

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

B.Tech., Chemical Engineering

CURRICULUM AND SYLLABUS

REGULATION – 2022

CHOICE BASED CREDIT SYSTEM

Curriculum Revision No:	00	Board of Studies recommendation date :	12.04.2024	Academic Council Approved date:	
	01.				
	02.				
Salient Points of the revision	03.				
	04.				
	05.				

SRI VENKATESWARA COLLEGE OF ENGINEERING, (An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

REGULATIONS 2022

B.Tech., CHEMICAL ENGINEERING

CHOICE BASED CREDIT SYSTEM

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1: Equip students with the necessary skills and knowledge to prosper in their career in Chemical Engineering and related domains.

PEO 2: Encourage students to Pursue advanced learning and engage in research withinternationally acclaimed institutions and foster professional growth.

PEO 3: Empower students with leadership qualities to succeed in diversified fields with ethical administrative acumen and adapt to the rapid technological advancements and innovations.

PROGRAM OUTCOMES (PO's) PO

GRADUATE ATTRIBUTES

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design / development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and needfor sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

^{10.} **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

^{11.} **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

^{12.} **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Apply the knowledge of science and mathematics in the field of various transport processes to accomplish the contemporary needs of chemical and allied industries.

2. Execute the chemical engineering principles and modern engineering tools to conduct experiments or design a system for developing quality chemical processes by considering the cost, safety and environmental aspects.

	P	EOs	
PO's	Ι	II	III
1.	3	3	2
2.	3	3	3
3.	3	3	3
4.	3	3	2
5.	3	3	2
6.	2	3	3
7.	2	2	3
8.	2	2	3
9.	2	2	3
10.	1	2	3
11.	3	2	2
12.	1	3	3
13.	3	3	2
14.	2	2	3

PEO's – PO's & PSO's MAPPING:

1- Slight (Low), 2- Moderate (Medium), 3- Substantial (High)

SRI VENKATESWARA COLLEGE OF ENGINEERING

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

REGULATIONS 2022 CHOICE BASED CREDIT SYSTEM

B.Tech., CHEMICAL ENGINEERING

CURRICULUM AND SYLLABI FOR SEMESTERS

SEMESTER I

SL.NO.	COURSE CODE	COURSE TITLE	CATE GORY		WI	DS PE EEK		Total Hours	Pre - requisite	Position
				L	Т	Р	C			
1	IP22151	Induction Program								
THEORY	Y SUBJECT:	5							<u> </u>	
2	HS22152	Communicative English (Common to all Branches)	HS	3	0	0	3	45		F
3	MA22151	Applied Mathematics I (Common to all Branches except MR)	BS	3	1	0	4	60		F
4	PH22153	Technical Physics (Common to BT and CH)	BS	3	0	0	3	45		F
5	CY22153	Technical Chemistry (Common to BT and CH & CE)	BS	3	0	0	3	45		F
6	ME22152	Basic Mechanical Engineering (Common to BT and CH)	ES	3	0	0	3	45		F
7	ME22151	Engineering Graphics (Common to BT and CH)	ES	2	0	2	3	60		F
8	HS22151	Tamil language and Heritage of Ancient Tamil Society (Common to all Branches)	MC	1	0	0	1	15		F

PRACTI	CAL SUBJE	CCTS							
9	CY22161	Chemistry Laboratory (Common to all Branches)	BS	0	0	2	1	30	F
10	ME22162	Basic Mechanical Laboratory (Common to BT and CH)	ES	0	0	2	1	30	F
		ТО	TAL				22		

SEMESTER II

SL.NO	COURS E CODE	COURSE TITLE	CATE GORY	P)DS PI EEK	ER	Total Hours	Pre - requisite	Position
•	LCODL		JORI	L	Т	Р	С			
THEOR	RY SUBJEC	CTS			1	1		L		
11	HS22252	Technical English (Common to all Branches)	HS	3	0	0	3	45		F
12	MA22251	Applied Mathematics II (Common to all Branchesexcept MR)	BS	3	1	0	4	60		F
13	EE22251	Basic Electrical and Electronics Engineering for Chemical Engineers	ES	3	0	0	3	45		F
14	IT22251	Computer Programming and Practice (Common to AE / BT / CE / CH / ME)	ES	2	0	2	3	60		F
15	CH22201	Introduction to Chemical Engineering	PC	3	0	0	3	45		F
16	HS22251	Science and Technology in Ancient Tamil Society (Common to all branches)	MC	2	0	0	2	30		F

PRACT	TICAL SUB	JECTS							
17	EE22111	Basic Electrical and Electronics Engineering Laboratory (Common to all Branches)	ES	0	0	2	1	30	F
18	PH22161	Physics Laboratory (Common to all Branches)	BS	0	0	2	1	30	F
		TO	ΓAL				20		

SEMESTER III

SL.NO	COURSE CODE	COURSE TITLE	CATE GORY	Р		DDS PI EEK	ER	Total Hours	Pre - requisite	Position
				L	Т	Р	С			
THEOR	RY SUBJEC	TS							•	
19	MA22351	Applied Mathematics III	BS	3	1	0	4	60		F
20	CH22301	Chemical Process Calculations	PC	2	1	0	3	45		F
21	CH22302	Momentum Transfer	PC	2	1	0	3	45		F
22	CH22303	Chemical Engineering Thermodynamics I	PC	3	0	0	3	45		F
23	CH22304	Mechanical Operations	PC	2	1	0	3	45		F
24	CH22305	Mechanics of Solids for Chemical Engineering	PC	2	1	0	3	45		F
PRACT	ICAL SUB	IECTS								
25	CH22311	Environmental Engineering Laboratory	PC	0	0	4	2	60		F
26	CH22312	Technical Analysis Laboratory	BS	0	0	4	2	60		F
	11	ТО	TAL				23			

SEMESTER IV

SL.NO	COURS E CODE	COURSE TITLE	CATE GORY	ŀ)DS PI EEK	ER	Total Hours	Pre - requisite	Position
•			John	L	Т	Р	С			
THEOR	RY SUBJEC	CTS	1			1	1			1
27	MA22452	Numerical Methods (Common to CH and EE)	BS	3	1	0	4	60		F
28	CH22408	Chemical Engineering Thermodynamics II: Theory and Practice	PC	2	0	2	3	60		F
29	CH22401	Heat Transfer	PC	2	1	0	3	45		М
30	CH22402	Mass Transfer I	PC	2	1	0	3	45		F
31	CH22403	Chemical Reaction Engineering I	PC	2	1	0	3	45		F
32	CH22404	Instrumental Methods of Analysis	PC	3	0	0	3	45		М
33	GE22451	Environmental Science and Sustainability (Common to all branches)	MC	3	0	0	3	45		F
PRACTI	CAL SUBJ	ECTS								
34	CH22411	Momentum Transfer Laboratory	PC	0	0	4	2	60		F
35	CH22412	Mechanical Operations Laboratory	PC	0	0	4	2	60		F
		тс	DTAL				26			

SEMESTER V

SL.NO.	COURSE	COURSE TITLE	CATE	Р		DS PI EEK	ER	Total Hours	Pre - requisite	Position
	CODE		GORY	L	T	P	С	liouis	requisite	
THEOR	AY SUBJEC	CTS								
36	CH22501	Mass Transfer II	PC	2	1	0	3	45		F
37	CH22502	Chemical Reaction Engineering II	PC	2	1	0	3	45		F

38	CH22503	Process Instrumentation Dynamics and Control	PC	2	1	0	3	45	М
39	CH22504	Chemical Process Industries	PC	3	0	0	3	45	F
40	CH22505	Process Equipment Design I	PC	2	1	0	3	45	F
41	*****	Open Elective I	OE	3	0	0	3	45	М
PRACTI	CAL SUBJ	ECTS							
42	CH22511	Mass Transfer Laboratory	PC	0	0	4	2	60	F
43	CH22512	Heat Transfer Laboratory	PC	0	0	4	2	60	F
		TC	DTAL				22		

SEMESTER VI

SL.NO.	COURSE CODE	COURSE TITLE	CATE GORY	WEEK				Total Pre - Hours requisite	Position	
				L	Т	Р	С			
THEOR	RY SUBJEC	CTS								
44	CH22601	Transport Phenomena	PC	2	1	0	3	45		F
45	CH22608	Process Modeling and Simulation: Theory and Practices	PC	2	0	2	3	60		F
46	CH22609	Process Equipment Design II: Theory and Practices	PC	2	0	2	3	60		F
47	*****	Professional Elective I	PE	3	0	0	3	45		М
48	*****	Professional Elective II	PE	3	0	0	3	45		М
49	*****	Open Elective II	OE	3	0	0	3	45		М
PRACTI	CAL SUBJ	ECTS								
50	CH22611	Chemical Reaction Engineering Laboratory	PC	0	0	4	2	60		F
51	CH22612	Process Control Laboratory	PC	0	0	4	2	60		F

52	HS22511	Interview and Career Skills Laboratory (Common to all Branches)	EEC	0	0	3	2	45		F
		Т	OTAL				24	4		
		SEMES	STER VII							
SL.NO	COURSE	COURSE TITLE	CATE	P	ERIO	DS PI	ER	Total	Pre -	Position
•	CODE		GORY				Hours	requisite		
				L	Т	Р	С			
THEOR	RY SUBJEC	CTS	1					1	I	
53	CH22701	Plant design and Economics	PC	3	0	0	3	45		F
54	CH22702	Professional Ethics	PC	3	0	0	3	45		F
55	*****	Professional Elective III	PE	3	0	0	3	45		М
56	*****	Professional Elective IV	PE	3	0	0	3	45		М
57	*****	Professional Elective V	PE	3	0	0	3	45		М
58	*****	Professional Elective VI	PE	3	0	0	3	45		М
59	CH22711	Industrial Training / Internship	EEC				2	4 weeks		М
	1	TO	OTAL				20			

SEMESTER VIII

SL.NO	COURSE CODE	COURSE TITLE	CATE GORY			DS PI EEK	ER	Total Hours	Pre - requisite	Position
				L	Τ	Р	С			
60	CH22811	Project Work	EEC	0	0	20	10			F
		TC	DTAL				10			
		OVERALL CRE	DITS				167			

