cycles -							
Modelling	and analysis of electric vehicles propulsion and braking - Longitudinal dynamics	equation of							
motion.									
UNIT IV	ELECTRIC VEHICLE DRIVETRAIN EFFICIENCY	9							
Drive effici	ency: impact of altitude, ambient temperature, gradient and motors - Different typ	e of motors							
used and its	s comparative study - Torque vs speed - Calibration of drivetrain based on vehicle	parameters							
EV design	and components sizing - Electric drivetrain overview, Systems with Linear I	Motion and							
Rotating Sy	stems, Types of loads, Four Quadrant Operation. Induction Motor for EV power tra	in, Variable							
Voltage Va	riable Frequency Control – Steady State Analysis of Induction Drive, Direct & Ind	irect Vector							
Control, and	d Direct Torque Control.	r							
UNIT V	CONTROL STRATEGIES OF EV	9							
BLDC drives-various speed control strategies - closed loop control - Autonomous control. Contro									
strategies of regenerative braking in drives. Speed control of AC drives. Permanent magnet synchronous									
machine fo	r EV power train, Non-Salient & Salient Drives, Generic Model, Steady State Ana	alysis, Field							
Oriented Co	ontrol – Switched Reluctance Machine for EV power train – Operating principles,	Analysis of							
SRM drives	and speed control – Multi-input EV drives concepts and their operation.								
	TEXT BOOKS	RIODS: 45							
	Ali Emadi "Handbook of Automotive Power Electronics and Drives" To	vlor and							
1.	FrancisGroup, 1 st edition, USA, 2005.	yiti allu							
2.	David Crolla, Behrooz Mashadi, "Vehicle Powertrain Systems", January 2012. Wi	ley							
2	Tom Denton, 'Automotive Electrical and Electronic Systems', Routledge.	Taylor							
3.	andFrancis Group, 2017, 5 th edition.	5							

REFERENCE BOOKS										
1.	Bimal K Bose, 'Modern Power Electronics and AC Drives', Pearson Education, 2003, 2 nd edition.									
2.	P.C. Sen, 'Modern Power Electronics', Wheeler Publishing Co, New Delhi, 2008, 3 rd edition.									
3.	Wei Liu, 'Hybrid Electric Vehicle System Modelling and Control', General Motors, USA, John Wiley & Sons, Inc., 2017.									
4.	Gianfranco Pistoia, 'Electric and Hybrid Vehicles Power Sources, Models, Sustainability,Infrastructure and the Market Consultant', Rome, Italy, Elsevier Publications, 2017.									
5.	R Krishnan, 'Electric motor drives: Modelling, Analysis, and Control', 2013.									

					COU	JRSE (OUTCO	OMES							
Upon the su	ccessful	comple	tion of	the cou	irse, the	e studer	nts will	be able	e to						
CO's	STATEMENTS												RI LEV	ST /EL	
1	Acquire knowledge about various types of power trains utilized in EV drives													3	
2	Acquire knowledge about various converters utilized in EV drives													3	
3	Develop capability to model drives and braking characteristics-involving load estimation, load cycle considerations, thermal aspects and motor-converter matching													4	
4	Analyse the various controllers used in DC and AC drives													4	
5	Design and analyse various power converters used in Electrical Drives and their control.												4		
Bloom's Ta	xonomy	(RBT)	Level:	Reme	mber-1	; Under	stand-	2; Appl	y-3; Ar	nalyze-4	l; Evalua	ate-5; Cro	eate-6		
		1	1	COU	RSE A	RTICU	JLATI	ON MA	ATRIX		21				
COs	POs													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	N	1	6	3	3	1	2	2		3	3		
2	3	3	1	1	98	3	3	22	2	2		3	3		
3	3	3	1	3	-	3	3	~	2	2		3	3		
4	3	3	1	3		3	3		2	2		3	3		
5	3	3	1	3		3	3		2	2		3	3		
3- High Map	pping; 2-	Modera	ite Map	ping; 1	-Low N	Mappin	g								

EE22046	AUTOMOTIVE EMBEDDED SYSTEMS	LTPC
		3003
COURSE O	BJECTIVES	
•	Introduce the basic Embedded System and its sub-system categories.	
•	Impart the automotive product design cycle with concept to market.	
•	Inculcate the concepts of automotive sensors and software.	
•	Learn about the verification and validation process using NI LabVIEW.	
UNIT I	AUTOMOTIVE EMBEDDED SYSTEM OVERVIEW	9
Automotive	embedded system technology - Overview of embedded system categories - Variou	s embedded
sub system	s for chassis, body, driveline, engine, fuel, emission, brakes, suspension, emiss	ion, brakes,
suspension,	doors, safety & security - Comfort & Multimedia - Communication & Lightin	ng – Future
trends in au	tomotive embedded systems: X by wire technologies.	1
UNIT II	AUTOMOTIVE HARDWARE MODULE	9
Concept to	market: Understanding automotive product design cycle - Microcontroller,	architecture,
Memory m	ap, I/O map - Building Blocks of Automotive Electronic Product: Actuator	rs, Sensors,
Semiconduc	ctor Components, Devices, Integrated Circuits (ICs), Relay, Stepper mo	otor, PCBs
etc.	(2)	
UNIT III	AUTOMOTIVE SENSORS	9
Automotive	Sensors and Transducers: Temperature, Force, Oxygen Sensor, LAMBDA Sensor	r, Proximity
Distance S	ensors, Speed, Engine knock sensor, Resistive potentiometer & Flow. typi	cal sensors
specification	ns & Microcontroller interfacing, Signal processing circuit, Sensor calibration.	1
UNIT IV	AUTOMOTIVE SOFTWARE PROTOCOLS	9
Need for Pr	otocol – Automotive Protocols: LIN, CAN, KWP2000 & J1939, FlexRay, Test, Cal	ibration and
Diagnostics	tools for networking of electronic systems like ECU software and testing	tools, ECU
calibration	tools, venicle network simulation – Advanced trends in automotive electronics:	AUTOSAK
		0
UNIT V Validation	verification process Introduction to NL I abVIEW for Automotive Test	9 Catagorias:
Functional f	and verification process, infounction to NI Labyie w for Automotive, rest	categories.
tosts FMI	/ FMC tests as per AIS 004 standard Environmental test. Vibration tests. Protect	tion against
dust Water	ingress and in standards vehicle diagnostic interface like ORD ORD - II	tion against
uusi, waici	TOTAL P	FRIODS: 45
	TEXT BOOKS	
1	Nicolas Navet and Francoise Simonot-Lion. 'Automotive	Embedded
1.	SystemsHandbook',CRC Press,2009.	Linevadua
2.	Miroslaw Staron, 'Automotive Software Architectures: An Introduction', Springer	,2017.
	REFERENCE BOOKS	
1.	RonaldK.Jurgen, 'AutomotiveSoftware',SAEInternational,2006.	
2.	Robert Bosch, 'Automotive Hand Book', SAE Publications, 2003, 5th edition.	
3.	William B Ribbens, 'Understanding Automotive Electronics – An Engineering Pe Butterworth-Heinemann Publications, 2012, 7 th edition.	rspective',

4.	Ronald K. Jurgen, 'Distributed Automotive Embedded Systems', SAE International, 2007.
5.	Kiencke, Uwe, Nielsen & Lars, 'Automotive Control Systems for Engine, Driveline and Vehicle', Springer Publications, 2005, 2 nd edition.

TT d	C 1	1 /			COU	RSE (OUTCO	DMES							
CO's	STATEMENTS													3T VEL	
1	Categorize the major components of various automotive embedded sub systems and its future trends.													4	
2	Understand the automotive hardware module using product design cycle with concept to market.													3	
3	Apply param	Apply the concepts of different automotive sensor to compute its various parameters.													
4	Learn guide	Learn about the automotive softwares and follow its coding standards and 5 guidelines.													
5 Verification and validation of automotive relevant to protection through various test cases.														5	
Bloom's T	axonomy	(RBT)	Level	: Remen	mber-1	; Under	rstand-2	2; Appl	y-3; Ar	nalyze-4	4; Evalua	ate-5; Cro	eate-6		
		15	1	COU	KSE A.	KIICU		UN MA	A I KIX	<u> </u>	51		DC		
COs		LS	1.	<u>.</u>		P	Us						PSUS		
	1	2	3	4	5	6	7	8	9	10	n	12	1	2	
1	3	3	1	1	1	3	3	11	3	1	111	3	3		
2	3	3	1	1	1	3	3		3	1	m	3	3		
3	3	3	1	3	1	3	3	-	3	1	21	3	3		
4	3	3	1	3	1	3	3		3	/15	2/	3	3		
5	3	3	15	3	1	3	3		3	P	/	3	3		
3- High Ma	apping; 2-	Moderat	e Maj	oping; 1	-Low I	Mappin	g	/	1	0/					
				~	98	7 τ	रा	22	10.	/					
EE22047	VEHICLE COMMUNICATION	L T P C													
--------------	--	-------------													
		30 0 3													
COURSE O	BJECTIVES														
• To	understand the concepts of in-vehicle networking and its importance in mode	rn vehicle													
syst	tems.														
• To	explain the various network and communication protocols used in automotive applic	ations.													
• To	differentiate between different network and communication protocols employed	in-vehicle													
con	nmunication systems.														
• To	describe the FlexRay protocol and its significance in automotive communication for	r real-time													
data	a transmission.														
• To	identify and analyze the latest trends in in-vehicle networking, considering advance	cements in													
tech	nology and industry standards.														
UNIT I	BASICS OF IN-VEHICLE NETWORKING	9													
Overview o	f Data communication and networking - Need for In-Vehicle networking - Lay	ers of OSI													
reference me	odel – Multiplexing and de-multiplexing concepts – Vehicle buses.														
UNIT II	NETWORKS AND PROTOCOLS	9													
Overview o	f general-purpose networks and protocols: Ethernet, TCP, UDP, IP, ARP, RA	ARP - LIN													
standard ove	erview – workflow applications – LIN protocol specification – signals - Frame trans	sfer –Frame													
types – Sche	edule tables – Task behavior model – Network management – status management - o	overview of													
CAN funda	mentals - Message transfer - frame types-Error handling - fault confinement	- Bit time													
requirement	s.														
UNIT III	HIGHER LAYER PROTOCOL	9													
Introduction	to CAN open -TTCAN, Device net -SAE J1939 - overview of data channels	s – Control													
channel-syn	chronous channel – asynchronous channel – Logical device model – functions	s, methods,													
properties -	protocol basics - Network section-data transport - Blocks - frames - Preambl	e-boundary													
descriptor.															
UNIT IV	FLEXRAY PROTOCOL	9													
Introduction	– Network topology – ECUs and bus interfaces – Controller host interface and	nd protocol													
operation co	ontrols – Media access control and frame and symbol processing – Coding/deco	ding unit –													
FlexRay sch	eduling.														
UNIT V	LATEST TRENDS	9													
Car network	king protocols – Networking future trends – Roadmaps – Competitive advantag	e – Recent													
advancemen	it of network architectures for vehicular communications – Case studies on	automotive													
manufacture	ers industry.														
	TOTAL PERI	ODS: 45													
	TEXTBOOKS														
1.	J.Gabrielleen, 'Automotive In-Vehicle Networks', John Wiley and Sons Limited, 2	.008													
2.	Robert Bosch, 'Bosch Automotive Networking', Bentley publishers, 2007														
3.	Society of Automotive Engineers 'In-Vehicle Networks', 2002														
	REFERENCE BOOKS														
1.	Ronald K Jurgen, 'Automotive Electronics Handbook', McGraw-Hill Inc. 1999														
2.	IndraWidjaja, Alberto Leon-Garcia, 'Communication Networks: Fundamental Con	ncepts and													
	Key Architectures', McGraw-Hill College, 2003.														

3.	KonradEtschberger, 'Controller Area Network, IXXAT Automation', August 22, 2001							
4.	Olaf Pfeiffer, Andrew Ayre, Christian Keydel, 'Embedded Networking with CAN and							
	CANopen', Annabooks/Rtc Books, 2003							

					COU	RSE C	OUTCO	OMES						
Upon the s	uccessful	complet	ion of	the cou	rse, the	studer	nts will	be able	e to:					
COs	STATEMENTS								RI LEV	3T VEL				
1	Analyze about in-vehicle networking											4		
2	Comprehend the different network and communication protocols.									4				
3	3 Realize the different higher level protocols.								4					
4	Class	ify the c	config	uration	of Fle	xRay j	protoco	ol	_				4	
5	Apply the latest trends in in-vehicle networking.						3							
Bloom's T	axonomy	(RBT)	Level	: Reme	mber-1;	Under	stand-2	2; Appl	y-3; Ai	nalyze-4	4; Evalua	te-5; Cr	eate-6	
		1	S	COUI	RSE AI	RTICU	LATI	ON MA	ATRIX	~~				
COs		1	5	/		Р	Os	2.7		1	10		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	2	2	1	-	0	1	1	1	01	3	2	
2	2	2	2	2	1	-		21	1	1	-	3	2	
3	2	2	2	2	11	100	V	77)	1	1	5	3	2	
4	2	2	2	2	11		16	//	1	1	-	3	2	

कि मिस प्रा हेवता -

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

	SUSTAINABLE EV CHARGING INFRASTRUCTURE	LIPC
		3003
COURSE O	BJECTIVES	
• Unc	derstand the various EV chargers, charging modes and the difficulties associate	d with EV
batt	ery charging.	
• To	gain the knowledge of Charger classification, connector and cable, EVSE testing	procedures.
and	standards	,
• To	provide insight on various communication protocol, billing and authentication u	used in EV
cha	rging	
• To	understand recent trend and implementation of public charging stations policy and ects, protection and safety standards	d economic
• To	gain the knowledge of future charging methods integration of charging station imp	pact of grid
con	nected system	Juot of gife
UNIT I	SIZING AND STANDARDS OF EV CHARGERS	9
Electric veł	nicle charging – Charging modes – Electric vehicle supply equipment (EVS)	E): Types.
components	of EV battery chargers – Challenges in EV charging – Selection and sizing of	f chargers –
Charger con	unectors and cables – Charging standards: connectors, supply equipment: EMI/EM	AC – testing
methods for	chargers and EVSE	ie testing
	RENEWABLE ENERGY INTEGRATION IN EV CHARGING	9
Importance	of renewable energy integration for sustainable transportation – Solar power	ed charging
stations – W	Vind powered charging stations – design principles and components – Hybrid charg	ing station –
Case studies		
Case studies	EV CHARGER COMMUNICATIONS PROTOCOLS	9
Case studies UNIT III Open Charg	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad	9 apted PWM
UNIT III Open Charg	EV CHARGER COMMUNICATIONS PROTOCOLS (e Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad low-level communication – PLC based high-level communication – CAN comm	9 apted PWM
Open Charg signal based Billing and a	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad I low-level communication – PLC based high-level communication – CAN communication.	9 apted PWM nunication –
Open Charg signal based Billing and a	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad 1 low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE	9 apted PWM nunication – 9
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad I low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection	9 apted PWM nunication – 9 and sizing:
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equin	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad I low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I	9 apted PWM nunication – 9 and sizing: EV charging
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad I low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges.	9 apted PWM nunication – 9 and sizing: EV charging
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad to low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING	9 apted PWM nunication – 9 and sizing: EV charging 9
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargi	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad I low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resources	9 apted PWM nunication – 9 and sizing: EV charging 9 ces: Grid to
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargi Vehicle (G2	EV CHARGER COMMUNICATIONS PROTOCOLS (e Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad 1 low-level communication – PLC based high-level communication – CAN comm authentication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resource CV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema	9 apted PWM nunication – 9 and sizing: EV charging 9 ces: Grid to nd response
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargi Vehicle (G2 strategies for	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad I low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resourd CV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging.	9 apted PWM nunication – 9 and sizing: EV charging 9 ces: Grid to nd response
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargi Vehicle (G2 strategies for	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Add a low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resourd EV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging.	9 apted PWM nunication – 9 and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargin Vehicle (G2 strategies for	EV CHARGER COMMUNICATIONS PROTOCOLS The Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Add to low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resourd CV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging. TOTAL P TEXT BOOKS	9 apted PWM nunication – 9 a and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equij station and t UNIT V Bulk chargi Vehicle (G2 strategies for 1.	EV CHARGER COMMUNICATIONS PROTOCOLS we Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Add 1 low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resourd EV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging. TOTAL P TEXT BOOKS Iqbal Husain, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC P	9 apted PWM nunication – 9 and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45 ress, 2021,
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargi Vehicle (G2 strategies for 1.	EV CHARGER COMMUNICATIONS PROTOCOLS e Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad 1 low-level communication – PLC based high-level communication – CAN comm authentication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resource EV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging. TOTAL P TEXT BOOKS Iqbal Husain, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC P 3 rd Edition.	9 apted PWM nunication – 9 a and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45 ress, 2021,
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equi station and t UNIT V Bulk chargi Vehicle (G2 strategies for 1. 2.	EV CHARGER COMMUNICATIONS PROTOCOLS te Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad 1 low-level communication – PLC based high-level communication – CAN comm authentication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resourd EV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging. TOTAL P TEXT BOOKS Iqbal Husain, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC P 3 rd Edition. Code of Practice for Electric Vehicle Charging Equipment Installation, IET, 2020,	9 apted PWM nunication – 9 and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45 ress, 2021, 4 th Edition
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargin Vehicle (G2 strategies for 1. 2.	EV CHARGER COMMUNICATIONS PROTOCOLS te Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad t low-level communication – PLC based high-level communication – CAN communication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resourd EV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging. TOTAL P TEXT BOOKS Iqbal Husain, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC P 3 rd Edition. Code of Practice for Electric Vehicle Charging Equipment Installation, IET, 2020, REFERENCE BOOKS	9 apted PWM nunication – 9 a and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45 ress, 2021, 4 th Edition
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equi station and t UNIT V Bulk chargi Vehicle (G2 strategies for 1. 2.	EV CHARGER COMMUNICATIONS PROTOCOLS e Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad I low-level communication – PLC based high-level communication – CAN commatthentication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resourded to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging. TOTAL P TOTAL P TOTAL P TEXT BOOKS Iqbal Husain, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC P 3 rd Edition. Code of Practice for Electric Vehicle Charging Equipment Installation, IET, 2020, REFERENCE BOOKS Sheldon S. Williamson, 'Energy Management Strategies for Electric and Plug	9 apted PWM nunication – 9 and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45 ress, 2021, 4 th Edition
Case studies UNIT III Open Charg signal based Billing and a UNIT IV Location, pl HT/LT equip station and t UNIT V Bulk chargi Vehicle (G2 strategies for 1. 2.	EV CHARGER COMMUNICATIONS PROTOCOLS e Point Protocol (OCPP) – Open System Interconnection layer model (OSI) – Ad l low-level communication – PLC based high-level communication – CAN comm authentication. PUBLIC CHARGING INFRASTRUCTURE anning and implementation of public charging stations – Components – Selection pment and cables – Protection – Safety standards: Policy and regulatory aspects – I heir business models – Economic aspects – Major challenges. FUTURE FRONTIERS IN EV CHARGING ng – Battery swapping – Wireless charging – EVs as distributed storage resour EV) and Vehicle to Grid (V2G), V2X concept – Smart grid integration and dema r optimizing EV charging. TOTAL P TEXT BOOKS Iqbal Husain, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC P 3 rd Edition. Code of Practice for Electric Vehicle Charging Equipment Installation, IET, 2020, REFERENCE BOOKS Sheldon S. Williamson, 'Energy Management Strategies for Electric and Plug Electric Vehicles', Springer, 2013, 1 st Edition.	9 apted PWM nunication – 9 a and sizing: EV charging 9 ces: Grid to nd response ERIODS: 45 ress, 2021, 4 th Edition

3.	Wolfhard Lawrenz, 'CAN System Engineering: From Theory to Practical Applications',
	Springer, 2013, 2 nd Edition.
4.	Sandeep Dhameja, 'Electric Vehicle Battery Systems', Newnes, 2002.

Linon the s	waaaafi	J. comm	lation	of the	COU	IRSE ()UTC(OMES	a abla	to				
COs		STATEMENTS							RBT LEVEL					
1	Under	rstand th	ne var	ious co	ompon	ents of	Electr	ic veh	icle ch	arging	system		2	2
2	Comp standa	Comprehend the different types of Electric vehicle chargers and their standards								4	ł			
3	Analy electr	Analyze the many communication protocols that are employed when charging electric vehicles.							4	ł				
4	Famil	iarize w	ith th	e recei	nt trend	ls in El	lectric	vehicl	e charg	ging			4	ł
5	Prosp the gr	ects for id	EV c	hargin	g using	g renev	wable e	energy	source	es and	their eff	ect on	2	2
Bloom's '	Taxonoi	my (RE	BT) I	Level:	Reme	mber-1	l; Unc	lerstan	d-2; A	Apply-3	3; Anal	yze-4;	Evalua	te-5;
Create-6		1,	21	/				÷ 1	1-0	11	01			
		1E	1	COUR	SE AF	RTICU	JLATI	ION M	IATR	IX	21			
COs POs I						PS	Os							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	11		3	71	2	2	111	3	3	2
2	3	3	3	2			3		2	2	m	3	3	3
3	3	3	3	3		-	3	-	2	2	20/	3	3	2
4	3	3	3	3			3		2	2	5/	3	3	3
5	3	3	3	3		0.20	3		2	2		3	3	3
3- High M	apping;	2-Mode	rate N	/Iappin	ıg; 1-L	ow Ma	pping	~	1	1				
L				2	92	7 τ	ारा	55	(d)	/				

EE22040	ELECTRIC VEHICLE LABORATORYL T P C										
		0042									
COURSE (DBJECTIVES										
• To	• To model, simulate and evaluate the performance of Electric Vehicle system components.										
	LIST OF EXPERIMENTS										
1.	1. Acceleration Performance of an Electric Vehicle.										
2.	Importing and Creating Standard Driving Cycles.										
3.	Design, Modeling and Simulation of Battery Systems.										
4.	Dynamic performance of a Battery for a set power.										
5.	Modeling and Simulation of Range of an Electric Four wheeler.										
6.	Modeling and Simulation of Range of an Electric Two wheeler.										
7.	Speed control characteristics of an Electric Vehicle Two wheeler.										
8.	Simulation of Range of Fuel Cell Electric Vehicle										
9.	Performance analysis of Electric Vehicle Drive Motor.										
10.	Simulation of Periodic CAN Message Transmission Behavior.	Simulation of Periodic CAN Message Transmission Behavior.									
11.	Design, Modeling and Performance analysis of Battery Electric Vehicle using										
	MATLAB/Simulink.										
12.	Design, Modeling and Performance analysis of a Battery for an Electric Vehicle bas	sed on									
	Modelica.										
	TOTAL P	PERIODS:60									

A / /1 1	COURSE OUTCOMES				
At the end	of the course, the student should be able to:				
COS	SIATEMENIS	KDI LEVEL			
1	Identify and adopt standard drive cycles to simulate vehicle performance.	4			
2	2 Develop mathematical model for EV system components. 4				
3	Simulate EV systems and evaluate their performance.	4			
4	Establish communications in vehicles adopting to prescribed standards/protocols.	4			
5	Integrate the system components, simulate and evaluate the performance of EVs.	4			

				CO	URSE	ARTI	CULA	TION	MAT	RIX				
COs	POs							PSOs						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	1			2	2		3	3	
2	3	3	3	3	3	1			2	2		3	3	
3	3	3	3	3	3	1			2	2		3	3	
4	3	3	3	3	3	1			2	2		3	3	
5	3	3	3	3	3	1			2	2		3	3	
2 High Ma		Mada	noto M	ommina	. 1 I o									

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

	LABORATORY REQUIREMENTS FOR A BATCH OF 30 S	TUDENTS
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED
1.	Personal Computers (Intel i3 Processor, 500GB HDD, 8GB Ram)	30 Nos.
2.	Printer HP Laser Jet 1020 Plus	1 No.
3.	Server (IBM X 3300 M4 Server & Fedora 14)	2 Nos.
SOFTW	ARE	11
4.	MATLAB Full Suite	Campus Wide License
5.	OpenModelica	Open source
	तिहा परा देवता क	EERIN

VERTICALV: RENEWABLE ENERGY AND ENGINEERING

EE2205	1 DISTRIBUTED GENERATION AND MICROGRID	L T P C							
		3003							
COURS	SE OBJECTIVES								
	• To understand the various energy sources and conversion of useful energy.								
	• To illustrate needs of various distributed generations.								
	• To examine the various distributed generations and installations.								
	• To outline the various micro-grid structures and interfacing with power electronic un	nits.							
	• To analyze the control methods and stability in Micro-grids								
UNIT	INTRODUCTION	9							
Conver	tional power generation: advantages and disadvantages, Energy crises, Non-conventi	onal energy							
(NCE)	resources: review of Solar PV, Wind Energy systems, Fuel Cells, micro-turbines, bioma	ss, and tidal							
sources	. Impact of grid integration of NCE sources on existing power system: reliability, s	tability and							
power of	quality issues, Energy storage elements: Batteries, ultra-capacitors, flywheels. Captive po	wer plants.							
UNIT	TI DISTRIBUTED GENERATIONS (DG)	9							
Concep	t of distributed generations, topologies, selection of sources, concept and topologies	, renewable							
energy	in distributed generation. IEEE 1547 Standard for interconnecting distributed generatio	n to electric							
power s	ystems.								
UNIT I	II DG INSTALLATIONS 9								
Classes	, requirements for grid interconnection, limits on operational parameters: voltage, frequ	ency, THD,							
respons	e to grid abnormal operating conditions, islanding issues, security issues in DG imple	ementations.							
Siting a	nd sizing of DGs – optimal placement – regulatory issues.								
UNIT	IV BASICS OF A MICROGRID	9							
Introdu	ction to microgrids - types - structure and configuration of microgrids - AC and DC r	nicrogrids –							
power	electronic interfaces in DC and AC microgrids, impact of grid integration on exis	sting power							
systems	Val T T								
UNIT Y	CONTROL AND OPERATION OF MICROGRID	9							
Modes	of operation and control of microgrid: grid connected and islanded mode, Active and rea	ctive power							
control	protection issues, anti-islanding schemes: passive, active and communi	cationbased							
techniq	ues.Power quality issues in microgrids, regulatory standards, Microgrid economics, Int	roduction to							
smart n	iicrogrids.								
	TOTAL P	ERIODS: 45							
	TEXT BOOKS								
1.	Amirnaser Yezdani, and Reza Iravani, 'Voltage Source Converters in PowerSystems	: Modeling,							
2	Control and Applications, IEEE John Wiley Publications, 2010.	004							
۷.	Robert Lasseter, Faolo Flagi, Micro-grid. A Conceptual Solution, FESC 2004, Jule 2	004.							
	REFERENCE BOOKS								
1.	J.F. Manwell, J.G. McGowan 'Wind Energy Explained, theory design and application 2010	tions',Wiley							
2	publication 2010.	tions 2005							
۷.	2 nd Edition	11011s, 2006,							
3.	Gregory W. Massey, "Essentials of Distributed Generation Systems" Jones at	nd Bartlett							
2.	Publishers.	La Durtiett							

4.	Ali Keyhani,'Design of Smart Power Grid Renewable Energy Systems', John Wiley and Sons.
5.	DorinNeacsu, 'Power Switching Converters: Medium and High Power', CRCPress, Taylor and Francis, 2006.

COURSE OUTCOMES														
Upon th	Upon the successful completion of the course, the students will be able to													
COs					S	TATE	MENTS	5					F	BT
													LE	VEL
1	Understand sources.	nd the pr	rincip	les of o	energy	conve	ersion i	n rene	wable	and dis	stribute	d energy		2
2	Demonst	rate the o	conce	pt of D	Distribu	ited ge	eneratio	ns and	l its va	arious t	opologi	es.		3
3	Analyze the various issues of grid integration with distributed generations.													4
4	Articulate the types, structure and configuration of microgrids.													3
5	Analyze the operation of microgrid and control strategies in economic point of view.													4
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6														
COURSE ARTICULATION MATRIX														
COs		12	1	11	1	P	POs	-	-		02	1	PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	1	2	1	3	2	2	3	1	3	3	1	3
2	3	2	1	2	1	3	2	2	3	1	3	3	1	3
3	3	4	1	3	1	3	2	2	3	1	3	3	1	3
4	3	2	Ł	2	1	3	2	2	3	1.5	3	3	1	3
5	3	4	15	3	1	3	2	2	3	10	3	3	1	3
3- High	Mapping; 2	-Modera	te Ma	pping;	1-Low	Mappi	ng	-	1	0/		1		
				1	9E	17	परा	\$	10,	/				

EE22052	SOLAR ENERGY CONVERSION SYSTEM	L T P C
		3003
COURSE O	BJECTIVES	
•	To study the solar energy at the earth's surface and its measurements.	
•	To learn about various energy storage technologies.	
•	To study the energy conversion in solar modules and design the PV-based system.	
•	To discuss the standalone and grid-connected PV systems.	
•	To describe in detail the upcoming applications of solar photovoltaic systems.	
UNIT I	SOLAR RADIATION	9
Solar Energ	y – Indian Scenario – government policy- solar projects in India- future challenge	es. Sun as a
source of en	nergy, Solar radiation, Solar radiation at the Earth's surface, Measurement of Sola	ar radiation-
Pyroheliom	eter, Pyranometer, Sunshine recorder, Predictionofavailablesolar radiation,S	Solarenergy-
Importance,	Storageofsolar energy, Solarpond.	
UNIT II	SOLAR THERMAL SYSTEMS	9
Principle of	conversion of solar radiation into heat, Collectors used for solar thermal conversio	n: Flat plate
collectors a	and Concentrating collectors- Solar Thermal Power Plant, Solarcookers, solar	hot water
systems,sola	ardryers,Solar Distillation,Solar green houses.	
UNIT III	SOLAR PHOTOVOLTAIC	9
Conversion	of Solar energy into Electricity - Photovoltaic Effect, Solar photovoltaic cell and	its working
principle, D	ifferent types of Solar cells, Series and parallel connections.	_
UNIT IV	STAND ALONE AND GRID CONNECTED PV SYSTEM	9
Solarmodul	es-storagesystems-powerconditioningandregulation-MPPT-protection-standalone	PV systems
design –sizi	ng-Applications-Battery chargers, domestic lighting, street lighting, Grid connected	PV systems
in buildings	– design issues for central power stations.	
UNIT V	FUTURE APPLICATIONS OF SOLAR PV	9
PV for trans	sport -solar races, solar planes, solar boats- smart grids-Floating Solar PV Plants- A	Agrivoltaics-
AI in solar e	engineering, and integrating PV.	
	TOTAL PEI	RIODS: 45
	TEXT BOOKS	
1.	Solar Energy Utilization, G.D. Rai, Khanna Publishers, 2008	
2.	Solar Energy Fundamentals, design, modeling & applications, G.N.Tiwari Pub.2005.	, Narosa
	REFERENCE BOOKS	
1.	Solanki C.S., 'Solar Photovoltaics: Fundamentals, Technologies and Applicat LearningPvt.Ltd.,2015.	ions',PHI
2.	S.P.Sukhatme, 'Solar Energy-Principles of thermal energy collection and storage', Graw Hill Publishers, 1999.	Tata Mc-
3.	Eduardo Lorenzo G. Araujo, 'Solar electricity engineeri	ng of
4.	P.Jayarama Reddy, 'Science and Technology of Photovoltaics', BS Publication Edition.	18,2009, 2 nd
5.	Frank S. Barnes and Jonah G. Levine, 'Large Energy storage Systems H CRCPress,2011.	Handbook',

	_	_	-	_	COU	IRSE O	OUTCO	MES							
Upon the successful completion of the course, the students will be able to COs STATEMENTS DBT															
COs						STATE	MENI	S						T	
1	Acquir	o knor	vloda	ofso	lor roc	liation	nrinai		ith roc	noot to	o color /	moray		EL	
1	estima	tion.	vieuge			nation	princip	JIES W	iui ies	speci ii	5 SOIAI (energy	5		
2	Becom	ne fami	iliar w	vith va	rious (collecti	ing tec	hnique	es for	solar e	energy a	and its	3		
	storage	Э.													
3	Learn	the prine	nciples	s of sol	lar pho	otovolta	aic tech	nolog	y and	the dif	ferent ty	pes of	3		
4	Design	Design and size the PV panel for the standalone systems and the grid-													
	connec	connected systems.													
5	Learn	Learn about future transport applications and smart applications using solar 3													
PV. Bloom's Taxonomy (RBT) Level: Remember-1: Understand-2: Apply-3: Analyze-4: Evaluate-5: Create-6															
COUDSE ADTICULATION MATDIX															
COUKSE AKTICULATION MATKIX															
COs	COs POs PS												PS	rsus	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	5	2	3		15	2	21	2	1	3	
2	3	3	3	3	- /	2	3	1	10	2	51	2		3	
3	3	3	3	3	1	2	3	-		2	-	2	1	3	
4	3	3	3	3	1.	2	3		.0-	2	2	2	3	3	
5	3	3	3	3	11	2	3	//	U-,	2	11	2	3	3	
3- High Ma	apping; 2-l	Modera	te Map	ping; 1	-Low N	Mapping	g	/		1	21	1			
		17	1		1.57	-	2011	~	5	1	21				
		1	2	1		- 4	<u>80</u>	-	42	15	2/				
		1	N.	1			1.		/	9	/				
			1	10	-	1	V	/	1	- /					
				21	2-			30	91	/					
					201	1 1	RI	60	/						
							-	_							

EE22053 WIND ENERGY CONVERSION SYSTEM	L T P C								
	3003								
COURSE OBJECTIVES									
• To learn about the basic concepts of wind energy conversion system									
• To learn the design and control principles of Wind turbine.									
• To understand the concepts of fixed speed wind energy conversion systems.									
• To understand the concepts of Variable speed wind energy conversion systems.									
• To discuss the grid integration issues.									
UNIT I INTRODUCTION	9								
Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory-Power									
coefficient-Sabinin'stheory-Aerodynamics of Wind turbine- Impact of Tower Height- Max	kimum Rotor								
Efficiency- Environmental Impacts of Wind Turbines.									
UNIT II WIND TURBINES	9								
HAWT-VAWT-Power developed-Thrust-Efficiency-Rotor selection-Rotor design consideration	ons-Tip speed								
ratio-Number of Blades-Blade profile-Power Regulation-yaw control-Pitch angle control	l-stallcontrol-								
Schemesformaximumpower extractionfloating wind turbines.									
UNIT III FIXED SPEED SYSTEMS	9								
Generating Systems-Constant speed constant frequency systems-Choice of Generators-Deciding	factors-								
Synchronous Generator-Squirrel Cage Induction Generator- Model of WindSpeed- Model	wind turbine								
rotor - Drive Train model- Generator model for Steady state and Transientstability analysis.									
UNIT IV VARIABLE SPEED SYSTEMS	9								
Need of variable speed systems-Power-wind speed characteristics-Varia	ble speed								
constantfrequencysystems synchronous generator-DFIG-PMSG Variablespeedgenerat	orsmodeling-								
Variablespeedvariablefrequencyschemes.									
UNIT V GRID CONNECTED SYSTEMS	<u>9</u>								
wind interconnection requirements, low-voltage ride through (LVRI), ramp rate initiations,	and supply of								
interconnection impact on steady state and dynamic performance of the powersystem include	ing modeling								
iscue	ing modering								
	DIODS: 15								
TEXT BOOKS	MOD5. 4 5								
1. L.L.Freris'Wind Energy conversion Systems', PrenticeHall, 1990.									
2. N Bhadra, D Kastha, S Baneriee, 'Wind Electrical Systems', Oxford UniversityPr									
REFERENCE BOOKS	ess.2010.								
	ess,2010.								
1. Gilbert Masters, 'Renewable and Efficient Electric Power Systems', Wiley 2004.	ess,2010.								
 Gilbert Masters, 'Renewable and Efficient Electric Power Systems', Wiley 2004. Ion Boldea, 'Variable speed generators', Taylor and Francis group,2006. 	ess,2010.								
 Gilbert Masters, 'Renewable and Efficient Electric Power Systems', Wiley 2004. Ion Boldea, 'Variable speed generators', Taylor and Francis group,2006. N. Jenkins, 'Wind Energy Technology' JohnWiley and Sons,1997 	ess,2010.								
 Gilbert Masters, 'Renewable and Efficient Electric Power Systems', Wiley 2004. Ion Boldea, 'Variable speed generators', Taylor and Francis group,2006. N. Jenkins, 'Wind Energy Technology' JohnWiley and Sons,1997 S.Heir'Grid Integration of WECS', Wiley 1998. 	ess,2010.								
 Gilbert Masters, 'Renewable and Efficient Electric Power Systems', Wiley 2004. Ion Boldea, 'Variable speed generators', Taylor and Francis group,2006. N. Jenkins, 'Wind Energy Technology' JohnWiley and Sons,1997 S.Heir'Grid Integration of WECS', Wiley 1998. E.W.Golding'The generation of Electricity by wind power', Redwood but 	rnLtd.,Trow								

					COU	IRSE O	UTCO	MES							
Upon the s	uccessful	comple	tion of	the cou	rse, the	e studen	ts will	be able	e to						
COs					S	STATE	MENT	S					RB	Т	
													LEV	EL	
1	Acqui	re knov	wledge	on the	e basic	conce	pts of V	Wind e	energy	conver	sion sy	stem.	3	;	
2	Understand the mathematical modeling and control of the wind turbine.													;	
3	Develop a better understanding of the design of a fixed-speed system.													3	
4	Understand the need for variable-speed systems and their modeling.												3		
5	Learn about grid integration issues and current practices for wind												3		
	interconnections with power systems.														
Bloom's T	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Crea														
				COUR	RSE A	RTICU	LATIO	ON MA	ATRIX	K					
COs			2	/	N	CP	Os	EC	10	-			PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3		2	3		1	2		2	1	3	
2	3	3	3	3		2	3	1.1		2	10	2	1	3	
3	3	3	3	3	1	2	3		15	2	21	2	1	3	
4	3	3	3	3	- /	2	3	1	1	2	21	2	1	3	

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

m NE m N 125 - THE tantes परा

EE22054	HYBRID RENEWABLE SYSTEM AND STORAGE TECHNOLOGIES	L T P C
		3003
COURSE O	BJECTIVES	
• Edu	cate the fundamental concepts about different types of hybrid energy systems.	
• Infe	er the various electrical Generators used for the Wind Energy Conversion Systems.	
• To	design the power converters used in Solar PV Systems.	
• Une	lerstand the various power converters used in hybrid energy systems and to under	erstand the
imp	ortance of standalone and grid-connected operation in Hybrid renewable energy sys	tems.
• To	analyze the performance of the various hybrid energy systems.	
UNIT I	INTRODUCTION TO HYBRID ENERGY SYSTEMS	9
Hybrid Ene	rgy Systems -Solar-Wind-Fuel Cell-Diesel, Wind Biomass-Diesel, Micro Hydro	-PV, Ocean
and geyser	energy - Impacts of renewable energy generation on the environment - Present	Indian and
internationa	l energy scenario of conventional and RE sources - Solar Photovoltaic (PV) and Fue	l cells.
UNIT II	ELECTRICAL MACHINES FOR WIND ENERGY CONVERSION SYSTEMS	9
Review of r	eference theory fundamentals -Construction, Principle of operation and analysis: So	quirrel Cage
Induction G	enerator (SCIG), Doubly Fed Induction Generator (DFIG) - Permanent Magnet S	ynchronous
Generator (I	PMSG).	
UNIT III	POWER CONVERTERS AND ANALYSIS OF SOLAR PV SYSTEMS	9
Power Conv	verters for SPV Systems - Line commutated converters (inversion-mode) - Boost and	l buck boost
converters-	selection of inverter, battery sizing, array sizing - Analysis of SPV Systems - Block	diagram of
the solar PV	systems - Types of Solar PV systems: Stand-alone PV systems.	
UNIT IV	ANALYSIS OF POWER CONVERTERS FOR HYBRID ENERGY SYSTEMS	9
Introduction	to Power Converters – Stand-alone Converters -AC-DC-AC converters: u	incontrolled
rectifiers, P	WM Inverters - Bi-Directional Converters - Grid-Interactive Inverters - Matrix	converter –
Merits and I	_imitations.	
UNIT V	ENERGY STORAGE SYSTEMS	9
Introduction	to Electrical Energy Storage: Fuel Cell, Batteries, Flywheel, Super capacitors, Con	npressed air
energy stora	ge, Pumped Hydro Storage, Thermal Storage System.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Md. Rabiul Islam, Md. Rakibuzzaman Shah, Mohd Hasan Ali, 'Emerging Power	Converters
	for Renewable Energy and Electric Vehicles', CRC Press, 2021, 1 st Edition.	
2.	Bahman Zohuri, 'Hybrid Energy Systems', Springer, 2018, 1st Edition.	
	REFERENCE BOOKS	
1.	Ibrahim Dincer and Mark A. Rosen, 'Thermal Energy Storage Systems and Ap	oplications',
	John Wiley and Sons, 2021, 3 rd Edition.	
2.	S.M. Muyeen, 'Wind Energy Conversion Systems', 2012, Springer 1st Edition.	
3.	James Larminie and Andrew Dicks, 'Fuel cell systems Explained', Wiley publication	ations, $2\overline{018}$,
	3 rd Edition.	
4.	Ernst Joshua, 'Wind Energy Technology', PHI, India, 2018, 3 rd Edition.	
5.	S.N.Bhadra, D. Kastha, and S. Banerjee 'Wind Electrical Systems', Oxford University of the second se	ersity Press,
	7th Impression, 2005.	

6.	Rashid.M. H 'Power electronics Hand book', Academic press, 2018, 4 th Edition.
7.	Rai. G.D, 'Non-conventional energy sources', Khanna publishers, 6 th Edition, 2017.

				COU	RSE O	UTCO	MES							
Upon the su	uccessful	completion of	the cour	rse, the	e studen	ts will	be able	to						
COs				5	STATE	MENI	ſS					RB	Т	
												LEVEL		
1	Analy	ze on the va	rious H	Hybrid	l renew	vable e	energy	systen	ns and	to stud	y the	4		
	present Indian and International energy scenario.													
2	Validating the operation of various generators for WECS.													
3	Examine the various converters for Solar PV System.												4	
4	Investigate on the various power converters for hybrid energy systems.													
5	Under	stand on the	various	Energ	gy stora	age sys	tems		2	11		4		
Bloom's T	axonomy	(RBT) Level	Remen	nber-1	; Under	stand-2	; Apply	-3; An	alyze-4	; Evalua	te-5; Cro	eate-6		
		14	COUR	RSE A	RTICU	LATIO	ON MA	TRIX	1	2				
COs		IVI	0001		P	Os	2			10	1	PS	Os	
	1	2 3	4	5	6	7	8	9	10	11	12	1	2	
1	3	2 3	3	1	3	3	1	1	2	3	3	3	3	
2	3	2 3	3	2	3	3	1	1	2	3	3	3	3	

परा

हेवला

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

विद्या

EE22055	POWER QUALITY	LTPC
COUDERO		3003
COURSEO	BJECTIVES	
•	To understand the various power quality issues	
•	To learn the voltage sag, swell and interruptions	
•	To explore the various harmonic issues	
•	To study the power quality monitoring	
•	To understand the power quality mitigation methods	
UNIT I	INTRODUCTION TO POWER QUALITY	9
Terms and	definitions – Overloading, under voltage, over voltage - Concepts of transients - Sh	ort duration
variations s	uch as interruption - Long duration variation such as sustained interruption - Vo	oltage sag -
Voltage sw	ell - Voltage imbalance – Voltage fluctuation - Power frequency variations - In	nternational
standards of	power quality – Computer Business Equipment Manufacturers Associations (CBEN	AA) curve.
	VOLTAGE SAGS AND INTERRUPTIONS	9
Sources of	sags and interruptions - Estimating voltage sag performance - Thevenin's equivale	ent source -
Analysis ar	d calculation of various faulted condition - Voltage sag due to induction moto	or starting -
Estimation	of the sag severity - Mitigation of voltage sags, active series compensators - Sta	atic transfer
switches and	d fast transfer switches.	
UNIT III	OVERVOLTAGES & HARMONICS	9
Sources of o	over voltages - Capacitor switching – Lightning - Ferro resonance - Mitigation of vo	Itage swells
- Surge arre	sters - Low pass filters - Power conditioners - Lightning protection – Shielding - Li	ne arresters
- Protection	of transformers and cables - Harmonics Vs transients. Effect of harmonics -	- Harmonic
distortion -	Voltage and current distortion - Harmonic indices - Devices for controlling harmoni	c distortion
- Passive an	d active filters.	0
UNIT IV Monitoring	POWER QUALITY MONITORING	9 mahlama
Modeling	f neuron quality (hormonics and valtage see) problems by methometical simulation	problems -
Nodening C	di power quanty (narmonics and voltage sag) problems by mathematical simular	uon toors -
Flicker met	disturbance analyzer – Quanty measurement equipment - Harmonic / spectrum	anaryzer -
	POWER OUALITY MITICATION	0
Convention	al load Compensation methods: Harmonic reduction and Voltage Sag reduction	9 Analysis of
Unholonoo	Load compensation using DSTATCOM: Ideal 3 phase Shunt Compensation	Allalysis Ol
Difference	- Load compensation using DSTATCOM. Ideal 5-phase Shuft Compensation	to corrigo
componenti	current generation, realization and control of DSTATCOM – Introduction	to series
compensatio		DIODS. 45
	TFXT BOOKS	KIUD5: 45
1.	Roger, C. Dugan, Mark, F. McGranaghan, Surva Santoso, H.Wavne Beaty, 'Elect	rical Power
	Systems Quality', McGraw Hill.2003.	
2.	J. Arrillaga, N.R. Watson, S. Chen, 'Power System Quality Assessment' New Y	ork: Wilev
	1999	on , , , , , , , , , , , , , , , , , , ,
	REFERENCE BOOKS	
1.	G.T. Heydt, 'Electric Power Quality', West Lafavette. IN. Stars in a Circle P	ublications.
	1994. 2nd Edition.	· · · · · · · · · · · · · · · · · · ·
2.	Arindham Ghosh, GerardLedwich, 'Power Quality Enhancement using cust	om Power
	Shoon, Contrallouriten, Forter Quanty Emmercement using cust	

	Devices', Kluwer Academic Publishers,2002
3.	M.H.J Bollen, 'Understanding Power Quality Problems: Voltage Sags and Interruptions',
	New York: IEEE Press, 1999.
4.	Bhim Singh, Ambrish Chandra, Kamal Al-Haddad, 'Power Quality Problems and Mitigation
	Techniques' New York: Wiley, Reprint 2015.
5.	C. Sankaran, 'Power Quality', CRC Press 2001.

Upon the su	ccessful (completi	ion of	the cou	COU	RSE (OUTCO	DMES	to.					
COs		compile			s	STATE	EMEN	rs					RB LEV	T EL
1	Comp	rehend	the ba	sics of	power	r quali	ty issu	es and	their s	tandar	ds		3	
2	Recognize the ideas behind voltage sag and swell issues.													
3	Realize the harmonic difficulties and understand the enhancement strategies.												4	
4	Examine the power quality issues and comprehend the monitoring devices.												4	
5	Analyze mitigation approaches, including traditional compensation as well as contemporary techniques like as DSTATCOM and DVR.												4	
Bloom's Ta	ixonomy	(RBT)	Level:	Remen	mber-1;	Under	rstand-2	2; Appl	y-3; Aı	nalyze-4	4; Evalua	ate-5; Cro	eate-6	
		IF	1	COU	RSE A	RTIC	ULATI	ON MA	ATRIX	1	21			
COs		V	1		1	P	Os	24	1	1	01	6	PSG	Os
	1	2_	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	2		16	11			111	3	2	3
2	3	3	3	2			100	1	300		m	3	2	3

परा

tant

Ċ)

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

ê

EE22056	ELECTRICAL SAFETY	LTPC
		3003
COURSE O	BJECTIVES	
• To	outline the various electrical hazards and maintenance.	
• To	utilize the various safety equipment for electrical accidentfree environments.	
• To	demonstrate the safety procedures and first aid for the victims.	
• To	illustrate the safety procedures for residential and domestic installations.	
• To	provide protection for machines and operation of various fire extinguishers.	
UNIT I	ELECTRICAL HAZARDS	9
The import	ance of Electrical Safety, Basic rules of Electrical Safety, The Electric circuit,	Hazardous
Electrical L	ocations, Electric Shock, Electrical Burns, Electrical fires and Electric Arc. Comm	ion types of
electrical ha	zards. Maintenance of overhead and underground cable electric lines.	
UNIT II	ELECTRICAL SAFETY EQUIPMENT	9
Work cloths	, Personal Protective Equipment (PPE), Special body protection, Foot Protection, G	loves, Head
protection, I	Eye Protection, Face protection, Safety harnesses and lifelines, Respiratory protection	on, Lockout
devices, Bar	ricade tape, Electrical tools, Voltage testers.	
UNIT III	ELECTRICAL SAFETY PROCEDURES	9
Energy con	trol, Electrical safety lockout, OSHA lockout procedures, Usage of power to	ools safely,
Recognizing	g electric shock victims, First aid for shock victims, the basics lifesaving procedures	using CPR,
Electrical sa	fety control measures.	
UNIT IV	ELECTRICAL SAFETY IN RESIDENTIAL, COMMERCIAL AND AGRICULTURAL INSTALLATIONS	9
Wiring and	fitting –Domestic appliances –water tap giving shock –shock from wet wall –fan fir	ring shock –
multi-storied	d building -Temporary installations - Agricultural pump installation -Do's and	Don'ts for
safety in the	use of domestic electrical appliances. Grounding, grounding faults and short circuit	s.
UNIT V	MOTOR PROTECTION AND FIRE PREVENTION	9
Motor-Feed	er protection, over current protection: Fuses, Circuit breakers and Relays, Sing	gle phasing,
Fundamenta	ls of fire-initiation of fires, types; extinguishing techniques, prevention of fire, ty	ypes of fire
extinguisher	rs, fire detection and alarm system; CO2 and Halogen gas schemes; foam schemes.	
	TOTAL PL	ERIODS: 45
	TEXT BOOKS	
1.	Rao, S. and Saluja, H.L., 'Electrical Safety, Fire Safety Engineering and SafetyMa	anagement',
	Khanna Publishers, 1988.	
2.	STT205-ElectricalSafety.pdf (lsu.edu)	
	REFERENCE BOOKS	
1.	Cooper.W.F, 'Electrical safety Engineering', Newnes-Butterworth Company, 1978	•
2.	John Codick, 'Electrical safety hand book', McGraw Hill Inc., New Delhi, 2000.	
3.	Nagrath, I.J. and Kothari, D.P., 'Power System Engineering', Tata McGraw Hill, 1	998.
4.	Wadhwa, C.L., 'Electric Power Systems', New Age International, 2004	
5.	'The Indian Electricity rules, 1956'(dgms.net)'	

					CO	URSE (OUTCO	OMES						
Upon the su	ccessful	comple	tion of	the cou	urse, th	e studer	nts will	be abl	e to					
COs					5	STATE	MENT	S					RE	T
													LEV	EL
1	Organ and th	ize the eir Pre	object ventioi	ives a 1.	nd pre	caution	ns of E	lectric	al safe	ty, effe	ects of s	hocks		3
2	Articu		3											
3	Categ		4											
4	Illustr install	ultural	4											
5 Examine the various motor protection and fire prevention methods.													4	1
Bloom's Ta	ixonomy	(RBT)	Level:	Reme	mber-1	l; Unde	rstand-	2; App	ly-3; A	nalyze-	4; Evalu	ate-5; C	reate-6	
				COU	RSE A	RTICU	JLATI	ON M	ATRE	X				
COs			1	ON	-	P	Os		5	0	1		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	3	3	3	3	3	3	3	3	3	1	3
2	3	3	2	3	3	3	3	3	3	3	3	3	1	3
3	3	3	2	3	3	3	3	3	3	3	3	3	1	3
4	3	3	2	3	3	3	3	3	3	3	3	3	1	3
5	3	3	2	3	3	3	3	3	3	3	3	3	1	3
3- High Ma	pping; 2-	Modera	te Mar	ping;	l-Low	Mappin	g	11	- U-	100	121	1		

राजना परा हवता -

	ENERGY MANAGEMENT AND AUDITING	LTPC
		3003
OURSE OBJ	JECTIVES	
• T	o understand the concepts behind energy management and energy audit	
• T	o learn the basics of materials and energy balance.	
• T	o study the energy efficiency in lighting systems	
• T	o emphasize the energy management on various electrical equipment and metering	5
• T	o explore the energy management in various electric utilities	
NIT I	GENERAL ASPECTS OF ENERGY MANAGEMENT AND ENERGY AUDIT	9
ommercial a	and Non-commercial energy - final energy consumption - energy needs of growing	g economy -
ergy pricing	g - energy conservation and its importance - Re-structuring of the energy supp	ply sector -
nergy Conse	ervation Act 2001, Energy Conservation (Amendment) Act, 2010, and its features	- electricity
riff - Ther	mal Basics - need and types of energy audit - Energy management/audit	approach-
nderstanding	g energy costs - maximizing system efficiencies - optimizing the input energy req	uirements -
ergy audit in	nstruments - Case study of energy conservation and audit.	
NIT II	MATERIAL AND ENERGY BALANCE	9
ethods for j	preparing process flow - material and energy balance diagrams - Energy policy	y purpose -
cation of en	nergy management - roles and responsibilities of energy manager – employees t	raining and
anning- Fir	nancial Management: financial analysis techniques, simple payback period,	return on
vestment, ne	et present value, internal rate of return – Case Study.	
NIT III	LIGHTING SYSTEMS AND COGENERATION	9
ghting Syste	em: the task and the working space- Light source, Ballasts - Luminaries -choice	of lighting,
minance rec	quirements - occupancy sensors - energy efficient lighting controls - Optimizi	ing lighting
ergy - Cost	t analysis techniques-Lighting and energy standards- Cogeneration: Forms of cog	generation -
asibility of c	cogeneration- Electrical interconnection- Case study of illumination system.	
NIT IV	METERING FOR ENERGY MANAGEMENT	9
elationships	between parameters-Units of measure-Typical cost factors- Utility meters - Timi	ng of meter
se for kilo	watt measurement - Demand meters - Paralleling of current transformers -	Instrument
ansformer b	burdens-Multitasking solid-state meters - Metering location vs requirements	- Metering
chniques and	d practical examples.	1
NIT V	ENERGY MANAGEMENTIN ELECTRICAL UTILITIES	9
lectrical load	d management and maximum demand control - power factor improvement and	its benefit -
lection and	location of capacitors - performance assessment of PF capacitors - automatic p	ower factor
ontrollers -	transformer losses - losses in induction motors - factors affecting motor per	formance -
winding and	d motor replacement issues - soft starters with energy saver - variable speed drives	– Fans and
owers: Type	es - efficient system operation - flow control strategies -Pumps and Pumping Syst	tem: system
peration - flo	bw control methods - case study.	
	TOTAL PI	ERIODS: 45
1	IEAI BUUKS Mehmet Kanoglu Vunus & Cengel 'Energy Efficiency and Management for F	Ingineers'
I I	McGrawHill Education 2020 1 st Edition	Jugineers,
2	Moncef Krati (Energy Audit of Duilding Systems: An Engineering Annageh)	DC Drogg
<i>∠</i> • [1]	Moneer Krau, Energy Audit of Dunuing Systems. All Engineering Approach, C	INC 11088,
arrow of the second	and ison-commercial energy - inna energy consumption - energy needs of growing g - energy conservation and its importance - Re-structuring of the energy support and its features mal Basics - need and types of energy audit - Energy management/audit g energy costs - maximizing system efficiencies - optimizing the input energy regent struments - Case study of energy conservation and audit. <u>MATERIAL AND ENERGY BALANCE</u> preparing process flow - material and energy balance diagrams - Energy policy nergy management - roles and responsibilities of energy manager – employees t nancial Management: financial analysis techniques, simple payback period, et present value, internal rate of return – Case Study. <u>LIGHTING SYSTEMS AND COGENERATION</u> em: the task and the working space- Light source. Ballasts - Luminaries -choice quirements – occupancy sensors - energy efficient lighting controls - Optimizi t analysis techniques-Lighting and energy standards- Cogeneration. Forms of cog cogeneration- Electrical interconnection- Case study of illumination system. <u>METERING FOR ENERGY MANAGEMENT</u> between parameters-Units of measure-Typical cost factors- Utility meters - Timi watt measurement - Demand meters - Paralleling of current transformers - burdens-Multitasking solid-state meters - Metering location vs requirements and anagement and maximum demand control - power factor improvement and i location of capacitors - performance assessment of PF capacitors - automatic p transformer losses - losses in induction motors - factors affecting motor per d motor replacement issues - soft starters with energy saver - variable speed drives es - efficient system operation - flow control strategies -Pumps and Pumping Syste wo control methods - case study. <u>TOTAL PI TEXT BOOKS</u> Mehmet Kanoglu, Yunus A Cengel, 'Energy Efficiency and Management for F McGrawHill Education, 2020, 1 st Edition. Moncef Krati, 'Energy Audit of Building Systems: An Engineering Approach', C Dec.2020, 3 rd Edition.	economic ply sector - electric approa- juirement 9 y purpos raining a return 9 of lighti ing light generatio 9 ng of me Instrum - Meter its beneff ower fac formance - Fans a tem: syst ERIODS: Engineers CRC Pres

	REFERENCE BOOKS
1.	Sonal Desai, 'Handbook of Energy Audit', McGraw Hill Education (India) Private Limited,
	2015.
2.	Thomas D.Eastop, 'Energy Efficiency: For Engineers and Technologists', Longman
	Scientific and Technical, 1990, 1 st Edition.
3.	Larry C. Witte, Philip S.Schmidt, David R.Brown, 'Industrial Energy Management and
	Utilization', Springer Berlin Heidelberg, 1988.
4.	L Ashok Kumar, Gokul Ganesan, 'Energy Audit and Management Concept, Methodologies,
	Procedures, and Case Studies', CRC Press, 2022, 1st Edition.
5.	https://beeindia.gov.in/en/energy-auditors.

					COU	RSE C	OUTCO	MES							
Upon the s	successful o	complet	tion of	the cou	rse, the	studer	nts will	be able	to:						
COs			1	a	PS	STATE	CMENT	s- C	iE	/			RE LEV	ST /EL	
1	Acqui	red exp	oertise	in ener	rgy ma	nagem	nent an	d audi	ts	0.			3	3	
2	Recog balanc	Recognize the fundamentals of economic analysis, material and energy balances													
3	Realiz cogene	Realize the design of energy-efficient lighting system and the concept o cogeneration													
4	Exami	Examine the various energy management metering systems												4	
5	Analyze energy management in electrical utilities.											4	4		
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1;	; Under	stand-2	; Appl	y-3; Ai	nalyze-4	; Evalua	te-5; Cre	eate-6		
		14	1	COU	KSE AI	RHCU		JN MA	A I KIX	· /	m				
COs		POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	1	bas	2	/	0	/	3		3	
2	3	3	3	3	-	1	1	~	4	1	-	3		3	
3	3	3	3	3	25	2	2	37	91	/	2	3		3	
4	3	3	3	3	14	2	121	2	/		2	3		3	
5	3	3	3	3		2	2	2			2	3		3	
3- High M	apping; 2-1	Modera	te Map	ping; 1	-Low N	Mappin	g				1		1	<u> </u>	

EE22058	ELECTRICAL ENERGY CONSERVATION AND UTILIZATION	L T P C
		3003
COURSE O	BJECTIVES	
• To	understand the various electric drives and traction motors with applications	
• To	introduce the energy saving concept by different ways of illumination	
• To	comprehend the various electric welding and heating techniques	
• To	emphasize the energy conservation and its importance	
• To	investigate the residential use of electrical energy.	
UNIT I	ELECTRIC DRIVES AND TRACTION	9
Fundamenta	als of electric drive - choice of an electric motor - application of motors for particu	lar services
traction ger	nerator set, traction motors, power transformers - characteristic features of tracti	on motor -
systems of	railway electrification - electric braking - train movement and energy consumptio	n - traction
motor contr	ol - track equipment and collection gear.	
UNIT II	ILLUMINATION	9
Introduction	a - definition and meaning of terms used in illumination engineering - classificat	ion of light
sources - in	candescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps	– design of
illumination	systems - indoor lighting schemes - factory lighting halls - outdoor lighting sche	mes - flood
lighting - st	reet lighting - energy saving lamps, LED.	
UNIT III	HEATING AND WELDING	9
Introduction	a - advantages of electric heating – modes of heat transfer - methods of electric	c heating -
resistance h	leating - arc furnaces - induction heating - dielectric heating - electric welding	g – types -
resistance w	relding - arc welding - power supply for arc welding - radiation welding.	
UNIT IV	ENERGY CONSERVATION AND ITS IMPORTANCE	9
Energy cor	iservation act 2001 and its Features-Review of Industrial Energy Conservation	tion-Energy
conservation	n in electrical industries-Simulation study of energy conservation using power factor	r controller.
(Three phas	e circuit simulation with and without capacitor)- case study of energy conservation.	0
	DOMESTIC UTILIATION OF ELECTRICAL ENERGY	9 Online and
Offling LID	s Pottorios Power quality expects poplinger and demostic loads. Earthing	onnine and
Domostio I	s, Batteries - Power quality aspects – nonlinear and domestic loads – Earthing	system for
Domestic, I		DIODS. 45
	TEXT BOOKS	<u>KIUD5: 45</u>
1.	N.V. Survanaravana, 'Utilisation of Electric Power', Wiley Eastern Limited.	New Age
	International Limited, 1994.	1.0.1.1.80
2.	I B Gupta 'Utilisation Electric power and Electric Traction' S K Kataria and sons	2000
	REFERENCE BOOKS	, 2000.
1.	R.K.Rajput, 'Utilisation of Electric Power', Laxmi publications 2016, 2 nd Edition.	
2.	H.Partab, 'Art and Science of Utilisation of Electrical Energy', Dhanpat Rai and	d Co., New
	Delhi 2004.	,
3.	C.L.Wadhwa, 'Generation, Distribution and Utilisation of Electrical Energy'.	New Age
	international Pvt.Ltd., 2015, 3 rd Edition.	
4.	D.P.Kothari, K.C.Singal, Rakesh Ranian, 'Renewable Energy Sources and	Emerging
	Technologies', PHI Learing Private Limited, 2022, 3 rd Edition.	8
5.	G.D.Rai, 'Non-Conventional Energy sources' Khanna publications Ltd. New Delhi	1998
	G.D.Mai, 1001-Conventional Energy sources, Khanna publications Etu., New Denn	1770.

					COU	RSE C	OUTCO	OMES							
Upon the su	ccessful	complet	ion of	the cour	rse, the	studen	ts will	be able	e to:						
COs					S	STATE	MENT	ГS					RB LEV	BT YEL	
1	Acqui	red kno	wledg	ge to ch	oose s	uitable	e electr	ric driv	ves for	differe	ent appli	cations	4		
2	Capab	le of de	evelop	ing ene	ergy-ef	fficient	illum	inatior	n syster	ns			4		
3	Ability to demonstrate the utilization of electrical energy for heating and welding purposes														
4	Analyze the necessity for energy conservation and its importance														
5	Ability to do electric connection for any domestic appliance like refrigerator, battery charging circuit for a specific household application.														
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Creat															
			2	COUR	RSE AI	RTICU	LATI	ON MA	ATRIX	-					
COs			1	28	5	Р	Os	-	5	1			PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3		2	2	1	1		10	3	3	3	
2	3	3	3	3	2	2	2		2	1	21	3	3	3	
3	3	3	3	3	1	2	. 0	1	N		0	3	3	3	
4	3	3	3	3	2	2	2	2	2	-	-	3	3	3	
5	3	3	3	3	2	2	2	7)	-[-]		2	3	3	3	
2 11 1 1 1	• •	1 1		· · ·	TN	× ·									

परा

tadio

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

III S THEI

EE22050	RENEWABLE ENERGY SYSTEM LABORATORY	LTPC
		0 0 4 2
COURSE C	DBJECTIVES:	
• Int	roduce students to the functionality and mechanics of diverse renewable en	ergy systems
wh	ile providing them with proficiency in design and modeling techniques.	
• Stu	dy the performance of various renewable energy sources.	
• Ob	tain hands-on experience on various wind turbine operation.	
• To	design and model PV system integration with grid.	
	LIST OF EXPERIMENTS	
1.	Simulation study on solar PV Energy System.	
2.	Experiment on performance assessment of grid connected and standalone 14 System.	wp Solar PV
3.	Simulation of wind energy conversion systems.	
4.	Modelling and Performance evaluation of Fixed and variable speed WTGs.	
5.	Experiment on performance assessment of micro wind energy generator.	
6.	Simulation study on Stand-Alone hybrid wind-solar generation system.	
7.	Experiment on performance assessment of Hybrid wind-solar power system.	
8.	Modelling and analysis of Fuel cell system using MATLAB.	
9.	Experiment on performance assessment of 100W Fuel Cell.	
10.	Electrical Characterization of solar cell and Photo detector using DC Probe Sta	tion.
11.	Electrical Characterization of Piezoelectricity and Thin film transistor.	
12.	Study of Biogas Plant.	
	TOTAL	L PERIODS:60
	COURSE OUTCOMES	

COs	STATEMENTS	RBT LEVEL
1	Understand the characteristics of various renewable energy sources.	4
2	Examine various MPPT algorithms and understand their merits and demerits.	4
3	Design and model PV system integration with grid.	4
4	Adaptability and efficiency of renewable energy devices.	4
5	Implement and verify control strategies for renewable energy applications.	4

	COURSE ARTICULATION MATRIX														
COs	POs													Os	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	3	3	3	2	2	3	3	3	3	
2	3	3	3	3	3	3	3	3	2	2	3	3	3	3	
3	3	3	3	3	3	3	3	3	2	1	3	3	3	3	
4	3	3	3	3	3	3	3	3	2	1	3	3	3	3	
5	3	3	3	3	3	3	3	3	2	1	3	3	3	3	
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	lapping	5								

	LABORATORY REQUIREMENTS FOR A BATCH OF 30 S	TUDENTS
SL.NO	DESCRIPTION OF EQUIPMENTS	QUANTITY REQUIRED
1.	MATLAB, PSCAD, ETAP	As Required
2.	Operational amplifiers, Capacitors, Resistors, Variable resistance	
	(Pot), Connecting Wires, CRO/ DSO with probes, Bread board,	As Required
	DC Power supply unit, 30V DC Shunt Motor, Speed sensor.	2
3.	Micro Wind Energy Training System (LT-7003D).	5 1
4.	Fuel cell energy training system (LT-7001).	1
5.	Wind-Solar Hybrid Power System Trainer (LT-7003E).	2 1
6.	1KW solar PV system	1
7.	Power module, BLDC motor (0.5HP) Controller circuit, sensor	As Required
	circuit, display meter, DSO – 1 set	77
8.	DC probe station	S/ 1
	कि जिंहा परा हैवता -	

VERTICAL VI: SEMICONDUCTOR TECHNOLOGY

EE22061	SOLID STATE DEVICES	L T P C
		3003
COURSE O	BJECTIVES	
•	Understand the fundamental concepts of Quantum Mechanics	
•	Apply Fermi-Dirac probability function to study the characteristics of semicor equilibrium	nductor in
•	Analyze excess charge carrier concentration in con-equilibrium condition.	
•	Acquire the knowledge on formation, working and characteristics PN junction	
•	Examine the conditions that yield metal-semiconductor ohmic/schotkky contacts.	
LINIT I	INTRODUCTION TO QUANTUM THEORY OF SOLIDS	9
The Crystal	Structure of Solids - Growth of Semiconductor Materials - Principles of Quantum	Mechanics_
Schrodinger	's Wave Equation and its application. Extensions of Wave Theory to Atoms	llowed and
forbiddon E	normy bands. Electrical Conduction in solids. Density of State functions	moweu anu
	SEMICONDUCTORS IN FOUL IRRUM	0
UNIT II Charge Car	SEMICONDUCTORS IN EQUILIBRIUM	9
Extrinsic Se	emiconductor–Statistics of Donors and Acceptors– Charge Neutrality–Position of Fe	ergy levels- ermi Energy
Levels.	14/18 (12)	
UNIT III	CARRIER TRANSPORT	9
Carrier Dri	ft- Carrier Diffusion-Graded Impurity Distribution- Hall Effect-Carrier Gene	eration and
Recombinat	ion–Characteristics of Excess Carrier–Amipolar Transport –Quasi –Fermi Lev	vels–Excess
	DN HINCTIONS	0
Basic Struc	ture of the PN Junctions PN Junction Under Zero Applied Bias Forward Bias	nd Reverse
Bias-Juncti	on Canacitance-One sided on Junction-Non-uniformly Doped Junctions-PN junction	on current -
Small signa	l model of the pn Junction – Diode current equation – Junction Breakdown -Charge	Storage and
Diode Trans	sients	storage and
UNIT V	METAL-SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS	9
The Schottk	y Barrier Diode - Comparison of Schottky Barrier Diode and the pn Junction Diod	de Metal-
Semiconduc	etor Ohmic Contacts - Heterojunctions	
	TOTAL PI	ERIODS: 45
	TEXT BOOKS	
1.	Semiconductor Physics and Devices", Donald.A.Neamen, McGraw Hill,2012, 4th E	Edition.
2.	Solid State Electronic Devices, B.G. Streetman and S. Banerjee, PHI Learning	, 2009, 6 th
	edition.	
	REFERENCE BOOKS	
1.	Semiconductor Devices Modelling and Technology, Nandita Das Gupta, Amitava l	Das Gupta,
	Prentice Hall of India Private Ltd, 2011	
2.	Semiconductor devices: Physics and Technology, S.M. Sze, Wiley, 2008, 2 nd Edition	on.