PROFESSIONAL ELECTIVES / VERTICALS

VERTICAL I SPECIAL ELECTIVES

SL.NO	COURSE	COURSE TITLE	CATE		PERIC	DDS PE	R	Total
•	CODE		GORY		W	EEK		Hours
				L	Т	P	C	
61	SE22001*	Financial Statement Analysis (Common to all Branches)	PE	3	0	0	3	45
62	SE22002*	Introduction to Securities Market (Common to all Branches)	PE	3	0	0	3	45
63	SE22003*	Option Trading Strategies (Common to all Branches)	PE	3	0	0	3	45
64	SE22004*	Corporate Finance (Common to all Branches)	PE	3	0	0	3	45
65	SE22005*	Managerial Economics (Common to all Branches)	PE	3	0	0	3	45
66	SE22006*	Project Management (Common to all Branches)	PE	3	0	0	3	45
67	SE22007*	Mathematics for AI & ML (Common to all Branches)	PE	3	0	0	3	45

VERTICAL - II HYDROCARBON PROCESSING

SL.NO ·	COURSE CODE	COURSE TITLE	CATE GORY			DS PEF EEK	ł	Total Hours
				L	Т	Р	C	
68	CH22021	Drilling Technology and well Engineering	PE	3	0	0	3	45
69	CH22022	Natural Gas Engineering	PE	3	0	0	3	45
70	CH22023	Hydrocarbon Processing Technology	PE	3	0	0	3	45
71	CH22024	Unit Processes in Petrochemical Technology	PE	3	0	0	3	45
72	CH22025	Petrochemical Derivatives	PE	3	0	0	3	45
73	CH22026	Multi-Component Distillation	PE	3	0	0	3	45
74	CH22027	Petroleum Refinery Engineering and Design	PE	3	0	0	3	45
75	CH22028	Petroleum Process Equipment Auxiliaries	PE	3	0	0	3	45
76	CH22020	Mini Project	EEC	0	0	4	2	

SL.NO	COURSE CODE	COURSE TITLE	CATE GORY		PERIO WI	DS PE EEK	R	Total Hours
	CODE		UORI	L	Т	Р	С	
77	CH22031	Fire Engineering and Explosion Control	PE	3	0	0	3	45
78	CH22032	Industrial Safety Assessment	PE	3	0	0	3	45
79	CH22033	Acts and Regulations for Health, Safety and Environment	PE	3	0	0	3	45
80	CH22034	Disaster Management in Process Industries	PE	3	0	0	3	45
81	CH22035	Accident Investigation and Reporting	PE	3	0	0	3	45
82	CH22036	First Aid and Safety Precautions	PE	3	0	0	3	45
83	CH22037	Safety in process industries	PE	3	0	0	3	45
84	CH22038	Process Safety Management	PE	3	0	0	3	45
85	CH22030	Mini Project	EEC	0	0	4	2	

VERTICAL IV: ENERGY ENGINEERING

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PERIODS PER WEEK				
				L	Т	P	С		
86	CH22041	Renewable energy Resources (Common to CH, ME and MR)	PE	3	0	0	3	45	
87	CH22042	Energy and Environment	PE	3	0	0	3	45	
88	CH22043	Energy conservation in Utilities	PE	3	0	0	3	45	
89	CH22044	Energy conversion and storage Techniques	PE	3	0	0	3	45	
90	CH22045	Waste Management and Energy Recovery	PE	3	0	0	3	45	
91	CH22046	Alternative energy resources	PE	3	0	0	3	45	
92	CH22047	Measurement and Control for Energy systems	PE	3	0	0	3	45	
93	CH22048	Energy Audit	PE	3	0	0	3	45	
94	CH22040	Mini Project	EEC	0	0	4	2		

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	-	-	DS PER EEK	2	Total Hours
				L	Т	Р	C	-
95	CH22051	Industrial Waste Management	PE	3	0	0	3	45
96	CH22052	Air Pollution Management	PE	3	0	0	3	45
97	CH22053	Disaster Mitigation and Management	PE	3	0	0	3	45
98	CH22054	Global Climate Change	PE	3	0	0	3	45
99	CE22051	Municipal Solid Waste Management	PE	3	0	0	3	45
100	CE22052	Environmental Policy and Legislations	PE	3	0	0	3	45
101	CE22053	Environment, Health and Safety	PE	3	0	0	3	45
102	CE22054	Sustainability and Social Development	PE	3	0	0	3	45
103	CH22050	Mini Project	EEC	0	0	4	2	

VERTICAL V: ENVIRONMENTAL ENGINEERING (Common to CH & CE)

VERTICAL VI MATERIAL TECHNOLOGY

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY]		DS PE EEK	R	Total Hours
				L	Т	Р	С	
104	CH22061	Materials engineering fundamentals	PE	3	0	0	3	45
105	CH22062	Surface Engineering	PE	3	0	0	3	45
106	CH22063	Frontier Materials	PE	3	0	0	3	45
107	CH22064	Biomaterials	PE	3	0	0	3	45
108	CH22065	High Temperature Materials	PE	3	0	0	3	45
109	CH22066	Particulate Processing	PE	3	0	0	3	45
110	CH22067	Polymer processing	PE	3	0	0	3	45
111	CH22068	Nano Materials and Applications	PE	3	0	0	3	45
112	CH22060	Mini Project	EEC	0	0	4	2	

VERTICAL VII PROCESS ENGINEERING

SL. NO.	COURSE	COURSE TITLE	CATE]		DS PE EEK	R	Total Hours
	CODE		GORY	L	Т	Р	С	
113	CH22071	Process Optimization	PE	3	0	0	3	45
114	CH22072	Chemical Reactor Analysis	PE	3	0	0	3	45
115	CH22073	Scale-up in Chemical Engineering	PE	3	0	0	3	45
116	CH22074	Piping Design	PE	3	0	0	3	45
117	CH22075	Chemical Process Intensification	PE	3	0	0	3	45
118	CH22076	Process Plant utilities	PE	3	0	0	3	45
119	CH22077	Computational Fluid Dynamics	PE	3	0	0	3	45
120	CH22078	Quality Control, Assurance and Reliability	PE	3	0	0	3	45
121	CH22070	Mini Project	EEC	0	0	4	2	

DIVERSIFIED VERTICAL GROUP I:

SL.NO.	COURSE	COURSE TITLE	CATE	PE	RIODS	PER W	EEK	Total
	CODE		GORY	-	75	D	a	Hours
				L	Т	P	С	
122	CH22081	Biochemical Engineering	PE	3	0	0	3	45
123	CH22082	Food Processing Technology	PE	3	0	0	3	45
124	CH22083	Pulp and Paper Technology	PE	3	0	0	3	45
125	CH22084	Fluidization Engineering	PE	3	0	0	3	45
126	CH22085	Design of Experiments and Parameter Estimation	PE	3	0	0	3	45
127	CH22086	Drug and Pharmaceutical Technology	PE	3	0	0	3	45
128	CH22087	Chemical process automation	PE	3	0	0	3	45
129	CH22088	Data Analytics & Machine Learning for Chemical Engineers	PE	3	0	0	3	45

LIST OF OPEN ELECTIVES

SL.NO.	COURSE	COURSE TITLE	CATE	PE	RIODS	PER W	EEK	Total
	CODE		GORY					Hour
				L	Т	Р	C	s
130	OE22301	Waste to Energy	OE	3	0	0	3	45
131	OE22302	Industrial Safety	OE	3	0	0	3	45
132	OE22303	Composite Materials	OE	3	0	0	3	45
133	OE22304	Industrial Wastewater Treatment	OE	3	0	0	3	45
134	OE22305	Fuel Cell Technology	OE	3	0	0	3	45
135	OE22306	Industrial Pollution Prevention	OE	3	0	0	3	45
136	OE22307	Solid Waste Management	OE	3	0	0	3	45
137	OE22308	Plant Utilities	OE	3	0	0	3	45
138	OE22309	Green Energy	OE	3	0	0	3	45
139	OE22310	Energy Management	OE	3	0	0	3	45

VALUE ADDED COURSES

SL.NO.	COURSE CODE	COURSE TITLE	CATE GORY	-		DS PE EEK	R	Total Hours
				L	Т	Р	C	
140	VD22301	Chemical Engineering Plant Design	VD	2	0	0	0	30
141	VD22302	Introduction to Sustainability	VD	2	0	0	0	30
142	VD22303	MATLAB/ASPEN	VD	2	0	0	0	30
143	VD22304	Packaging Technology	VD	2	0	0	0	30
144	VD22305	Sustainable Agricultural Land Management	VD	2	0	0	0	30
145	VD22306	Waste Utilization	VD	2	0	0	0	30
146	VC22001*	Basics of Entrepreneurship Development	VD	2	0	0	0	30
147	VC22002*	Advances of Entrepreneurship Development	VD	2	0	0	0	30
148	VC22003*	Communicative German	VD	2	0	0	0	30
149	VC22004*	Communicative Hindi	VD	2	0	0	0	30
150	VC22005*	Communicative Japanese	VD	2	0	0	0	30
151	VC22006*	Design Thinking and Prototyping laboratory	VD	2	0	0	0	30

MANDATORY COURSES

SL.NO.	COURSE	COURSE TITLE	CATE	PERIODS PER			Total	
	CODE		GORY	WEEK			Hours	
				L	Т	Р	С	
152	MC22001*	Indian Constitution	МС	3	0	0	0	45
153	MC22002*	Essence of Indian Traditional Knowledge	MC	3	0	0	0	45
154	MC22003*	Gender Sensitization	MC	3	0	0	0	45

GENERAL ELECTIVES

SL.NO.	COURSE	COURSE TITLE	CATE]	PERIODS PER			Total Hours
	CODE		GORY	WEEK			110015	
				L	Т	Р	С	
155	GN22001*	Introduction to NCC for Engineers	GE	2	0	2	0	60
156	GN22002*	Yoga and Physical Culture	GE	0	0	2	0	30
157	GN22003*	Introduction to Fine Arts	GE	2	0	0	0	30