					COU	JRSE (OUTCO	OMES							
Upon the su	accessful o	completi	ion of t	he cou	rse, the	e studer	nts will	be able	e to:						
COs					Š	STATE	EMENT	ſS					RE LEV	ST TEL	
1	Under	stand th	ie prin	ciples	of qua	antum	mecha	nics in	semico	onducto	ors.		4		
2	Apply therma	Fermi- 1 equili	Dirac brium	probał	oility f	functio	n and o	leterm	ine car	rier co	ncentra	tions in	4		
3	Apply electric	Apply generation and recombination in semiconductors, thereby analyse electrical characteristics in non-equilibrium condition.													
4	Derive junctio	Derive space charge region characteristics, built-in potential barrier voltage and junction capacitance in a PN junction.													
5	Analyze the behaviour of metal-semiconductor junction for ohmic and schotkky contacts														
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Creat													ate-6		
			12	COUF	RSE A	RTICU	JLATI	ON M	ATRIX	2					
COs		1	2	/		Р	Os	S			.)		PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	14	- /	6	0	1	2	2	51			3	
2	3	3	3	3	1) ~	-	2	2	11			3	
3	3	3	3	3			-		2	2	Z			3	
4	3	3	3	3	3		16	\mathcal{I}	2	2	ITT			3	
5	2	3	3	3			-	/	2	2	m	3		3	
3- High Ma	pping; 2-l	Moderat	e Map	ping; 1	-Low I	Mappin	g	-	-	1.	-01				

ह जिस परा देवता क

EE22062	MICROELECTRONIC CIRCUITS	L T P C							
		3003							
COURSE OF	BJECTIVES								
• To ac	quire knowledge on semiconductor physics and its evolutions in device characterist	ics.							
• To in	plement any analog, digital or mixed signal circuits using semiconductor devices.								
UNIT I	PN JUNCTION AND ITS APPLICATION	9							
Energy ban	d theory of crystal-Classification of semiconductors-charge carriers-carrier	transport-							
Generation and recombination. PN Junctions: Equilibrium Analysis-Ideal diode-Carrier Transport Under									
Applied Bias	s – Junction Capacitance– Diode Circuit Models. Applications of PN Junction –	Rectifiers-							
LEDs-Detec	ctors-Limiting and clamping circuits-Digital logic gates								
UNIT II	BIPOLAR JUNCTION TRANSISTOR	9							
Device struct	ture and Physical operation-Current-Voltage characteristics -Non ideal effects-T	he BJT as							
a amplifier a	nd switch–Small signal operation and Models								
UNIT III	MOS FIELD EFFECT TRANSISTOR	9							
Two termin	Two terminal MOS structure-Energy band diagrams-Depletion layer thickness-work function								
differences-l	Flat-band voltage-Threshold voltage-Charge distribution-Capacitanc	e–Voltage							
characteristic	s. MOSFE1 operation-Current-Voltage characteristics-Velocity saturation -	- Channel							
	ANALOG CIRCUITS	9							
IC Biasing-	Current source, Current mirrors and Current steering circuits- Basic Gain Cell – The	e common							
gate and com	mon base amplifiers- Cascode Amplifier – Current mirror circuits with improved	2 Common							
performance									
UNIT V	DIGITAL CIRCUITS	9							
Inverter Cha	aracteristics and Circuits- Gates (AND/NAND, OR/NOR) CMOS Inverters and	nd Gates-							
Switching tra	ansients and gate delays. Simple CMOS implementation of logic circuits.								
_	TOTAL PE	RIODS: 45							
	TEXT BOOKS								
1.	Adel S.Sedra, Kenneth.C.Smith, 'Microelectronic Circuits', Oxford University Pr	tess, 2016,							
	7 th Edition.								
2.	Donald.A.Neamen, "Semiconductor Physics and Devices", McGrawHill, 2012, 4th	Edition,.							
	REFERENCE BOOKS								
1.	B.G. Streetman and S. Banerjee, 'Solid State Electronic Devices', PHI Learn	ing, 2009,							
2	6 ^w Edition.								
۷.	Kichard Muller, Theodore.I.Kamins, Mansun Chan, 'Device Electronics for I	ntegrated							
	Circuits', John Wiley,2003, 3 rd Edition,.								
3.	M. S. Tyagi, 'Introduction to Semiconductor Materials and Devices', John Wiley, 2004								

					COU	RSE (OUTC	OMES						
Upon the su	uccessful	complet	tion of	the cou	rse, the	e studer	nts will	be able	e to:					
COs						STATE	EMEN	TS					RB	Т
1	Under	etand t	ha tran	anort k	ohovi	or of t	ha sar	vicondu	utor de	vioos				EL
							·	·		evices.			4	
2	Analyze the characteristics of a Bipolar junction transistor.										4			
3	Analyze the characteristics of MOS device.										4			
4	Design and analyze any analog circuit using BJT and MOS devices.										4			
5	Design	n and a	nalyze	any di	igital c	circuit	using	CMOS	device	es.			4	
Bloom's T	axonomy	(RBT)	Level:	Remer	nber-1	; Under	rstand-	2; Appl	y-3; An	alyze-4	; Evalua	ate-5; Cro	eate-6	
				COUR	RSE A	RTICU	JLATI	ON M	ATRIX					
COs				/		CP	Os	F	-				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	P	/	1			2	2				3
2	3	3	3	3		3.2	3		2	2				3
3	3	3	3	3	0	Teor			2	2	21			3
4	3	3	3	3	5)	6		N	2	2	EI			3
5	3	3	3	3	1	1	$) \leq$	-/	2	2	02	3		3
3- High Ma	pping; 2-	Modera	ite Map	ping; 1	-Low N	Mappin	g		14	2	2			
		NEN	CAL NO	100	1000		N L	12 100	C AT	0	EERIN			

EE22063	SEMICONDUCTOR TECHNOLOGY	LTPC
		3003
COURSE O	BJECTIVES	
• Exp	blore the evolution of Nanotechnology in various fields of engineering.	
• Lea	rn the details of clean room environment and Safety Hazards.	
• Uno	lerstand various preparation methods of nano systems and nanofabrication technique	es.
• Inv	estigate different characterization techniques used for Nano systems	
UNIT I	INTRODUCTION TO NANOTECHNOLOGY	9
Introduction	to Nano Technology- Historical Development-Surface to volume ratio-Siz	e effect on
thermal, el	ectrical, electronic, mechanical, optical and magnetic properties of Nanor	naterials –
Classificatio	ons of nanomaterials based on dimensionality.	
UNIT II	SEMICONDUCTOR PROCESSING AND MICROFABRICATION	9
Introduction	to semiconductor processing - Necessity for a clean room- Classification of c	clean rooms
Structure an	nd requirements of a clean room- Safety issues, flammable and toxic hazards, b	iohazards –
Microfabric	ation process flow using block diagram approach.	
UNIT III	SYNTHESIS OF MATERIALS	9
Preparation	of nanoscale materials: Spray Pyrolysis, Co-Precipitation, Sol-gel, Mechanical M	illing, Self–
assembly, P	reparation of thin films: Electroplating, Sputtering, Evaporation, MOCVD, Mole	cular Beam
Epitaxy, Ato	omic Layer Epitaxy and Pulsed layer deposition.	
UNIT IV	CHARACTERIZATION TECHNIQUES	9
X–ray diffr	action technique, Scanning Electron Microscopy – environmental techniques, T	ransmission
Electron Mi	croscopy including high-resolution imaging, Surface Analysis Techniques – AFM, I	SPM, STM,
SNOM, ESO	$CA.$ \leq m	
UNIT V	APPLICATIONS OF NANOTECHNOLOGY	9
Nano Infol	ech: Information storage-nano computer, molecular switch, super chip, nanoc	rystal,Nano
biotechnolog	gy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Tar	getted drug
delivery, Bi	oimaging- Micro Electro Mechanical Systems (MEMS), NanoElectro Mechanic	al Systems
(NEMS)–Na	anosensors, nano crystalline silver for bacteria linhibition, Nanoparticles for	sun barrier
products – I	n Photostat, printing, solar cell, battery.	
	TEXT BOOKS	LKIOD5: 45
1	Chattonadhyay K K and A N Baneriee, 'Introduction to Nanoscience and nanote	chnology'
1,	PHI 2009	chilology,
2.	T Pradeen 'Nano: The Essentials understanding Nanoscier	ice and
	Nanotechnology' TataMcGraw Hill Education 2007	
	REFERENCE BOOKS	
1.	Fahrner W.R., 'Nanotechnology and Nanoelectronics' Springer (India) Private Ltd	2011
2.	Madou Marc I 'Fundamentals of Microfabrication' CRC Press New York 1997	,_011.
	made march, rendementals of metoration dation, excertess, new rolk, 1777	

COURSE OUTCOMES														
Upon the su	ccessful c	complet	ion of	the cou	rse, the	e studen	ts will	be able	to:					
COs					8	STATE	MENT	'S					RE LEV	ST ZEL
1	Unders differe	stand u nt Eng	inique ineeri	proper ng field	rties o ls.	of Nano	o mate	rial str	ructure	and a	apply th	em for	3	
2	Work fabrica	Work in a safe environment following stringent safety protocol in Nano-fabrication cleanroom.											3	
3	Synthe up app	Synthesis different types of nanomaterials using various top-down and bottom- up approach.										4	-	
4	Characterize different types of nano-particles and nano-devices using electrical, optical and structural methods									4	-			
5	Compr scale r	Comprehend varied applications of nanotechnology in sub-micron and nano- scale range.									3			
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1	; Under	stand-2	; Apply	/-3; An	alyze-4	; Evalua	ate-5; Cre	ate-6	
			/	COUR	RSE A	RTICU	LATIO	ON MA	TRIX	1				
COs			12	X/		P	Os		1	2			PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	12		1			2	3	21			3
2	3	3	3	+ 4	3	3	0	3	2	3	51			3
3	3	3	3	3	3			3	2	3		2		3
4	3	3	3	3	3		1	3	2	3	2	2		3
5	2	3	3	3	1		3	3	2	3	m	2		3
3- High Mar	pping; 2-l	Modera	te Mar	ping; 1	-Low N	Mapping	g	/			217			

हर में दिना परा हेवता -

EC225	4 PHYSICAL VLSI DESIGN	L T P C								
	(COMMON TO EC AND EE)	3003								
COURS	E OBJECTIVES:									
	• To understand the fabrication processes of MOS circuits, design rules for layo	outs and the								
	limitations in scaling.									
	• To learn about realization of MOS circuits for various combinational logic blocks	and analyze								
	the performance trade-offs with respect to the area, power and delay.									
	• To study the various arithmetic building blocks and their timing constraints.									
• To learn about the various synchronous and asynchronous sequential designs and analyze the										
	timing constraints.									
	• To learn about the various architectural choices available for FPGA.									
UNIT I	MOS TRANSISTOR PRINCIPLE	9								
NMOS,	PMOS -Enhancement and depletion MOSFET; MOS transistor-Ideal I-V cl	naracteristics;								
Fabrica	ion Process - MOSFET, CMOS- n-well, p-well, Twin tub, SOI; Scaling principles and	fundamental								
limits; (CMOS inverter characteristics; Stick diagram; Layout diagrams; Design rules; Layer Re	presentation.								
UNIT I	COMBINATIONAL LOGIC CIRCUITS	9								
Static C	MOS Design: Examples of Combinational Logic Design; Complementary CMOS	concept and								
properti	es; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic - Concept, Complemen	tary PTL and								
Differen	tial PTL; CMOS transmission gate; Elmore's constant; Dynamic CMOS design: Dyn	amic Logic -								
Basic P	inciples; Issues in Dynamic Design; Cascading Dynamic Gates.									
UNIT I	I SEQUENTIAL LOGIC CIRCUITS	9								
Timing	Metrics for Sequential Circuits; Static Latches and Registers; Bi-stability Principle	; Multiplexer								
Based I	atches; Master-Slave based Edge Triggered Register; Non-ideal clock signals; Dyn	amic Latches								
and Reg	isters; Transmission-Gate Edge-triggered Registers; C ² MOS Register; Dual-Edge Regi	sters; Timing								
issues;	Pipelines; Clock Strategies; Synchronous and Asynchronous design. Introduction to Me	mory.								
UNIT I	DESIGNING ARITHMETIC BUILDING BLOCKS	9								
Data pa	th circuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Carry S	Select Adder;								
Carry E	ypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; Multipliers - '	Wallace Tree								
multipli	er, Booth Multiplier; Barrel shifters; Speed and Area Trade-off for all above Arithm	etic Building								
Blocks.										
UNIT V	IMPLEMENTATION STRATEGIES	9								
Full cu	stom and Semi-custom design; Standard cell design and cell libraries; FPGA bu	uilding block								
architec	ture - FPGA interconnect routing procedures; Design for Testability: Ad Hoc Testing,	Scan Design,								
BIST. I	ow power design principles.									
	TOTAL:	45 PERIODS								
	TEXT BOOKS									
1	Jan M.Rabaey, Anantha Chandrakasan, Borivoje Nikolic, 'Digital Integrated	Circuits: A								
	DesignPerspective', Prentice Hall of India, 2008, 3 rd Edition,.									
2	M.J. Smith, 'Application Specific Integrated Circuits', Addisson Wesley, 1997.									
	REFERENCE BOOKS									
1	N.Weste, K.Eshraghian, 'Principles of CMOS VLSI Design', Addision Wesley 1993, 2	nd Edition,.								
2	R.Jacob Baker, Harry W.LI., David E.Boyee, 'CMOS Circuit Design, Layout and	Simulation',								
	Prentice Hall of India 2005.									
3	A.Pucknell, Kamran Eshraghian, 'Basic VLSI Design', Prentice Hall of India, 2007, 3rd	¹ Edition,.								

COURSE OUTCOMES Upon the successful completion of the course, the students will be able to:									
COs	STATEMENTS	RBT LEVEL							
1	Represent the CMOS logic circuit design using Stick Diagrams and Layout Diagrams.	3							
2	Realize the MOS circuits for various combinational logic blocks.	4							
3	Choose a suitable MOS logic style for designing Sequential logic blocks.	4							
4	Select suitable MOS logic style for designing Sequential logic blocks.	4							
5	Choose a suitable FPGA implementation strategy.	3							

Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

COs	POs										PS	PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	5	2	3		No.		1-0	13	10	2	3	3
2	3	2	1	3	3	-	2		N	1	21	2	3	3
3	3	2	1	3	3	P	2	1	1000		01	2	3	3
4	3	2	1	3	3	1 Martin			125.08		3	2	3	3
5	3	2		2	3		1	7/			177	2	3	1

9

हेवताः

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

It's State

COURSE ARTICULATION MATRIX

EE22064	MEMS TECHNOLOGY	L T P C							
		3003							
COURSE OBJ	IECTIVES								
• Impar	t knowledge on the properties of materials, microstructure, micromaching	ning and							
fabric	ation.								
Design and model various MEMS based sensors and actuators									
UNIT I	INTRODUCTION	9							
Introduction to	D Micro electro mechanical systems - Intrinsic Characteristics of MEMS - Energ	y Domains							
and Transduce	ers- Sensors and Actuators - Introduction to Micro fabrication - Silicon bas	ed MEMS							
processes – Pa	ckaging and Integration- MEMS Materials – Review of Electrical and Mechanica	al concepts							
in MEMS – S	Semiconductor conductivity and resistivity – Stress and strain analysis – Flex	ural beam							
bending- Torsional deflection - Fabrication of a micro-heater.									
UNIT II	SENSORS AND ACTUATORS-I	9							
Electrostatic s	sensors – Parallel plate capacitors – Applications – Interdigitated Finger c	apacitor –							
Combdrive devices – Micro Grippers – Micro Motors									
UNIT III	SENSORS AND ACTUATORS-II	9							
Thermal Sensing and Actuation – Thermal expansion – Thermal couples – Thermal resistors – Thermal									
Bimorph - Ap	plications - Magnetic Actuators - Micromagnetic components - Case studies of	MEMS in							
magnetic actua	ators- Actuation using Shape Memory Alloys.								
UNIT IV	SENSORS AND ACTUATORS-III	9							
Piezoresistive	sensors – Piezoresistive sensor materials - Stress analysis of 1	nechanical							
elementsAppli	cations to Inertia, Pressure, Tactile and Flow sensors – Case Study: Novasensor B	P sensor.							
UNIT V	SENSORS AND ACTUATORS-IV	9							
Piezoelectric	sensors and actuators - piezoelectric effects - piezoelectric materials - Appl	ications to							
Inertia, Acous	tic, Tactile and Flow sensors - Optical MEMS – Texas Digital Light Processor								
	TOTAL PER	RIODS: 45							
	TEXT BOOKS								
1.	Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.								
	REFERENCE BOOKS								
1.	Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.								
2.	Boston, 'Micromachined Transducers Source book', WCB McGraw Hill, 1998.								
3.	M.H.Bao, 'Micromechanical transducers : Pressure sensors, accelerom	eters and							
	gyroscopes', Elsevier, Newyork, 2000.								
4	P. Rai Choudry, 'MEMS and MOEMS Technology and Applications', PHI, 201	2							

	COURSE OUTCOMES							
Upon the successful completion of the course, the students will be able to:								
COs	STATEMENTS	RBT						
		LEVEL						
1	Acquire knowledge of materials, microstructure and fabrication techniques	4						
2	Design and analyze electrostatic MEMS devices	4						
3	Design and analyze thermal based MEMS devices	4						
4	Design and analyze Piezoresistive MEMS devices	4						
5	Design and analyze Piezoelectric MEMS devices	4						
Bloom's Ta	vonomy (PRT) Laval: Remember 1: Understand 2: Apply 3: Applyze 4: Evaluate 5: Cre	ata 6						

Bloom's laxonomy (RB1) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

COURSE .	ARTICULAT	ION MATRIX
----------	-----------	------------

COs	C POS L F											PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	Y		1000	1.28		2	2				3
2	3	3	3	3		19 20	3.5	÷.,	2	2	1			3
3	3	3	3	3		1.50.5			2	2	51			3
4	3	3	3	3	5	6	0	1	2	2	51			3
5	3	3	3	3	1	1	$) \leq$	-	2	2	11			3
3- High Map	ping; 2-l	Modera	te Map	ping; 1	-Low	Mappir	ng		- A-		Z			
		THE	1 HS	12	100		TTI I	121/20/	ar	Child	ERIN			

EE22065	WIDE BANDGAP SEMICONDUCTORS	L T P C
		3003
COURSE O	BJECTIVES	
• Intr	oduce the concept of wide band gap (WBG) devices and its application in real world	1
• Adv	vantages and disadvantages of WBG devices	
• Pro	vide an introduction to basic operation of WBG power devices	
• Lea	rn Design principles of modern power devices	
• Abi	lity to deal high frequency design complexity	
UNIT I	WBG DEVICES AND THEIR APPLICATION IN REAL WORLD	9
Review of	semiconductor basics, Operation and characteristics of the SiC Schottky Barrier	Diode,SiC
DMOSFET	and GaN HEMT, Review of Wide bandgap semiconductor technology -Adv	vantagesand
disadvantag	es - Material Properties of Si and wide band gap semiconductors.	
UNIT II	SWITCHING CHARACTERIZATION OF WBG	9
Turn-on and	Turn-off characteristics of the device, Hard switching loss analysis, Double pulse to	est set-up.
UNIT III	DRIVERS FOR WIDE BAND GAP DEVICES	9
Gate driver,	Impact of gate resistance, Gate drivers for wide bandgap power devices, Transier	nt immunity
integrated g	ate drivers.	
UNIT IV	HIGH FREQUENCY DESIGN COMPLEXITY AND PCB DESIGNING	9
Effects of p	arasitic inductance, Effects of parasitic capacitance, EMI filter design for high frequ	ency power
converters]	High frequency PCB design, Conventional power loop design, High frequency	power loop
optimization	n, Separation of power from signal PCB	
UNIT V	APPLICATIONS OF WIDE BANDGAP DEVICES	9
Consumer e	electronics applications, Wireless power transfer applications, Electric vehicle a	upplications,
Renewable	energy sources applications	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	B.J.Baliga, 'Gallium Nitride and Silicon Carbide Power Devices,' World Scientific Company (2017).	2 Publishing
2.	G. Meneghesso, M. Meneghini, E. Zanoni, 'Gallium Nitride-enabled High Frequen	icy andHigh
	Efficiency Power Conversion,' Springer International Publishing, 2018, ISBN:	978-3-319-
	77993-5.	
1	REFERENCE BOOKS	D
1.	F. wang, Z. Zhang and E. A. Jones, Characterization of Wide Band SemiconductorDevices', IET, ISBN-13: 978-1785614910 (2018).	gap Power
2.	L. Corradini, D. Maksimovic, P. Mattavelli, R. Zane, 'Digital Control	of High
	FrequencySwitched-Mode Power Converters', Wiley, ISBN-13: 978-1118935101	(2015).

COURSE OUTCOMES															
Upon the su	Upon the successful completion of the course, the students will be able to: COs STATEMENTS PRT														
COS	51AI EIVIEN 15												KB I LEVEL		
1	Master design principles of power devices												3		
2	Become familiar with reliability issues and testing methods												3		
3	Become competent with specifications of commercial power devices												4		
4	Processing details of power devices												4		
5	familiar with reliability issues and testing methods												3		
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6															
COURSE ARTICULATION MATRIX															
COs	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	2	3	3	P			1.23	1	1 (2		2		3	
2	2	3	3	/		3 8	3	1	1	2		2		3	
3	2	3	3	3	÷	1.50.5		1	1	2	21	2		3	
4	2	3	3	0.2	5)	\leq		1	N.	2	61	2		3	
5	2	3	3	n.	1	2	2	1	1	2	031	2		3	
3- High Map	oping; 2-	Modera	te Map	ping; 1	-Low N	Mappin	ıg		10×	2.1	Z				
		NEN	145	12/	1000000		IT IT	100 100	U.	0	EERIA				
EE22066	SENSOR TECHNOLOGY	LTPC													
--	--	-------------	--	--	--	--	--	--							
		3003													
COURSE OBJ	ECTIVES														
• To tea	ich the fundamental principles underlying sensor technology.														
• To far	niliarize students with various types of sensors and their applications.														
• To de	velop skills in selecting appropriate sensors for specific applications.														
• To pro	ovide practical experience in designing, calibrating, and integrating sensors into	electronic													
system	ns.														
To pro	omote rigorous thinking in emerging trends and advancements in sensor technolog	y.													
UNIT I	SENSORS FUNDAMENTALS AND CHARACTERISTICS	9													
Importance of	sensors in technology- Signals and Systems- Sensor Classification-Units of Mea	surements;													
Sensor Charac	teristics- accuracy, precision, resolution, and sensitivity-Sensor selection criteria	and trade-													
offs –Various	Types of Sensors and its working principles.														
UNIT II	SENSING PRINCIPLES	9													
Over view of	various sensor types-Electric Charges, Fields, and Potentials-Capacitance- M	/lagnetism-													
Induction- Res	sistance- Piezoelectric Effect- Hall Effect-Temperature and Thermal Properties of	f Material,													
Heat Transfer-	Light-Dynamic Models of Sensor Elements														
UNIT III	ELECTRONIC INTERFACE -SIGNAL CONDITIONING AND	9													
	AMPLIFICATION														
Introduction to test and measuring instruments, Input Characteristics of Interface Circuits, Amplifiers,															
Excitation Cir	cuits, Analog to Digital Converters, Direct Digitization and Processing, Bridg	e Circuits,													
Data Transmission, Batteries for Low Power Sensors, Sensor calibration and techniques. Power															
management a	and energy efficiency considerations for sensor systems Noise reduction technology	niques and													
electromagnet	ic compatibility (EMC) consideration.														
UNIT IV	SENSORS IN DIFFERENT APPLICATION AREA	9													
Sensors in He	alth care and biomedical, Energy, environmental monitoring, and smart cities,	Aerospace,													
Sensor applica	tions in autonomous vehicles, driver assistance systems, and traffic monitoring an	nd Defence													
and security. C	Case studies on real word applications.														
Occupancy an	d Motion Detectors; Position, Displacement, and Level; Velocity and Accelerat	ion; Force,													
Strain, and Tao	ctile Sensors; Pressure Sensors, Temperature Sensors, Wearable sensors														
UNIT V	EMERGING TRENDS IN SENSOR TECHNOLOGY	9													
Sensor miniat	urization and nanoscale fabrication techniques - PCB design considerations	for sensor													
integration-Int	ernet of Things (IoT) and sensor networks - Integration of sensors with A	I, machine													
learning, and e	edge computing,														
	TOTAL PEI	RIODS: 45													
	TEXT BOOKS														
1.	J. Fraden, Handbook of Modern Sensors: Physical, Designs, and Applications, Springer, 2014.	AIP Press,													
	REFERENCE BOOKS														
1.	D. Patranabis, Sensors and Transducers, PHI Publication, New Delhi, 2003.														
2.	Mechatronics- Ganesh S. Hegde, Published by University Science Pre Publications Pvt Limited, 2011	ess Laxmi													

					COU	RSE C	OUTCO	MES						
Upon the suc	ccessful c	completi	on of t	the cour	rse, the	studen	ts will	be able	e to:					
COs					S	TATE	MENT	'S					RB	T
				0 1					•	•				EL
	Charac	stand teristics	the s of se	fundan nsors.	nental	cond	cepts	and	detern	nne	the el	ectrical	4	
2	Identif	y and so	elect t	he sens	sors ba	used th	e senso	or ope	rating p	rincip	les		4	
3	Design interfa	simple	e senso ta acq	or circu uisitio	uits for n syste	signa ms.	l condi	tionin	g, amp	ificati	on, and		4	
4	Analyz sensor	Analyze case studies to understand real-world applications of sensortechnologyin various fields.												
5	Fabricate miniaturized sensors and integrate with AI, ML and edge computing modules.											nputing	4	
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6														
COURSE ARTICULATION MATRIX														
COs			/	20	1	Р	Os	-	5	1	2		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	(-		News.		2	2	10			3
2	3	3	3	3	10	/	-	2	2	2	21			3
3	3	3	3	3	1	P	3	1	2	2	01			3
4	3	3	3	3	1	3	3		2	2	5			3
5	3	3	3	3	3		11	71	2	2	1777	3		3
3- High Map	ping; 2-N	Moderat	e Map	ping; 1-	-Low M	/apping	g	//	2.0	-1	mil			
			14S	12	100	V VIII	्र रा	131 131	ar	010	RIM	1.5		

EE22067	EMBEDDED SYSTEM DESIGN	L T P C
		3003
COURSE O	BJECTIVES	
• To	understand the building blocks of an embedded System and Software Tools.	
• To	emphasize the role of Input/output interfacing with Bus Communication protocol in	embedded
syst	tem.	
• To	acquire knowledge in architecture of ARM7 processor and its programming.	
• To	implement the interface of peripherals using communication protocols in LPC2148.	
• To	educate the RTOS concepts and study the embedded system design cycle.	
UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS	9
Introduction	to Embedded Systems - Structural units in Embedded processor, selection of p	processor &
memory de	vices, hardware units and software tools in embedded systems, Direct Memory	y Access –
Memory ma	anagement methods - Timer and Counting devices, Watchdog Timer, Real Time	e Clock, In
circuit emul	ator, Target Hardware Debugging.	
UNIT II	EMBEDDED NETWORKING PROTOCOLS	9
Embedded 1	Networking: Introduction, I/O Device Ports & Buses – Serial Bus communication	n protocols:
RS232 stan	dard – RS422 – RS 485 – CAN Bus – Serial Peripheral Interface (SPI) – Inter	r Integrated
Circuits (I ² C	C) – Need for device drivers.	
UNIT III	ARM PROCESSOR AND PROGRAMMING	9
ARM7 Proc	essor - Introduction - RISC features - Levels in architecture, Functional description	- processor
and memory	y organization - Data alignment and byte ordering - ARM Instruction Set Architect	ture (ISA) -
pipelining -	- Simple Assembly Language Programming – Architectural support: High Level I	anguages -
System deve	elopment – Operating systems.	
UNIT IV	ARM7TDMI BASED SOC INTERFACE AND IMPLEMENTATION OF	9
1 5 6 6 1 4 6 1	PROTOCOLS	
LPC2148: 1	Peripherals, Memory mapping for data, code and peripherals, pin configuration, j	pin connect
block, GPIC	Peripheral - Nested vectored interrupt controller & Interrupts in LPC2148 - ADC	C, DAC and
RTC in LPC	C2148 - Timer in LPC2148 and its various modes of operations PC2148: UART, S	SPI and I2C
protocol and	1 its implementation in LPC2148.	
	RTOS AND EMBEDDED SYSTEM APPLICATION DEVELOPMENT	9
RIUS Intro	duction: RIOS Necessity - Operating system services - CPU metrics - RIOS Task	scheduling
models - Os	S security issues - Design cycle in the development phase for an embedded system	I - Issues in
Annlingtion	System Design. Case Study of Washing Machine- Automotive Application- Smart C	ard System
Application	Total di	DIODS. 45
	TEXT BOOKS	LKIUD5: 45
1	Paikamal 'Embedded system Architecture Programming Design' McGray	z Hill Edu
1.	3 rd Edition 2017	v-IIII Eau,
2.	Muhammad TahirandKashifJaved, 'ARM Microprocessor Systems: Cortex-M A	rchitecture,
	Programming, and Interfacing', CRC Press, 1st Edition, 2017	
	REFERENCE BOOKS	
1.	Lyla B Das,'Embedded Systems-An Integrated Approach', Pearson publica 1 st Edition.	ation,2012,
2.	Wayne Wolf, 'Computers as Components: Principles of Embedded Computin	ng System

	Design', Morgan Kaufman Publishers, 2008
3	Chattopadhyay and Santanu 'Embedded System Design' PHI publisher, 2022, 3 rd Edition.
4.	A. P. Godse, 'ARM Controller: ARM Fundamentals, LPC2148 CPU and Peripherals',
	technical publisher, 2020

Upon the s	uccessful	complet	ion of	the cou	COU	J RSE C e studer	DUTCC ots will	MES be able	e to						
COs		F				STATE	CMENT	TS					RBT LEVEL		
1	Acqui memo	Acquire knowledge about embedded system and selection of processors and memory.												5	
2	Learn	Learn about the embedded networking protocols and its applications.											4	1	
3	Under	Understand the architecture of ARM processor and its programming										4	5		
4	Acqui	Acquire knowledge to interfacing of peripherals with ARM Processor.										3	3		
5	Understand the concept of RTOS and embedded system development life cycle										4	1			
Bloom's T	axonomy	(RBT)	Level	Reme	mber-1	; Under	stand-2	2; Appl	y-3; Ai	nalyze-4	4; Evalua	ate-5; Cr	eate-6		
		Th	1	COU	RSE A	RTICU	LATI	ON MA	ATRIX		61				
COs		12	1	11	1	Р	Os	-/-			01	1	PS	PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	3	3	2	2	3		16	2	3	2	111	3	2	3	
2	3	3	2	2	3		-	2	3	2	11	3	2	3	
3	3	3	2	2	3	-	-	2	3	2	21	3	2	3	
4	3	3	2	2	3		-	2	3	2	2/	3	2	3	
5	3	3	3	2	3		10	2	3	2	1	3	2	3	
3- High M	apping; 2-	Moderat	e Map	oping; 1	-Low I	Mappin	g	/	1	0/		-			
			3	~	9E	7 τ	RĨ	20	10.	/					

0 0 4 COURSE OBJECTIVES • To acquire skills in semiconductor device designing using software tool. (COMSOL) • To expose the students to different wet and physical methods of material synthesis and devel experimental and data analysis skills. LIST OF EXPERIMENTS 1. Introduction to NFF and Safety Training (nano fabrication facility) 2. Standard Cleaning 3. PCB Design using KICAD software Simulation 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	EE22060	IC DESIGN LABORATORY	L T P C						
COURSE OBJECTIVES • To acquire skills in semiconductor device designing using software tool. (COMSOL) • To expose the students to different wet and physical methods of material synthesis and devel experimental and data analysis skills. LIST OF EXPERIMENTS 1. Introduction to NFF and Safety Training (nano fabrication facility) 2. Standard Cleaning 3. PCB Design using KICAD software Simulation 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.			0 0 4 2						
 To acquire skills in semiconductor device designing using software tool. (COMSOL) To expose the students to different wet and physical methods of material synthesis and devel experimental and data analysis skills. LIST OF EXPERIMENTS Introduction to NFF and Safety Training (nano fabrication facility) Standard Cleaning PCB Design using KICAD software Simulation Design of two terminal device using COMSOL MULTIPHYSICS Synthesis of two terminal device using chemical method Synthesis of two terminal device using physical method Synthesis of two terminal device using Photolithography Metallization using Thermal Evaporation Characterization of two terminal device Digital IC design TOTAL PERIODS REFERENCE BOOKS I. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	COURSE OBJ	IECTIVES							
 To expose the students to different wet and physical methods of material synthesis and devel experimental and data analysis skills. LIST OF EXPERIMENTS Introduction to NFF and Safety Training (nano fabrication facility) Standard Cleaning PCB Design using KICAD software Simulation Design of two terminal device using COMSOL MULTIPHYSICS Synthesis of two terminal device using chemical method Synthesis of two terminal device using physical method Synthesis of two terminal device using Photolithography Metallization using Thermal Exposure using Photolithography Characterization of two terminal device Digital IC design 	• To ac	quire skills in semiconductor device designing using software tool. (COMSOL)							
experimental and data analysis skills. LIST OF EXPERIMENTS 1. Introduction to NFF and Safety Training (nano fabrication facility) 2. Standard Cleaning 3. PCB Design using KICAD software Simulation 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	• To ex	pose the students to different wet and physical methods of material synthesis and	d develop						
LIST OF EXPERIMENTS 1. Introduction to NFF and Safety Training (nano fabrication facility) 2. Standard Cleaning 3. PCB Design using KICAD software Simulation 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	exper	imental and data analysis skills.							
1. Introduction to NFF and Safety Training (nano fabrication facility) 2. Standard Cleaning 3. PCB Design using KICAD software Simulation 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	LIST OF EXPERIMENTS								
 2. Standard Cleaning 3. PCB Design using KICAD software Simulation 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	1.	Introduction to NFF and Safety Training (nano fabrication facility)							
 3. PCB Design using KICAD software Simulation 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	2.	Standard Cleaning							
 4. Design of two terminal device using COMSOL MULTIPHYSICS 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	3.	PCB Design using KICAD software Simulation							
 5. Synthesis of two terminal device using chemical method 6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	4.	Design of two terminal device using COMSOL MULTIPHYSICS							
6. Synthesis of two terminal device using physical method 7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	5.	Synthesis of two terminal device using chemical method							
7. Nano/Micro Scale Pattern and Exposure using Photolithography 8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	6.	Synthesis of two terminal device using physical method							
8. Metallization using Thermal Evaporation 9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	7.	Nano/Micro Scale Pattern and Exposure using Photolithography							
9. Characterization of two terminal device 10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	8.	Metallization using Thermal Evaporation							
10. Digital IC design TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	9.	Characterization of two terminal device							
TOTAL PERIODS REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.	10.	Digital IC design							
REFERENCE BOOKS 1. Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.		TOTAL PE	RIODS: 60						
1.Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.		REFERENCE BOOKS							
	1.	Marc Madou, 'Fundamentals of microfabrication', CRC Press, 1997.							
2 S M SZE, 'Fundamental of Semiconductor Fabrication', 2010, 3 rd Edition.	2	S M SZE, 'Fundamental of Semiconductor Fabrication', 2010, 3 rd Edition.							
COURSE OUTCOMES		COURSE OUTCOMES							

Upon the s	uccessful completion of the course, the students will be able to:	
COs	STATEMENTS	RBT LEVEL
1	Understand the operation of a cleanroom and recognize the basic operation principles of semiconductor fabrication equipment	2
2	Identify the process modules available in IC fabrication	3
3	Evaluate effects of process parameters on final device /IC characteristics	4
4	Apply the measurement skills for microelectronic devices and IC characterization.	3
5	Design process flows of IC fabrication technologies	4
Bloom's T	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6

				COUF	RSE A	RTICU	LATI	ON MA	TRIX					
COs		POs												Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3						2	2				3
2	3	3	3	3					2	2				3
3	3	3	3	3					2	2				3
4	3	3	3	3					2	2				3
5	3	3	3	3					2	2		3		3
3- High Map	ping; 2-N	Modera	te Map	ping; 1	-Low N	Mappin	g							

VERTICAL VII: DIVERSIFIED GROUP-I

EE22071	ANALOG AND DIGITAL CONTROLLERS	L T P C					
		3003					
COURSE O	BJECTIVES						
•	To provide an overview of the control system and converter control methodologies						
•	To provide an insight to the analog controllers generally used in practice						
•	To introduce Embedded Processors for Digital Control						
•	To study on the driving techniques, isolation requirements, signal conditioning and	protection					
	methods						
•	To provide a Case Study by implementing an analog and a digital controller on a con-	nverter					
UNIT I	CONTROL SYSTEM - OVERVIEW	9					
Feedback a	nd Feed-forward control, Right Half Plane Zero, Gain margin and Phase Margin	n, Stability,					
Analysis and	d Transfer function of PI and PID controllers and its effects.						
UNIT II	ANALOG CONTROLLERS	9					
Major com	ponents of a controller - Op-Amp based PI and PID controller - Proportional, I	ntegral and					
Differential	gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator usi	ng Ramp or					
Triangular	generator and comparator and Driver, Voltage mode controller design, Peak Cu	irrent mode					
controller de	esign.						
UNIT III	DIGITAL CONTROLLERS	9					
Micro Cont	rollers and Digital Signal Controllers for Converter Control Application, Interface N	Modules for					
Converter Control - A/D, Capture, Compare and PWM- FPGA Controller, interrupts, Discrete PI and PID							
equations.							
UNIT IV	SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION	9					
Voltage fee	dback sensing circuits, Hall effect sensors and Shunts for current feedback sensing,	Low offset					
Op-Amps for	or signal conditioning, Single and dual supply op-amps, Totem pole drivers, Need	for isolated					
drivers, opti	cally isolated drivers, low side drivers, high side drivers with bootstrap power supply	у.					
UNIT V	CONTROLLER IMPLEMENTATION	9					
Analog and	Digital Controller Design for Buck Converter - Power circuit transfer function and	d bode plot,					
PI controlle	r bode plot, Implementation of Analog controller and Digital controller.						
	TOTAL PE	RIODS: 45					
	TEXT BOOKS						
1.	I.J. Nagrath and M. Gopal, 'Control Systems Engineering', New Age In	iternational					
	Publishers,2021						
2.	Robert W. Erickson, Dragan Maksimović 'Fundamentals of Power E	lectronics',					
	SpringerLink, 2020.						
	REFERENCE BOOKS						
1.	Simon Ang, Alejandro Oliva, 'Power-Switching Converters', CRC Press, 2011, 3 rd	Edition.					
2.	Heinz Weihrich, Mark V Cannice, and Harold Koontz 'Management: A Global,	Innovative					
	and Entrepreneurial Perspective', McGrawHill, 2019, 15 th Edition.						
3.	Marian K. Kazimierczuk, 'Pulse-width Modulated DC-DC Power Converters',	Publisher,					
	WileyBlackwell, 2015, 2 nd Edition.						