* - For syllabus, refer General curriculum and syllabus

SEMESTER I

		L	Т	Р	С
HS22152	COMMUNICATIVE ENGLISH	3	0	0	3
 Train le Instill c Develo Enhanc Improv 	JECTIVES: learners to interact fluently on everyday social contexts. earners to engage in conversations in an academic/scholarly setting. confidence in learners to overcome public speaking barriers. p learners" ability to take notes and in the process, improve their liste e learners" reading skill through reading text passages for comprehe- e learners" skills to write on topics of general interest and drafting purposes	nsion a	nd cont		
UNIT I					9
Speaking - se situations, inv comprehension sentences - de	ort video clips - conversational scenes form movies, celebrities everal ways of introducing oneself at several situations, introdu- iting people for several occasions, describing people and their p a passages - making inferences, critical analysis. Writing - con- eveloping hints from the given information. Grammar - Wh-Qu- arts of speech. Vocabulary development - prefixes - suffixes - buns.	ucing o places. pleting estions	others Readir g the i and Y	at sev ng - s ncomp les or	veral short plete No
UNIT II					9
etiquettes. Spe informative vie headlines on n headlines, slog	stomer care voice files, short narratives - identifying problems an eaking - speaking over skype/ whatsapp, making business calls deos, inquiring about a concept/activity, describing a concept/activit ews magazines - slogans and taglines from advertisements. Writing gans and taglines individual inspirations. Grammar- conjunctions, in velopment- guessing the meanings of words in different contexts.	s, mak y. Read - free v	ing sel ding - r writing	f-reco eading - writi	rded g the ing -
UNIT III					9
language and t different situa appliances, coo reference word	artroom scenes from movies, debates and talks from news channels sone for arguments, discussion, deliberation, contemplation, express tions in an alien country. Reading - language used in instruction okery and other basic instructions. Writing- understanding the str ls, discourse markers- coherence, rearranging the jumbled sentences aparison, framing direct and indirect questions. Vocabulary develop bstitution.	sing op n man ructure s. Gran	inions, uals of of tex nmar - a	reacti house ts - u adjecti	ng to ehold se of ives -
UNIT IV					9
causes, for pr movement or Simple Past,	Sports commentaries, advertisements with users" criticisms; omoting a concept, negotiating and bargaining; Reading - review a system; Writing - writing for advertisements, selling a produc Present and Future, Continuous - Past, Present and Future; Voc onyms and phrasal verbs.	w of a t; Grar	produ nmar –	ct, mo - Tens	ovie, ses -

UNIT V

Listening - video lectures, video demonstration of a concept; Speaking – presenting papers/concepts, delivering short speeches, discourses on health, suggesting natural home remedies, cleanliness, civic sense and responsibilities; Reading - columns and articles on home science; Writing - correspondences of requests, basic enquiry/observation and basic complaints; Grammar - modal verbs, perfect tenses - Vocabulary development - collocations.

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of the course, the students should be able to

CO'S	STATEMENT	RBT LEVEL
CO1.	Acquire adequate vocabulary for effective communication	3
CO2.	Listen to formal and informal communication and read articles and infer meanings fromspecific contexts from magazines and news papers.	3
CO3.	Participate effectively in informal/casual conversations; introduce themselves and their friends and express opinions in English.	4
CO4.	Comprehend conversations and short talks delivered in English.	6
CO5	Write short write-ups and personal letters and emails in English	6

REFERENCES:

1. Department of English, Anna University, Mindscapes: English for Technologists and Engineers. OrientBlack Swan, Chennai, 2017.

2. Downes and Colm,; Cambridge English for Job-hunting Cambridge University Press, New Delhi, 2008.

3. Murphy and Raymond, Intermediate English Grammar with Answers Cambridge University

4. Press, 2000. Thomson, A.J., Practical English Grammar 1& 2, Oxford, 1986.

Websites

1. http://www.usingenglish.com

2. http://www.uefap.com3

3. https://owl.english.purdue.edu/owl/

4. www.learnenglishfeelgood.com/esl-printables-worksheets.html

9

Software

1. Face 2 Face Advance – Cambridge University Press, 2014.

2. English Advance Vocabulary- Cambridge University Press.

3. IELTS test preparation – Cambridge University Press 2017.

4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition.

5. Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017

COURSE ARTICULATION MATRIX

	_,					_								
CO]	PO						PS	0
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1										3			3	
CO2										3			3	
CO3										3			3	
CO4										3			3	
CO5										3			3	

NA 2215		L			α
	A22151 APPLIED MATHEMATICS I		Т	Р	С
MA2215	(Common to all Branches except MR)	3	1	0	4
COURSE	OBJECTIVES:				
The Studen	t should be made to:				
	Eigen values and Eigen vectors and use in diagonalization and in class	ifying 1	eal qua	dratic	forms
-	fferential calculus and its applications to relevant Engineering problems		1		
3. Compute	e derivatives using the chain rule or total differentials.				
4. Understa	and the rotation of two dimensional geometry using definite integrals				
5. Acquaint	t with the Mathematical tools needed in evaluating multiple integrals an	d their	usage.		
UNIT I	MATRICES				12
Reduction	ors – Statement and Applications of Cayley-Hamilton Theorem – Dia ofa quadratic form into canonical form by orthogonal transformation-Na	-			
UNIT II	APPLICATION OF DIFFERENTIAL CALCULUS				12
					14
	and radius of Curvature– Centre curvature – Circle of curvatur Envelope of Normals.	e –Evo	olutes-	Enve	
Evolute as		e –Evo	olutes–	Enve	
Evolute as UNIT III Limits and Jacobians	Envelope of Normals.	on of in	mplicit	funct	elopes 12 ions -
Evolute as UNIT III Limits and Jacobians functionsof	Envelope of Normals. DIFFERENTIAL CALCULUS FOR SEVERAL VARIABLES Continuity - Partial derivatives – Total derivatives – Differentiation and properties– Taylor's series for functions of two variables –	on of in	mplicit	funct	elopes 12 ions -
Evolute as UNIT III Limits and Jacobians functionsof UNIT IV Integration	Envelope of Normals. DIFFERENTIAL CALCULUS FOR SEVERAL VARIABLES Continuity - Partial derivatives – Total derivatives – Differentiation and properties– Taylor's series for functions of two variables – 'two variables – Lagrange's method of undetermined multipliers.	on of in Maxim its Pro	mplicit na and	funct Mini	elopes 12 ions - ma o 12
Evolute as UNIT III Limits and Jacobians functionsof UNIT IV Integration Revolution	Envelope of Normals. DIFFERENTIAL CALCULUS FOR SEVERAL VARIABLES Continuity - Partial derivatives – Total derivatives – Differentiation and properties– Taylor's series for functions of two variables – Two variables – Lagrange's method of undetermined multipliers. APPLICATION OF DEFINTE INTEGRALS by Parts-Bernoulli's formula for integration- Definite integrals and	on of in Maxim its Pro	mplicit na and	funct Mini	12 ions - ma o 12

TOTAL: 60 PERIODS

OUT	COM	ES:												
Upon	succe	essful co	ompleti	on of th	ne cours	e, the st	tudents	should l	be able	to				
CO'S	5					ST	TATEM	ENT]	RBT LEVEL
CO	1.	Solve the	he Eige	en value	problem	ns in m	atrices.							3
CO2		Apply differer			ion of	calculu	ıs in E	ngineer	ing pro	oblems	and to	tackle	for	3
COS	3.	Perform problem		lus for	more	than or	ne varia	ble and	l its ap	plicatio	ns in I	Engineer	ring	3
CO ²	4.	Apply of	definite	integra	ls for d	esign of	f three c	limensio	onal con	nponen	ts			3
CO	5	Evaluat	e multi	iple inte	gral in	Cartesia	an and p	olar co	ordinate	es				3
ТЕХТ	r BO	OKS:												
Edition 2. Gre REFE 1. Ba Public 2. G 3. Ra (2 Web La https://h	n, Jol wal . (20) CREN ali N cation lyn . aman 2013) ink:	hn Wile B.S, Gr 15). NCES: .P and M as Pvt. L James, ' aa B.V, '	y, (201 ewal .J Manish .td.,(20 "Advan "Highe	5) Goyal, 14). aced Mo r Engin	her Eng "A Tex odern En eering I	t book of the second se	g Mathe of Engin ing Mat natics", '	meering hematic Tata Mo	',43 rd E Mather s'', 4 th E Graw	dition, l natics", Edition, 1 Hill Pub	Khanna Ninth I Pearsor lishing	Publica Edition, a Educat Compa	tions, Laxm ion,(2 ny, No	i 2016). ew Delhi,
÷							uments/1	<u>mathema</u>	<u>itics-lea</u>	rning-en	tre/integ	ration-de	efinite	-integral.pdf
COUL	NGL .	ARTIC	ULAI				PO							PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3								3	3	
CO2	3	3										3	3	
CO3	3	3	3	3								3	3	
CO4	3	3										3	3	
CO5	3	3	2	2								3	3	

DI100152	TECHNICAL PHYSICS	L	Т	Р	С
PH22153	(Common to BT and CH)	3	0	0	3

COURSE OBJECTIVES:

To enhance the fundamental knowledge in Physics and its applications relevant to various Streams of Engineering and Technology.

UNIT I LASERS AND FIBER OPTICS

Lasers: population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Nd-YAG laser – CO_2 Laser – Dye lasers, Exceimer Lasers – Applications. **Fiber optics**: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, and mode) – losses associated with optical fibers–Fiber optic communication- fibre optic sensors: pressure and displacement- Endoscope.

UNIT II QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation)- deduction of Wien's and Rayleigh Jean's law – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent wave equations – Finite potential wells - - particle in a one-dimensional - three dimensional potential box– Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT III CRYSTAL PHYSICS

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – interplanar distances- coordination number and packing factor for SC, BCC, FCC, HCP and diamond structure (qualitative) - crystal imperfections: point defects, line defects – Burger vectors, stacking faults

UNIT IV NEW ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapor deposition – Applications –Classification of Biomaterials and its applications

UNIT V PHYSICS OF SOUND

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decaymethod – Absorption Coefficient and its determination –factors affecting Acoustics of buildings and their remedies.

Production of ultrasonics by magnetostriction and piezoelectric methods - Acoustic grating –Non Destructive Testing – Pulse echo system through transmission and reflection modes - A,B and C –scan displays, Medicalapplications – Sonogram.

TOTAL: 45 PERIODS

9

9

9

9

9

OUTCO	MES	:												
Upon su	ccessf	ul co	ompletio	on of th	e cours	e, the st	udents s	should l	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1.	De	velo	p an un	derstan	ding ab	out pho	tonics a	nd Fibe	er Optic	commu	inicatio	n systen	n	2
CO2.	Ac	quir	e the kn	owledg	e of Qu	antum	mechan	ics						3
CO3.	Cla	ssif	y and de	emonstr	ate the	fundam	entals c	of crysta	als and t	heir def	fects.			3
CO4.	Ac	Acquire the knowledge of New Engineering Materials												2
CO5	En	able	to explo	ore how	v sound	is prod	uced an	d propa	gates in	materi	al medi	um		3
													I	
TEXT B	OOK	S:												
1. (aur R	.K. :	and Gup	ota S.L.	"Engin	eering	Physics'	', Dhan	put Pub	lication	is, 2015	•		
			Sharma	-	-	-	•		-					
			V, "Eng	•			-	-	•	i cuiso	ii, 2000	•		
	-		• , Eng							15				
		-	Bio ph								mb 200	15		
J. I	lemer	ital y	bio pii	lysics -	All Illu	ouucio	n = 1 K	SIIVasi	llava, IN	a108a 1	u0200	15		
REFER	ENCI													
			, Rober	+ Dogni	ok Ioor	1 Wollze	or "Drin	aiplas	of Dhyoi	<u>ae" 10</u> t	h Editi	wilc	xy 2015	
		-	nd Julio					-	-				•	
			Shobhi		-			•				•		
			Educatio			i Kai C	nouunu	ly S, V	Concept	IS OF IVE		riysics	, / et	intion,
4. Ragł				,		Engina	oring"		orning I	Nut Itd	2010			
												td 201	n	
5. Pand	еу Б.	1., C		eur.s.	Eliginee	ring ri	lysics,	Cengag		ing nu	la FVI.L	<i>A</i> u , 201	Z	
COURS	E AR	TIC	ULAT	ION M	ATRIX	K								
							PO						P	SO
CO –	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3									1			3	
002	3	2	2	2	3					1		2	3	
000	3	2								1			3	
00.	3	2	2	2	3	2	2			1 1		2	3	
CO5	3		I	1	1	1	1	1					i 🔨	

To make the Elec Phot Synt Chai	(Common to BT and CH & CE) BJECTIVES: student conversant with the rodes, Corrosion and Protective coatings ochemical process mesis and applications of nanoparticles acteristics and analysis of water	3	0	0	3
Fo make the Elec Phot Synt Chai	student conversant with the rodes, Corrosion and Protective coatings ochemical process nesis and applications of nanoparticles				
• Mate					
	rials like polymers, composites and binding materials				9
potential an equation – series and it	nd electrochemical cells – electrode potential, standard electrode po d its determination, types of electrodes – calomel, quinhydrone and letermination of pH of a solution by using quinhydrone and glass el applications. Batteries – Primary (dry cell) and secondary batteries (L ionbattery) and next generation batteries.	d glass lectrod	s electr le. Elec	ode. 1 ctroche	Nernstemical
UNIT II	HOTOCHEMISTRY				9
iron by spec crossing, flu Stern-Volme	tochemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert E rophotometer. Quantum efficiency – Photo physical processes - interna prescence, phosphorescence and photo-sensitization-Quenching of fluo er relationship. Applications of photochemistry NANOCHEMISTRY	al conv	rersion,	inter-	syster
(lithography plasmon res	s and bulk materials; size-dependent properties. Synthesis of 1) and its applications – Basics of nanophotonics and quantum co pnance). VATER TECHNOLOGY				
characteristi Sludge, Prin Internal trea External tre determinatio	burities in water and their effects. WHO guideline and BIS guideline to cs – Hardness – Types of hardness – Disadvantages of hard water ning and Foaming, Caustic embrittlement and Boiler corrosion. We tment of water: Carbonate conditioning, Phosphate conditioning and the the treatment of water: Ion exchange process. Domestic water treatment. We n by EDTA method, Alkalinity – determination by double indicator to ygen by Winkler's method and Determination of chloride by Mohr's m	r. Boil ater so id Calg ater ar nethoo	er trou oftening gon co nalysis:	bles: g meth nditio Hardi	Scale nods - ning - ness -
UNIT V	IATERIALS CHEMISTRY				9
	ntroduction – Monomers, functionality and its significance, Free	e radio	1	•	
Polymers: 1 mechanism. Composites and ceramic	Conduction – Wohomers, functionality and its significance, Free Conducting polymers – mechanism of conduction in polyacet Definition, need for composites. Constitution – Matrix materials (Poly matrix) and Reinforcement (fiber, particulates, flakes and whiskers). P as materials. Hybrid composites, Binding materials and its applications	ymer n	natrix, r	netal	natriy

		C 1	1	6.1					1.1					
Upon s	ucces	sstul co	ompletio	on of the	e course	e, the st	udents s	should t	be able	0				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1	. I	dentify	electro	chemic	al cells	, corros	ion and	fundan	nental a	spects o	f batter	ies		2
CO2	. I	nterpre	et the pl	notoche	mical re	eactions	and ma	ake use	of spec	roscopi	c techn	iques		2
CO3	. F	Realize	the stru	ictures,	propert	ties and	applica	tions of	f nanopa	articles.				2
CO 4				ardness methods		ter, the	proble	ms cau	sed by	the har	d water	and		4
CO5				ignifica ropertie			s materi ons.	als like	polym	er, com	posites	their		2
1. F	P C Ia	in and	Monio	- T-1 6	Enging	amin a C	1	w" Dhe	nnetR a	it Son	NT 1	N 11 1 4		
2 REFE 1. Compa 2.	2018 2.S.S 2016 REN(B.R. ny, 20 Sivas	.Dara, CES: Puri, 1 008.	"A Tex L.R. Sh B., "E	t Book	of Engi M.S. Pa	neering	, "Princ	stry", S	.Chand	& Co. L	ntd., Nev	Vishal	, 12th I Publis	Edition
2 REFE 1. Compa 2.	2018 2.S.S 2016 REN(B.R. ny, 20 Sivas Delh	.Dara, CES: Puri, 2 008. sankar i,2008.	"A Tex L.R. Sh B., "E	t Book	of Engi M.S. Pa	neering athania.	g Chemi	stry", S	.Chand	& Co. L	ntd., Nev	w Delhi Vishal	, 12th I Publis	Edition
2 REFEI 1. Compa 2. COUR	2018 2.S.S 2016 REN(B.R. ny, 20 Sivas Delh	.Dara, CES: Puri, 2 008. sankar i,2008.	"A Tex L.R. Sh B., "E	t Book	of Engi M.S. Pa	neering uthania. emistry	g Chemi	stry", S	.Chand	& Co. L	ntd., Nev	w Delhi Vishal	, 12th I Publis Ltd., 1	Edition
2 REFE 1. Compa 2. COUR COUR	2018 2.S.S 2016 RENG B.R. ny, 20 Sivas Delhi SSE A	.Dara, CES: Puri, 1 008. sankar i,2008. ARTIC	"A Tex L.R. Sh B., "Ei ULAT	t Book harma, I ngineer ION M	of Engi M.S. Pa	neering uthania. emistry	g Chemi , "Princ ", Tata	stry", S	.Chand	& Co. L	ntd., Nev	w Delhi Vishal mpany, 12	, 12th I Publis Ltd., 1 I	Edition
2 REFEI 1. Compa 2. COUR COUR CO1	2018 2.S.S. 2016 RENG B.R. ny, 20 Sivas Delhi SSE A 1 3	.Dara, CES: Puri, 1 008. sankar i,2008. RTIC 2 3	"A Tex L.R. Sh B., "E ULAT	t Book harma, 1 ngineer ION M	of Engi M.S. Pa ing Che	neering thania. emistry	g Chemi , "Princ ", Tata PO 7	stry", S ciples of McGra	f Physic w-Hill	& Co. I	mistry"	w Delhi Vishal mpany, 12 3	, 12th I Publis Ltd., 1 I 3	Edition hing New PSO
2 REFEI 1. Compa 2. COUR COUR CO1 CO2	2018 2.S.S. 2016 RENG B.R. ny, 20 Sivas Delhi SSE A 1 3 3	.Dara, CES: Puri, 1 008. sankar i,2008. ARTIC 2 3 3 3	"A Tex L.R. Sh B., "Ei ULAT	t Book narma, I ngineer ION M	of Engi M.S. Pa ing Che	neering thania. emistry	 3 Chemi 3 (Prince) 	stry", S ciples of McGra	f Physic w-Hill	& Co. I	mistry"	w Delhi Vishal mpany, 12 3 3	, 12th I Publis Ltd., 1 I	Edition hing New PSO
2 REFEI 1. Compa 2. COUR	2018 2.S.S. 2016 RENG B.R. ny, 20 Sivas Delhi SSE A 1 3	.Dara, CES: Puri, 1 008. sankar i,2008. RTIC 2 3	"A Tex L.R. Sh B., "E ULAT	t Book narma, I ngineer ION M	of Engi M.S. Pa ing Che	neering thania. emistry	g Chemi , "Princ ", Tata PO 7	stry", S ciples of McGra	f Physic w-Hill	& Co. I	mistry"	w Delhi Vishal mpany, 12 3	, 12th I Publis Ltd., 1 I 3 3 3	Edition hing New PSO