	COURSE OUTCOMES							
Upon the suc	Upon the successful completion of the course, the students will be able to							
COs	STATEMENTS	RBT LEVEL						
1	Identify the effect of PID controllers in system stability.	4						
2	Design and apply analog controllers for Industrial applications	4						
3	Design and apply Digital controllers for digital applications.	4						
4	Design suitable signal conditioning circuits and drivers for hardware.	4						
5	Implement controller design in hardware converter circuits.	4						
		_						

Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

COs	C POs L FO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	2	2	1	1	1	2	2	2	3	2	
2	3	3	3	3	2	2	1	1	1		2	2	3	2	
3	3	3	3	3	2	2	1	1	1	1	2	2	3	2	
4	3	3	3	3	3	2	1	11	R		2	2	3	2	
5	3	3	3	3	3	2	1	1	1		2	2	3		

9

हेवता

3- High Mapping; 2-Moderate Mapping; 1 -Low Mapping

N 125 ATE

2

UEN

EE22072	BIOMEDICAL INSTRUMENTATION	LT P C						
		3003						
COURSE OB	JECTIVES							
• To	o introduce fundamentals of transducers as applicable to physiology							
• To	explore the human body parameter measurements setups							
• To	make the students understand the basic concepts of forensic techniques							
• To	a familiarize the students with the measurement of vital body parameters							
• To	o introduce the various medical imaging techniques							
UNIT I	PHYSIOLOGY AND TRANSDUCERS	9						
Cell and its str	ucture - Resting and Action Potential - Nervous system - Neurons, synapse, transi	nitters and						
neural commu	nication. Cardiovascular system - Respiratory system - Basic components of a l	piomedical						
system- Trans	ducers - Selection criteria. Piezo-electric, ultrasonic transducers, temperature tra	nsducers -						
Fiber optic ten	perature sensors.							
UNIT II	ELECTRICAL PARAMETER MEASUREMENTS	9						
Introduction to	polarizable and nonpolarizable electrodes - Types of Electrodes - Limb electrode	es, floating						
electrodes, pr	e-gelled disposable electrodes, Micro, needle and surface electrodes - A	Amplifiers:						
Preamplifiers,	differential amplifiers, chopper amplifiers, Isolation amplifier. ECG, EEG, EM	MG, ERG,						
Lead systems a	and recording methods, Typical waveforms. Electrical safety in medical environment	ent: shock						
hazards, leakag	hazards, leakage current-Instruments for checking safety parameters of biomedical equipment.							
UNIT III	NON-ELECTRICAL PARAMETER MEASUREMENTS	9						
Measurement of blood pressure, Cardiac output, Heart rate, Heart sound, Pulmonary function								
measurements	, Spirometer, Photo Plethysmography, Body Plethysmography, Blood Gas analyz	ers: pH of						
blood, measure	ement of blood pCO2, pO2, finger-tip oximeter, ESR, GSR, measurements, Standa	ard HL7.						
UNIT IV	MEDICAL IMAGING	9						
Radiographic	and fluoroscopic techniques, X rays, Computer tomography, Mammography, M	RI, fMRI,						
Ultrasonograp	hy, Endoscopy, Thermography - Nuclear medicine and laser technology -	Artificial						
intelligence an	d machine learning in medical imaging.							
	LIFE ASSISTING AND THERAPEUTIC EQUIPMENT	9						
Pacemakers –	Defibrillators - Ventilators - Nerve and muscle stimulators, Diathermy - H	leart Lung						
machine - Au	dio meters - Dialyzers, Lithotripsy - Therapeutic Devices – Infant Incubators	– Surgical						
Instruments –	Nano Robots – Robotic surgery - Keyhole Surgery - Moral and ethical cons	iderations,						
human and ani	mal research, consent, and death.							
	TOTAL PER	CODS: 45						
	TEXT BOOKS							
1.	John G. Webster, 'Medical Instrumentation Application and Design', John sons, New York, 2009, 4 th Edition.	Wiley and						
2.	R.S.Khandpur, 'Hand Book of Bio-Medical instrumentation', Tata McC Publishing Co Ltd., 2003	Graw Hill						
	REFERENCE BOOKS							
1.	Arumugam M, 'Biomedical Instrumentation', Anuradha Agencies Publishers 2010.	, Chennai,						
2.	Leslie Cromwell, Fred J.Weibell, Erich A.Pfeiffer, 'Bio-Medical Instrumen Measurements', Pearson Education, 2002 / PHI, 2 nd Edition.	tation and						
3.	J.Webster, 'Medical Instrumentation', John Wiley & Sons, 1995.							
	1							

4.	L.A. Geddes and L.E.Baker, 'Principles of Applied Bio-Medical Instrumentation', John
	Wiley and Sons, 1975.

					COURSE C	OUTCO	MES						
Upon the s	uccessful a	comple	tion of	the course	e, the studen	ts will	be able	to					
COs					STATE	MENI	S						ST VET
1	IIndon		h a h		of his modi	- a1 arva4		d nala		adaaaaa			
1	Under	stand t	ne pny	siology o	of biomedia		em an	d rela	ed tran	saucers		3)
2	Analyz	ze vari	ous ele	ectrical si	ignals of bi	omedio	cal inst	trumei	ntation	system.		4	÷
3	Analyz	zevario	ous nor	n-electric	al paramet	ers in t	oiomec	lical fi	elds.			4	-
4	Discus medica	s and al diag	analy nostics	ze physi s.	ological co	onditio	ns usi	ng im	aging	techniqu	ies in	4	-
5	Apply equipm	clinic nent.	al engi	ineering	techniques	to cre	ate life	e assis	sting an	nd therag	peutic	4	ł
Bloom's T	axonomy	(RBT)	Level:	Rememb	er-1; Under	stand-2	; Appl	y-3; Ai	nalyze-4	l; Evalua	te-5; Cro	eate-6	
		1	45	COURS	E ARTICU	LATIO	ON MA	TRIX	2	3			
COs		1	1	(43	- P	Os	0	1K	4	15	1	PS	Os
	1	2	3	4	5 6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	3	2)_f	100	12	3	2	
2	3	3	3	3	3	3	2	1	1- de	10	3	3	
3	3	3	3	3	3	3	2			15	3	2	
4	3	3	3	3	3	3	2	-	al	3	3	3	
5	3	3	3	3	3	3	2	10	2/	51	3	3	
3- High Ma	apping; 2-l	Modera	ite Map	ping; 1-L	ow Mappin	g	1	1		0/			
				N.	विद्या	प्र	T	ad	2				

EE22073	ETHICS IN ELECTRICAL ENGINEERING	LT P C
		3003
COURSE O	BJECTIVES	
• 7	To enable the students to create an awareness on Human Values	
•]	To study Engineering Ethics and ethics applicable to Electrical engineering	
•]	To instill Moral and Social Values and Loyalty and to appreciate the rights of others	
•]	To ensure safety in all engineering activities through realization of rights and respon	sibilities.
•]	To address global issues in the perspective of ethical knowledge	
UNIT I	HUMAN VALUES	9
Morals, value	es and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for	or others –
Living peace	fully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Co	ommitment
– Empathy -	- Self Confidence - Character - Spirituality - Introduction to Yoga and med	itation for
professional of	excellence and stress management.	
UNIT II	ENGINEERING ETHICS	9
Engineering	Ethics - definition. Senses of Engineering Ethics – Variety of moral issues – Types	of inquiry
– Moral dile	emmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Cons	ensus and
Controversy	– Models of professional roles – Electrical Engineering Ethics – Application	of Ethical
Theories.		
UNIT III	ELECTRICAL ENGINEERING AS SOCIAL EXPERIMENTATION	9
Engineering	as Experimentation – Engineers as responsible Experimenters – Codes of Ethics -	- Board of
Electrical En	gineering - IEEE code of Ethics- Problem Solving in Engineering Ethics	
UNIT IV	SAFETY, RESPONSIBILITIES AND RIGHTS	9
Safety and R	isk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk –	- Electrical
safety – Co	llective Bargaining – Confidentiality – Conflicts of Interest – Occupational	Crime –
Professional	Rights – Intellectual Property Rights (IPR) – Discrimination.	
UNIT V	GLOBAL ISSUES	9
Applications	of Engineering Ethics - Multinational Corporations - Environmental Ethics -	Computer
Ethics – Wea	apons Development – Engineers as Managers – Consulting Engineers – Engineers	as Expert
Witnesses an	d Advisors – Corporate Social Responsibility.	1
	TOTAL PEI	RIODS:45
	TEXT BOOKS	
1	Mike W Martin and Roland Schinzinger 'Ethics in Engineering' Tata McGraw	Hill New
1.	Delhi.2003.	11111, 1 (C W
2.	Govindarajan M, Natarajan S, Senthil Kumar V. S, 'Engineering Ethics', Prenti	ce Hall of
	India, New Delhi, 2004.	
	REFERENCE BOOKS	
1.	Laura P. Hartman and Joe Desjardins, 'Business Ethics: Decision Making fo	r Personal
	Integrity and Social Responsibility' Mc Graw Hill education, India Pvt. Ltd., N	lew Delhi,
2.	Jonn K Boatright, 'Ethics and the Conduct of Business', Pearson Education, N	lew Delhi,
	2017. Charles B. Eleddermann 'Engineering Ethics' Dearson Prentice Hall New Jersey	2004
3.	Charles D. Fredermann, Engineering Lunes, Fearson Frence Han, New Jersey	, 200 т .
~•		

4.	Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, 'Engineering Ethics -
	Concepts and Cases', Cengage Learning, 2009.
5.	Edmund G Seebauer and Robert L Barry, 'Fundamentals of Ethics for Scientists and
	Engineers', Oxford University Press, Oxford, 2001.

					COU	IRSE (OUTC	OMES						
Upon the s	uccessful	comple	tion of	the cou	irse, the	e stude	nts will	be able	e to					
CO's					S	STAT	EMEN'	TS					RF LEV	3T /EL
1	Sumr profe	narize t ssional	he im	portan	ce of c	ore va	alues tl	hat sha	pe the	ethical	behav	ior of a	4	2
2	Apply electr	y ethica ical eng	al the gineeri	ories ng Pro	in cor fessior	ntrove nals.	rsial i	ssues	while	playing	g the	role of		3
3	Solve establ	moral ished e	and xperin	ethical nents a	l probl ind rela	lems ite the	throug code o	h explo of ethic	oration s to so	n and a cial exp	assessn perimer	nent by ntation.	2	1
4	Enum engin	erate the eer at w	ne imp vork pl	ortanc lace	e of el	ectrica	al safe	ty, resp	onsibi	lities a	nd righ	ts of an	-	3
5	Analy doma	ze the ins of e	ethica nginee	al attri ering in	butes on the gl	of eng obal c	gineers context	in va	rious 1	oles ar	nd in d	lifferent	2	1
Bloom's T	axonomy	(RBT)	Level	: Reme	mber-1	; Unde	erstand-	2; Appl	y-3; Ai	nalyze-4	; Evalua	ate-5; Cre	ate-6	
		\leq	1.	COU	RSE A	RTIC	ULATI	ON MA	ATRIX		2			
COs		Z	1	51	11	I	POs	11	-		[1]		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		12	5 /		-	-	_	3	1		21	2		
2	1	1	1			2	i al	3	13	12	51/			
3	1	2	1.	1	1	0.23	1	3	/	0	/			
4		2	2	1		2	V	3	1	1/	-	1		
5				21	00	2	3	3	(I)	1	1	0		
3- High Ma	apping; 2-	-Modera	te Maj	oping; 1	I-Low N	Mappir	ng	6	/		1			

EE22074	IoT IN AUTOMATION AND CONTROL	LT P C
		3003
COURSE O	BJECTIVES	
•	To understand the fundamentals of Internet of Things	
•	To learn about how IoT can be utilized in manufacturing industry	
•	To apply IoT in control through cloud	
•	To apply IoT in control through PLC	
•	To apply the concept of IoT in the real-world scenario	
UNIT I	INTRODUCTION AND ARCHITECTURE OF IoT	9
Introduction	n – Definition and characteristics of IoT – Physical and Logical Design of IoT - Cor	nmunication
models and	APIs - Challenges in IoT - Evolution of IoT- Components of IoT - A Sir	nplified IoT
Architecture	e – Core IoT Functional Stack.	
UNIT II	INDUSTRIAL IoT	9
IIoT-Introdu	action, Industrial IoT: Business Model and Reference Architecture -IIoT-Busin	ess Models,
Industrial Ic	T- Layers: IIoT Sensing, IIoT Processing, IIoT Communication, IIoT Networking	1
UNIT III	IIOT IN MANUFACTURING PROCESSES	9
Dimensions	of IIoT: Production flow monitoring, Remote equipment management, Cond	lition based
maintenance	e alerts - Manufacturing operations- asset management - intelligent manufacturing -	Automation
through PL	C - Pneumatic and Hydraulic control in Industries - PLC basics and Programming	techniques -
PLC control	l in Industrial applications through case studies	1
UNIT IV	DATA MANIPULATIONS AND ACQUISITION IN PLC	9
Analog sens	sors types and Interfacing with PLC - Receiving analog data from sensors to PLC to	r monitoring
and Process	ing - Steps involved in designing SCADA application to monitor and control pro-	cess through
PLC - Dala	monitoring and acquisition from a process through SCADA and storage in Local F	C / Server -
		0
Industrial IC	T- Application Domains: Oil chemical and pharmaceutical industry - Applications	of UAVs in
Industries -I	Real case studies: Milk Processing and Packaging Industries- Future of HoT	01 071 05 11
industries i	TOTAL P	
	TEXT BOOKS	
1	Internet of Things (IoT) for Automated and Smart Applications (IntechOpen) by Vassar
1.	Ismail 2019) Uy 1 assei
2	Industry 4.0: The Industrial Internet of Things" by Alasdair Gilchrist (Apress) 20	17
	REFERENCE BOOKS	1 /
1	Industrial IoT - Challenges Design Principles Applications and Security - Spri	nger Ismail
1.	Butun 2020	inger, isinan
2.	Industrial Internet of Things: Cyber manufacturing Systems, by Sabina Jeschk	e. Christian
	Brecher, Houbing Song, Danda B. Rawat (Springer). 2017.	, childran
3.	Internet of Things (IoT) for Automated and Smart Applications. (IntechOpen) by Yasser
	Ismail, 2019.	, - , - , - , - , - , - , - , - , - , -
4.	Hands-On Industrial Internet of Things: Create a powerful Industrial IoT by Giac	omo Veneri.
	Antonio Capasso, Packt, 2018.	7

			COU	JRSE OUT	COMES						
Upon the su	ccessful c	completion of	the course, the	e students w	ill be abl	e to				п	т
COS			ì	SIAIENIE	1115					KB LEV) I /FL
1	Summ	arize the basi	c concepts a	nd archited	ture of t	he Interr	net of	Things.		2	
2	Compr	ehend the va	rious lavers	of HoT and	l their re	lative in	norta	nce		2	
3	Δnalvz	ve the several	dimensions	of HoT an	d PI C in	volved	in auto	mation			
	Exami							n and a			
4	proces	ses through F	PLC	the sensor	s to PL	C and n	nonito	or and c	ontrol	4	
5	Apply domain	the concept	s of IIoT a	and formu	ate the	future	of IIo	oT in va	arious	3	
Bloom's Ta	axonomy	(RBT) Level:	Remember-1	; Understan	d-2; Appl	ly-3; Ana	alyze-4	; Evalua	te-5; Cre	ate-6	
		/	COURSE A	RTICULA	ΓΙΟΝ Μ	ATRIX	0	1			
COs		12	5/	POs	3 1	1.1	1	1		PSOs	
	1	2 3	4 5	6 7	8	9	10	11	12	1	2
1	3	16			-	JR.	5	2	1		1
2	3	1 7			3	1	-	2	1		1
3	3	3	2		-	1 A	24	2			2
4	3	3 2	1			1/0		2			2
5	3	1 - 1	2.	3		/		2	1		3
3- High Ma	pping; 2-N	Moderate Map	ping; 1-Low 1	Mapping		-	- 1	120	/	1	1
		10	5 10	या च	रा र	ante	2	3/			

IT22201	COMPUTER ORGANIZATION AND ARCHITECTURE	L T P C
	(COMMON TO IT AND EE)	3003
COURSE O	BJECTIVES	
• To	make students understand the basic structure and operation of digital computer	
• To	understand the hardware-software interface	
• To	familiarize the student with arithmetic and logic unit and implementation of fixed	point and
floa	ting-point arithmetic operations.	_
• To	familiarize the students to the concept of pipelining along with hierarchical memo	ory system
incl	uding cache memory and virtual memory	
• To	expose the students with different ways of communicating with I/O devices and sta	andard I/O
inte	rfaces.	
UNIT I	BASIC COMPUTER ORGANIZATION AND DESIGN	9
Instruction	codes, Computer registers, computer instructions, Timing and Control, Instru	ictioncycle,
Memory-Re	ference Instructions, Input-output and interrupt, Complete computerdescription,	Design of
Basic compu	ater, design of Accumulator Unit.	
UNIT II	ALU AND CU	9
ALU - A	ddition and subtraction – Multiplication – Division – Floating Point op	perations –
Subwordpar	allelism. CPU- General Register Organization, Stack Organization,	Instruction
format,Addr	ressing Modes, data transfer and manipulation, Program Control, Reduced	Instruction
SetCompute	r (RISC).	
UNIT III	PIPELINING AND HAZARDS	9
Basic MIPS	s implementation – Building data path – Control Implementation scheme – P	ipelining –
Pipelined d	ata path and control – Handling Data hazards & Control hazards – Excep	ptions, The
ARMCortex	A-A8 and Intel Core i7 Pipelines.	
UNIT IV	MEMORY AND I/O SYSTEMS	9
Memory hie	rarchy - Memory technologies – Cache basics – Measuring and improving cacheper	rformance -
- Input/output	ut system, programmed I/O, DMA and interrupts, I/O processors.	
UNIT V	MULTICORES, MULTIPROCESSORS, AND CLUSTERS	9
Shared M	lemory Multiprocessors, Clusters and Other Message-Passing Mult	iprocessors
HardwareM	ultithreading, SISD, MIMD, SIMD, SPMD, and Vector, Introduction to Graphics	Processing
Units,Cluste	ers, Warehouse Scale Computers, and Other Message-Passing Multiprocessors.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	1 22 /
1.	David A. Patterson and John L. Hennessey, 'Computer organization and design', Morgan	kauffman /
	elsevier, 2014, 5 th edition.	
1	KEFEKENCE BOUKS V Cord Hamashar Zuarka C Varanasia and Safat C Zalue	·Commuter
1,	v. Can Hamacher, Zvonko G. Varanesic and Safat G. Zaky, Organisation' McGraw-Hill Inc. 2012 6 th edition	Computer
2.	William Stallings 'Computer Organization and Architecture' PearsonEducation	1. 2006 7 th
-	Edition.	., _000, /
3.	Vincent P. Heuring, Harry F. Jordan, 'Computer System Architecture', Pearson	Education,
	2005, 2 nd edition.	
4.	Govindarajalu, 'Computer Architecture and Organization, Design Principles and Ap	plications',

	Tata McGraw Hill, New Delhi, 2005, 1 st Edition.
5.	John P. Hayes, 'Computer Architecture and Organization', Tata McGraw Hill,1998, 3rd
	Edition.
6.	http://nptel.ac.in/.

					COU	RSE (OUTCO	MES						
Upon the su	uccessful	completi	on of	the cou	rse, the	e studer	nts will	be able	e to					
CO's					5	STATE	CMENT	'S					RF LEV	BT /EL
1	Build	the basic	c stru	cture o	f com	puter,	operati	ons an	nd instru	uction	s.		3	3
2	Design	n arithm	etic a	nd log	ic unit	•							3	3
3	Design	n and an	alyze	pipeli	ned co	ntrol u	inits.						3	3
4	Evalua	ate perfo	orman	ce of r	nemor	y and	I/O sys	tems.	_				5	5
5	Const	ruct the	parall	el proc	essing	g archi	tectures	50	ai	1			3	3
Bloom's T	axonomy	(RBT) I	Level:	Remer	nber-1	; Undei	stand-2	; Appl	y-3; An	alyze-4	4; Evalua	te-5; Cro	eate-6	
		/	2	COUF	RSE A	RTICU	LATIO	ON M	ATRIX	X				
COs		15	01	(-	Р	Os			13	1/		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1	3	1	1000	/	1	10	~ 1	3		01	2		
2	1	3	L	1. A	1	100			3		3	2		
3	1	Z	3	2	1		16	71	3		ITT	2		
4	1	LU	3	2	1		10		3	-1	ml	2		
5	1	17	3	2	1			-	3		21	2		

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

EE22075	ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE	LT P C
		3003
COURSE OF	JECTIVES	
•]	To impart knowledge about the importance of Artificial Intelligence.	
•]	Fo learn various problem-solving processes and procedures.	
•]	Fo give understanding of the main abstractions behind development of intelligent sy	stems.
•]	To enable the students to understand the basic principles of Artificial Intelligence i	n various
ε	applications.	
•]	To enable the students to understand the basic principles of Computational Intell	igence in
V	various applications.	
UNIT I	INTRODUCTION TO AI	9
Introduction	to AI -Evolution of AI - AI Applications - Need and Importance of AI - Approach	ies of AI –
Agents and	Environments - concept of rationality - nature of environments - structure o	f agents -
Problem solv	ring agents – search algorithms – uninformed search strategies.	
UNIT II	PROBLEM SOLVING TECHNIQUES	9
Heuristic sea	rch strategies - heuristic functions. Local search and optimization problems - loca	l search in
continuous s	pace - search with non-deterministic actions - search in partially observable envir	onments –
online search	agents and unknown environments	
UNIT III	COMPUTER INTELLIGENCE (CI)	9
Machines an	nd Cognition - Architectures of Cognition - Knowledge Based Systems	 Logical
Representatio	on and Reasoning – Logical Decision Making –Learning – Language – Vision.	
UNIT IV	NEURAL NETWORKS	9
Perceptron -	Multilayer perceptron, activation functions, network training - gradient descent op	otimization
- stochastic	gradient descent, error backpropagation, from shallow networks to deep netwo	orks –Unit
saturation (a	ka the vanishing gradient problem) - ReLU, hyperparameter tuning, batch norr	nalization,
regularization	n, dropout.	
UNIT V	ARTIFICIAL INTELLIGENCE OF THINGS (AIoT)	9
Concept and	working of AIoT- Benefits of AIoT-IoT vs AIoT - Advanced Applications of IoT	with AI -
Autonomous	vehicles - Future perspectives of AI-driven Internet of Things - Challenges in AIoT	[
	TOTAL PE	RIODS:45
	TEXT BOOKS	
1.	Artificial Intelligence, 'A Modern Approach, Stuart Russell and Peter Norvig	', Pearson
	Education, 2021, 4 th Edition.	
2.	Deepak Khemani 'Artificial Intelligence' Tata Mc Graw Hill Education 2013.	
	REFERENCE BOOKS	
1.	Elaine Rich, Kevin Knight, Shivashankar B. Nair, 'Artificial Intelligence'. Tata	McGraw-
	Hill Education Pvt. Ltd., 2008, 3 rd Edition.	
2.	Toshinori Munakata, 'Fundamentals of the New Artificial Intelligence' Spring	er Science
	and Business Media, 2008.	
3.	Handbook On Computational Intelligence (In 2 Volumes), World Scientific, 2016	

4.	R.Eberhart, P.Simpson and R.Dobbins, AP, 'Computational Intelligence - PC Tools',
	Professional, Boston, 1996
5.	NPTEL-
	$Fundamentals of Artificial Intelligence https://online courses.nptel.ac.in/noc22_ge29/preview$

					COU	RSE (DUTC	OMES						
Upon the su	iccessful	complet	tion of	the cou	rse, the	e studei	nts will	l be able	e to				1	
COs		STATEMENTS								RE LEV	ST 'EL			
1	Sumn appro	Summarize the importance of AI and understand its concept and various approaches						2	2					
2	Apply solvin	Apply methodologies to use appropriate search algorithms for problem solving and development of Artificial Intelligent systems						3	}					
3	Conne	Connect to the cognition elements computationally building the intelligent computing network					4	ł						
4	Set up	Set up sophisticated deep learning models that utilise neural networks.3												
5	Relate the concept of AI and IoT to numerous operations and demonstrate its applications and future perspectives						4	ł						
Bloom's Ta	axonomy	(RBT)	Level	Remen	mber-1	; Under	rstand-	2; Appl	y-3; An	alyze-4	; Evalua	ate-5; Cre	eate-6	
		X	1.	COUI	RSE A	RTICU	JLATI	ION MA	ATRIX		2			
COs		Z	1	55	11	P	Os	11			111		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1	17	5/	10	1	-		-	S.,	1	21/	2		1
2	2	3	3	3	2		Sel.	1	10	12	3	2		2
3	2	2	2	1	2	1	D a	2	/	9	1	2		2
4	3	2	2	2	2	1	¥.	1	1	0/	2	3		3
5	3	2	1	<1	2	3	3	20	10,	/	2	3		3
3- High Ma	pping; 2-	Modera	te Map	oping; 1	-Low N	Mappin	g	4	/				-	

ME22087	PRINCIPLES OF MANAGEMENT	LT P C							
	(COMMON TO ME, AE, AM, EE, IT AND MN)	3 00 3							
COURSE OB.	IECTIVES								
• To ena	ble the students to study the evolution of management								
• To stu	dy the functions planning, organizing and the associated principles of management								
• To stu	• To study the function directing and the associated principles of management								
• To stu	dy the functions controlling and the associated principles of management								
• To lea	rn the application of management principles in an organization.								
UNIT I	INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS	9							
Definition of	Management — Science or Art — Manager Vs Entrepreneur — types of n	nanagers -							
managerial rol	es and skills — Evolution of Management — Scientific, human relations, s	ystem and							
contingency approaches — Types of Business organization — Sole proprietorship, partnership, company-									
public and priv	public and private sector enterprises — Organization culture and Environment — Current trends and issues								
in Managemen									
UNIT II	PLANNING	9							
Nature and pur	pose of planning — planning process — types of planning — objectives — setting	objectives							
— policies — Planning premises — Strategic Management — Planning Tools and Techniques — Decision									
making steps a	nd process.								
UNIT III	ORGANISING	9							
Nature and pur	pose — Formal and informal organization — organization chart — organization st	ructure —							
types — Line and staff authority — departmentalization — delegation of authority — centralization and									
decentralization	n — Job Design — Human Resource Management — HR Planning, Recruitment,	, selection,							
Training and D	evelopment, Performance Management, Career planning and management								
UNIT IV	DIRECTING	9							
Foundations of	f individual and group behaviour — motivation — motivation theories — m	otivational							
techniques —	job satisfaction - job enrichment - leadership - types and theories of leadership	adership –							
communication	n — process of communication — barrier in communication — effective commu	inication –							
communication	and IT.								
UNIT V	CONTROLLING	9							
System and pro	ocess of controlling — budgetary and non-budgetary control techniques — use of	computers							
and IT in Man	agement control — Productivity problems and management — control and performance of the p	rmance —							
direct and prev	entive control — reporting.								
	TOTAL PE	RIODS:45							
	TEXT BOOKS								
1.	John G. Webster, "Medical Instrumentation Application and Design", John Wiley 4 th edition New York, 2009.	v and sons,							
2.	Arumugam M, "Biomedical Instrumentation", Anuradha Agencies Publishers, 2010.	, Chennai,							
	REFERENCE BOOKS								
1.	Stephen P. Robbins, Mary Coulter and Agna Fernandez, "Management", Pre (India) Pvt. Ltd., 2019, 14 th Edition.	ntice Hall							

2.	Harold Koontz & Heinz Weihrich "Essentials of management" 10th edition, Tata Mc Graw Hill, 2015.
3.	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 2004, 6 th Editon.
4.	Heinz Weihrich, Mark V Cannice, and Harold Koontz, 'Management: A Global, Innovative and Entrepreneurial Perspective', McGrawHill, 2019, 15 th Editon.

					COU	RSE	OUTC	OMES						
Upon the su	Upon the successful completion of the course, the students will be able to													
COs					S	STAT	EMEN'	TS					RE LEV	iT 'EL
1	Apply the cu	manag rrent en	gerial viron	approa ment o	aches a of the o	nd pr rganiz	actice	manage	erial ro	les as	demano	ded by	3	3
2	Devel to atta	Develop planning process and apply strategies, planning tools and techniques to attain organizational objectives.						4	ł					
3	Effect manag	Effectively organize activities in the organization and execute human resource 4												
4	Execu effect	Execute the appropriate motivational and leadership techniques and 4 effectively utilize communication methods in the organization												
5	Apply correct	Apply control techniques to monitor the progress of activities and to take 3 corrective measures accordingly												
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6														
		X	1	COU	RSE A	RTIC	ULATI	ON MA	ATRIX	2.1	2			
COs		Z	1	1	11		POs	77			ITT		PSOs	
	1	2	3	4	5	6	7	8	9	10	/11	12	1	2
1		17	1			1	_	-	-	1	21/	1		
2		2	2		1	1	1	-	12	12	\$1/	1		
3			2	1	1	1023	D.	1	/	Ð	1	1		
4	1		1	1	1	2	41	1	X	2	2	1		
5	1		1	11	0 an	2	1	20	a	2	2	1		
3- High Map	oping; 2-	Moderat	te Map	oping;	1-Low N	Mappin	ng	4	/			·		

EC22066	ROBOTICS AND AUTOMATION	L T P C					
	(COMMON TO EC AND EE)	3003					
COURSE OBJECTIVES							
• To acquire basic knowledge on robotics and associated automation principles along with							
the existing industrial applications.							
• To explore on various types of sensors, robot actuators, end effectors concerned with							
manip	ulators.						
• To study about robot motion analysis and control.							
 To acquire knowledge on vision system for robotic applications. 							
 To explore on robotics automation and applications in industry. 							
UNIT I	FUNDAMENTALS OF ROBOTICS AND AUTOMATION	9					
Robotics: Definition	on, Origin, Different types, Various generations -Degrees of freedom;	Anatomy of a					
robot – Classificat	ion of robots - Cartesian, Cylindrical, Spherical, Articulated, SCARA	; Precision of					
robot movements	- Accuracy, Resolution, Repeatability- specifications - Pitch, yaw	w, Roll, Joint					
Notations, Speed o	f Motion, Pay Load.						
Automation: Basi	c elements of an automated system - Level of automation; Computer p	process control					
- Control requirements, Forms of computer process control. Material handling applications through							
industrial robotics (Brief overview at introduction level): Material transfers - Machine loading and							
unloading.							
UNIT II	SENSORS AND ACTUATORS	9					
Sensors: Sensor characteristics, Types of sensors - Tactile sensors, Touch sensors; Position sensors -							
Potentiometer, En	coder, LVDT, Resolvers; Proximity sensors - Magnetic, Optica	al, Ultrasonic,					
Inductive, Capacit	ive, Eddy current; Speed sensors - Velocity/motion sensors; Force	e/Pressure and					
torque sensors.	1215 + 12/2/						
Actuators: Mecha	nical Actuation System – Cams, Gear trains, Ratchet and Pawl, Belt an	d chain drives,					
Bearings; Electrica	al Actuation System- Electrical systems, Solid State Switches, Soler	noids, Stepper					
motors; Introduction	on to Hydraulic and Pneumatic Systems, Directional Control valves,	Flow control					
valves, End Effecto	ors.						
UNIT III	ROBOT MOTION ANALYSIS AND CONTROL	9					
Overview on contr	oller and its types - PI, PD, PID; Manipulator kinematics - Position	representation					
and orientation – F	Forward, Reverse and Homogeneous transformation – Kinematic equat	ions – Solving					
Inverse kinematic	equations; Overview on Manipulator path control - Slew, Joint in	terpolated and					
Straightline motion	n; Differential motions – Jacobian; Robot dynamics – Static analysis	s – Robot arm					
dynamics - Newton	n-Euler method – Euler-Lagrangian formulation; Force control – Tasks	, Strategies.					
UNIT IV	ROBOTIC VISION AND INDUSTRIAL AUTOMATION	9					
Architecture and c	omponents of robotic vision systems - Image acquisition and represent	ntation, Stereo					
vision – Image his	stograms - Spatial operations - Smoothing - Segmentation - Object	t descriptors –					
Object Recognition	h.						
Analysis of Auton	nated Flow Lines: General Terminology and Analysis, Analysis of	Fransfer Lines					
without Storage, Pa	artial Automation, Automated Flow Lines with Storage Buffers.						
UNIT V	AUTOMATION IN INDUSTRIAL APPLICATIONS	9					

Flexible Manufacturing Systems – Components, Planning and implementation issues, Benefits and applications; Automated Storage Retrieval Systems (ASRS) – types, components and operating features; Automated processing/machining – Transfer lines; Automatic assembly – System configuration, parts delivery, applications; Automatic inspection – types, procedure, accuracy; Material Handling-palletizing and depalletizing.