	E22152 BASIC MECHANICAL ENGINEERING									
ME221:	(Common to BT and CH)	3	0	0	3					
COURSE	OBJECTIVES:			1	1					
1. To tea	ch the fundamentals of various energy resources									
2. To imp	part the concepts in internal combustion Engines									
3. To ma	ke the students to understand the working principle of refrigeration and A	Air con	ditionir	ig sys	tems					
4. To imp	part the various engineering materials and their processing methods.									
5. To giv	e an awareness about the recent trends in Mechanical engineering									
UNIT I	ENERGY RESOURCES				10					
Classificat	ion of Energy Resources - Non-renewable and renewable energy re	esource	s. Non	renev	vable					
energyreso	ources – Steam power plant, Nuclear power plant, Hydroelectric power p	lant, G	as Turł	oine p	ower					
plant. Dies	sel Power plant									
Renewable	e Energy resources – Solar Energy, Wind Energy, Bio energy, tidal energ	y, fuel	cells							
UNIT II	INTERNAL COMBUSTION ENGINES				9					
	ion, I.C. Engines parts and their function, working of 2 Stroke and 4 stropower, brake power frictional power, thermal efficiency, mechanical efficiency.	U			erms -					
UNIT III	REFRIGERATION AND AIR CONDITIONING				9					
Refrigerat	on: Types of refrigerants and properties of good refrigerant, Refriger	ating e	ffect a	nd ur	nit of					
Refrigerat	ion (definition). Working principle of vapor Compression refrigeratio	n and	vapor	absor	ption					
refrigerati	on (with a sketch). Applications areas of a refrigeration system. Basic Ca	lculatio	ons							
	tioning: Definition, Types, Room air-conditioning working print ns. Calculation of Tonnage requirement based on the room size	ciple	(with	a sk	etch),					
UNIT IV	MATERIALS AND MANUFACTURING PROCESSES				10					
Engineerin	ng Materials: Classification – Properties – Alloys and their applications			•						
Manufactu	ring Processes - classification - Casting - Pattern, Core, Green sand Mo	uld								
preparatio	n,Investment casting									
Metal Join	ing Process - Arc welding and Gas welding process, Soldering and Braz	ing – iı	ntroduc	tion						
Metal form	ning Process – Forging, rolling, Extrusion – introduction									
Metal Ren	noval process – Lathe, Milling, Drilling									
UNIT V	RECENT TRENDS IN MECHANICAL ENGINEERING				7					
	d Electric vehicle – layout and Principle Additive Manufacturing – Introd - Introduction – Types of robot and applications	luction	and ty	pes						
	r	ГОТА	L: 45 I	PERI	ODS					

OUT	COM	IES:												
Upon	succ	essful co	ompleti	on of th	e course	e, the st	udents s	should	be able	to				
CO'S	5					ST	TATEM	ENT					Ι	RBT LEVEL
CO	Ι.	Unders	tand the	e variou	s energ	y resou	rces and	l the pri	nciple of	of their of	operatio	ons	2	
CO2	2. Understand the principle of refrigeration and Air-conditioning											2		
COS	CO3. Identify the types of IC engines and will calculate the various parameters											4		
CO4	1.	Learn t	he vario	ous Eng	ineering	g Mater	ials and	the ma	nufactu	ring pro	ocesses			2
CO	5	Know	he rece	nt trend	ls in I.C	. engine	es and m	nanufac	turing					2
													I	
ТЕХТ	' BO	OKS:												
 1. 2. 3. 4. 5. 	Bas Pra R.k Naş	sant Agr vin Kur K. Rajpu g, P K, I	rawal, C nar, Bas t, Basic Basic M	C.M. Ag sic Mec e Mecha lechanio	rawal. I hanical nical Ei	Basic M Engine ngineer neering	ering, 2 ing, Lak	cal Eng nd Editi cshmi F	ineering on Pear Publicati	g, Wiley son Indi lons, 20	India F ia, 2018 07	Pvt Ltd,		1
							PO						P	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2	2													
CO3	2													_
CO4	2													_
CO5	1													

		L	Т	Р	C
ME221	51 ENGINEERING GRAPHICS	2	0	2	3
This cours	OBJECTIVES: e will introduce the students to build their ability to read drawings and ir mple geometries.	iterpret	the pos	sition	and
UNIT 0	CONCEPTS AND CONVENTIONS AND GEOMETRICCONSTR FOR EXAM)	UCTI	ON (N	OT	2
-	e of graphics in engineering applications - Use of drafting instrument ons - Size, layout and folding of drawing sheets - Lettering and dimensio		S conv	ention	is and
UNIT I	CONICS, CYCLOIDAL CURVES AND INVOLUTES				10
and hyper of cycloid	construction - Curves used in engineering practices: Conics - Constructed bola by eccentricity method - Drawing of tangents and normal to the abord , epicycloid and hypocycloid- Drawing of tangents and normal to the abord es of square, pentagon and circle - Drawing of tangents and normal to the	ve curv ove cur	ves - Co ves. Co	onstru onstru	ction
UNIT II	PROJECTION OF POINTS, LINES AND PLANESURFACES				12
Projection Determina Projection perpendicu	hic projection – principles- Principal planes - First angle projection of straight lines (only First angle projections) inclined to both tion of true lengths and true inclinations by rotating line method. of planes (polygonal and circular surfaces) inclined to one of t alar to other by rotating object method.	the pi	rincipal	plan	nes - es and
UNIT III	PROJECTION OF SOLIDS				12
principal princi	of simple solids like prisms, pyramids, cylinder, cone when the axis planes and parallel to the other by rotating object method. Projections of with centrally drilled hole or square through its ends by rotating line me principal planes and parallel to the other.	hollow	[,] prism	and h	nollow
UNIT IV	BLOCK FLOW DIAGRAM USING CAD				12
	on to Computer Aided Drafting hardware - Overview of applications (AutoCAD) for simple shapes - Block flow diagrams - Dimensioning.	ı softw	vare -21	D dra	ıfting
UNIT V	ORTHOGRAPHIC AND ISOMETRIC VIEWS USING CAD				12
	on to tolerance - Annotation in CAD - Isometric views - Orthographic basics - 3D to 2D conversion.	ic view	vs - 3D)	
	TOTAL:60	(30L +	-30P) 1	PERI	ODS

OUTO	COM	ES:												
Upon	succe	ssful co	ompleti	on of th	e cours	e, the st	udents	should	be able	to				
CO'S	5					ST	ATEM	IENT						RBT EVEL
CO	l. (Constru	uct con	ic sectio	ons and	as per o	lrawing	; standa	rds.					3
CO2	,		orthog us posit		projecti	ions of	lines a	ind pla	ne surfa	ices and	d simpl	e solids	,	3
COS	3. (Obtain	project	ions of	simple	and hol	low sol	ids.						3
CO ₂	Employ the CAD software for drafting and modelling of simple components									3				
CO	5	Constru	uct 2D	views fi	rom 3D	models	s using (CAD so	ftware.					3
техт	BOC)KS:												
 Ver Limite REFE 1. Dha Publis 2. Part 3. Sha 4. Nat WEB 1. 2. 3. 4. 	REN REN nanja hing (thasar h M.H rajan RES(Auto <u>https</u>	al K. a edition CES: y A J Compat athy N 3., and K.V., " OURC k flow CAD t s://npte s://npte	n, 2022 folhe, ' ny Lim . S. and Rana B 'A Text ES: diagran tutorial: <u>1.ac.in/a</u>	⁶ Engine ited., 20 Vela M S.C., "En Book c m - http:	ering I 008 Iurali, ' of Engir s://med ://www (112105 (112103	Drawing 'Engine ing Dra neering ia.ed.ac .thesou 5294 5019	g with eering G wing", 1 Graphic	an Intr Traphics Pearson cs", Dha dia/1_u	oductio ", Oxfo Educat analaksł	n to A rd Univ ion Ind umi Pub	utoCA ersity, i ia, 2nd	e Interna D", Tata Press, N Edition, Chenna	a McG ew Del 2009.	raw-H hi,201
00							PO						Р	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1										1				
CO2										2				
CO3										2				
CO4					2				1	3				
CO5					2				1	3				