	TOTAL: 45 PERIODS							
	TEXT BOOKS							
1.	Mikell P. Groover, Mitchell Weiss, Roger N. Nagel and Nicholas G. Odrey, 'Industrial							
	Robotics', Tata Mc Graw Hill, 2010.							
2.	Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB',							
	Springer International publishing AG, 2017.							
3.	Mittal R K, Nagrath I J, 'Robotics and control', Tata McGraw Hill, 2010.							
	REFERENCE BOOKS							
1.	Ganesh.S.Hedge,'A textbook of Industrial Robotics', Lakshmi Publications, 2006.							
2.	Fu. K. S., Gonzalez. R. C. & Lee C.S.G., 'Robotics control, sensing, vision and							
	intelligence', McGraw Hill Book co, 1987.							
3.	Saeed B. Niku, 'An Introduction to Robotics: Analysis, systems and applications',							
	Pearson Education, 2009.							
4.	Richard D Klafter, and Michael Negin, 'Robotics Engineering', Prentice Hall, 2009.							
5.	John.J. Craig, 'Introduction to Robotics: Mechanics and control', Pearson Education,							
	2009.							
	X A Z							

Upon the suc	ccessful c	complet	tion of	the cou	COU rse, the	RSE Ce studer	DUTCC nts will	DMES be able	e to		E			
COs		13	2		S	STATE	MENT	rs	5	1	20/	11	RB LEV	ST YEL
1	Catego	orize ro	bots a	nd auto	omatic	on base	d on v	arious	aspect	S	2/		2	2
2 Identify appropriate sensors, robot actuators, end effectors for certain applications						3	3							
3	Solve manip	the bulator	asic n path co	nanipu ontrol	lator 1	kinema	atics, 1	robot	dynam	nics an	d sketo	ch the	3	3
4	Design appropriate vision system for certain robotic applications					3	3							
5 Acquire knowledge on robotics for certain automation in industry					3	3								
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6														
				COUI	RSE A	RTICU	JLATI	ON MA	ATRIX					
COs						P	Os						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3									2	3	3
2	3	3	3	2		2	2					2	3	3
3	3	3	3			2	2					2	3	3
4	3	3	3	2		2	2					2	3	3
5	3	3	3			2	2					2	3	3

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

EE220	70 DESIGN THINKING LABORATORY	LT P C						
-		0042						
COURS	SE OBJECTIVES							
	• Instill the foundational principles of design thinking.							
	• Cultivate students into adept designers, fostering creativity and honing their proble	m-solving						
	skills.							
	• Conceive, conceptualize, and demonstrate innovative ideas through the develop presentation of prototypes.	ment and						
The cou opportur society.	urse will use a combination of lectures and hands-on project work. The project we nity to come up with an innovative engineering solution to problems or challenges partic	ill give an cular to our						
	LIST OF EXPERIMENTS							
1	Introduction to Design Thinking, Significance of Design Thinking, Key Tenets	of Design						
	Thinking Design Thinking Process- 4 Critical Questions and human centered design t	hinking.						
2	Identifying societal problems using indirect and qualitative research.							
3 Forming teams and assignments of major societal problems and arriving at sound								
hypotheses, and solution using brainstorming sessions. Societal problems								
management, energy sources, basic amenities (health, education, food, clean water								
	connectivity etc), organic farming, livelihood etc. will be assigned as projects.							
4	4 Developing a prototype that allows for meaningful feedback in a real-world environment.							
5	Concept of Prototyping, Scenario prototype, Low fidelity and high fidelity							
6	Introduction to Test, 5 Guidelines for Conducting a Test, The End Goal: Desirable, F	easible and						
	Viable Solutions, Role of Evaluative Research in Test Phase Usability Test Heuristic	Evaluation						
	Test your Prototype	111						
7	Presenting the developed prototype in front of a technically qualified audience. Eval	luation will						
	be done as per following details.							
	IOIAL PE	KIODS:00						
1								
1.	Pavan Soni (2020), Design Your Thinking: The Mindsets, Toolsets, and Skill Sets fo	r Creative						
2	Problem-solving, Penguin Random House India Private Limited							
2.	Publishing 2010	fint, AVA						
	REFERENCE BOOKS							
1	Christian Müller Boterberg, "Handbook of Design Thinking", Kindle Direct Publishing I	SBN: 078						
1.	1790435371 November 2018	JDIN. 770-						
2.	Tim Brown Change by Design: How Design Thinking Transforms Organizations an	d Inspires						
	Innovation. Harper Collins Publishers Ltd.	u mopiles						
3.	IdrisMootee, Design Thinking for Strategic Innovation.2013. John Wiley & Sons Inc							
4.	Roger Martin (2009), The Design of Business. Harvard Business Review Press							
5.	Devvani Lal Design Thinking- Bevond the sticky Notes. Sage.							
	,							

					COU	URSE (OUTCO	OMES						
Upon the su	iccessful	complet	tion of	the cou	urse, th	e studer	nts will	be able	e to					
COs						STATI	EMEN	ГS					R	BT
							LE	VEL						
1 Demonstrate the critical theories of design, systems thinking, and design methodologies							4							
2	Create	effect	ive so	lutions	for gi	ven pro	oblems							б
3	Make	prototy	pes o	f a mo	del / co	oncept	techni	cally.						4
4	4 Work as a team member or lead interdisciplinary engineering teams.						4							
5	Demonstrate the product prototype to technically qualified audience.							4						
Bloom's Ta	axonomy	(RBT)	Level	: Reme	mber-1	l; Unde	rstand-2	2; App	ly-3; A	nalyze	-4; Evalu	ate-5; Ci	reate-6	
			1.	COU	RSE A	RTICU	JLATI	ON M	ATRIX	K)	1			
COs		/	5	1		F	POs		1	X	/		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		1h	1	Ĩ.		1		1	3	3	3	3	3	3
2		A	1	7.0	1	1	10	2	3	3	3	3	3	3
3		\leq		. h.	1	100			3	3	3	3	3	3
4		7		2.2			1	11	3	3	3	3	3	3

	- Continues		provide a second s	1 (m)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4	Z	3.2		3	3	3
5	LL	57.		3	3	3
3- High Mapping	g; 2-Moderate I	Mapping; 1-Low	Mapping	-	1	20
			12 E		1	51
	10	13	100	1	0	1
		and the	V.	1	6/	/
		1 de	TT TTAT	de	/	
			1 451 4	-		

VALUE ADDED COURSES

VD22601	INDUSTRIAL APPLICATIONS OF MICROCONTROLLERS	L T P C						
		1 0 2 2						
COURSE O	BJECTIVES							
•	To gain knowledge on automation in industries using microcontrollers.							
•	To impart the microcontroller configuration and development.							
•	To introduce sensor interfacing and data acquisition.							
•	To impart actuator control and system integration.							
•	To provide knowledge on communication and networking in industrial applications.							
UNIT I	INTRODUCTION TO INDUSTRIAL AUTOMATION AND	9						
	MICROCONTROLLERS							
Definition a	and scope of industrial automation - Importance of automation in modern i	ndustries –						
Introduction	to microcontrollers and their features - advantages of using microcontrollers i	n industrial						
automation	- comparison with other control systems (PLCs, PCs) - Common industrial com	nmunication						
protocols (N	Modbus, Profibus, Ethernet/IP) - Criteria for selecting microcontrollers based on	application						
requirement	s - considerations for performance, power consumption, cost and scalability - Mic	rocontroller						
families suit	able for industrial automation (ARM Cortex-M, PIC, AVR)							
UNIT II	MICROCONTROLLER CONFIGUTARION AND DEVELOPMENT	9						
Integrated	Development Environments (IDE) for microcontroller programming - Insta	llation and						
configuratio	configuration of compiler toolchains, debuggers, and programmer tools - selection of development boards							
and hardwa	and hardware platforms for microcontroller projects - Interfacing microcontroller with industrial							
communicat	tion networks - Testing and debugging communication interfaces for relia	ability and						
compatibilit	y - Introduction to Real Time Operating Systems (RTOS) and their characteristic	ics – Using						
RTOS in r	nicrocontroller based industrial automation - Implementation of task schedulin	ng, priority						
managemen	t and synchronization in RTOS – based applications.							
UNIT III	SENSOR INTERFACING AND DATA ACQUISITION	9						
Sensor in in	ndustrial applications (temperature, pressure, level, flow, etc.) – Analog and dis	gital sensor						
interfacing t	echniques – signal conditioning and filtering for accurate sensor readings – ADC to	echniques –						
configuratio	n of ADC modules in microcontrollers - calibration and linearization technique	es for ADC						
measuremen	nts – Calibration in sensor measurements – techniques for sensor calibration and co	mpensation						
– signal con	ditioning methods for improving signal quality and accuracy.							
UNIT IV	ACTUATOR CONTROL AND SYSTEM INTEGRATION	9						
Actuators u	sed in industrial automation (motors, values, relays etc.) – pulse width modulat	ion (PWM)						
techniques f	or actuator control – Implementation of motor control algorithms for speed and posi	tion control						
– Interfacin	g actuators with microcontrollers for seamless integration into control systems	s – Design						
consideratio	ns for reliability, safety and efficiency – Testing and validation of actuator control	systems in						
industrial en	wironments.							
UNIT V	COMMUNICATION AND NETWORKING IN INDUSTRIAL APPLICATIONS	9						
Serial comr	nunication protocols used in industrial applications (RS-232, RS-485) – Config	uration and						
implementa	tion of serial communication interfaces in microcontrollers – error detection and	l correction						

techniques for reliable data transmission – Introduction to Ethernet communication in industrial environments – Configuration of Ethernet interfaces in microcontrollers – Implementation of TCP/IP networking for data exchange and remote monitoring/control – wireless communication technologies used in industrial automation (Wi-Fi, Bluetooth, Zigbee) Integration of wireless modules into microcontroller based systems – security, reliability and range in wireless communication.

TOTAL PERIODS: 45

	TEXT BOOKS							
1.	Jonathan W. Valvano, 'Embedded Systems: Real-Time Interfacing to ARM Cortex-M							
	Microcontrollers', 2013, 5 th Edition.							
2.	Brain Amos, Jim Yuill, Penn Linder, 'Hands-On RTOS with Microcontrollers: Create high-							
	performance, real-time embedded systems using Free RTOS, STM32 MCUs and SEGGER							
	debug tools', 2024, Packt Publishing, 2 nd Edition.							
REFERENCE BOOKS								
1.	Brain Amos, Hands-On RTOS with Microcontrollers: Building real-time embedded systems							
	using FreeRTOS, STM32 MCUs, and SEGGER debug tools, 2020, Packt Publishing.							
2.	Arun Kumar, 'Medicine Manufacturing Industry Automation Using Microcontroller', 2013							
	Lambert Publications.							
3.	Olushola AkandeOlushola Akande, 'Industrial Automation from Scratch: A hands-on guide							
	to using sensors, actuators, PLCs, HMIs, and SCADA to automate industrial processes', 2023							
	Packt Publishing.							
	Y A (K) A E							

COs	STATEMENTS	RBT LEVEL
1	Analyze the concept of automation in industries using microcontrollers.	4
2	Analyze the microcontroller configuration and developments.	4
3	Analyze the sensor interfacing and data acquisitions.	4
4	Examine the actuator control and system integration in industrial automation.	4
5	Investigate the concept of communication and networking in industrial applications.	4
Bloom's T	Caxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cre	ate-6

COs	POs											PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	3	3	2	2				1		2		3	2	3
2	3	3	2	3				1		2		3	2	3
3	3	3	2	3				1		2		3	2	3
4	3	3	2	3				1		2		3	2	3
5	3	3	2	3				1		2		3	2	3

VD22602	NANO-DEVICE MANUFACTURING	L T P C
		1022
COURSE O	BJECTIVES	
Train tl	he students on semiconductor process technology and microfabrication	
Demon	strate various synthesis methods of nanostructures	
Charac	terize the nanostructures	
Hands-	on training on nanostructure synthesis	
Hands-	on training on characterization of nanostructures	
UNIT I	SEMICONDUCTOR PROCESSING AND MICROFABRICATION	9
Introduction	n to semiconductor processing - Necessity for a clean room- different types of c	lean rooms-
Structure ar	nd requirements of a clean room- Safety issues, flammable and toxic hazards, b	oiohazards –
Microfabric	ation process flow diagram.	
Experimen	t: RCA cleaning, coating of photoresists, patterning, etching, inspection - Process i	integration –
Etching tech	nniques– Wet and Dry Etching– Reactive Ion etching.	
UNIT II	GENERAL METHODS OF PREPARATION	9
Preparation	of nanoscale materials: Spray Pyrolysis, Co-Precipitation, Sol-gel, Mechani	cal Milling,
Preparation	of thin films: Electroplating, MOCVD, Plasma CVD, Molecular Beam Epitaxy, A	tomic Layer
Epitaxy and	Pulsed layer deposition.	
Experimen	t: Sputtering, Evaporation.	
UNIT III	CHARACTERIZATION TECHNIQUES	9
Nano-proce	ssing systems – Nano measuring systems – characterization – analytical imaging	techniques,
X–ray diffr	raction technique, Scanning Electron Microscopy, confocal LASER scanning	microscopy,
transmission	n electron microscopy, scanning tunneling microscopy, atomic force microsco	opy, Raman
spectroscop	y, 3D surface analysis – Mechanical, Magnetic and thermal properties – Nano	positioning
systems.	Val T S	
Experimen	t: DLS, Electrical probe station.	
UNIT IV	VACCUM TECHNOLOGY	9
Vacuum te	chnology, Hands-on training and Demonstration on DC and RF Sputterin	g, Thermal
Evaporation	्या परा क्य	
Experimen	t: Fabrication of two terminal solar devices.	
UNIT V	DEVICE FABRICATION	9
Hands-on tr	raining and Demonstration on Photolithography, Spin coating, Atomic layer depo	osition, UV-
visible spec	troscopy, and Device structure case study.	
Experimen	t: Three terminal solar devices, TFD Fabrication, Photo detector.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	T. Pradeep, Nano: The Essentials understanding Nanoscience and Nanotechn	ology, Tata
	McGraw Hill Education, 2007.	
2.	Madou Marc J, 'Fundamentals of Microfabrication', CRC Press, New York, 1997.	
	REFERENCE BOOKS	
1.	A S Edelstein and R C Cammarata, Nanomaterials Synthesis, Properties and A	Applications.

	IOP Publishing Ltd 1996.							
2.	Frank J. Owens and Charles P.Poole, The Physics and Chemistry of Nano Solids,							
	WileyInterscience, 2008							
3.	Guozhong Cao, Nanostructures and Nanomaterials: Synthesis, Properties and applications,							
	2011.							
4.	Charles P Poole, Frank J Owens, Introduction to Nano technology, John Wiley and Sons,							
	2003							
5.	Mark Madou, Fundamentals of Microfabrication, CRC Press, New York, 1997.							

COURSE OUTCOMES	COURSE	OUTCOMES
-----------------	--------	----------

Upon the s	uccessful	complet	tion of	the cou	rse, the	e studen	ts will	be able	to					
СО					5	STATE	MENT	S					RB LEV	T EL
1	Understand various semiconductor process technology and microfabrication methods										2	ł		
2	Synthesis nanostructures using variety of semiconductor technology for a given application											;		
3	Characterize any specific nanostructure structurally, electrically and by imaging										4	ł		
4	Technically trained in the cleanroom protocol, vacuum technology, and physical deposition										4			
5	Microfabricate any nano device and electrically characterize								4	ŀ				
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1;	; Under	stand-2	; Appl	y-3; An	alyze-4	; Evalua	te-5; Cre	eate-6	
		15	1	COUI	RSE AI	RTICU	LATI	ON MA	ATRIX	-1	21			
СО		1=	1	_		Р	0	/			51		PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	3	3	1	3	1	1	3	2	3	3	3	3
2	3	2	3	3	2	3	1	1	3	2	3	3	3	3
3	3	2	3	3	2	3	1	1	3	2	3	3	3	3
4	3	2	3	3	2	3	171	610	3	2	3	3	3	3
5	3	1	3	2	1	3	1	1	3	2	3	3	3	3
3- High Ma	apping; 2-1	Modera	te Map	ping; 1	-Low N	Mapping	g			1	1	1	1	

VD22603	MODELING AND SIMULATION OF ELECTRICAL SYSTEMS	L T P C					
		1022					
COURSE O	BJECTIVES						
• Dev	relop mathematical models for electrical and electronics components and si	mulate for					
pert	formance evaluation.						
Analyze the simulation results of developed electrical circuits and systems							
UNIT I	SIMULATION OF SEMICONDUCTOR DEVICES	9					
Fundamenta	ls of MATLAB coding for Electrical Stream - Fundamentals of SIMULINK for	or Electrical					
Stream -Sim	ulation of Diode, Zener diode, BJT, FET/MOSFET - Simulation of Single phas	e half-wave					
and full-way	re rectifiers.	ſ					
UNIT II	ANALOG CIRCUITS AND DIGITAL CIRCUITS	9					
Applications	s of Operational Amplifier - inverting & non-inverting amplifier and Adder - O	Comparator,					
Integrator and	nd Differentiator - Simulation of Applications of Operational Amplifier - Stead	ly State and					
Transient A	nalysis of DC and AC Circuits.						
UNIT III	SENSORS, INSTRUMENTATION AND CONTROL SYSTEMS	9					
Simulation	of Transducers and its Applications - Simulation of ADC/DAC - H	ands-on in					
instrumentation and its applications - Time Domain Analysis of First Order and Second Order Systems							
- Frequency	- Frequency Domain Analysis using Root Locus, Bode Plot, Polar Plot and Nyquist Plot - Hand-on in						
simulation of basic control systems.							
UNIT IV	ELECTRICAL MACHINES	9					
Performance	Evaluation and Simulation of DC Generators and DC Motors - Simulation of p	berformance					
of DC mach	ines - Performance Evaluation and Simulation of AC motors, alternators and tra	insformers -					
Simulation of	of performance of AC machines.						
UNIT V	POWER SYSTEMS	9					
Transmissio	n Line Parameters Evaluation - Modeling and performance analysis of transmis	ssion lines -					
Hands-on in	performance evaluation of transmission lines - Power flow analysis using C	auss-Seidal					
method – Fa	ult analysis using Thevenin's method – Simulation of power flow and fault anal	ysis.					
	TOTAL H	HOURS: 45					
	TEXT BOOKS						
1	Millman J, Christos C Halkias, SatyabatraJit, 'Electronic devices and cir	cuits', Tata					
2	M. Gopal. 'Modern control system Theory' New Age International. 2005						
	REFERENCE BOOKS						
1	RamakantA.Gayakward, 'Op-amps and Linear Integrated Circuits', Pearson	Education,					
	2003 / PHI. 2000, 4 th Edition.						
2	S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, G	Control and					
	Automation', Jaico Publishing House, 2013						
3	Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt.	Ltd., New					
A	Delhi, 21st reprint, 2010.	th 2002 2rd					
4	Edition	III, 2003, 3 rd					
5	A F Fitzgerald Charles Kingsley Stenhen D.Umans 'Flectric Machin	nerv' Tata					
	McGraw Hill publishing Company Ltd, 2003	iery, raid					

					COU	RSE C	OUTCO	OMES							
Upon the suc	ccessful	comple	tion of	the cou	rse, the	studen	ts will	be able	to						
COs					8	STATE	MENI	ľS						ST VFI	
1	Expert	tise in 1	the ava	ailable	simula	tion so	oftware	nacka	σρς				3		
2	Daval				icol on	d alage	ronios	oomno	nonta						
2	Develop models for electrical and electronics components														
3	Develop models for electrical circuits and systems									4					
4	Simula	ate for	perfor	mance	evalua	tion of	f mode	eled cor	npone	nts			4		
5	Analy	ze the s	simula	tion re	sults of	f imple	emente	d circu	its and	l syster	ms		4	Ļ	
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1;	; Under	stand-2	2; Apply	-3; Ar	alyze-4	; Evalua	te-5; Cro	eate-6		
				COU	RSE AI	RTICU	LATI	ON MA	TRIX						
COs			- 2	1	D	C P	Os	EG	10				PS	Os	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	2	2		3	2	2	2			3	3	
2	3	3	3	2	2		Nec.	2	2	2	10		3	3	
3	3	3	3	3	2	-	-	2	2	2	21		3	3	
4	3	3	3	3	2	1	0	2	2	2	01		3	3	
5	3	3	3	3	2	1		2	2	2	5		3	3	
3- High Map	ping; 2-1	Modera	ite Map	ping; 1	-Low N	Mappin	g	71	-	-	1777				
		NE	C PAS	10/2	100		IN L	100/100/	AL AL	0	ERIA				

VD22604	ELECTRIC VEHICLE DESIGN	L T P C					
		1 0 2 2					
COURSE OI	BJECTIVES						
• To i	ntroduce the architecture and design of electric vehicle components.						
• To model and simulate continuous and discrete systems.							
• To i	mpart the knowledge on the design of drive train, motors, controllers, battery.						
• Learn to model and analyze direct current (dc) power electronic systems.							
UNIT I	ARCHITECTURE DESIGN AND VEHICLE DYNAMICS	9					
Types of Ele	ectric Vehicle and components - Battery Electric vehicle (BEV) - Hybrid electric ve	hicle (HEV)					
- Plug-in hył	orid vehicle (PHEV) -Fuel cell electric vehicle (FCEV)						
Vehicle body	y modeling: Friction, wind, and terrain effects - Sensing physical quantities						
UNIT II	PHYSICAL MODELING OF CONTINUOUS AND DISCRETE SYSTEMS	9					
Modeling Continuous Systems: Model and simulate continuous systems in Simulink Continuous states - DC							
motor system - Continuous transfer functions and state-space systems							
Modeling Discrete Systems Model: Discrete signals and states - PI controller system - Discrete transfer							
functions and state-space systems							
UNIT III	MODELING AND CONTROL OF DC MOTOR	9					
Selection an	d sizing of motor for EV- Speed and Torque calculation of motor - Motor G	Controllers -					
Component	sizing - Function of control unit - Current control in DC motors • Speed Control in I	DC motors					
UNIT IV	MODELING OF POWER ELECTRONIC SYSTEMS	9					
Modeling a	boost converter for EV - Measuring physical quantities - Implementing closed-	loop voltage					
control - Lin	earizing power electronic converters - Tuning the controller -Modeling a three-pha	ise inverter -					
Measuring th	nree-phase physical quantities						
UNIT V	CASE STUDY	9					
Design case	study on 2wheeler, 3wheeler and 4wheeler EV system.						
	TOTAL PEI	RIODS: 45					
	REFERENCE BOOKS						
1.	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, 'Modern Electric, Hybr	id Electric					
	and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2018, 3rd	^E dition.					
2.	Iqbal Hussein, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC Press,	2021, 3 rd					
	Edition.						
3.	James Larminie, John Lowry, 'Electric Vehicle Technology Explained', W	iley, 2012,					
	2 nd Edition.						

					COU	RSE O	UTCO	MES						
Upon the suc	ccessful c	completi	ion of t	the cour	rse, the	studen	ts will l	be able	e to					
COs					S	TATE	MENT	S					RF	BT
											LEV	EL		
1	Select and design the architecture of Electric Vehicle considering vehicle dynamics.											4	ŀ	
2	Model and simulate continuous and discrete physical systems.										4			
3	Model the motors for electric vehicles and implement the speed control techniques.											4		
4	Design controller for power electronic converters in EV.											5		
5	Determine the Electric Vehicles sizing and requirements.									3				
Bloom's Ta	xonomy	(RBT)	Level:	Remen	nber-1;	Under	stand-2	; Appl	y-3; An	alyze-4	; Evalua	te-5; Cre	eate-6	
			1	COUR	RSE AH	RTICU	LATIC	ON MA	ATRIX					
COs			/	NO	/	P	Os	-	S	10	2		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	3	3	3	2	3	2	2	1	2	2	10	3	3	
2	3	3	3	2	3	2	2	. 1	2	2	21	3	3	
3	3	3	3	2	3	2	2	14	2	2	01	3	3	
4	3	3	3	2	3	2	2	51	2	2	5	3	3	
5	3	3	3	2	3	2	2	71	2	2		3	3	

tants

5

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

125 State

VD22605	ELECTRONIC CIRCUITS DESIGN AND PCB FABRICATION	LTP C				
		10 2 2				
COURSE O	BJECTIVES	·				
•	To understand the concept of multistage amplifier and feedback amplifiers.					
•	To design and analyze of power amplifiers.					
•	To design and analysis of LC and RC oscillators, multivibrators.					
•	To design a schematic of electronic circuit and to design PCB layout.					
UNIT I	MULTISTAGE AND FEEDBACK AMPLIFIERS	9				
Need of Cas	cading, evaluation of Ri, Ro, Ai, Av, Types of coupling, RC coupled, Transformer c	oupled, Direct				
coupled amp	plifier. Design of two-stage RC coupled amplifier with and without feedback and l	Direct coupled				
amplifier. N	eed and advantages of negative feedback amplifier, types of negative feedback ampl	ifiers, study of				
Emitter follo	ower and Darlington amplifier with bootstrapping principle.					
UNIT II	POWER AMPLIFIERS					
Need of Po	wer amplifier, Classification of power amplifier, Power considerations, Calculation	of 2nd order				
Harmonic us	sing Three-point method, Analysis & Design of Class A single-ended transformer-cou	pled amplifier,				
Class B am	plifier & class B push-pull amplifier, Cross over distortion, and methods to elimin	ate cross over				
distortion, co	omplimentary symmetry amplifier.					
UNIT III	OSCILLATORS AND MULTIVIBRATORS	9				
Barkhausen'	s criteria, Frequency and amplitude stability, classification of the oscillator, RC Oscil	lators: analysis				
and design	of RC phase shift, Wein bridge using BJT, Colpitts and Hartley oscillator using	BJT, Crystal				
oscillator. C	lassification of Multivibrator, analysis, and design of bistable, monostable & astable m	ultivibrator.				
UNIT IV	INTRODUCTION TO PCB DESIGNING	9				
History of F	rinted Circuit Boards. Various types of Printed Circuit Boards-Single Sided Boards,	Double Sided				
Plated throu	gh Hole Boards, multilayer Boards. Study of Packages of Electronic Components. S	Study of SMD				
Components	. Process of PCB design and product development flow.					
UNIT V	PRINTED CIRCUIT BOARD DESIGN	9				
Rules for si	ngleand DoubleSided Board. Schematic diagram Entry in PCB Design tool/S/W. L	ayout Design,				
Routing met	hods. Guideline for Artwork Generation. Generation of various Manufacturing Docu	ments/ Output				
file generation	on. Component Library management in PCB Design tool.					
	ΤΟΤΑΙ	PERIODS:45				
	्रह्म गुरा दूध					

TEXT BOOKS						
1.	Sedra and Smith, 'Micro Electronic Circuits'; Oxford University Press, 2011, 6 th Edition.					
2.	Muhammad H. Rashid, "Power Electronics: Circuits, Devices & Applications", Pearson					
	Education / PHI, 2014, 4 th Edition.					
REFERENCE BOOKS						
1.	T.H.O'Dell, Electronic Cicuit Design, Art and Practice, Cambridge university press,1992, 1st					
	Edition.					
2.	Paul Horowitz, Winfield Hill, "The Art of Electronics" Cambridge university press, 2015,					
	3 rd Edition.					
3.	Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", Pearson					
	Education / PHI, 2008, 10 th Edition.					
4.	David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 2008, 5 th Edition.					

	COURSEOUTCOMES								
Upon the successful completion of the course, the students will be able to									
COs	STATEMENTS								
1	Analyze the concepts of multistage and feedback amplifiers.	3							
2	Analyze and design various Power amplifier circuits.	6							
3	Investigate and design Oscillators and Multivibrator circuits	6							
4	Acquire the basic level knowledge and will understand the packages of Electronic components, types of PCBs and history of PCBs.	2							
5	Understand the rules before PCB Designing, the flow of computer aided design packages and will Acquire the importance of manufacturing documents.	6							
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6									

COs	POs													PSOs	
-	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	2	2	1	1	Či.		3	3	3		
2	3	3	3	3	2	2	1	1	1	1	3	3	3		
3	3	3	3	3	2	2	1	1	1	-1	3	3	3		
4	3	3	3	3	3	2	1	1	UL,	_1	3	3	3		
5	3	3	3	3	3	2	1	1	1	1	3	3	3		
3- High Ma	pping;	2-Mode	erate N	Iappin	g; 1-Lo	ow Ma	pping	8		1:	SI	I		1	
		1	Se !	12		1	Ĩ		-	5	1				

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping त्मुड विद्या

VD22606 DESIGN AND FABRICATION OF PHOTOVOLTAIC SYSTEM	LTPC							
1	1022							
COURSE OBJECTIVES								
• Insights into the structure, materials and operation of solar cells, PV modules, and arrays.								
• Fabricate thin film solar cell and characterize electrically.								
Simulate and model emerging PV technologies for various applications								
• Design a standalone and grid-connected PV systems								
• Design a PV system for a particular commercial application.								
UNIT I INTRODUCTION TO SOLAR CELL	9							
Overview of Global Scenario in Renewable Energy, semiconductors and P-N junctions - behavior	or of solar							
cells – Properties – PV cell interconnection.								
UNIT II PV CELL FABRICATION AND CHARACTERIZATION	9							
Simulation: Software tools for solar cell design – designing of single junction and multijunction	solar cell-							
efficiency calculation.								
Device fabrication: Substrate and material selection, Deposition Methods, Metal Patter	ning and							
Characterization of solar cell.								
Experiments:								
1. Simulation of single and multi-junction solar cell								
2. I-V characteristics of Solar cell	-							
UNIT III PV COMMERCIAL AND EMERGING TECHNOLOGY	9							
Overview of commercial technologies - Crystalline Si (c-Si), Thin film PV, CdTe and CIGS-	Emerging							
Technologies: Organic PV (OPV), Perovskites, CZTS								
Experiment:								
1. Simulation and modeling of CdTe based thin film solar cell and Seminar presentation								
UNIT IV PV SYSTEM DESIGN	9							
Designing of standalone PV system- Block diagram of PV system- Buck boost converter- Inverter	r selection							
- Battery sizing - Array sizing - Grid connected PV systems and issues								
Experiment:								
1. Design a PV system for residential load.								
UNIT V PV APPLICATIONS	9							
Water pumping – battery chargers – Electric Vehicle – Space applications – Solar farm.								
Experiment:								
1. Design a PV system for commercial applications.								
TOTAL PER	IODS: 45							
TEXT BOOKS								
1. Chetan Singh Solanki., Solar Photovoltaic: 'Fundamentals, Technologies and App	lication',							
PHI Learning Pvt., Ltd., 2009.								
2. A.K.Mukerjee and Nivedita Thakur, 'Photovoltaic Systems: Analysis and Design	gn', PHI							
Learning Private Limited, New Delhi, 2011.								
REFERENCES								
1. Photovoltaics: Fundamentals, Technology and Practice. Konrad Mertens, Wiley, 2	2019, 2 ^{na}							
Edition.								
2. Roger A Messenger and Jerry Ventre, "Photovoltaic Systems Engineering", C	KCPress,							

	Taylor & Francis Group, 2004, 2 nd Edition.											
3.	Eduardo Lorenzo G. Araujo, Solar electricity engineering of photovoltaic systems, Progensa,											
	1994.											
4.	Stuart R.Wenham, Martin A.Green, Muriel E. Watt and Richard Corkish, Applied											
	Photovoltaics, 2007, Earthscan, UK.											

					COU	RSE O	UTCO	MES						
Upon the s	uccessful c	completi	ion of	the cou	rse, the	studen	ts will	be able	to				1	
COs	STATEMENTS												RBT LEVEL	
1	Analyz	Analyze PV devices and systems based on semiconductor physics												4
2	Experi electric	Experimentally design and fabricate a thin film solar cell and measure the electrical parameters.												
3	Mathematically model a thin film solar cell and simulate its electrical parameters.												4	
4	Design of solar PV system based on a given load.												4	
5	Mathe	Mathematically model and analyze a PV system for commercial load												4
Bloom's T	`axonomy	(RBT)	Level:	Remer	nber-1;	Under	stand-2	; Apply	y-3; An	alyze-4	; Evalua	te-5; Cre	eate-6	
		IF	1	COUF	RSE AI	RTICU	LATIO)N MA	TRIX	1	21			
COs		V	1		1	P	Os	-/-		1	0	8	PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	11	2	3	2			ITT			3
2	3	3	3	3	3		3	3	3	3	m			3
3	3	3	3	3	3	-	3	3	3	3	201	3		3
4	3	3	3	3	3	3	3	3	3	3	5/			3
5	3	3	3	3	3	3	3	3	3	3	/			3
3- High Ma	apping; 2-N	Moderat	e Map	ping; 1	-Low N	Aapping	g	1	13	m /				
L				~	वैद्य	7 τ	য	40	101	/				
VD22607	SMART GRID CYBERSECURITY	L T P C												
---	---	---------------------------------------	--	--	--	--	--	--						
		1 0 2 2												
COURSE OI	BJECTIVES													
•]	Learn the smart grid communications and power system contingency.													
•	Understand about Power System Resilience metrics, event modelling for analysis ar	nd system												
1	recovery.													
• ′	To impart a knowledge on smart grid security challenges and data protection.													
• ′	To get familiarized with Smart grid threats, Risk Assessment and emerging	solution												
1	techniques.													
•	Introduce solution for physical attack and solution for secure communication.													
UNIT I	BASIC CONCEPTS	9												
Smart Grid	communication, physical and network, introduction to SCADA, MTU, HMI, PL	Cs, RTU,												
Physical con	nmunications and protocols, Power system observability, bad data detection and iden	ntification,												
Introduction	to power system contingency.	,												
Experiment														
Programmin	$\frac{1}{2}$ on Bad data detection and identification in power system state estimation wit	h network												
parameters u	ncertainty on simple power network.													
UNIT II	POWER SYSTEM RESILIENCE METRICS	9												
Contingency	Vs resiliency analysis: need of resiliency, Elements of Power System Resilience, 1	metrics for												
system resiliency, Extreme events modelling, Weather-related events, enhancing power system resiliency.														
<u>Experiment</u>	<u>.</u> I Modelling of nowar system resilience metrics for smart and energianel and infrast	ni oti mo												
	SMART CRID SECURITY CHALLENCES	o												
Security Go	als and Challenges in Smart Grid Implementation Importance of security Classifica	tion of the												
threats. Secu	urity Analytics for AMI, SCADA and EMS Modules. Smart Grid Security and I	Privacy of												
Customer-Si	de Networks, Protection against False Data Injection (FDI) Attacks, SecureCommun	ications in												
Smart Grid.														
Experiment														
Modelling an	nd Simulations of detected FDI attacks in the control room to secure power system us	ing simple												
power netwo	ork.	0												
UNIT IV	SMART GRID THREAT AND CROSS-DOMAIN RISK	9 a mathada												
Smart Grid	as for the smart grid security	g methods												
Experiment	•													
Analysis, mo	$\frac{1}{2}$													
UNIT V	SMART GRID RESILIENCY AND CYBER ATTACK	9												
Types of ph	ysical attack on smart grid devices, Hardware security modules, Analytics for S	mart Grid												
Security and	Resiliency, Cyber security solutions for control and monitoring system, Control	rol centric												
security tool	S.													
Experiment														
Resilience ei	hancements using tie-lines and DGs to help to recovery test system after the system	was struck												
and damaged	by any natural calamities of cyber-attacks.	OUDS: 45												
	TEXT BOOKS	JUND: 45												
1.	Security and Resiliency Analytics for Smart Grids, Al-Shaer, Ehab, Rahman and Ma	ohammad												
	Ashigur Springer Intr. 2016. 1 st Edition													
2	Smart Grid Security S Goel V Hong V Papakonstantinou D Kloza Springe	er-Verlag												
2.	Share She Security, S. Soci, T. Hong, T. Lapakonstantinou, D. Kioza, Springe	, , , , , , , , , , , , , , , , , , ,												

	2015, 1 st Edition							
REFERENCE BOOKS								
1.	Security and Privacy in Smart Grid, A. Abdallah and X. Shen, Springer Intr., 2018,							
	1 st Edition.							
2.	Smart grids security challenges: Classification by sources of threat, Abdul Rahaman, Journal							
	of Electrical Systems and Information Technology, 2018.							
3.	Power System State Estimation: Theory and Implementation, A. Abur and A. G. Exposito,							
	CRC Press, 2004, 1 st Edition.							
4.	Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer							
	Engineers, Roy D. Yates, David J. Goodman, Wiley, 2014, 3rdEdition.							

COs	STATEMENTS											RE LEV	BT VEL	
1	Understand the smart grid communication protocols and power system contingency											ystem	3	5
2	Acquir comm	Acquire knowledge about important technical threat categories, communication protocols, and resilient smart grid systems.										gories,	3	5
3	Impler develo	Implement risk management, operational security, and a secure Smart Grid development process.										4		
4	Assess	static	and dy	namic	securi	ty ana	lysis te	chniqu	ues to v	validate	e		5	i
5	Valida	to emo	rt grid	securi	ty and	resilie	ncv		11-		6		5	j
~	v anua	ie sina	n gilu	securi	ty and I	resine.	ney	11	-		1777			
oom's T	Taxonomy	(RBT)	Level:	Remer	nber-1;	Under	stand-2	; Apply	y-3; An	alyze-4	; Evalua	te-5; Cre	eate-6	
oom's T COs	axonomy	(RBT)	Level:	Remer COUF	nber-1; RSE AF	Under RTICU P	stand-2 LATIO Os	; Apply	y-3; An ATRIX	alyze-4	; Evalua	te-5; Cre	eate-6	Os
oom's T	axonomy	(RBT) 2	Level:	Remer COUF	nber-1; RSE AR	Under RTICU P	stand-2 LATI(Os 7	; Appl <u></u> DN MA	y-3; An ATRIX 9	alyze-4	; Evalua	te-5; Cre	eate-6 PS	Os
oom's T COs	Taxonomy	(RBT) 2 3	Level:	Remer COUF	ty and 1 nber-1; RSE AR 5 2	Under RTICU P 6	stand-2 LATI(Os 7 1	; Apply DN MA	y-3; An ATRIX 9 2	alyze-4	; Evalua	te-5; Cre	PS	Os
00000's T COs 1 2	valua axonomy 1 3 3	(RBT) 2 3 3	Level:	Remer COUF	SE AR 5 2 2 2 2	Under RTICU P	stand-2 LATIO Os 7 1 2	;; Appl: DN MA 8 2	y-3; An ATRIX 9 2 2 2	alyze-4	; Evalua	te-5; Cre	PS	Os
000m's T COs 1 2 3	valua axonomy 1 3 3 3	(RBT) 2 3 3 3	Level: 3 3 3 3	Remer COUF 4 2 3	SE AR 5 2 2 2 2 2 2 2 2	Under RTICU P	stand-2 LATIC Os 7 1 2 2	; Appl DN MA 8 2 2 2	y-3; An ATRIX 9 2 2 2 2	alyze-4	; Evalua	12	PS	Os
000m's T COs 1 2 3 4	valua axonomy 1 3 3 3 3 3 3	(RBT) 2 3 3 3 3	3 3 3 3 3 3	Remer COUF 4 2 3 3	5 2	Under RTICU P	stand-2 LATIC Os 7 1 2 2 2 2	 ; Apply N MA 8 2 2 2 2 2 	y-3; An ATRIX 9 2 2 2 2 2 2 2	alyze-4	; Evalua	12	PS	Os

VD22608	APPLIED INDUSTRIAL IOT	LTPC
, 2 - 2 0 0 0		1022
COURSE O	BJECTIVES	-
• To	introduce the architecture and components used in IIOT.	
• To	impart the communication topologies of IIOT	
• To	investigate data types of IIOT	
• To	develop the concept of retrieving data from Web	
• To	investigate the control concepts and supervisory level of automation	
	INTRODUCTION OF HOT A PCHITECTURE AND COMPONENTS	0
Theory	INTRODUCTION OF HOT ARCHITECTURE AND COMPONENTS	9
Intervention Jon Tanda the	e connected world - difference between IoT and HoT-Architecture of HoT -	IoT node -
Challenges	of HoT - Introduction to Sensors (Description and Working principle): Types	of sensors.
Ultrasonic 9	Sensor - IR sensor - MO_2 - Temperature and Humidity Sensors (DHT-11) - Digit	tal switch
Flectro-Mec	school - IN school - INQ2 - Temperature and Humary Schools (DITT-TT) - Digi	
	COMMUNICATION TECHNOLOGIES OF HOT	0
Theory	COMMUNICATION TECHNOLOGIES OF HOT	,
Communica	tion Protocols: IEEE 802 15 4 - ZigBee - Z Wave - Bluetooth - BLE - NEC - BEID	
Industry sta	ndards communication technology (LoRAWAN OPC IJA MOTT) - connecting in	nto existing
Modbus and	Profibus technology - wireless network communication	no existing
	VISUALIZATION AND DATA TYPES OF HOT	9
	VISUALIZATION AND DATA TITES OF HOT	,
Front-end E data base - 0 Introduction	DGE devices - Enterprise data for IIoT - Emerging descriptive data standards for II Could computing - Fog or Edge computing - Connecting an Arduino/Raspberry pi to - setting up the Arduino/Raspberry pi development environment - Options for with Arduino - Configuring your Arduino/Raspberry pi board for the IoT	oT - Cloud to the Web: for Internet
	RETRIEVING DATA FROM WER	Q
Theory		,
Extraction f	rom Web: Grabbing the content from a web page - Sending data on the web. Trou	bleshooting
basic Arduii	no issues - Types of IoT interaction - Machine to Machine interaction (M2M).	8
UNIT V	CONTROL & SUPERVISORY LEVEL OF AUTOMATION	9
Theory	परा परा क	
Programmal	ble logic controller (PLC) - Real-time control system - Supervisory Control & Data	Acquisition
(SCADA) -	HMI in an automation process - ERP & MES - Case study: Health monitoring - IoT	smart city -
Smart irriga	tion - Robot surveillance.	
	TOTAL PI	ERIODS: 45
	TEXT BOOKS	
1.	Alasdair Gilchrist, 'Industry 4.0: The Industrial Internet of Things', 2017, Apress P	ublication,
	1 st Edition.	
2.	Sudip Misra, Chandana Roy, Anandarup Mukherjee, 'Introduction to Industrial	Internet of
	Things and Industry 4.0', 2020, CRC Press, 1st Edition.	
	REFERENCE BOOKS	
1.	Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, 'Industrial Things: Cyber manufacturing Systems', (Springer), 2017	Internet of

2.	Yasser Ismail, 'Internet of Things (IoT) for Automated and Smart Applications', 2019,
	IntechOpen, 1 st Edition.
3.	Ismail Butun, "Industrial IoT: Challenges, Design Principles, Applications, and Security",
	Springer International Publishing AG,2020,1st Edition.
4.	Ioana Culic, Alexandru Radovici, Cristian Rusu, 'Commercial and Industrial Internet of
	Things Applications with the Raspberry Pi: Prototyping IoT Solutions', Springer India, 2022,
	1 st Edition.
5.	Giacomo Veneri, Antonio Capasso, 'Hands-On Industrial Internet of Things: Create a
	powerful Industrial IoT Infrastructure using Industry 4.0', Packt Publishing, 2018, 1 st Edition.

					COU	J RSE (OUTCO	OMES					
Upon the successful completion of the course, the students will be able to													
CO's STATEMENTS											RI	3T	
	A COLLEGA										LEVEL		
1	Analyze the growth of Industrial revolution and understand the basic concepts and Architectures of Internet of Things.												4
2	Analyz	Analyze communication topologies of IIOT.											4
3	Investi	gate th	e data	types	of IIO	T.	1.000	1	100	101		4	4
4	Develo	op metl	nodolo	gy of 1	retriev	ing dat	ta from	Web.	N	121		4	4
5	Examine the control concepts and supervisory control in IIOT.									4			
Bloom's T	axonomy	(RBT)	Level:	Remer	nber-1	; Under	rstand-2	2; Appl	y-3; Aı	nalyze-4; Evalu	ate-5; Cre	eate-6	
		Z		COUF	RSE A	RTICU	JLATI	ON MA	ATRIX		1		
COs		1U	1	97.	/	Р	Os		200	m		PSOs	
	1	2	3	4	5	6	7	8	9	10 11	12	1	2
1	3	3	2	1			1	1	12	2	3		2
2	3	3	2	3			D.	1	/	2	3		2
3	3	3	2	1	-	1	V	1	4	2	3		2
4	3	3	2	3	00	77		20	0,	2	3		2
5	3	3	2	3	2	1	151	1	-	2	3		2
3- High Ma	3- High Mapping; 2-Moderate Mapping; 1-Low Mapping												

VD22609	SMART SWITCHGEAR AND PROTECTION	L T P C
		1022
COURSE O	DBJECTIVES	
•	To know the components of smart relays	
•	To comprehend the concepts of smart protective relays.	
•	To understand the protection and coordination of smart relays.	
•	To apply the concepts of synchrophasors	
UNIT I	INTRODUCTION	9
Basic Com	ponents of Smart Relays with block diagram - Microprocessor based relaying	g – Phasor
Measureme	nt Unit (PMU) based supervised protection - Wide area protection and measurement	
UNIT II	SMART PROTECTION RELAYS - I	9
Classificati	on of smart protective relays - Adoptive relaying - Relay algorithms - Compariso	on of smart
relays with	previous generation relays.	
UNIT III	SMART PROTECTION RELAYS - II	9
Introduction	n to Intelligent Electronic Devices (IED) - Smart protection of Generators, Induct	ion motors,
Transforme	rs and Transmission lines.	
UNIT IV	PROTECTION AND COORDINATION OF SMART RELAYS	9
Smart prote	ection of an interconnected system - Flowchart of Primary/Backup relay pairs - F	lowchart of
Time Multi	plier Setting – Case studies based on existing power system network	-
UNIT V	SYNCHROPHASORS APPLICATIONS	9
Synchropha	sor fundamentals - Measurement Principles and Components - Synchrophasor	Metrices –
Importance	of Phase angle differences and PMU location.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Badri Ram, B.H. Vishwakarma, 'Power System Protection and Switchgear', Tata	a McGraw
	Hill Education Pvt. Ltd., 2022, 3 rd Edition.	
2.	T.S. Madhava Rao, 'Power System Protection: Static Relays', Tata McGraw Hill E	ducation
	Pvt. Ltd., 2017, 2 nd Edition.	
	REFERENCE BOOKS	
1.	L. P. Singh, 'Digital Protection -Protective Relaying from Electromech	nanical to
	Microprocessor' New Age International Publishers, 2017, 2 nd Edition.	
2.	Bhavesh Bhalja, R. P. Maheshwari, Nilesh G. Chothani, 'Protection and Switchge	ar, Oxford
	University Press, 2018, 2 nd Edition.	
3.	Synchronized Phasor Measurements and their Applications, A. G. Phadke	and J. S.
	Thorp,Springer, 2008.	

	COURSE OUTCOMES								
Upon the successful completion of the course, the students will be able to:									
COs	STATEMENTS	RBT LEVEL							
1	Understand various smart protective relays of a power system.	2							
2	Comprehend the smart relaying principles in comparison with traditional electro-mechanical relays.	2							
3	Analyze smart protection schemes for power system apparatus.	4							
4	Examine protection and coordination of smart relays.	4							
5	Evaluate the concept of synchronizing phasor measurement units.	4							
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6									
	COURSE ARTICULATION MATRIX								

COURSEARTICOLATION MATRix																
COs		POs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3	2	3	2		2	8.5	1		1	1	3		3		
2	3	2	61	2	2	2	1	1	1	15	51	2	3	3		
3	3	3	2	2	2	2	2		1	1	51	2	2	3		
4	3	3	2	2	2	2		⇒ ì\	1	1	1	3	3	3		
5	3	3	2	2	3	2	1	1	1	1	Z	2		3		

tants

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

ET CE

LL I

102 2 COURSE OBJECTIVES • To introduce learners to the basic concepts of Content Writing • To sensitize them to the various styles and techniques of writing and editing • To increase employability of the learners • To create industry-academia interface through institutional support UNIT I BASICS OF CONTENT WRITING 9 The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and Web Content Writing Scope and Types of Content Writing
COURSE OBJECTIVES • To introduce learners to the basic concepts of Content Writing • To sensitize them to the various styles and techniques of writing and editing • To increase employability of the learners • To create industry-academia interface through institutional support UNIT I BASICS OF CONTENT WRITING 9 The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and Web Content Writing Scope and Types of Content Writing
 To introduce learners to the basic concepts of Content Writing To sensitize them to the various styles and techniques of writing and editing To increase employability of the learners To create industry-academia interface through institutional support UNIT I BASICS OF CONTENT WRITING 9 The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and Web Content Writing
 To sensitize them to the various styles and techniques of writing and editing To increase employability of the learners To create industry-academia interface through institutional support UNIT I BASICS OF CONTENT WRITING 9 The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and Web Content Writing Scope and Types of Content Writing Principles and processes of content writing
To increase employability of the learners To create industry-academia interface through institutional support UNIT I BASICS OF CONTENT WRITING 9 The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and Web Content Writing Scope and Types of Content Writing Principles and processes of content writing
To create industry-academia interface through institutional support UNIT I BASICS OF CONTENT WRITING 9 The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and Web Content Writing Scope and Types of Content Writing Principles and processes of content writing
UNIT IBASICS OF CONTENT WRITING9The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and WebContent WritingScope and Types of Content WritingPrinciples and processes of content writing
The Concept of Content Writing and its relevance - Role and Functions of Content Writers - Print and Web Content Writing Scope and Types of Content Writing Principles and processes of content writing
Content Writing Scope and Types of Content Writing Principles and processes of content writing
Content writing - Scope and Types of Content writing -1 metples and processes of content writing.
UNIT IITYPES OF CONTENT WRITING9
Editing and Proof-Reading— company style sheet, grammar, copy flow, restructuring, market research.
Writing Styles - Non-fiction (Essays, Reports), Advertising, Newspapers. Writing blogs, case studies, white
papers. Corporate Communications - Writing for business to business (B2B), business to consumer (B2C),
press releases, newsletters - focus on language, jargon, writing style, target audience, formal and informal
language.
UNITIIIVISUAL AND INTERACTIVE CONTENT9
Visual Content - Infographics- Importance and relevance - Images - Screenshots - Videos, Memes, GIFs,
30 degree videos - Product Demonstrations. Interactive Content - Quizzes. Polls, Interactive white papers.
UNIT IVTOOLS OF THE TRADE I9
Free tools and paid tools - Social Media - Understanding the basics of social media - Understanding social
media content writing - Understanding PR.
UNIT VTOOLS OF THE TRADE II9
Plagiarism laws in Content Writing - What is plagiarism, rules on plagiarism - How to write plagiarism-free
copies.
TOTAL PERIODS: 45
REFERENCE BOOKS
1. Feldar, Lynda. 'Writing for the Web: Creating Compelling Web Content Using Words,
Pictures, and Sound'. New Riders, CA, USA. ISBN-13: 978-0321794437, ISBN10:
9780321794437
2. James, Anthony.'Blog Writing: The Content Creation Blueprint. Amazon digital services'
LLDKDP print US, 2018
3. Robinson Joseph. 'Content Writing Step-by-step. Amazon digital services' LLCKDP print
US, 2020. ISBN: 9798603871929.
4. Redish, Janice, Morgan Kaufmann, 'Letting Go of The Words: Writing Web Content That
Works'. ISBN: 0123859301

	0.1				COL	URSE C	OUTCO	MES						
COs STATEMENTS											RI LEV	3T VEL		
1	Comprehend the basic concepts of Content Writing											2		
2	Apply	the kn	owledg	ge of v	arious	s styles	and te	chniqu	es of w	riting	and edi	ting	3	
3	Nouri	shment	of the	creativ	ve ski	lls							3	3
4	Enhan	ncemen	t of the	emplo	oyabil	ity skil	ls						4	1
5	Creati	on of ii	ndustry	-acade	emia i	nterfac	e throu	gh inst	itution	al sup	port		6	
Bloom's Ta	xonomy	(RBT)	Level:	Remer	nber-1	; Under	stand-2	; Apply	/-3; An	alyze-4	; Evalua	te-5; Cr	eate-6	
				COUF	RSE A	RTICU	LATI	ON MA	TRIX					
COs				/		CP	Os	Fo	-				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		1	1	P		1	1.30	1	(2		2		
2		2	2	2		1	31	1		2		2		
3		2	71/	1.57	0	1		1	10	2	21	2		
4		2	1	0.2	2	1	1	3	2	2	21	2		
5		2	2	1	2	1			2	2	2	1		

परा

m

tante

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

VD22611	INTELLECTUAL PROPERTY RIGHTS	L T P C							
		2 002							
COURSE O	BJECTIVES								
• To	understand the process and need for protecting technology innovations through I	intellectual							
Property Rights.									
• To disseminate knowledge on patents, patent regime in India and abroad and registration aspects,									
• pate	ent drafting and searching								
• To :	aware about current trends in IPR and Government steps in fostering IPR.								
UNIT I	TECHNOLOGICAL INNOVATIONS	6							
The process	of technological innovation - factors contributing to successful technological inno	vation - the							
need for cre	eativity and innovation - problem solving and creativity through brain storming	- different							
techniques -	Selection criteria - screening ideas for new products - evaluation techniques. Prote	ection of IP							
as a factor in	n R&D and few case studies.								
UNIT II	INTRODUCTION TO IPR & RELATED AGREEMENTS AND TREATIES	6							
Types of In	tellectual Property Rights: patents, trademarks, copyright and related rights, indust	trial design,							
traditional k	nowledge, geographical indications, Indian Patent Act 1970 & its recent amendme	ents, IPR in							
India and ab	road, case studies.								
UNIT III	BASICS OF PATENTS AND CONCEPT OF PRIOR ART	6							
Introduction	to Patents:types of patent applications: ordinary, PCT, conventional, divisional and	nd patent of							
addition; sp	becifications: provisional and complete; prior art, patent databases; searching i	nternational							
databases; c	country-wise patent searches, USPTO, EPO, PATENT Scope (WIPO), IPO, etc.)	, hands-on-							
training on p	batent search & patent drafting.								
UNIT IV	PATENT FILING PROCEDURES	6							
Forms, fees	s and time frame, precautions while patenting – disclosure/non-disclosure, pa	atent filing							
procedures	in india, PCT filing procedure, status of the patent applications filed, financial as	sistance for							
patenting - c	case studies on patent filing.								
UNIT V	PATENT RIGTS AND NEW DEVELOPMENTS IN IPR	6							
Scope of p	atent rights, patent licensing and agreement, transfer of technology, new devel	opments in							
IPR,adminis	stration of patent system, government steps infostering IPR, patent infringemen	t- meaning,							
scope, litiga	tion, case studies on patent infringement.								
	TOTAL PE	RIODS: 30							
1	TEXT BOOKS	XX71 1							
1.	Ramappa, T. Intellectual Property Rights Under WIO: Task before India	, Wheeler							
	Publisher 2000.								
2.	Lexis Nexis, 'Patents Act, 1970 along with Rules, 2003 Bare Act 2024', Universa	l Publisher							
	2024.								
	REFERENCE BOOKS								
1.	Adair, J. 'Effective Innovation', Macmillan Publishing, 2003, 1st Edition.								
2.	Robert P. Merges, Peter S. Menell and Mark A. Lemley, 'Intellectual Property in N	ew							
	Technological Age', Aspen Publishers, 2016.								
3.	Nystrom, H, 'Creativity and Innovation', John Wiley & Sons, 1996, 2 nd Edition.								
4.	Nithyananda, K V, 'Intellectual Property Rights: Protection and Management.	India IN',							
	Cengage Learning India Private Limited, 2019.								

5.	Neeraj, P, and Khusdeep, D, 'Intellectual Property Rights India IN', PHI learning Private
	Limited, 2014

					COU	RSE O	UTCO	MES						
Upon the s	uccessful	complet	ion of	the cou	rse, the	studen	ts will l	be able	to					
CO's					S	STATE	MENT	S					RBT	
														/EL
I	Interp	ret the	proces	ss of pr	oblem	solvin	ng thro	ugh te	chnolo	ogical i	nnovati	ons.	4	1
2	Infer t	he appi	ropria	te IPR	eleme	nts for	protec	ting in	tellect	tual pro	operty.		4	1
3	Analy	Analyze the methodology of prior art search and patent drafting.												1
4	Devel	Develop the procedure for filing patent.											4	5
5	Exami	Examine the scope of patent rights for licensing and transfer of technology												5
Bloom's T	axonomy	(RBT)	Level:	Remer	nber-1;	Under	stand-2	; Apply	7-3; Ar	alyze-4	l; Evalua	te-5; Cr	eate-6	
		1h	1	COUF	RSE AI	RTICU	LATIO)N MA	TRIX		21			
COs		POs										PSOs		
	1	2_	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	11	3	3	3	3		ITT	3		3
2	3	3	2	8.50	1	3	-		1000		m	3		3
3	3	3	2	10	3	3	_	3	3	1	-01	3		3
4	3	3	2			3	9 ¹)	2	2	2	5/	3		3
5	3	3	3	2	3	3	2	3	3	-3	/	3		3
3- High Ma	apping; 2-1	Moderat	te Map	ping; 1	-Low N	Aapping	g	/	1	-/				
				21	00	-		30	0,	/				
					101	/ τ	R	60	/					

VD22612	BLOCK CHAIN TECHNOLOGY	L T P C					
		1022					
COURSE OI	BJECTIVES						
• To p	provide students with a comprehensive understanding of block chain technology.						
• To c	covering its foundational concepts, underlying principles, and real-world application	ns.					
• To a	analyze, develop, and implement block chain solutions through a combination of le	ctures, case					
stud	ies, and hands-on exercises, students will gain practical knowledge and skills						
UNIT I	UNDERSTANDING BLOCK CHAIN FUNDAMENTALS	9					
Introduction	to Block chain Technology - Historical Context and Evolution of Block c	hain - Core					
Components	of Block chain: Blocks, Chains, and Nodes - Consensus Mechanisms: Proof of We	ork, Proof of					
Stake, and	Others - Cryptography Basics in Block chain: Hash Functions, Digital Sign	natures, and					
Public/Privat	te Keys						
UNIT II	BLOCK CHAIN ARCHITECTURE AND PROTOCOLS	9					
Block chain	Architecture Models: Public, Private, and Consortium - Ethereum Platform: Sma	art Contracts					
and Decentralized Applications (DApps) - Hyperledger Framework: Fabric, Sawtooth, and Composer -							
Other Block	chain Platforms and Protocols - Interoperability and Scalability Challenges						
UNIT III	APPLICATIONS OF BLOCK CHAIN TECHNOLOGY	9					
Cryptocurrencies: Bitcoin, Ethereum, and Altcoins - Tokenization and Digital Assets - Decentralized							
Finance (De	Fi) and Smart Contracts - Supply Chain Management and Traceability - Identity	Management					
and Authenti	ication Systems						
UNIT IV	BLOCK CHAIN SECURITY AND PRIVACY	9					
Security Th	reats and Vulnerabilities in Block chain - Secure Development Best Practice	es - Privacy					
Techniques:	Zero-Knowledge Proofs and Homomorphic Encryption - Regulatory Considered	erations and					
Compliance	Challenges - Auditing and Governance in Block chain Networks						
UNIT V	HANDS-ON BLOCK CHAIN DEVELOPMENT	9					
Setting up B	lock chain Development Environment - Smart Contract Development with Solidity	(Ethereum)					
- Building D	Decentralized Applications (DApps) - Interacting with Block chain Networks usir	ng Web3.js -					
Case Studies	and Practical Exercises						
	TOTAL PE	RIODS: 45					
	REFERENCE BOOKS						
1.	Imran Bashir, 'Mastering Block chain'Packt Publisher, Aug 2020, 3rd Edition.						
2.	Elad Elrom, 'The Block Chain Developer', Springer Publisher, Dec 2021, 1st Edition	on.					
3.	Sudeep Tanwar, 'Block Chain Technology from Theory to Practice', Springer	r Publisher,					
	2022.						

COs	COs STATEMENTS			
1	To recognize the importance of block chain technology.	4		
2	To explain the challenges and design issues in bit coin technology.	4		
3	To categorize the platforms developed for block chain.	4		
4	To use appropriate techniques to study impacts of industry	4		
5	To use the block chain resources and projects.	3		

COs	POs														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	3	3	3	2	3	2	2		2	2	0.0	3	3	3	
2	3	3	3	2	3	2	2	£;	2	2		3	3	3	
3	3	3	3	2	3	2	2	0	2	2	12	3	3	3	
4	3	3	3	2	3	2	2	1	2	2	EI	3	3	3	
5	3	3	3	2	3	2	2	-/-	2	2	0	3	3	3	

परा

m

tantes

Z)

High Mapping; 2-Moderate Mapping; 1 viapping

VD22613	DIGITAL TWIN AND DEEP LEARNING	LTPC
		1022
COURSE O	BJECTIVES	
• To	understand the evolution of digital twin	
• To	understand the enabling technologies for digital twin	
• To	understand how to build a digital twin	
• To	study the basics of deep learning to apply it to a digital twin	
• To	understand digital twin as an interdisciplinary technology	
UNIT I	BASIC CONCEPTS OF DIGITAL TWINS	9
Evolution o	f Pairing, Definition and Features of Digital Twins, Digital Twin Timeline, Digita	al Thread,
Digital Shace	low, Building Blocks of Digital Twins, Digital Twin Technology Drivers & Enable	ers, Types
of Digital T	win, Characteristics of a Good Digital Twin	
UNIT II	DIGITAL TWINS IN MANUFACTURING,	9
Digital Twi	ns in Manufacturing, Digital Twins Built on IoT Platform, Performance of Digital	ital Twin,
Complexity	and Scale of Digital Twins, Executable Digital Twins, Functional Digital Twins	Example,
Digital Twi	ns and the Automotive Industry	
UNIT III	DIGITAL TWINS PLATFORM ECOSYSTEM	9
Digital Twin	ns Concept, Digital Twins Implementation Guidelines, Digital Twins Implementation	on, Digital
Twins Chal	lenges and Risks, Insights from Siemens, Evolving Digital Twins Ecosystems,	Business
Advantages	of Digital Twins.	
UNIT IV	DEEP LEARNING	9
Introduction	to Neural Network - Perceptron, Multi-layer Perceptron, Hidden Units, Architectur	re Design,
Types of N	eural Networks, Back Propagation Algorithms-Stochastic gradient decent and its	variants,
Convolution	al Neural Networks - Convolution operation, pooling, Activation functions.	
UNIT V	DIGITAL TWIN AND DEEP LEARNING	9
Enabling te	chnologies for Digital Twin - Artificial Intelligence (AI), Machine Learning (M	IL), Deep
Learning (D	DL), Big Data Analytics, Internet of Things (IOT), Virtual Reality (VR), Augmented	ed Reality
(AR), Mixed	d Reality (MR), Cloud Computing Services (CCS) - Deep learning in digital twin tec	chnology -
GANS and	VAE	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Digital Twin: Possibilities of the new Digital twin technology, Anand Iyer, 2017, 3	5 Pages.
2.	Advances in Computers, The Digital Twin Paradigm for Smarter Syst	ems and
	Environments: The Industry, Pethuraj& Preetha Evanjaline, ELSEVIER, pages 2	57, ISBN
	978-0-12-818756-2, ISSN 0065- 2458	
	REFERENCE BOOKS	
1.	Digital Twin Driven Smart Design by Fei Tao, Ang Liu, Tianliang Hu, A.Y.	I.C. Nee,
	ELSEVIER, ISBN 978-0-12-818918-4.	
2.	Handbook Of Digital Enterprise Systems: Digital Twins, Simulation and Ai, by	Wolfgang
	Kühn, world scientific publishing co., ISBN 978-981-120-073-1	
3.	Digital Twin Driven Smart Manufacturing, By Fei Tao, Meng Zhang, A.Y.C. N	lee, ISBN
	978-0-12- 817630-6, ELSEVIER	

	COURSE OUTCOMES					
Upon the su	ccessful completion of the course, the students will be able to					
COs	STATEMENTS	RBT				
		LEVEL				
1	Explain the basics of Digital Twin	3				
2	Identify various enabling technologies of digital twin.	4				
3	Implement a Digital Twin at a small scale	4				
4	Apply the integration of AI to digital twin	4				
5	Apply the digital twin technology in interdisciplinary application.	4				
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6						
	COURSE ARTICULATION MATRIX					

COs	POs													
	1	2	3	4	5	6	470	8	9	10	11	12	1	2
1	3	3	3	3	-	2		2	A	2	3	2	2	2
2	3	3	3	3		2	194	2	T/	2	3	2	2	2
3	3	3	3	3	1	2	626	2	1	2	3	2	2	2
4	3	3	3	3	/	2	-	2	1	2	3	2	3	3
5	3	3	3	3	10	2	0	2	1	2	3	2	3	

431

tan Si

I.

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping ANENIE SEI VENE

OPEN ELECTIVES OFFERED IN ODD SEMESTER

OE22601	BIOMEDICAL ENGINEERING	L T P C
		3003
COURSE O	BJECTIVES	
•	To learn the various physiological systems and transducers to build a biomedical systems	stem.
•	To gain knowledge about the various parameters both electrical and non electrical	al and the
	methods of recording and imaging analysis.	
•	To explore the various assist devices and recently developed diagnostic and the	herapeutic
	techniques.	
•	To understand the handling of biomedical waste	
UNIT I	FUNDAMENTALS OF BIOMEDICAL ENGINEERING	9
Cell and it	s structure – Resting and Action Potential – Nervous system and its fundation	amentals –
Cardiovascu	lar systems – Respiratory systems. Basic components of a biomedical system- Ph	iysiological
signals and	transducers - Transducers - Selection criteria - Piezo electric, ultrasonic tra	nsducers –
Temperature	e measurements – Fiber optic temperature sensors.	
UNIT II	NON ELECTRICAL AND ELECTRICAL PARAMETER MEASUREMENTS	9
Measuremen	nt of blood pressure - Cardiac output - Heart rate - Heart sound - Pulmonar	ry function
measuremen	nts - Spirometer -Plethysmography - Blood Gas analyzers, pH of blood - Meas	urement of
blood pCO2	2, pO2, finger-tip oximeter – Introduction to polarizable and nonpolarizable electrod	des - Types
of Electrode	es - Equivalent circuit - ECG - EEG - EMG - ERG - Lead systems and recordin	g methods.
Electrical sa	fety in medical environment, shock hazards – leakage current.	
UNIT III	IMAGING MODALITIES AND ANALYSIS	9
X-ray mach	ine – Computer tomography – Magnetic resonance imaging – Nuclear medicine – S	ingle photo
emission co	omputer tomography – Positron emission tomography – Ultrasonography – En	idoscopy –
Thermograp	bhy.	
UNIT IV	LIFE ASSISTING, THERAPEUTIC, ROBOTIC DEVICES AND ETHICS	9
Pacemakers	- Defibrillators - Ventilators - Nerve and muscle stimulators, Diathermy - Heart Lun	ng machine
- Audio met	ers - Dialyzers, Lithotripsy - Therapeutic Devices - Infant Incubators - Surgical Ins	struments –
Nano Robo	ts - Robotic surgery - Keyhole Surgery -Rehabilitation engineering - Clinical en	gineering -
Moral and e	thical considerations, human and animal research, consent, and death.	
UNIT V	BIOMEDICAL WASTE MANAGEMENT	9
Categories	and classification of biomedical wastes, hazards of biomedical waste, need for	disposal of
biomedical	waste, waste minimization, waste segregation and labelling, waste handling ar	nd disposal
methods.		
	TOTAL PE	RIODS: 45
- 1	TEXT BOOKS	1
1.	John G. Webster, 'Medical Instrumentation Application and Design', John Wiley	y andsons,
	New York, 2010, 4 th Edition.	
2.	Khandpur R.S, 'Handbook of Biomedical Instrumentation', Tata McGraw-Hill, N	lew Delhi,
	2014, 3 ¹⁴ Edition.	
1	REFERENCE BOOKS	11 OF 1
1.	Leslie Cromwell, 'Biomedical Instrumentation and Measurement', Prentice Ha	II otIndia,
	New Delhi, 2007.	