		L	Т	Р	C
HS 2215	Funn Language and Heritage of Anetent Funn Society	1	0	0	1
·····	(Common to all branches)				
	் நோக்கங்கள் :				
	மி மொழியின் தோற்றம் பற்றியும், திணை கருத்துக்கள் வாயிலாக வாழ்விய	ல முறை	൱௧෨ഩ	பறறி	ியும
. 0	க் கொள்வார்கள்.				
🍫 . இந்தி	ிய தேசிய சுதந்திர இயக்கத்தில் தமிழர்களின் பங்களிப்பு மற்றும் தமிழர்கள	ின் மேல	பாண்ன	Ш	
முல	றகளை பற்றியும் கற்றுக் கொள்வார்கள்.				
அலகு 1 UNIT I	தமிழுக்கும் தொழில் நுட்ப கல்விக்கும் உள்ள தொடர்பு				3
செம்மொழி - பங்களிப்பு - (LANGUAGE A Classical Lite	றும் பாரம்பரியம்:: இந்தியாவில் உள்ள மொழிக் குடும்பங்கள் - திராவி தமிழில் செம்மொழி இலக்கியம் - உ.வே. சுவாமிநாத ஐயர்., ஆறு(தொழில் நுட்ப கல்வியில் தமிழ் AND HERITAGE: Language families in india – Dravidan Languages – Tami rature in Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navala	ழக நான l as a Cla	வலர் அ assical l	ஆகியே angua	பாரின் age —
	cechnical education.			<u> </u>	
UNIT II திணை கருத தொழில்கள் இருந்து அகம்	திணை கருத்துக்கள் த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வி , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற மற்றும் புறம் கருத்து - தமிழ் அறம் கருத்து - சங்க காலத்தில் கல்வி மற்ற ற்றும் சங்க தாலக்கில் துறையுகங்கள் - சங்க தாலக்கில் எற்றுமதி பா	றம் சங்ச றம் எழுத்	5 இலக் ந்தறிவு	கியங் - பண்	களில் டைய
UNIT II திணை கருத தொழில்கள் இருந்து அகய் நகரங்கள் மர மன்னர்களின் .Thinai conce and Fauna o of Tamil – Ec	த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வீ , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற ம மற்றும் புறம் கருத்து - தமிழ் அறம் கருத்து - சங்க காலத்தில் கல்வி மற்ற ற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற வைளிநாட்டு வெற்றிகள். epts : -Five types of lands, animals, Gods, occupation, life styles, music, f Tamils - Agam and puram concept from Tholkappiyam and Sangam ducation and Literacy during Sangam Age – Ancient cities and Ports of	றம் சங்ச றம் எழுத் ற்றும் இ dance , Literatur	s இலக் ந்தறிவு றக்கும food st re – Ara	கியங் - பண் தி - cyle, f am co	ள்கள் களின் டைய சோடி Floar
UNIT II திணை கருத தொழில்கள் இருந்து அகம் நகரங்கள் மர மன்னர்களின் .Thinai conce and Fauna o of Tamil – Ec Import durin	த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வீ , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற ம மற்றும் புறம் கருத்து - தமிழ் அறம் கருத்து - சங்க காலத்தில் கல்வி மற்ற ற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற வளிநாட்டு வெற்றிகள். epts : -Five types of lands, animals, Gods, occupation, life styles, music, f Tamils - Agam and puram concept from Tholkappiyam and Sangam	றம் சங்ச றம் எழுத் ற்றும் இ dance , Literatur	s இலக் ந்தறிவு றக்கும food st re – Ara	கியங் - பண் தி - cyle, f am co	ள்கள் களில் டைய சோழ Floara
UNIT II திணை கருத தொழில்கள் இருந்து அகய் நகரங்கள் மர மன்னர்களின் .Thinai conce and Fauna o of Tamil – Ec	த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வீ , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற ம மற்றும் புறம் கருத்து - தமிழ் அறம் கருத்து - சங்க காலத்தில் கல்வி மற்ற ற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற வைளிநாட்டு வெற்றிகள். epts : -Five types of lands, animals, Gods, occupation, life styles, music, f Tamils - Agam and puram concept from Tholkappiyam and Sangam ducation and Literacy during Sangam Age – Ancient cities and Ports of	றம் சங்ச றம் எழுத் ற்றும் இ dance , Literatur	s இலக் ந்தறிவு றக்கும food st re – Ara	கியங் - பண் தி - cyle, f am co	ள்கள் களின டைய சோடி Floar pncep
UNIT II திணை கருத தொழில்கள் இருந்து அகம் நகரங்கள் மர மன்னர்களின் .Thinai conce and Fauna or of Tamil – Ec Import durin அலகு 3 UNIT III இந்திய தேசி	த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வீ , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற ம் மற்றும் புறம் கருத்து - தமிழ் அறம் கருத்து - சங்க காலத்தில் கல்வி மற்ற ற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற வைளிநாட்டு வெற்றிகள். epts : -Five types of lands, animals, Gods, occupation, life styles, music, f Tamils - Agam and puram concept from Tholkappiyam and Sangam ducation and Literacy during Sangam Age – Ancient cities and Ports of g Sangam Age - Overseas Conquest of Choloas.	றம் சங்ச றம் எழுத் ற்றும் இ dance , Literatur Sangam ன் பங்க	s இலக் ந்தறிவு றக்கும food st re – Ara Age – ளிப்பு ^{:-}	கியங் - பண் தி - :yle, F am co Expoi	ள்கள் களி டைப சோழ Floar phcep rt an 3 ணிய
UNIT II திணை கருத தொழில்கள் இருந்து அகம் நகரங்கள் மர மன்னர்களின் .Thinai conce and Fauna of of Tamil – Ec Import durin அலகு 3 UNIT III இந்திய தேச பாரதி, வாஞ் சின்னமலை தமிழர் இல	த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வி , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற மற்றும் புறம் கருத்து - தமிழ் அறம் கருத்து - சங்க காலத்தில் கல்வி மற்ற ற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற வெளிநாட்டு வெற்றிகள். epts : -Five types of lands, animals, Gods, occupation, life styles, music, f Tamils - Agam and puram concept from Tholkappiyam and Sangam ducation and Literacy during Sangam Age – Ancient cities and Ports of g Sangam Age - Overseas Conquest of Choloas. தமிழரின் மரபு Alu சுதந்திர இயக்கம் மற்றும் இந்திய கலாச்சாரத்திற்கு தமிழர்களின் திநாதன், சுப்பிரமணிய சிவா, வீரபாண்டிய கட்டபொம்மன், வா. உ மருது பாண்டிய சகோதரர்கள் பூலி தேவர். திருப்பூர் குமரன், வீர மங்கை ே க்கியங்களில் மேலாண்மை கருத்துக்கள் (கி. மு. 500 முதல் கி. பி திருக்குறள் ஆகியவற்றில் மேலாண்மைக் கருத்துகள்	றும் சங்ச றும் எழுத் ற்றும் இ dance , Literatur Sangam சிதம்பர வலுநாச் 200 வல	s இலக் ந்தறிவு றக்கும food st re – Ara Age – ளிப்பு:- ம் பிள் சியார். ரை) – ு	கியங் - பண் தி - :yle, F am co Expor கப்ரம எளை, அகநா	ள்கவ களி டைப சோர Floar phoep rt an 3 ஹிப தீரவ
UNIT II திணை கருத தொழில்கள் இருந்து அகம் நகரங்கள் மர மன்னர்களின் .Thinai conce and Fauna or of Tamil – Ec Import durin அலகு 3 <u>UNIT III</u> இந்திய தேச பாரதி, வாஞ் சின்னமலை, தமிழர் இலை புறநானூறு, த Contribution Subramanya Pillai, Dheei	த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வீ , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற மற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற எவெளிநாட்டுவெற்றிகள். epts : -Five types of lands, animals, Gods, occupation, life styles, music, f Tamils - Agam and puram concept from Tholkappiyam and Sangam ducation and Literacy during Sangam Age – Ancient cities and Ports of g Sangam Age - Overseas Conquest of Choloas. தமிழரின் மரபு Alm சுதந்திர இயக்கம் மற்றும் இந்திய கலாச்சாரத்திற்கு தமிழர்களில் தகிநாதன். சுப்பிரமணிய சிவா, வீரபாண்டிய கட்டபொம்மன், வா. உ மருது பாண்டிய சகோதரர்கள் பூலி தேவர், திருப்பூர் குமரன், வீர மங்கை ே க்கியங்களில் மேலாண்மை கருத்துக்கள் (கி. மு. 500 முதல் கி. பி திருக்குறள் ஆகியவற்றில் மேலாண்மைக் கருத்துகள் of Tamils to Indian National Freedom Movement and Indian C Bharathi, Vanchinathan, Subramaniya Siva, Veerapandiya Kattabom ran Chinnamalai, The Maruthu Pandiyar, Puli Thevar, Tiruppur	றும் சங்ச றும் எழுத் ற்றும் இ dance , Literatur Sangam சிதம்பர வலுநாச் ²⁰⁰ வன ulture :	s இலக் ந்தறிவு றக்கும food st re – Ara Age – ளிப்பு:- ம் பிள் சியார். ரை) – எ Contr	கியங் - பண் தி - cyle, F am co Expor கப்ரம கப்ரம எனை, அகநா ibutio idamb	ள்கள் களி நைடா சோர Floar நாcep rt an இர இர இர ஹாற ஹாற
தொழில்கள் இருந்து அகம் நகரங்கள் மர மன்னர்களின் Thinai conce and Fauna oi of Tamil – Eo Import durin அலகு 3 <u>UNIT III</u> இந்திய தேச பாரதி, வாஞ் சின்னமலை தமிழர் இல பறநானூறு, த Contribution Subramanya Pillai, Dheei Velunachiyar	த்துக்கள் : - ஐந்து வகை நிலங்கள், தமிழர்களின் தாவரங்கள் மற்றும் வீ , வாழ்க்கை முறை, பண் , கூத்து , உணவு முறை - தொல்காப்பியம் மற்ற மற்றும் சங்க காலத்தில் துறைமுகங்கள் - சங்க காலத்தில் ஏற்றுமதி மற எவெளிநாட்டுவெற்றிகள். epts : -Five types of lands, animals, Gods, occupation, life styles, music, f Tamils - Agam and puram concept from Tholkappiyam and Sangam ducation and Literacy during Sangam Age – Ancient cities and Ports of g Sangam Age - Overseas Conquest of Choloas. தமிழரின் மரபு Alm சுதந்திர இயக்கம் மற்றும் இந்திய கலாச்சாரத்திற்கு தமிழர்களில் தகிநாதன். சுப்பிரமணிய சிவா, வீரபாண்டிய கட்டபொம்மன், வா. உ மருது பாண்டிய சகோதரர்கள் பூலி தேவர், திருப்பூர் குமரன், வீர மங்கை ே க்கியங்களில் மேலாண்மை கருத்துக்கள் (கி. மு. 500 முதல் கி. பி திருக்குறள் ஆகியவற்றில் மேலாண்மைக் கருத்துகள் of Tamils to Indian National Freedom Movement and Indian C Bharathi, Vanchinathan, Subramaniya Siva, Veerapandiya Kattabom ran Chinnamalai, The Maruthu Pandiyar, Puli Thevar, Tiruppur	றும் சங்ச றும் எழுத் ற்றும் இ dance , Literatur Sangam ர் பங்க சிதம்பர வலுநாச் 200 வன ulture : man, V Kumarar	s இலக் ந்தறிவு றக்கும food st re – Ara Age – எரிப்பு:- ம் பிள் சியார். நர) – எ Contr O Chi n, Vee	கியங் - பண் தி - yle, F am co Expoi கப்ரம எனை, அகநா ibutio idamb ra M	ள்கவ களி நைடா சோர Floar நாடீ ரா an தீரவ ஹாற நா ons o parar langa