2.	Arumugam M, 'Biomedical Instrumentation', Anuradha Agencies Publishers, Chennai,
	2010.
3.	R. Brunner, 'Medical Waste Disposable' Handbook, Incinerated Consultant Incorporated,
	Virginia, 2008, 2 nd Edition.
4.	Joseph J. Carr and John M. Brown,'Introduction to Biomedical Equipment Technology',
	John Wiley and sons, 4th edition, New York, 2019, 4 th Edition.

pon the s	uccessful	complet	ion of	the cour	COU rse, the	RSE O	UTCO ts will	MES be able	to:					
COs					S	STATE	MENT	ſS					RB LEV	FT EL
1	Under	Understand the physiology of biomedical system and related transducers											3	j
2	Comp	rehend cal para	measu ameter	remen sand re	t and pelated	orocess electric	ing of cal safe	physic ety.	ologica	al elect	rical and	d non-	3	,)
3	Discus medica	Discuss and analyze physiological conditions using imaging techniques in medical diagnostics.											4	ŀ
4	Apply clinical engineering techniques to create life assisting and therapeutic equipment.										4	ŀ		
5	Catego	Categorize various biomedical waste and related hazards, and evaluate waste management and disposal.										4	ŀ	
loom's T	axonomy	(RBT)	Level:	Remem	nber-1;	Unders	tand-2;	Apply	-3; An	alyze-4	; Evalua	te-5; Cre	ate-6	
		14	1	COUR	RSE AI	RTICU	LATI	ON MA	TRIX		5			
COs		7 201						71	-	PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3		3	3	2		1	21	3	2	
2	3	3	3	3		3	3	2	-3	1	5/	3	3	
2	3	3	3	3	-	3	3	2	-	0	1	3	3	
3				2		3	3	2			1	2	2	+
3 4	3	3	3	3		5	0		1.1	2		5	2	

OE22603	CONTROL SYSTEM ENGINEERING	LTPC
		3003
COURSE O	BJECTIVES	
• To u contr	nderstand the use of transfer function models for physical systems analysis and int rol system components	roduce the
• To p	rovide adequate knowledge in the time response of systems and steady state error ar	nalysis
• To a	ccord basic knowledge in obtaining the open loop and closed loop frequency re-	sponses of
syste	ems	1
• To in	ntroduce stability analysis and its determination by various methods.	
• To in	ntroduce compensators and controllers and its design.	
UNIT I	INTRODUCTION AND TRANSFER FUNCTION MODELLING	10
Open loop a	nd closed loop systems - Examples, Control system components. Transfer function	of physical
systems: M	echanical systems - Translational and Rotational systems, Electrical network, T	hermal and
hydraulic sy	stems. Transfer function of DC servomotor, AC servomotor, Transfer function	n of overall
systems. Blo	ock diagram-reduction techniques. Signal flow graphs – Mason's gain formula.	
UNIT II	TIME RESPONSE ANALYSIS	08
Standard Te	st signals -Time response of zero, first and second order system, Performance crite	ria, Type of
systems. Ste	ady state error constants - position, velocity and acceleration error constants. Gener	ralized error
series – Feed	dback characteristics of control systems.	_
UNIT III	FREQUENCY RESPONSE ANALYSIS	10
Frequency	domain specifications – peak resonance, resonant frequency, bandwidth and c	cut-off rate,
correlation t	between time and frequency responses for second order systems. Polar plot, Bode Phase Margin	plot – Gain
	STABILITY OF SYSTEMS	10
Characterist	ic equation – Location of roots of characteristic equation – Absolute stability a	nd Relative
stability. Ro	buth Hurwitz criterion of stability – Necessary and sufficient conditions - Nyquis	t Stability -
Principle of	f argument - Nyquist path - Nyquist stability criterion and determination of	stability –
Assessment	of relative stability - Stability analysis using Bode Plot. Root locus concept	, Rules for
	of Root Locus.	07
Introduction	to Compensators - Lag Lead and Lag-Lead Compensators Transfer fu	nction and
Characterist	ics – Controllers - P. PI and PID control modes.	netion and
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Gopal M, 'Control Systems - Principles and Design', Tata McGraw-Hill, New Del	lhi, 2013.
2.	Norman S Nise, 'Control System Engineering ', John Wiley & Sons, New Delhi, 2	.013.
	REFERENCE BOOKS	
1.	Benjamin Kuo, 'Automatic Control Systems', Prentice Hall of India, New Delhi, 2	010.
•	Dazzo J J, Houpis C H, 'Linear Control System Analysis and Design with M	/IATLAB',
Ζ.	McGraw-Hill, New York, USA, 2003, 5 th Edition.	
	Ogatta K, 'Modern Control Engineering', Prentice Hall of India, New Delhi	, 2013. 4.
3.	Richard C. Dorf, Robert H. Bishop, "Modern Control Systems", Prentice Hall, U	JSA, 2011,
	12 th Edition.	
4.	S.Palani, AnoopK.Jairath, 'Automatic Control Systems including M	ATLAB',

ANEBooks,2013.

					COU	J RSE (OUTCO	OMES							
Upon the s	successful o	complet	ion of	the cou	rse, the	e stude	nts will	be able	e to						
COs	CUS STATEMENTS														
1	Derive	the tra	nsfer	functio	ons for	· mech	anical	and ele	etrical	system	ms			1	
		Obtain the steady state and generalized error constants for various test signals.													
L	Obtair	Sketch Rode and Poler plots for a transfer function													
3	Sketch	Sketch Bode and Polar plots for a transfer function.													
4	Deterr Locus	Determine the stability of a system by Routh-Hurwitz -Nyquist criteria – Root Locus – Bode plot.													
5 Design a compensator for a transfer function and design controllers using control modes													4	5	
Bloom's T	Taxonomy	(RBT)	Level:	Remen	nber-1	; Unde	rstand-	2; Appl	y-3; An	alyze-	4; Evalua	ate-5; Cre	ate-6		
			12	COU	RSE A	RTICU	JLATI	ON MA	ATRIX	2					
COs		1	2	/		F	POs	3 . J			1		PS	Os	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	2	6		NI	2		21	3			
2	3	3	3	3	1	1		-	2		021	3			
3	3	3	3	3					2		Z	3			
4	3	3	3	3	11		16	11	2		177	3			
5	3	3	3	3				1	2	-	m	3			
3- High M	anning: 2-	Moderat	e Man	nino [.] 1	-Low]	Mannin	ησ	1		1	20/				
5 Ingh M				p	2011	mappin	•8	1		1	5/				
			20	100	100	177	L III	55	Ter	0	/				

OE22605	MICRO AND SMART GRID	LTPC
		30 0 3
COURSE O	BJECTIVES	
• Dev	velop a conceptual introduction to microgrids and their control.	
• Dev	velop a conceptual introduction to smart grids and their control.	
UNIT I	INTRODUCTION OF A MICROGRID AND SMART GRID	9
Microgrid:	Concept and definition of microgrid, microgrid drivers and benefits, review of	sources of
microgrids,	typical structure and configuration of a microgrid, AC and DC microgrids, Power	Electronics
interfaces in	DC and AC microgrids.	
Smart Grid:	Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart G	Grid drivers,
Functions, c	pportunities, challenges and Benefits, AC and DC microgrid, Difference between co	onventional
& smart G	rid, National and International Initiatives in Smart Grid -Implementation of	smart grid
technologies	s in India.	-
UNIT II	CONTROL AND OPERATION OF MICROGRID	9
Modes of c	peration and control of microgrid: grid-connected and islanded mode, Active a	nd reactive
power cont	rol, protection issues, anti-islanding schemes: passive, active, and communic	ation-based
techniques,	microgrid communication infrastructure, Power quality issues in microgrids,	regulatory
standards, M	ficrogrid economics, Introduction to smart microgrids.	
UNIT III	DISTRIBUTION GENERATION TECHNOLOGIES	9
Introduction	to Distribution Energy Sources, Renewable Energy Technologies - Microgrids	s – Storage
Technologie	es -Electric Vehicles and plug-in hybrids - Environmental Impact and Climate	change –
Economic Is	ssues.	
UNIT IV	SMART MEASURING DEVICES AND SMART METERING	9
Phasor Mea	asurement Unit (PMU), Limitations of RTU, GPS Time Synchronization, L	Location &
Placement,	Features - Wide Area Monitoring Systems (WAMS) - Sub-station Automation Syste	ems (SAS) -
Distribution	Automation Systems (DAS). Introduction to Smart Meters, Advanced Metering In	frastructure
(AMI) drive	rs and benefits, AMI protocols, standards and initiatives	
UNIT V	HIGH-PERFORMANCE COMPUTING	9
Local Area	Networks (LAN), House Area Networks (HAN), Wide Area Networks (WAN),	Broadband
over Power	line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing to r	nake Smart
Grids smarte	er, Types of cyber-attacks in smart grid, Prevention of cyber-attacks by means of cyber-attacks by means of cyb	ber security
in smart grid	ls.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Ali Keyhani, Design of Smart Power Grid Renewable Energy Systems, ISBN:	9780-470-
	62761-7, Wiley	
2.	James Momoh, Smart Grid: Fundamentals of Design and Analysis, ISBN: 978-04	70-88939-
	8, Wiley	
3.	S. Chowdhury, S.P. Chowdhury and P. Crossley, Microgrids and Active D	istribution
	Networks, ISBN 978-1-84919-014-5, IET, 2009	
	REFERENCE BOOKS	
1.	Vehbi C. Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Bucce	ella, Carlo
	Cecati, and Gerhard P. Hancke, Smart Grid Technologies: Communication Techno	logies and

	Standards IEEE Transactions on Industrial Informatics, Vol. 7, No. 4, November 2011.
2.	. Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang "Smart Grid - The New and
	Improved Power Grid: A Survey", IEEE Transaction on Smart Grids.
3.	S. Borlase, "Smart Grids, Infrastructure, Technology and Solutions", CRC Press, 2013, 1st
	Edition.

COs	3 STATEMENTS														
1	Differe	entiate o	conve	ntional	grids,	micro	grids, a	and sn	nart gri	ds.			4		
2	Select microg	Select a suitable control scheme, communication, and protection of microgrids.													
3	Under	Understand the role of distribution generation in a smart grid system													
4	Acquin hardwa	Acquire Knowledge of advanced metering infrastructure and analyzing hardware implementation.												1	
5 Identify suitable computer network for smart grid applications												4			
loom's T	axonomy	(RBT)	Level:	Remen	nber-1;	Under	stand-2	; Appl	y-3; An	alyze-4	; Evalua	te-5; Cr	eate-6		
		IL	1	COUF	RSE AI	RTICU	LATIO	ON MA	ATRIX	1	21				
COs		IT	1	1.1	1	Р	Os	1	1		01	6	PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	Z		2	3	3	2	"	2	2	ITT				
2	3	2	3	3	3	3	2	1	2	2	m				
3	3	2	3	3	3	3	2	-	2	2	201				
4	3	2	3	3	3	3	3	\$	2	2	5/				
5	3		2	3	3	3	1027		2	2	/				
High M	apping; 2-1	Moderat	e Map	ping; 1	-Low N	<i>lappin</i>	g	1	12	_ /		1			

OE22607	ELECTRIC VEHICLE TECHNOLOGY	L T P C
		3003
COURSE O	BJECTIVES	
•	To introduce the architecture of electric vehicles and fundamentals of vehicle dyn	amics, and
	powertrain components specific to electric and hybrid electric vehicle	
•	To understand the principles and speed control methods of electric drive motors use	d in EVs.
•	To impart the knowledge on the energy storage technologies, charging an	nd battery
	management technologies in EV.	
UNIT I	INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES	9
Electric and	Hybrid vehicle components - Configurations of Electric vehicles and Hybrid elect	ric vehicles
– Plug-in h	ybrid electric vehicle - Fuel cell electric vehicle - Challenges and benefits of EV	's - Current
scenario of	EV and HEVs in market.	
UNIT II	POWER TRAIN COMPONENTS AND ITS SIZING	9
Fundamenta	als of vehicle dynamics: Vehicle resistance and dynamic equation – Power train co	mponents –
Gears, Cluto	ches, Differential, Transmission and Vehicle Brakes – EV and HEV power train sizir	ng.
UNIT III	ENERGY SOURCE TECHNOLOGY	9
Energy stor	rage technologies in electric and hybrid electric vehicles – battery, flywheel, fuel	cell, ultra-
capacitors-1	Hybridization of different energy storage devices – Ragone Plot – Range prediction of	of batteries.
UNIT IV	MOTOR DRIVE TECHNOLOGY	9
Comparison	of speed torque characteristics of IC engine and Electric motor – Requirements o	f EV motor
compared to	o industrial motor – Chopper control of DC motor, Vector control of Induction n	notor drive,
Control of S	Switched reluctance motor, Brushless DC motor and Permanent Magnet Synchrono	ous motor –
Choice of e	lectric motors for EVs.	-
UNIT V	BATTERY CHARGING TECHNOLOGY	9
Charging sch	hemes for EV: Normal charging, opportunity charging and fast charging – Charging algor	rithms – On-
board and C	Dif-board chargers – wireless power transfer schemes: Inductive and Capacitive –	- venicle to
gria technol	logy – Battery Management System: SoC estimation and Cell balancing.	DIODG 45
	IUIAL PE	KIUD5: 45
1	TEXT BOOKS	and ard
1.	Iqbal Hussein, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC Press, 2 Edition.	2021, 3 rd
2.	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gav, Ali Emadi, 'Modern Electric, Hybri	d Electric
	and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2018, 3 rd E	dition.
REFEREN	CE BOOKS	
3.	James Larminie, John Lowry, 'Electric Vehicle Technology Explained', W	iley, 2012,
	$\frac{2^{\text{m}}\text{Edition.}}{2^{\text{m}}\text{C}(1-1)^{\text{m}}} = \frac{1}{2^{\text{m}}} \frac{1}{2^{\text{m}}$	T T ' '/
4.	Press, 2001.	University
5.	Sheldon S. Williamson, 'Energy Management Strategies for Electric and Plug Electric Vehicles' Springer 2013	g-in Hybrid
6.	Chris Mi, M. Abul Masrur, 'Hybrid Electric Vehicles Principles and applic	ations with
	practical perspectives', Wiley Publication, 2017.	
7.	NPTEL lecture on 'Electric Vehicles Part 1'.	

COURSE OUTCOMES																
Upon the su	Upon the successful completion of the course, the students will be able to															
CO's					5	STATE	MENT	S					RB	ST		
													LEV	'EL		
1	Compr vehicle	rehend es	config	guratio	ns, ch	nallenge	es, and	l bene	fits of	electr	ic and 1	hybrid	2			
2	Apply and hy	knowle brid ele	edge o ctric v	of pow vehicle	vertrain es.	n sizing	g tech	niques	to con	npone	nts of e	lectric	3			
3	Analyz	Analyze the characteristics and advantages of various energy storage systems and apply range prediction methods to assess the performance and endurance														
	and ap	and apply range prediction methods to assess the performance and endurance of battery systems														
4	Analyze the control strategies and operational characteristics of electric propulsion drive for EV applications.															
5 Acquire knowledge on energy management strategies and charging technologies in EVs																
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create																
COURSE ARTICULATION MATRIX																
COs POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3	2	2	2	- /	1	6	1	2	2	EI	2				
2	3	3	3	3	1	2	2	-	2	2	11	3				
3	3	3	3	3	1	2	2		2	2	Z	3				
4	3	3	3	3	11	2	2	11	2	2	ITT	3				
5	3	3	3	2		2	2	1	2	2	m	3				
3- High Map	oping; 2-N	Moderat	e Map	ping; 1-	-Low I	Mapping	ş	_	5	1	201					
L		1.	3	13			ŕ	-	1	15	2/					
		1	0	1		÷	11		/	9	/					
			1	07	0	-	¥	1	1	=/						
				1	98	TT	17	22	10.							
					-	0.00	1.61	-								

EE22609	ENERGY CONSERVATION PRACTICES	LTPC
		3003
COURSE O	BJECTIVES	
•	To introduce energy audit and management in electrical system.	
•	To gain knowledge about energy management approaches for motor and lighting lo	ads.
•	To investigate energy management solutions for buildings.	
•	To elucidate the energy auditing procedure.	
UNIT I	BASIC PRINCIPLES OF ENERGY AUDIT AND MANAGEMENT	9
Energy aud	it – Definitions – Concept – Energy index – Cost index – Pie charts –Sankey diagr	ams – Load
profiles – E	Energy conservation schemes and energy saving potential – Numerical problems –	Principles of
energy man	agement – Initiating, planning, controlling, promoting, monitoring, reporting – Ener	gy manager
– Qualities	and functions.	
UNIT II	LIGHTING	9
Definition of	of terms and units –Luminous efficiency – Polar curve – Calculation of illumina	tion level –
Illumination	n of inclined surface to beam –Luminance or brightness – Types of lamps – Types of	of lighting –
Electric ligh	ting fittings (luminaries) – Flood lighting – White light LED– Energy conservation	measures.
UNIT III	ENERGY MANAGEMENT FOR MOTOR LOADS	9
Load sched	luling/shifting, Motor Drives- motor speed control, Development of energy efficiency	ient motors,
techniques	for improving energy efficiency, necessity for load matching and selection of	motors for
constant and	d variable loads	
UNIT IV	ENERGY MANAGEMENT IN BUILDINGS	9
Energy con	servation building code (ECBC) - Guidelines on heating ventilation, Air condition	ing system,
water pum	ping system, Uninterruptible power supply, escalators and elevators - Energy	efficiency
measures in	buildings - Energy performance assessment and energy savings measures of DG set	ts.
UNIT V	ENERGY AUDIT	9
Definition .	- Need for energy audit - Types of energy audit and approach - Benchmarking	- Bureau of
energy effic	ciency regulation - Energy monitoring and targeting - Energy management information	ation system
(EMIS).		
	TOTAL P.	ERIODS: 45
1	Hand Book of Energy Audit by Sonal Desai- Tata McGraw hill	
2	Energy efficiency in electrical utilities 2015 By Byreau of Energy Efficiency	Ministry of
2.	Power India	viinisu y Oi
	DEFEDENCE BOOKS	
1.	Flectric Energy Utilization and Conservation by S C Trinathy TMH publishing	g company
	I td New Delhi	5 company
2	Energy management by Paul o' Callaghan Mc Graw Hill Book company 1998 1	st Edition
2.	Energy management band book by W.C. Turner, John Wiley and song	Luiuoll.
<u></u> Л	Energy management and concernation <u>VV</u> Charma and D Verbete Co	hoigh I V
4.	Energy management and conservation – Kv Snarma and P. venkata Ses	snaran-i K
Ē	International Publishing House Pvt. Ltd, 2011.	Minine C
5.	Energy efficiency in electrical utilities, 2015, By Bureau of Energy Efficiency,	viinistry of
	Power, India.	

Upon the su	coostul (omnlat	ion of t	ho cou	COU	RSE O	UTCO	MES	to:						
COs		Joinpier			<u>se, uie</u> S	STATE	MENT	' S	10.				RE LEV	BT /EL	
1	Profici	iency in	n Energ	gy Auc	liting a	and Ma	anagen	nent					3	;	
2	Acquin	red kno	wledg	e in ele	ectric l	lighting	g syste	ms					3		
3	Capab		4												
4	Profici		4	Ļ											
5	Compe		4	Ļ											
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Creat															
				COUR	SE AI	RTICU	LATIO	ON MA	TRIX						
COs				100	/	P	Os	_	_				PS	Os	
	1	2	3	4	5	6	7 -	8	9	10	11	12	1	2	
1	3	3	3	3	/	3	3	2	3	10	3	3			
2	3	3	3	3	2	3	3	2	3	~	3	3			
3	3	3	3	3	2	3	3	2	3	10	3	3			
4	3	3	3	3	2	3	3	2	3	1.	3	3			
5	3	3	3	3	3	3	3	2	3		3	3			
3- High Maj	pping; 2-1	Modera	te Map	ping; 1-	-Low N	Aapping	g	51	10.8	5.1	5				
		NEN	SPI S	A Contraction	1 10		N N	ノビーお	T. AT	Com	JEERIN				

OE22611	INDUSTRIAL ELECTRICAL SYSTEMS	LTPC
		3003
COURSE O	BJECTIVES	
• To	understand the various electrical system components	
• To	know the residential and commercial electrical systems	
• To	study the illumination systems	
• To	discuss about the industrial electrical systems	
UNIT I	ELECTRICAL SYSTEM COMPONENTS	9
LT system	wiring components, selection of cables, wires, switches, distribution box, meter	ing system,
Tariff struc	ture, protection components- Fuse, MCB, MCCB, ELCB, inverse current cha	aracteristics,
symbols, sin	ngle line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Ele	ectric shock
and Electric	al safety practices.	
UNIT II	RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS	9
Types of re	esidential and commercial wiring systems, general rules and guidelines for instal	lation, load
calculation	and sizing of wire, rating of main switch, distribution board and protection devic	es, earthing
system calc	ulations, requirements of commercial installation, deciding lighting scheme and	number of
lamps, earth	ing of commercial installation, selection and sizing of components.	
UNIT III	ILLUMINATION SYSTEMS	9
Understandi	ng various terms regarding light, lumen, intensity, candle power, lamp efficien	cy, specific
consumption	n, glare, space to height ratio, waste light factor, depreciation factor, various i	illumination
schemes, In	candescent lamps and modern luminaries like CFL, LED and their operation, energ	gy saving in
illumination	systems, design of a lighting scheme for a residential and commercial premise, floo	d lighting.
UNIT IV	INDUSTRIAL ELECTRICAL SYSTEMS – I	9
HT connect	ion, industrial substation, Transformer select ion, Industrial loads, motors, starting	g of motors,
SLD, Cable	and Switchgear selection, Lightning Protection, Earthing design, Power factor of	correction -
kVAR calc	ulations, type of compensation, Introduction to PCC, MCC panels. Specificat	ions of LT
Breakers, M	ICB and other LT panel components.	
UNIT V	INDUSTRIAL ELECTRICAL SYSTEMS – II	9
DG System	s, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DO	G, UPS and
Battery Ban	ks, Selection of UPS and Battery Banks.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	S. L. Uppal and G. C. Garg, 'Electrical Wiring, Estimating and costing', Khanna	upublishers,
	2008.	
2.	K. B. Raina, 'Electrical Design, Estimating and Costing', New age International, 2	007.
	REFERENCE BOOKS	
1.	S. Singh and R. D. Singh, 'Electrical estimating and costing', Dhanpat Rai and Co.	, 1997.
2.	Web site for IS Standards: https://bis.gov.in	
3.	H. Joshi, 'Residential Commercial and Industrial Systems', McGraw Hill Educatio	n, 2008.

					COU	RSE O	UTCO	MES						
Upon the suc	ccessful o	completi	on of t	he cou	rse, the	studen	ts will	be able	to					
CO	STATEMENTS													
													LEV	/EL
1	Examine the electrical wiring systems for residential, commercial and													
	industrial consumers, representing the systems with standard symbols and													
	drawings, SLD.													
2	Analyze the various components of industrial electrical systems.													
3	Evaluate, design and analyze the illumination systems for residential and commercial applications.													4
4	Explain about various Industrial Electrical Systems												4	
5	Study	on varie	ous ele	ectrica	l syste	m com	ponent	ts					4	4
Bloom's Ta	loom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Cr													
				COUF	RSE AI	RTICU	LATIO	ON MA	ATRIX					
СО			1.	0K	/	Р	0	-	SI	0/	5		PS	;O
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	3	3	-	3	1	1	3	2	3	3		
2	3	2	3	3	2	3	-1	1	3	2	3	3		
3	3	2	3	3	2	3	10	1	3	2	3	3		
4	3	2	3	3	2	3	1	1	3	2	3	3		
5	3	2	3	2	11	3	1	1	3	2	3	3		

परा

tan or

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

THE SHE

OE22613	AUTONOMOUS VEHICLES	LTPC
		3 00 3
COURSE O	BJECTIVES	
• To	understand the fundamental principles and components of autonomous vehicle sy	stems, and
con	npare different sensor modalities used in autonomous vehicles.	
• To	develop algorithms for perception tasks such as object detection, classification, and	tracking.
• To	design and implement decision-making algorithms for autonomous navigation	and path
pla	nning.	_
• To	evaluate and optimize control systems for vehicle dynamics and trajectory tracking.	
• To	assess safety and ethical considerations in autonomous vehicle design and deployme	ent.
UNIT I	INTRODUCTION TO AUTONOMOUS VEHICLES AND SENSING	9
Overview of	f autonomous vehicle technology – Historical perspective and current trends – Key	components
and subsyste	ems of Avs – Ethical and societal implications.	
Sensor type	es and their characteristics (LiDAR, radar, cameras, etc.) - Sensor fusion te	chniques –
Calibration	and synchronization – Perception algorithms.	-
UNIT II	DECISION MAKING AND PLANNING	9
Motion pla	nning algorithms - A*, RRT*(Rapidly-exploring Random Tree), MPC(Model	Predictive
Control) – I	Behavior-based and rule-based decision-making – Predictive modeling and risk as	ssessment –
Human-rob	ot interaction considerations.	
UNIT III	CONTROL SYSTEMS FOR AUTONOMOUS VEHICLES	9
Vehicle dyn	aamics and modelling - PID control and its variants - Nonlinear control-techniques	- Adaptive
and robust c	control strategies.	
UNIT IV	LOCALIZATION AND MAPPING	9
Simultaneou	as Localization and Mapping (SLAM) - Global and local localization method	ods – Map
representati	ons (grid-based, feature-based, etc.) – Visual odometry and dead reckoning.	
UNIT V	AUTONOMOUS VEHICLE APPLICATIONS AND SAFETY AND SECURITY	9
Urban mobi	lity and transportation - Agriculture and mining - Logistics and delivery - Autonom	mous racing
and gaming	r – Functional safety standards (ISO 26262) – Safety-critical systems design – Cr	ybersecurity
consideratio	ons – Fault detection and diagnostics.	
	TOTAL PE	RIODS: 45
	TEXT BOOKS	
1.	Nikolaus Correll, Bradley Hayes, and Amirhossein Memarzadeh, 'Introd	duction to
	Autonomous Robots: Mechanics, Sensors, Actuators, and Algorithms', MIT Press	, 2022.
2.	Lounis Adouane, A K Peters, 'Autonomous Vehicle Navigation: From Behavioral	l to Hybrid
	Multi-Controller Architectures', CRC Press, 2016.	
	REFERENCE BOOKS	
1.	James M. Anderson, Nidhi Kalra, Karlyn D. Stanley, and Paul Sorensen, 'A	utonomous
	Vehicle Technology: A Guide for Policymakers', RAND Corporation, 2016.	
2.	R. Kelly, V. Santibañez, and A. Loria, 'Control of Robot Manipulators in Jo	oint Space,
	Springer, 2005.	
3.	Hermann Winner, Stephan Hakuli, Felix Lotz, and Christina Singer, 'Handbook	of Driver
	Assistance Systems: Basic Information, Components and Systems for Active	Safety and
	Comfort', Springer Nature, 2016.	

4.	Markus Maurer, J. Christian Gerdes, Barbara Lenz, and Hermann Winner, 'Autonomous
	Driving: Technical, Legal and Social Aspects', Springer, 2016.
5.	Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia
	E. Kavraki, and Sebastian Thrun, 'Principles of Robot Motion: Theory, Algorithms, and
	Implementations', Bradford Books, 2005.

				COU	RSE C	OUTCO	MES						
Upon the suc	ccessful c	ompletion	of the co	ourse, the	studen	ts will	be able	to					
COs	STATEMENTS												
1	Demonstrate a comprehensive understanding of autonomous vehicle technology and its underlying principles.												
2	Design and implement algorithms for perception, decision-making, and control in autonomous systems.												
3	Evaluate and address safety, ethical, and societal implications associated with autonomous vehicles.												
4	Apply Simultaneous Localization and Mapping, global and local localization methods, map representations, visual odometry, and dead reckoning techniques.												
5	Evaluate autonomous vehicle applications in various sectors, ensuring safety, cybersecurity, and fault detection.											5	
Bloom's Ta	xonomy	(RBT) Le	vel: Rem	ember-1;	; Under	stand-2	; Appl	y-3; Ar	alyze-4	; Evaluat	te-5; Cre	ate-6	
		7	CO	URSE AI	RTICU	LATI	ON MA	ATRIX		1777			
COs		I LU	57.	1	Р	Os	1	23	-1	ml		PSOs	
	1	2 3	6 4	5	6	7	8	9	10	11/	12	1	2
1	3		3	3	1	2	2	3	3	5/	3	3	
2	3	10	3	3	1	2		1	3	/	3	3	
3	3		3	3	1	2	2	1	3		3	3	
4	3		3	3	1	2	30	91	3		3	3	
5	3		3	3	1	2	2	/	3		3	3	
3- High Map	ping; 2-N	Aoderate N	/lapping;	1-Low N	Mappin	g							

OPEN ELECTIVES OFFERED IN EVEN SEMESTER

OE22062	INDUSTRIAL AUTOMATION	L T P C						
		3003						
COURSE O	BJECTIVES							
• Rec	apitulate the working of sensors and signal conditioning process							
• Stu	dy of components and circuits associated with pneumatics and hydraulics							
• Lea	rn the operation and programming of PLCs and human machine interfaces.							
• Obt	ain an overview of distributed control systems and CNC machines							
• Fan	niliarize with the interconnection and data exchange between PLCs, field de	evices and						
sup	ervisory units with different bus structures.							
UNIT I	SENSOR AND MEASUREMENT SYSTEMS	9						
Introduction	to Industrial Automation - Architecture - Sensors and measurement systems f	for position,						
temperature	, pressure, displacement, flow and level - Signal conditioning & Processing - Sma	rt sensors –						
Basics of In	dustry 4.0 - Concept of Industry 5.0 -IoT for plant automation.							
UNIT II	PNEUMATICS AND HYDRAULICS	9						
Pneumatics:	Types of Pneumatic actuators, selection of actuators, control valves for direction, p	pressure and						
flow. Comp	ressor - types. Hydraulics: Pumps and motors, servo and proportional valves. Circ	cuit design -						
symbols, scl	nematic, travel step diagram, Classical method.							
UNIT III	PLCs	9						
Introduction	Introduction - Advantages, capabilities & Internal architecture. Scan cycle, Types of I/O modules, Analog							
Scaling, PL	C Wiring, Selection criteria for PLC. Types of Programming. Program developm	nent – Flow						
charts & Ps	eudocode, Bit instructions, Arithmetic functions, timers, counters, data transfer.	VFD, Motor						
Speed Contr	ol using VFD and PLC Programming.							
UNIT IV	HMI, DCS and CNC	9						
Introduction	to HMI and SCADA- DCS: Architecture, local control unit, programming	g language,						
communicat	ion facilities, operator interface, engineering interfaces. CNC: Features, drive system	ms for CNC						
machine too	ls, Control of machine tools. Introduction to Industrial AR							
UNIT V	NETWORKING AND ROBOTICS	9						
Networking	of sensors, actuators and controllers - Industrial Communication Protocols: Fieldbu	us, Profibus,						
Profinet, M	odbus, Ethernet IP, IEEE Standards - Introduction to Robotics, Work volume, En	d Effectors,						
Robotic sen	sors and Machine vision.							
	TOTAL PE	RIODS: 45						
	TEXT BOOKS							
1.	S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, C	ontrol and						
	Automation', Jaico Publishing House, 2013.							
2.	Frank D Petruzella, 'Programmable Logic Controllers', McGraw Hill Inc, 2005							
	REFERENCE BOOKS							
1.	W. Bolton, 'Mechatronics', Pearson Education, 2009							
2.	Kelvin T Erikson, 'Programmable Logic Controllers ', Dogwood Valley Press, 200)5						
3.	L.A.Bryan, E.A.Bryan, 'Programmable controllers - Theory and Implementation'	, Industrial						
	Text company, 1997, 2 nd Edition.							
4.	Steve Mackay, 'Practical Industrial data networks: Design, Installation and Troubl	eshooting',						

	Elsevier Newnes, 2004.
5.	B.G.Liptak, 'Instrument Engineers handbook', CRC press, 3rd Edition.

Upon the s	uccessful a	complet	ion of	the cou	COU	RSE O studen	UTCOI	MES e able	e to					
COs					S	STATE	MENTS	5					RE LEV	BT VEL
1	Choos concer	e and control of Io	lesign Г	a suit	able m	neasure	ement s	ysten	n and	underst	tand the	e basic	3	;
2	Config	Configure a pneumatic / hydraulic circuit as per requirements											3	
3	Desigr	n and pi	ogran	n a PLO	C syste	em for	an appl	icatio	on				3)
4	Contro concer	ols a P ots of D	LC th CS &	rough CNC	huma machir	in-mac nes.	hines in	nterfa	aces a	nd und	lerstand	l basic	3	5
5	Netwo	Network PLCs with field devices and understand basic concepts of Robotics										otics	3)
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1;	Under	stand-2;	Appl	y-3; Ai	nalyze-4	4; Evalua	ate-5; Cre	ate-6	
		/	9	COUR	RSE AI	RTICU	LATIO	N M	ATRIX	~~				
COs	POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	1	1	0	1	100	1	01	2		
2	3	3	3	3	3	1		51	023	1	-	2		
3	3	3	3	3	3	1	1	71	-	1	-	2		
4	3	3	3	3	3	1	10	1	93	1	m	2		
5	3	2	3	2	2	1		/		1	27/	2		
3- High Ma	apping; 2-I	Moderat	e Map	ping; 1-	-Low N	Aapping	g	1		1:	SI		1	
		/	25	100	100	ττ	्र हा	35	Int	5				

OE22064	DIGITAL SYSTEMS	LTP C
		3003
COURSEO	BJECTIVES	
• Toi	npartknowledgeonconceptsofbinaryrepresentation, logic gates andBooleanalgebra.	
• To (lesign andanalyzedigitalcircuitsusingcombinational logic.	
• Tod	esign andanalyze digitalcircuitsusing sequential logic.	
• To 1	understand the logic of memory devices.	
UNITI	NUMBERSYSTEMS,CODESANDBOOLEAN ALGRBRA	11
Review of	number systems, signed binary numbers - Binary Arithmetic - Boolean Algebra	ı - laws and
theorems -	Simplification of Boolean expressions - Sum of Products (SOP) and Product of S	Sums (POS)
forms – Lo	ogic Minimization using K-map - Binary codes - BCD code, Gray code, Error de	etection and
Error corre	ction codes.	
UNITII	COMBINATIONALCIRCUITS	9
Combinatio	onallogic-Adders,Subtractor,Multiplexer, Demultiplexer, Encoder, Decoder, Parity g	enerator
and checke	r – code converters	
UNITIII	SEQUENTIALCIRCUITS	11
Sequential	logic - SR, JK, D and T flip flops -Synchronous counter - synchronous sequential cir	cuits -Design
of synchron	ous sequential circuits Counters: Synchronous and Asynchronous - State diagram-state red	uction – state
assignment.	IN THE AND ISI	
UNITIV	ASYNCHRONOUSSEQUENTIALCIRCUITS	7
Analysis of	f asynchronous sequential logic circuits - State reduction - state assignment Asynchr	onous design
problem.		
UNITV	MEMORYDEVICESANDDIGITALLOGICALFAMILIES	7
Implementa	ation of combinational logic circuits using PROM, PLA, PAL – Introduction to FPC	GA – Digital
Logic Fam	ilies: Logic gates using TTL, ECL and MOS families - operation and characteristi	cs of digital
logical fam	ily.	
	TOTALP	ERIODS:45
	TEXT BOOKS	
1.	Salivahanan, Arivazhagan, 'Digital Circuits & Design', Vikas Publishing House, 20	12.
2.	Floyd and Jain, 'Digital Fundamentals', Pearson Education, 2013, 8th Edition.	
	REFERENCE BOOKS	
1.	Anand Kumar, 'Fundamentals of Digital Circuits', PHI,2013.	
2.	Mandal, 'Digital Electronics Principles & Application', McGraw Hill Education, 20)14.