	COME	ES:												
Upon	succes	sful com	pletion	of the	course,	the stud	ents sho	ould be	able to					
பா. . எல CO'S	ठंठा	Ц	ாடத்தி		தின் ெ FEMEN		பாடு						I	RBT LEVEL
CO		மாணவ Students							-	ள்வார்	கள்			1
CO2. தமிழர்களின் வாழ்வியல் முறைகளை தெரிந்து கொள்வார்கள் They will know the ways of life of Tamils.										2				
CO.	3.	தமிழர்ச பற்றியு They wil	களின் ச ம் தெரி	சுதந்திர ந்து செ	்போரா எள்வா	ட்ட விர் ர்கள்	ரர்களை				_	-	ന്ന	2
	முத்து	குமாரன்	-											
பொன் பி. டி. றீ ப குதி)" –ாக்டர் சென்ன முனை	முத்து ரீனிவா திருதெ எகே சே னை ⁶⁰⁰ வர். ச.	<u>∡S:</u> குமாரன் ச ஐயங்க நல்வேல 5 பிள்னை	கார் (<i>தப</i> பி தென் எ ^{(2009),} ந்திரன் ⁽²	றிழக்க(னிந்திய " தமிழ ^{2004),} "த	<i>ழம் திற</i> சைவ ச க வரல நமிழில்	ற னாய்வ சித்தாந்த ாறு மக்	<i>டிம்</i>) புல ந நூற்பத களும் 1	வர் கா. திப்பு கழ ப ண்பா (கோவி கம் , ¹⁵⁴ டும்", உ	ந்தன் (1 , ^{TTK} சா லக தமி	^{988),} " த ு லை [,] செ	மிழர் வ சன்னை ச்சி நிறு	^{18.} வனம்	, தரமன
பான் ி. டி றீ ப குதி)" _ாக்டர் சென்ன ழனை COUI	முத்து ரீனிவா , திருதெ 1 கே சே னை ⁶⁰⁰ வர். ச. RSE A	XS: குமாரன் ச ஐயங்க நல்வேல 6 பிள்னை 113 இராஜேர RTICU	கார் (<i>தய</i> பி தென் எ (2009), ந்திரன் (2 LATIC	ற <i>ழக்க(</i> னிந்திய "தமிழ 2004), "த ON MA	<i>ழம் திற</i> சைவ க க வரல நமிழில் TRIX	றனாய்வ சித்தாந்த ாறு மக் சொல்ல 	ழம்) புல ந நூற்பத களும் லாக்கப் 	வர் கா நிப்பு கழ பண்பா ம", தஞ்ச	கோவி நகம் ,154 டும்", உ ளவூர் த	ந்தன் (1 , TTK சா லக தமி மிழ் பல்	^{988), "} து லை, செ மூாராய் கலைக்	மிழர் வ சன்னை ச்சி நிறு கழகம்	^{18.} வனம் வெளி	. தரமன யீடு PSO
பான் டி டி ரீ ப குதி)" பக்டர் சென்எ மனை COUI	முத்து ரீனிவா திருதெ எகே சே னை ⁶⁰⁰ வர். ச.	<u> </u>	கார் (<i>தப</i> பி தென் ர (2009), ந்திரன் (2 LATIC 3	றிழக்க(னிந்திய " தமிழ ^{2004),} "த	<i>ழம் திற</i> சைவ ச க வரல நமிழில் TRIX	றனாய்வ நித்தாந்த ாறு மக் சொல்ல P 6	ழம்) புல ந நூற்பத களும் 1 லாக்கப் O 7	வர் கா. திப்பு கழ ப ண்பா (கோவி நகம் ,154 டும்", உ ளவூர் த 9	ந்தன் (1 , ^{TTK} சா லக தமி	^{988),} " த ு லை [,] செ	மிழர் வ சன்னை ச்சி நிறு கழகம் (12	^{18.} வனம் வெளி	. தரமன யீடு
பொன் பி டி றீ பகுதி)" _ாக்டர் சென்ன மனை COUI CO CO1	முத்து ரீனிவா , திருதெ 1 கே சே னை ⁶⁰⁰ வர். ச. RSE A	XS: குமாரன் ச ஐயங்க நல்வேல 6 பிள்னை 113 இராஜேர RTICU	கார் (<i>தப</i> பி தென் ர (2009), ந்திரன் (2 LATIC <u>3</u> 3	<i>நிழக்க(</i> னிந்திய "தமிழ 2004), "த DN MA	<i>ழம் திற</i> சைவ க க வரல தமிழில் TRIX 5 3	தனாய்வ தித்தாந்த ாறு மக் சொல்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சால்ல சித்தாந்த	ழம்) புல ந நூற்பத களும் லாக்கப் 	வர் கா. நிப்பு கழ பண்பா(ம", தஞ்ச 8	கோவி நகம் ,154 டும்", உ ாவூர் த 	ந்தன் (1 , TTK சா லக தமி மிழ் பல்	^{988), "} து லை, செ மூாராய் கலைக்	மிழர் வ சன்னை ச்சி நிறு கழகம்	^{18.} வனம் வெளி	. தரமன யீடு PSO
பொன் பி டி றீ ப குதி)" டாக்டர் சென்ன மனை COUI	முத்து ரீனிவா , திருதெ 1 கே சே னை ⁶⁰⁰ வர். ச. RSE A	XS: குமாரன் ச ஐயங்க நல்வேல 6 பிள்னை 113 இராஜேர RTICU	கார் (<i>தப</i> பி தென் ர (2009), ந்திரன் (2 LATIC 3	ற <i>ழக்க(</i> னிந்திய "தமிழ 2004), "த ON MA	<i>ழம் திற</i> சைவ ச க வரல நமிழில் TRIX 5	றனாய்வ நித்தாந்த ாறு மக் சொல்ல P 6	ழம்) புல ந நூற்பத களும் 1 லாக்கப் O 7	வர் கா நிப்பு கழ பண்பா ம", தஞ்ச	கோவி நகம் ,154 டும்", உ ளவூர் த 9	ந்தன் (1 , TTK சா லக தமி மிழ் பல்	^{988), "} து லை, செ மூாராய் கலைக்	மிழர் வ சன்னை ச்சி நிறு கழகம் (12	^{18.} வனம் வெளி	. தரமன யீடு PSO

				L	Т	Р	C
CY22161	C	CHEMISTRY LABORATORY		0	0	2	1
chemistry, the 1. To appr 2. To gain measuring used 3. To imp	of the Chemistry La student face during reciate the need and the knowledge on l in electrochemist art knowledge on s	aboratory is to acquaint the students w g course of their study in the industry a d importance of water quality paramet electrochemical instrumentation tech ry applications eparation of components using paper apability about polymer and propertie	and engineer ers for indus niques like p chromatogra	ring fie strial an potentia aphy.	ld. nd dom al and c	estic u	ise.
LIST OF EX	PERIMENTS (Mi	inimum 8 Experiments)					
1. Determ	ination of DO cont	ent of water sample by Winkler"s met	hod.				
2. Determ	ination of strength	of given hydrochloric acid using pH i	neter				
3. Determ	ination of strength	of acids in a mixture using conductiv	ity meter				
	ion of iron content e/thiocyanatemethe	t of the water sample using spectrophod)	otometer				
5. Determ	ination of total, ter	nporary & permanent hardness of wat	er by EDTA	Metho	od.		
6. Estimat	tion of iron content	of the given solution using potentiom	ieter.				
7. Determ	ination of alkalinit	y in water sample.					
8. Determ	ination of Single e	lectrode potential.					
9. Separat	ion of components	from a mixture of red and blue inks u	sing Paper o	chroma	tograph	ıy.	
10. Determ	ination of molecul	ar weight of polymer by using Ostwal	d's/Ubbeloh	de visc	ometer		
LIST OF EQU	J IPMENT FOR A	BATCH OF 30 STUDENTS:					
Common appa	aratus: Pipette, B	urette, conical flask, porcelain tile, d	lropper (ea	ch 30 N	Nos.)		
	1.	Iodine flask	30 Nos				
	2.	pH meter	5 Nos				
	3.	Conductivity meter	5 Nos				
	4.	Spectrophotometer	5 Nos				
	5.	Oswald/UbbelohdeViscometer	30 Nos				
			,	ГОТА	L: 15 I	PERIC	ODS

	COM	ES:												
Upon	succe	ssful co	mpleti	on of th	e course	e, the stu	idents s	hould b	e able t	0				
CO'S	5					ST	ATEM	ENT					Ι	RBT LEVEL
CO		U		ard and tion and		,				1	oblems	on		3
CO2	 Interpret the knowledge of instruments to measure potential and current relatedparameters Demonstrate the basic principle for separation of components using paper 										2			
CO3	1	Demon chroma			princip	ble for se	eparatic	on of co	mponer	nts usin	g paper			3
CO	4.	Evaluat	te the n	nolecula	r weigh	t of poly	ymer us	ing Ost	wald's/	Ubbelo	nde vise	cometer.		3
3.	Dan: Furn cCher Jeffe al ana	iel R. P niss B.S mistry" ery G.H llysis", 1	. Hanna , LBS S , Basse	aford A Singapo	J, Smith re 1994 endham Longm	h P.W.C 1 J.and I 1 an, Sinį	G and Ta Denny v	atchel A	A.R., "V R.C, "T	Vogel''s Fext boo	Textbo ok of qu	., New Y ok of pra antitativ	actical	l
	Kolt	thoff 1.M	M., San	dell E.B	s. et al.	Quantif	tative cl	nemical		is", Mc		Madras	1980.	
4.				dell E.B ION M		- - -		nemical		is", Mc		Madras		
4.	RSE A	ARTIC	ULAT	ION M	ATRIX	I	20		analys		millan,		P	PSO
4. COUI CO	RSE A	ARTIC				6	20 7	8	analys 9	10	millan,	12		2
4. COUI CO CO1	RSE A	ARTIC	ULAT	ION M	ATRIX	I	20		analys		millan,		P	
4. COUI CO CO1 CO2	RSE A 1 3	ARTIC	ULAT 3	ION M	ATRIX	E 6 3	20 7 3	8	analys 9		millan,	12	P	2 3
4. COUI	RSE A	ARTIC	ULAT 3	ION M	ATRIX	E 6 3 3 3	20 7 3 3	8	analys 9		millan,	12 2	P	2 3 3

		BASIC MECHANICAL ENGINEERING	L	Т	Р	С
ME221	61	LABORATORY (Common to AE, BT, CH)	0	0	2	1
COURSE	COB.	IECTIVES:				
	e an e	exposure and hands on experience to the students on various basic	mecha	nical E	ngine	ering
LIST OF	EXP	ERIMENTS				
1. We	elding	g - Butt joint and lap joint using Electric Arc and Gas welding.				
2. Ma	achin	ing – Turning and facing using Centre Lathe.				
3. Sh	leet m	etal work – Making of a cylinder using GI sheet and finishing using	; rivets.			
4. Dr	illing	and Tapping – Drilling of holes precisely and making internal	thread	s by T	apping	5
forvarious	s sizes	5.				
5. Ca	sting	– Mould preparation using simple solid pattern and casting.				
6. Plu	umbir	ng – Making household pipeline PVC pipes, valves, taps, couplings	, union	ıs, redu	cers,	
elbows.						
7. Fu	el tes	ting – Determination of Flash point and Fire point of fuels.				
		ration and Air Conditioning – Determination of Coefficient of Perfo	ormanc	e (COF) of	
	•	d air conditioning systems.			,	
9. Au	itoma	tion – Basic pneumatic circuit using single and double acting cylind	ler.			
10. 3D) prin	ting –Demonstration of printing of simple solids using Additive Ma	nufactu	ring/3I) print	ting
	1				-	
				L: 30 1	ERI	703
OUTCON	MES:					
Upon succ	cessfu	l completion of the course, the students should be able to			1	
CO'S		STATEMENT			RE LEV	
CO1.	Fab	ricate components by various manufacturing processes.			3	;
CO2.	Prep	pare pipeline for a given application.			3	3
CO3.	Eva	<i>luate</i> the ignition properties of fuels			5	5
000		- • •				

Determine the efficiency of refrigeration and air conditioning Systems

Understand the principle of additive manufacturing/3D printing

Understand the principles of low-cost automation using pneumatic circuits.