	COURSE OUTCOMES								
Upon the successful completion of the course, the students will be able to									
COs	STATEMENTS	RBT							
		LEVEL							
1	Apply the concepts of Boolean algebra and reduction techniques to minimize	3							
	logic expressions								
2	Analyze and design various combinational logic circuits.	4							
3	Investigate and design synchronous sequential circuits	4							
4	Investigate and design asynchronous sequential circuits	4							
5	Comprehend the operation characteristics of memory devices, digital logic	3							
	families and construct digital circuits with memory devices								

Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

COs		POs													
	1	2	3	4	5 6	7	8	9	10	11	12	1	2		
1	3	3	2	/	2.2	8.3	1	2	2	1					
2	3	3	2	2				2	2	51	2				
3	3	3	2	2	2		1	2	2	21	2				
4	3	3	2	2	2	1	-	2	2	23	2				
5	3	3	2	2	2	-		2	2	2	2				

tedal of

and the local second

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

EL SE

OE22606	MOTORS FOR INDUSTRIES	LTPC							
01122000		3003							
COURSE O	BJECTIVES								
• To	understand steady state operation and dynamics of a motor load system.								
• To	study and analyze the operation of the converter / chopper fed dc drive, both quality	atively and							
quantitatively.									
• To study and understand the operation and performance of AC Induction motor drives									
 To study and understand the operation and performance of AC Synchronous motor drives 									
• To	obtain the knowledge on motor to the specific industrial and EV application	05.							
	INTRODUCTION TO FLECTRICAL DRIVES AND ITS DVNAMICS	0							
Electrical d	rives- choice of electrical drives-status of dc and ac drives-Equation governing	motor load							
dynamics -	- Fundamental torque equation multi quadrant operation Equivalent value	s of drive							
narameters-	components of load torque nature and classification of load torques steady sta	te stability-							
Thermal mo	del of motor for heating and cooling-Classes of motor duty-Selection of motor now	er rating							
	DC MOTOR DRIVES	0							
Steady state	e analysis of the single and three phase converter fed separately excited DC mo								
continuous	and discontinuous conduction – Time ratio and current limit control – Four quadrat	nt operation							
of converter	/ chopper fed drive- converter / chopper control of DC series motor	in operation							
UNIT III	INDUCTION MOTOR DRIVES	9							
Induction m	otor-Construction. Principle of operation-Stator voltage control-V/f control – field	weakening							
mode – VSI	/CSI fed drive – Slip power recovery drive–speed control of single-phase induction	motors.							
UNIT IV	SYNCHRONOUS MOTOR DRIVES	9							
Operation f	rom fixed frequency supply, synchronous motor variable speed drives, variable	e frequency							
control of	multiple synchronous motors- Self-controlled synchronous motor drive empl	oving load							
commutated	thyristor inverter–Margin angle control – Power factor control	, ,							
UNIT V	DRIVES FOR INDUSTRIAL AND EV APPLICATIONS	9							
Introduction	- Speed and Torque control of above and below rated speed-Steel mills-Paper	mill-cement							
mill-Speed	control of EV in the constant power region of electric motors- DC Motors, Induct	tion Motor-							
Permanent	Magnet Synchronous Motors (PMSM)-Brushless DC Motors, Switched Relucta	nce Motors							
(SRMs)– Sy	nchronous Reluctance Machines–Choice of electric machines for EVs.								
	TOTAL PER	IODS: 45							
	TEXT BOOKS								
1.	Gobal K. Dubey, 'Fundamentals of Electrical Drives', Narosa Publishing House, N	lew Delhi,							
	2001, 2 nd Edition.								
2.	R.Krishnan, 'Electric Motor Drives – Modeling, Analysis and Control', Prentice-H	all of India							
	Pvt. Ltd., New Delhi, 2010.								
	REFERENCE BOOKS								
1.	Vedam Subramanyam, 'Electric Drives - Concepts and Applications', Tata M	AcGraw-							
	Hillpublishing company Ltd., New Delhi, 2002.								
2.	Ali Emadi, 'Handbook of Automotive Power Electronics and Motor Drives',	Taylor and							
	Francis, 2005, 1 st Edition.	-							
3.	Bimal K Bose, 'Modern Power Electronics and AC Drives'. Pearson Education As	ia, 2002.							
4.	Bimbhra B.S., 'Power Electronics', Kanna Publishers, New Delhi, 2012, 5 th Edition	n.							
	Zanomi 2001, Torret Liceutines, Ruma Fatharis, Rev Denn, 2012, 5 Editor								

5.	S.K.Pillai, 'A First course on Electrical Drives, New Age International publishers', 2012, 3rd
	Edition.

Upon the s	uccessful	complet	ion of	the cou	COU	RSE C studer	UTCC	MES	e to						
COs		complet			<u>150, th</u>	STATE	MEN7	S					RBT LEVEL		
1	Select	the mo	otor an	d its ra	ting fo	or a kno	own lo	ad cha	racteri	stic.			3		
2	Analy	ze and	design	a con	verter	for a d	c drive	•					4		
3	Under	Understand the operation and control of induction motor drives												3	
4	Under	stand tl	ne ope	ration	and co	ontrol o	of sync	nronou	ıs moto	or drive	es			3	
5	Choos	e and d	lesign	a drive	for a	given a	applica	tion.					4	4	
Bloom's T	axonomy	(RBT)	Level:	Remer	nber-1	; Under	stand-2	; Appl	y-3; An	alyze-4	; Evalu	ate-5; Cro	eate-6		
			1	COUF	RSE A	RTICU	LATI	ON MA	ATRIX	1					
COs			12	8.		Р	Os		1	2			PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	5.	1	2		2	2	51	2			
2	3	3	3	3	- /	I	2	1	2	2	51	2			
3	3	3	3	3	1	1	2	= \	2	2	-	2			
4	3	3	3	3	1	1	2		2	2	2	2			
5	3	3	3	3	11	1	2	//	2	2	m	2			
3- High M	apping; 2-1	Modera	te Map	ping; 1	-Low I	Mappin	g	/		1	21				
		1	1			-	215 1	~	5.4	1:	31				
		1	3	12			Ť	-	10	15	2/				
			S)	1		E.	24		/	9	/				
			1	07	0	-	4	1	1	-/					
			2	1	98	7 1	TT	55	10.	/					
				-	-	0.0	1.41	-							

OE226	608	INDIAN POWER GRID	LTP C
			30 0 3
COUR	RSE O	BJECTIVES	
•	Com	prehend Indian grid codes	
•	Stud	y the concepts of restructuring of power system.	
•	To le	earn the various types of renewable sources of energy with storage technologies.	
•	Expl	ore the types, planning and operational issues related to Microgrids.	
•	Inve	stigate the various smart grid initiatives, metering and communication technologies.	
UNIT	Ι	INTRODUCTION TO GRID CODES	9
Basics	struct	ure of power systems, Evolution of Electric Grid, Concept, Definitions and Need	l for Smart
Grid, S	mart g	grid drivers, Functions, opportunities, challenges and benefits, Difference between co	onventional
and sn	nart (Grid, Role of various Organizations and their linkages, Planning Code for	Inter State
Transm	ission	n, Connection Code, Operating Code for Regional Grids, Scheduling and Despatch Co	ode.
UNIT	II	ELECTRICITY DEREGULATION	9
Motiva	tion fo	or Restructuring of Power System - Electricity Market Entities and Models - Mile	estones and
Benefit	s of d	eregulation - Availability based tariff - Day Scheduling process - Definition and Te	echnologies
of Dist	ribute	d Generation - Indian power sector past and present status - Growth of power secto	or in India -
Players	in the	e Indian power sector.	
UNIT	II ·	RENEWABLE ENERGY	9
Introdu	ction	to non-conventional energy resources - Overview of solar energy technologi	les - Solar
Photov	oltaic	devices - Performance and durability of solar devices - Wind energy - techr	nology and
geograf	phical	aspects - Geothermal and Biomass - Energy storage - Batteries - Fuel cell - Chara	acterization
and dur	ability	y, Concept of wind and solar hybrid system.	
UNITI		MICRO GRID	9
Microg	rias v	s Central Conventional power system - Structure of Microgrid - Types of Microgrid	1d system -
Operati DC M	ons o	AC and DC Microgrids - Comparison - Power Electronic Converters in Microgrid	application
- DC M	licrog	rid: Topologies - Application – Standards, Challenges in AC and DC micro grid.	0
UNIT Nations	v vland	SMART GRID	9 os in India
Arabita	ii allu	Stendards and policies Control layer and elements Power line communications	A dyongod
motorin	ciule a inf	- Standards and policies - Control layer and elements - Power line communications-	
Introdu	otion	to Internet of things (IoT)	(WAND)-
muodu	cuon	to internet of things (101).	FRIODS-45
		IUIALII	LKIUD5.43
	T 7 1	TEXT BOOKS	
1	Kanka	ar Bhattacharya Maath H.J. Bollen and Jaap E.Daalder, 'Operation of restructur	red power
	systen	ns', Kluwer academic publishers, USA, 2001, 1 st Edition.	~
2	Janak	a Ekanayake and Kithsiri Liyanage and Jianzhong Wu and Akihiko Yokoyama, 'Si	mart Grid:
	Techn	hology and Applications', John Wiley, 2015.	
1	D '	REFERENCE BOOKS	1 337'1
I	Danie	is Kirschen and Goran Strbac, Fundamentals of power system economics', Jo	onn Wiley
	$\frac{\text{sons}, S}{D, M}$	September 2018, 2 ⁴⁴ Edition.	
2	P.Ven	ikatesn, B.V.Manikandan, S.Charles Raja and A.Srinivasan, 'Electrical power	r systems
	analys	Sis', Security and Deregulation, PHI 2012.	N.T. 4
3	Indu	Shekhar Jha. D.P.Kothari, 'Smart Grid Fundamentals and Applications', I	New Age

	International publishers, January 2019, 1 st Edition.
4	Bahman Zohuri, 'Hybrid Energy Systems', Springer, 2018, 1 st Edition.

Upon the s	n coostul	oomnlot	tion of	the cou	COU	RSE O	UTCO	MES	to					
COs	STATEMENTS											RBT LEVEL		
1	Interpret the Indian power grid codes												3	
2	Investigate the deregulated electricity market models functioning										4			
3	Examine the renewable energy based electrical power generation in India												4	
4	Analyze microgrid planning and operational issues with Distributed 4 Generators												4	
5	Explore the smart grid concepts, meteing and communication networks													4
Bloom's T	faxonomy	(RBT)	Level:	Reme	mber-1	, Under	stand-2	; Appl	y-3; Ai	nalyze-4	4; Evalua	ate-5; Cre	eate-6	
		1	2	COU	RSE AI	RTICU	LATIO	ON MA	ATRIX	~				
COs	POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	- /	1	.0	3	1		01	3		
2	3	3	3	3	1	1		3	100.5	8	-	3		
3	3	3	3	3	11		V	71	-11-		5	3		1
4	3	3	3	3	11			2	10	-	11	3		
-														

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping
OE22610	INDUSTRIAL IOT	LTPC
0112010		3003
COURSE O	BJECTIVES	
•	To understand the fundamentals of Industrial Internet of Things	
•	To learn about the basics of IoT protocols	
•	To explore and implement data access, analysis and control.	
•	To build a small low cost embedded system using IoT	
•	To apply the concept of IoT in the real world scenario	
UNIT I	INTRODUCTION TO INDUSTRIAL INT SYSTEMS	9
Definition –	- market size - Role of Internet of Things and Industrial Internet of Things - IIoT Va	alue Chain -
Industrial R	evolutions - Industry 4.0 - Support System for Industry 4.0 - Smart Factories – Arc	hitecture of
Industrial Io	oT.	
UNIT II	IMPLEMENTATION SYSTEMS FOR HoT	9
Sensors and	actuators for industrial processes - Sensor networks - Process automation and data	acquisitions
on IoT platf	Form - Microcontrollers and Embedded PC roles in Hot - Wireless Sensor nodes with	n Bluetooth
Wifi and Lo	Ra Protocols - IoT Hub systems.	
UNIT III	HOT DATA MONITORING AND CONTROL	9
IoT Gate w	vay - IoT Edge Systems - Programming - Cloud computing - Real Time Dashboa	rd for Data
Monitoring	- Data Analytics and Predictive Maintenance with IIoT technology - Economics of 1	IIoT - Smart
Factories.		
UNIT IV	CYBER PHYSICAL SYSTEMS	9
Next Genera	ation Sensors - Collaborative Platform and Product Lifecycle Management - Augme	nted Reality
and Virtual	Reality – Role of Artificial Intelligence and machine learning - Big Data and Advance	ed Analysis
- Security.	171 130	•
UNIT V	CASE STUDY	9
Industrial IC	DTApplication Domains: Oil, chemical and pharmaceutical industry, Inventory mana	gement and
Quality con	trol, Real case studies: Milk Processing and Packaging Industries, Manufacturing	Industries-
Future of II	oT.	
	TOTAL P	ERIODS: 45
	TEXT BOOKS	
1.	Alasdair Gilchrist, 'Industry 4.0: The Industrial Internet of Things', 2017, Apress F	Publication,
	1 st Editon.	
2.	Sudip Misra, Chandana Roy, Anandarup Mukherjee, 'Introduction to Industrial	Internet of
	Things and Industry 4.0', CRC Press, 2020, 1st Editon.	
	REFERENCE BOOKS	
1.	Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, 'Industrial	Internet of
	Things: Cyber manufacturing Systems',(Springer), 2017.	
2.	Yasser Ismail, 'Internet of Things (IoT) for Automated and Smart Applications', In	ntechOpen,
	2019, 1 st Editon.	
3.	Ismail Butun, "Industrial IoT: Challenges, Design Principles, Applications, and	d Security",
	Springer International Publishing AG, 2020, 1 st Edition.	
4.	Ioana Culic, Alexandru Radovici, Cristian Rusu, 'Commercial and Industrial Internet	et of Things

	Applications with the Raspberry Pi: Prototyping IoT Solutions', Springer India, 2022, 1 st Edition.
5.	Giacomo Veneri, Antonio Capasso, 'Hands-On Industrial Internet of Things: Create a
	powerful Industrial IoT Infrastructure using Industry 4.0', Packt Publishing, 2018,1st Edition.

					COU	IRSE (OUTCO	OMES							
Upon the s	successful	l compl	etion	of the	course	e, the s	tudents	will b	e able	to					
COs	COs STATEMENTS												RBT		
												LEVEL			
1	and architectures of Internet of Things.											ncepts	4		
2	Analyze various implementation systems for IIoT.												4		
3	Realize the importance of Data Monitoring and control in IIoT.											4			
4	Investigate various IIoT cyber physical systems.										4				
5	Explore the applications of IIoT and case studies.											4			
Bloom's T	axonomy	(RBT)	Level:	Remen	nber-1	; Unde	rstand-2	2; Apply	y-3; Ar	alyze-4	; Evalua	te-5; Cre	eate-6		
		IF	1	COUH	RSE A	RTICU	JLATI	ON MA	ATRIX		21				
COs		V	1		1	F	POs	-/-	1.000	1	01		PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	50	11		14	1	-	2	m	3	3		
2	3	3	2	3	1		10	1	200	2	m	3	3		
3	3	3	2			-		1		2	20/	3	3		
4	3	3	2	3		1.2	1	1	23	2	5/	3	3		
5	3	3	2	3		- 33	har	1	/	2	1	3	3		
3- High Ma	apping; 2-N	Moderat	e Map	ping; 1	-Low N	Mappir	ıg	-	4	-/		1	1		
				Z	del	7 1	रा	20	GI	/					

Image: Course objectives 3 0 0 3 COURSE OBJECTIVES • Learn the operation and programming of PLCs • Learn the operation and programming of PLCs • Study of components and circuits associated with pneumatics control circuits • To get familiarized on robotics and associated components • To get familiarized on robot kinematics and programming UNIT I SENSOR AND MEASUREMENT SYSTEMS 9 Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors – Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. 9 Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT II PNEUMATICS AND ELECTRO- PNEUMATICS 9 Definition- Laws of Robot- Robot Anatomy Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop - Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. 9	OE22612	ELECTRICAL AUTOMATION AND ROBOTICS	LTPC								
COURSE OBJECTIVES Recapitulate the working of sensors and signal conditioning process. Learn the operation and programming of PLCs Study of components and circuits associated with pneumatics control circuits To impart a knowledge on robotics and associated components To get familiarized on robot kinematics and programming 9 UNIT I SENSOR AND MEASUREMENT SYSTEMS 9 Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors – Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. 9 UNIT II PLCS 9 Introduction - Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. 9 Pneumatics: Types of Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT II FURDAMENTALS OF ROBOTICS 9 Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. <td <="" colspan="2" th=""><th></th><th></th><th>3003</th></td>	<th></th> <th></th> <th>3003</th>				3003						
 Recapitulate the working of sensors and signal conditioning process. Learn the operation and programming of PLCs Study of components and circuits associated with pneumatics control circuits To impart a knowledge on robotics and associated components To get familiarized on robot kinematics and programming UNIT I SENSOR AND MEASUREMENT SYSTEMS 9 Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors - Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. UNIT II PLCS 9 Introduction - Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PMEUMATICS AND ELECTRO- PNEUMATICS 9 Pneumatics: Types of Pneumatica: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot - Robot Anatomy - Degree of Freedom - Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots Specifications - Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMINING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. Control and Automation', Jaico Publishing House, 2013. Mikell P.Groover, Mitchell Weiss, Roger	COURSE O	DBJECTIVES									
 Learn the operation and programming of PLCs Study of components and circuits associated with pneumatics control circuits To impart a knowledge on robotics and associated components To get familiarized on robot kinematics and programming UNIT I SENSOR AND MEASUREMENT SYSTEMS 9 Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors - Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. UNIT II PLCs 9 Introduction – Advantages & Internal architecture, Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PNEUMATICS AND ELECTRO- PNEUMATICS 9 Pneumatics: Types of Pheumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy - Degree of Freedom - Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots - Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. Control and Automation', Jaico Publishing House, 2013. 	• Re	capitulate the working of sensors and signal conditioning process.									
 Study of components and circuits associated with pneumatics control circuits To impart a knowledge on robotics and associated components To get familiarized on robot kinematics and programming UNIT I SENSOR AND MEASUREMENT SYSTEMS 9 Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors – Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. UNIT II PLCS 9 Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PNEUMATICS AND ELECTRO-PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot Robot Anatomy. Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots. Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KUNEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 TEXT BOOKS S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control a	• Le	arn the operation and programming of PLCs									
 To impart a knowledge on robotics and associated components To get familiarized on robot kinematics and programming UNIT I SENSOR AND MEASUREMENT SYSTEMS 9 Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors – Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. UNIT II PCS 9 Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PNEUMATICS AND ELECTRO-PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots - Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TotTAL HOURS: 45 S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology'.Programming and Applications, 2013, 2nd Edition.	• Stu	ady of components and circuits associated with pneumatics control circuits									
 To get familiarized on robot kinematics and programming UNIT I SENSOR AND MEASUREMENT SYSTEMS 9 Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. UNIT II PLCS 9 Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PNEUMATICS AND ELECTRO- PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition Laws of Robot. Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages-Simple programs for industrial automation. TOTAL HOURS: 45 S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2nd Edition. REFERENCE BOOKS William C.Dunn, 'Fundamentals of Industria	• To	impart a knowledge on robotics and associated components									
UNIT ISENSOR AND MEASUREMENT SYSTEMS9Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors – Sensor for Robot: Range, Touch, Tactile, Force and slip sensors.9Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions.9NITT IIIPNEUMATICS AND ELECTRO-PNEUMATICS9Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application.9UNIT IVFUNDAMENTALS OF ROBOTICS9Definition-Laws of Robot Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors.9UNIT VKINEMATICS AND PROGRAMMING9Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation.9I.S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013.102.Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and A	• To	get familiarized on robot kinematics and programming									
Introduction to Industrial Automation – Architecture - Sensors and measurement systems for position, temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors – Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. UNIT II PLCS 9 Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration. Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. 9 Internal activation', Jaico Publishing House, 2013. 1 S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 1 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation	UNIT I	SENSOR AND MEASUREMENT SYSTEMS	9								
temperature, pressure, displacement, flow and level - Signal conditioning & Processing - Smart sensors - Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. UNIT II PLCS 9 Introduction - Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PNEUMATICS AND ELECTRO-PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor - types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDAMENTALS OF ROBOTICS 9 Forward sof Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology'.Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. Killiam C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	Introductio	n to Industrial Automation - Architecture - Sensors and measurement systems	for position,								
Sensor for Robot: Range, Touch, Tactile, Force and slip sensors. 9 UNIT II PLCs 9 Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. 9 UNIT III PNEUMATICS AND ELECTRO-PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. 9 I. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 10 I. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology'.Programming and Applications, 2013, 2 nd Edition. 10	temperatur	e, pressure, displacement, flow and level - Signal conditioning & Processing - Sm	art sensors –								
UNIT II PLCs 9 Introduction - Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. Sole Scaling, Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. 9 UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. 9 I. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 1 I. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Jaico Publishing House, 2013. 1 <th>Sensor for</th> <th>Robot: Range, Touch, Tactile, Force and slip sensors.</th> <th></th>	Sensor for	Robot: Range, Touch, Tactile, Force and slip sensors.									
Introduction – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Analog Scaling, Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PNEUMATICS AND ELECTRO- PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. 9 INIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 20 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instru	UNIT II	PLCs	9								
Selection criteria for PLC, Types of Programming, Ladder logic programming: Contacts, Coils, Bit instructions, Arithmetic functions, timers, counters and data transfer instructions. UNIT III PNEUMATICS AND ELECTRO-PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. 9 UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. 9 I. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 10 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. 2.	Introductio	n – Advantages & Internal architecture. Scan cycle, Types of I/O modules, Ana	alog Scaling,								
instructions, Arithmetic functions, timers, counters and data transfer instructions. INIT III PNEUMATICS AND ELECTRO- PNEUMATICS 9 Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. 9 UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. 9 INIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. 9 I S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. TOTAL HOURS: 45 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology',Programming and Applications, 2013, 2 nd Edition. EFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005.	Selection of	criteria for PLC, Types of Programming, Ladder logic programming: Contact	s, Coils, Bit								
UNIT IIIPNEUMATICS AND ELECTRO- PNEUMATICS9Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application.9UNIT IVFUNDAMENTALS OF ROBOTICS9Definition-Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- 	instructions	instructions, Arithmetic functions, timers, counters and data transfer instructions.									
Pneumatics: Types of Pneumatic actuators, selection of actuators, control valves for direction, pressure and flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Nork Envelop -Types of Robots- Specifications – Industrial Application- Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- System: Stepper, Servo and DC motor, End Effectors. 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 TEXT BOOKS 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. 3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	UNIT III	UNIT IIIPNEUMATICS AND ELECTRO- PNEUMATICS9									
flow. Compressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer and counters, Proximity Sensors, Circuit design for industrial application. UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 TEXT BOOKS 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. 3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	Pneumatics	: Types of Pneumatic actuators, selection of actuators, control valves for direction,	pressure and								
Proximity Sensors, Circuit design for industrial application. 9 UNIT IV FUNDAMENTALS OF ROBOTICS 9 Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. 9 TOTAL HOURS: 45 TOTAL HOURS: 45 Automation', Jaico Publishing House, 2013. 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. 3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	flow. Com	pressor – types, Electro-Pneumatics: Components, Solenoid valve, Electrical timer	and counters,								
UNIT IVFUNDAMENTALS OF ROBOTICS9Definition-Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four RobotConfiguration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot DriveSystem: Stepper, Servo and DC motor, End Effectors.UNIT VKINEMATICS AND PROGRAMMINGPorward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF,Robot Programming Languages- Simple programs for industrial automation.TOTAL HOURS: 45TOTAL HOURS: 45International Automation', Jaico Publishing House, 2013.2.Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2 nd Edition.REFERENCE BOOKS1.William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005.2.Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005.3.Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	Proximity S	Sensors, Circuit design for industrial application.	1								
Definition- Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints- Four Robot Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and DC motor, End Effectors. UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 TOTAL HOURS: 45 TOTAL HOURS: 45 1 S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology',Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. Setter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	UNIT IV	FUNDAMENTALS OF ROBOTICS	9								
Configuration, Work Envelop -Types of Robots- Specifications – Industrial Application- Robot Drive System: Stepper, Servo and DC motor, End Effectors. Industrial Application- Robot Drive 9 VINT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 TEXT BOOKS 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. 3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	Definition-	Laws of Robot- Robot Anatomy- Degree of Freedom- Types of Joints-	Four Robot								
System: Stepper, Servo and DC motor, End Effectors. 9 UNIT V KINEMATICS AND PROGRAMMING 9 Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. 3-DOF, and 3-DOF, and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 TOTAL HOURS: 45 TOTAL HOURS: 45 TOTAL HOURS: 45 TEXT BOOKS 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. Ontrol and Automation', Jaico Publishing House, 2013. 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology',Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. 3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	Configurat	ion, Work Envelop -Types of Robots- Specifications - Industrial Application-	Robot Drive								
UNIT VKINEMATICS AND PROGRAMMING9Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation.TOTAL HOURS: 45TOTAL HOURS: 45OTAL HOURS: 45TOTAL HOURS: 45TOTAL HOURS: 45TOTAL HOURS: 45TOTAL HOURS: 45INTEXT BOOKS1.Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology',Programming and Applications, 2013, 2 nd Edition.REFERENCE BOOKS1.William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005.2.Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005.3.Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	System: St	epper, Servo and DC motor, End Effectors.									
Forward and inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF and 3-DOF, Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 Interview of the state of th	UNIT V	KINEMATICS AND PROGRAMMING	9								
Robot Programming Languages- Simple programs for industrial automation. TOTAL HOURS: 45 TEXT BOOKS 1. S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. 2. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology',Programming and Applications, 2013, 2 nd Edition. REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. 3. Peter Corke, 'Robotics,Vision and control-Fundamental algorithms in MATLAB', Springer	Forward ar	ind inverse kinematics, Forward and Reverse kinematic of manipulator with 2-DOF	and 3-DOF,								
TOTAL HOURS: 45 TAL HOURS: 45 TOTAL HOURS: 5 TOTAL HOURS: 45 <	Robot Prog	gramming Languages- Simple programs for industrial automation.									
 S. Mukhopadhyay, S. Sen and A. K. Deb, 'Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2nd Edition. REFERENCE BOOKS William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer 		TOTAL	HOURS: 45								
 Mukhopadhyay, S. Seh and A. K. Deb, Industrial Instrumentation, Control and Automation', Jaico Publishing House, 2013. Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2nd Edition. <u>REFERENCE BOOKS</u> William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. Frank D Petruzella 'Programmable Logic Controllers', McGraw Hill Inc, 2005. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer 	1	IEXI BOUKS	Control and								
 Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and Ashish Dutta, 'Industrial Robotics -Technology', Programming and Applications, 2013, 2nd Edition. REFERENCE BOOKS William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. Frank D Petruzella 'Programmable Logic Controllers', McGraw Hill Inc, 2005. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer 	1.	Automation', Jaico Publishing House, 2013.									
 'Industrial Robotics -Technology', Programming and Applications, 2013, 2nd Edition. REFERENCE BOOKS William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer 	2.	Mikell P.Groover, Mitchell Weiss, Roger N. Nagel and, Nicholas G.Odrey, and A	shish Dutta.								
REFERENCE BOOKS 1. William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. 2. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. 3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	'Industrial Robotics -Technology', Programming and Applications, 2013, 2 nd Edition.										
 William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control', McGraw Hill, 2005. Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer 		REFERENCE BOOKS									
Hill, 2005.2.Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005.3.Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	1.	William C.Dunn, 'Fundamentals of Industrial Instrumentation and Process control	ol', McGraw								
 Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer 		Hill, 2005.									
3. Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLAB', Springer	2.	Frank D Petruzella'Programmable Logic Controllers', McGraw Hill Inc, 2005.									
	3.	Peter Corke, 'Robotics, Vision and control-Fundamental algorithms in MATLA	B', Springer								
International publishing, 2017.		International publishing, 2017.									
4. Mittal RK, Nagrath IJ, 'Robotics and control', Tata McGraw Hill, 2010.	4.	Mittal RK, Nagrath IJ, 'Robotics and control', Tata McGraw Hill, 2010.									
 International publishing, 2017. Mittal RK, Nagrath IL, 'Robotics and control', Tata McGraw Hill, 2010. 	4	International publishing, 2017. Mittal RK, Nagrath II, 'Robotics and control', Tata McGraw Hill, 2010									

					COU	RSE C	OUTCO	MES						
Upon the su	ccessful o	complet	ion of	the cou	irse, the	studer	nts will l	be able	to					
COs	STATEMENTS										RBT			
												LEV	/EL	
1	Choose and design a suitable sensor and measurement system											4		
2	Design and develop program a PLC system for an application											4		
3	Design and develop a program to electro-pneumatic circuit for a industrial application										4			
4	Acquire knowledge about robotics anatomy, DOF and drives										3			
5	Develop a program to use robot for a typical application											5		
Bloom's Ta	xonomy	(RBT)	Level:	Reme	mber-1;	Under	stand-2	; Apply	/-3; An	alyze-4; l	Evaluat	e-5; Cre	ate-6	
				COU	RSE AI	RTICU	JLATIC	ON MA	TRIX					
COs				6	A	U P	Os	EG	1				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1		5.0	2	2	2	1		3		
2	3	3	3	(3	-	2	2	2	10	/	1		
3	3	3	3	6.1	3	-	2	2	2	17	21	2		
4	3	3	3	77.57	1	P	0	3	2	1	21	3		
5	3	3	3	h.	3	100		3	1	1	5	1		

5

हेवताः

परा

3- High Mapping; 2-Moderate Mapping; 1-Low Mapping

L

5

THE STATE

OE22614	INDUSTRIAL NANOTECHNOLOGY	L T P C
		3003
COURSE OB	JECTIVES	
• Stude	ents will get trained in semiconductor Nanotechnology and microfabrication	
• Stude	ents will be demonstrated with various synthesis methods of nanostructures	
• Stude	ents will be able to characterize any form of nanostructures	
• Stude	ents will be provided with hands-on training on nanostructure synthesis	
• Stude	ents will be provided with hands-on training on characterization of nanostructures	
UNIT I	INTRODUCTION TO NANOTECHNOLOGY	9
Introduction	to semiconductor processing - Necessity for a clean room- different types of clean	ean rooms-
Structure and	l requirements of a clean room- Safety issues, flammable and toxic hazards, ba	iohazards –
Microfabricat	ion process flow diagram - Chip cleaning, coating of photoresists, patternin	ig, etching,
inspection – I	Process integration – Etching techniques– Wet and Dry Etching– Reactive Ion etchin	ng.
UNIT II	GENERAL METHODS OF PREPARATION	9
Preparation of	f nanoscale materials: Spray Pyrolysis, Co-Precipitation, Sol-gel, Mechanical Mi	illing, Self-
assembly, Pr	eparation of thin films: Electroplating, Sputtering, Evaporation, MOCVD, Molec	cular Beam
Epitaxy, Ator	nic Layer Epitaxy and Pulsed layer deposition.	
UNIT III	CHARACTERIZATION TECHNIQUES	9
X–ray diffra	ction technique, Scanning Electron Microscopy – environmental techniques, Tr	ransmission
Electron Mic	roscopy including high-resolution imaging, Surface Analysis Techniques - AFM, S	SPM, STM,
SNOM, ESC.	A, DLS.	
UNIT IV	NANODEVICE FABRICATION	9
Vacuum pum	ps and Vacuum deposition – Thin film deposition – Photolithography, patterning ar	nd Etching -
Electrical cha	racterization. Fabrication of Nano scale device and prototyping.	
UNIT V	INDUSTRIAL APPLICATIONS OF NANOTECHNOLOGY	9
Industrial coa	atings - Organic and inorganic coatings - Nano medicines, Targetted drug deliv	ery - Nano
crystalline sil	ver for bacterial inhibition, Nanoparticles for sun barrier products - Nanoelectronics	- Quantum
information –	Quantum computing – Nanotechnology in Artificial Intelligence.	
	TOTAL PER	IODS: 45
	TEXT BOOKS	
1.	Madou Marc J, 'Fundamentals of Microfabrication and Nanotechnology', CRC I	Press, New
	York, 2011, 3 rd Edition.	
2.	Fahrner W.R., 'Nanotechnology and Nanoelectronics', Springer (India) Private Ltd	l., 2011.
	REFERENCE BOOKS	
1.	B.G. Streetman and S. Banerjee, 'Solid State Electronic Devices', PHI Learning	$5, 2009, 6^{th}$
	Edition.	
2.	CMOS: Circuit Design, Layout, and Simulation by R. Jacob Baker, Wiley-IEEE Press, 20	19.

					COU	RSE C)UTC(OMES							
Upon the s	uccessful	comple	tion of	the cour	se, the	e studen	ts will	be able	e to						
COs	STATEMENTS											RBT LEVEL			
1	Understand cutting-edge semiconductor process technology in a cleanroom											4	ł		
2	Synthesis nanostructures using variety of semiconductor technology for a given application.											4			
3	Characterize any specific nanostructure structurally, electrically and by imaging.											4			
4	Desigr photol	Design any nanodevice as a prototype, using vacuum pumps, physical deposition, photolithography and etching.											4		
5	Apply nanote	Apply the concepts of nano-fabrication processes in various industrial nanotechnology applications in sub-micron and nano-scale level.											3		
Bloom's T	axonomy	(RBT)	Level:	Remen	ber-1	; Under	stand-2	2; Appl	y-3; An	alyze-4	l; Evalua	ate-5; Cr	eate-6		
				COUR	SE Al	RTICU	LATI	ON MA	ATRIX						
COs			/	R	2	P	Os	-0	E	1			PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	/		2	8.0	1	2	2	1			3	
2	3	3	3	3	3			3	2	2	21			3	
3	3	3	3	3	3		0	3	2	2	51			3	
-		1 5				Contraction of the local division of the loc	-	-			140		-		

4	3	3	3	3	3	1	3	2	2			3
5	3	3	3	3	3	3	3	2	2	2	3	3
3- High Map	ping; 2-N	Moderate	e Mapp	ping; 1-	Low Map	oing	//	U-2	-	21		
		15	1		1		/		1	21		
		1-	1		111	835.03	1		1	31		
		1	3	15		T.		S)	5	2/		
		1	0	1		1.1		/	5	/		
			1	0 7	0-	Y	0	18	=/			
				10	ET	TTT	29	9				
						4.0	-					