CO4.

CO5

CO6

2

2

2

TEXT BOOKS:

1. Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.

2. Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", VikasPublishing House Pvt.Ltd, 2006.

3. Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.

4. Rajput. R.K., "Thermal Engineering", Laxmi Publications, Tenth Edition, 2017

5. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.

6. Anthony Esposito, Fluid Power with Applications, Pearson Education, 7th edition, 2009.

7. Mechanical engineering practices lab manual, SVCE, 2022.

COURSE ARTICULATION MATRIX														
CO	РО											PS	50	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													3
CO2	2													3
CO3	2													3
CO4	2													3
CO5	1				2									3
CO6	1				2									3

SEMESTER II

11000150		L	Т	Р	C
HS22152	TECHNICAL ENGLISH	3	0	0	3
COURSE OB	JECTIVES:				1
1. Enable learn	ners to define and understand technical communication and scientific	e writin	g.		
2. Expose lear	ners to the technicalities of seminar presentation, group discussion, a	and put	lic spea	aking.	
3. Develop lea	rners" writing skills for scientific and documenting purposes.				
-	rners" ability to draft correspondences for business purposes.				
5. Cultivate le	arners" ability to holistically understand the nuances of job interview	s and r	ecruitin	ig pro	cess
UNIT I					9
	7 files pertaining to manufacturing processes of products, scientific c				
-	ion and word stress, intonation, sharing opinions; Reading - news an				
	y; Writing - definitions, instruction, recommendation, data interpret				
	eir aspects, sentence connectors – discourse markers, sequential w	ords, a	ctive ai	nd pas	ssive
	verb agreement.			<u> </u>	
UNIT II					9
-	V pertaining to marketing strategies, peer reading and pronunciatio	-	-		-
	ns; conducting and attending a meeting, understanding the nuances of	-			
-	l audience and external audience; Reading - analytical documents		-		
	rs, brochures, resume - letter of application, checklists; Grammar conditional clauses, articles.	- 11100	ar veros	s, cia	uses -
UNIT III					9
	related to how to use components, scientific description, Speaking	- speak	ing for	motiv	-
-	speaking at a seminar presentation; Reading - scientific journals, pa	-	-		
	process description, purpose and function, PowerPoint, Google				
Grammar - phi	casal verbs, prepositions, technical and scientific affixes.				
UNIT IV					9
Listening - sci	entific debates, crisis management; Speaking - handling conflicts, sp	eaking	about	the lo	ss of
benefits, progr	ress or decline of business, identifying the connotative meanings	, Read	ing- do	cume	ented
	uses and functions of a product, review of a product, Writing - m			-	
	osal, project, progress reports, sales reports, reports on industrial vis				-
	ported speech and tag questions, sentence structure - comparative	e, impe	rative,	cause	and
effect, infinitiv	e of result.				

UNIT V

Listening - AV of Group discussions, panel discussions, face to face interviews for recruitment purposes; Speaking- speaking at group discussions, interviewing a personality, answering at the interviews; Reading -WebPages of top notch engineering companies, Writing - blogging, e-mails, letter of complaint, minutes of the meeting; Grammar - one word substitution, collocations, better word/sentence substitution (rephrasing the content/improvising ideas).

TOTAL:45 PERIODS

OUTCOMES:

Upon successful completion of the course, the students should be able to

CO'S	STATEMENT	RBT LEVEL
CO1.	Understand the nuances of technical communication and scientific writing	3
CO2.	Present papers and give seminars	6
CO3.	Discuss in groups and brainstorm	6
CO4.	Draft business correspondences and write for documenting purposes	6
CO5	Face job interviews with confidence	6
Webs	ites	
1. <u>http://v</u>	www.usingenglish.com	
2. http://w	www.uefap.com3	
3. <u>https://</u>	owl.english.purdue.edu/owl/	
4. <u>www.l</u>	earnenglishfeelgood.com/esl-printables-worksheets.html	
Softw	are	
1. Fa	ace 2 Face Advance – Cambridge University Press, 2014.	
2. Ei	nglish Advance Vocabulary- Cambridge University Press.	
3. IE	LTS test preparation – Cambridge University Press 2017.	
4. O	fficial Guide to the TOEFL Test With CD-ROM, 4th Edition.	
5. C	ambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.	

REFERENCES:

1. Department of English, Anna University. *Mindscapes: English for Technologists and Engineers*.

Orient Blackswan, Chennai. 2012.

- 2. Downes, Colm, Cambridge English for Job-hunting, Cambridge University Press, New Delhi. 2008.
- 3. Murphy, Raymond, Intermediate English Grammar with Answers, Cambridge University Press 2000.
- 4. Thomson, A.J., Practical English Grammar 1 & 2, Oxford, 1986.

5. Herbert A J, The Structure of Technical English, Longman, 1965.

COUI	RSE A	RTIC	CULAT	ION M	ATRIX	K								
00]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1										3			3	
CO2										3			3	
CO3										3			3	
CO4										3			3	
CO5										3			3	

Р L Т С **APPLIED MATHEMATICS – II** MA22251 3 (Common to all except Marine Engineering) 1 0 4 **COURSE OBJECTIVES:**

The Student should be made to:

1. Acquire the concepts of vector calculus needed for problems in all engineering disciplines and compute different types of integrals using Green's, Stokes' and Divergence theorems.

2. Skilled at the techniques of solving ordinary differential equations that model engineering problems.

3. Extend their ability of using Laplace transforms to create a new domain in which it is easier to handle the problem that is being investigated.

4. Explain geometry of a complex plane and state properties of analytic functions.

5. Understand the standard techniques of complex variable theory so as to apply them with confidencein application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current.

UNIT I VECTOR CALCULUS

Gradient, divergence and curl - Directional derivative - Vector identities - Irrotational and solenoidal vector fields - Line integral over a plane curve - Surface integral - Area of a curved surface - Volume integral – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Verification and application in evaluating line, surface and volume integrals.

UNIT II

ORDINARY DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

Differential equations of first order – Equations of the first order and first degree – Linear equations – Higher order linear differential equations with constant coefficients - Method of variation of parameters – Cauchy's and Legendre's linear equations - Simultaneous first order linear equations with constant coefficients – Applications of Linear differential equations - Oscillatory electrical circuit - Deflection of beams

UNIT III | LAPLACE TRANSFORM

Conditions for existence - Transform of elementary functions - Transforms of unit step function and impulse functions – Basic properties – Shifting theorems - Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Initial and final value theorems - Transform of periodic functions. Inverse Laplace transforms - Convolution theorem – Application to solution of linear ODE of second order with constant coefficients using Laplace transformation techniques

UNIT IV **ANALYTIC FUNCTIONS**

Analytic functions - Necessary and sufficient conditions (Cauchy-Riemann equations) - Properties of analytic function - Harmonic conjugates - Construction of analytic functions - Conformal mapping -Mapping by functions W = Z + C, CZ, 1/Z, Z^2 – Joukowski''s transformation-Bilinear transformation

UNIT V **COMPLEX INTEGRATION**

Cauchy"s integral theorem - Cauchy"s integral formula - Taylor"s and Laurent"s series expansions -Singularpoints - Residues - Cauchy's Residue theorem – Application of residue theorem for evaluation of real integrals - Use of circular contour and semi-circular contour

TOTAL: 60 PERIODS

12

12

12

12

OUTC	COM	ES:												
Upon s	succe	ssful co	ompleti	on of th	e cours	e, the st	udents s	should	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO1		-					calculu auss, St					ne,		3
CO2	,	Solve f	irst ord	er linea	ir, hom	ogeneo	us diffe r differe	rential	equation	ns and		es		3
CO3]	Determ	ine the		ls to so	lve diff	erential		-		ace tran	sforms		3
CO4	-			-			gorize tr	ansform	nations					3
CO			-		-		uate rea e theore		te integ	rals usi	ng Cauc	chy		3
TEXT	BO	OKS:												
REFE 1. 2. NewD 3.	REN Dass Ram elhi, Bali	s,Delhi, (CES: s, H.K., nana B. (2013).	, (2015) , and Ra V, "Hij nd Man). ajnishVo gher Er ish Goy	erma, "j ngineeri	Higher ng Mat	Enginee thematic ok of E	ering M es", Tat	athemat a McG	tics", S. raw Hil	Chand l 1 Publis	Private shing C	Ltd., 20 Compan	ıy,
COUR	RSE A	ARTIC	ULAT	ION M	ATRIX	K								
co							PO						P	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3										3	3	
CO2	3	3	2									3	3	
CO3	<u>3</u> 3	3	2									3	3 3	<u> </u>
CO4 CO5	<u> </u>	3										3 3	3	
005	5	5										5	5	

EE22251	BASIC ELECTRICAL AND ELECTRONICS	L	Т	Р	C
EE22251	ENGINEERING FOR CHEMICAL ENGINEERS	3	0	0	3
COURSE (DBJECTIVES:				
	understand the basic concepts used in Electrical circuits and the princip astruments and sensors	les of			
• To	introduce the fundamentals of power semiconductors devices and its ap	plication	ons.		
	study the different types of electrical machines and its starting methods	•			
	study basics of Industrial Electrical Drives.				
	impart knowledge of application of electrical drives using modern cor cess industries	ntrol st	rategy i	n che	mical
UNIT I	ELECTRICAL CIRCUITS & MEASURMENTS				9
Introduction Error Analy	 Kirchoff's Laws – Steady State Solution of DCCircuits (Mesh on to AC Circuits – Single Phase and Three Phase Balanced Circuits. Printils, Static and dynamic characteristics of instruments – sensors – Temp neasurement. 	nciple o	of meas	ureme	ent -
UNIT II	SEMICONDUCTOR DEVICES				9
Characterist	n Diode and Zener Diode - Static Characteristics, SCR, MOSFET - Stat ics, Applications of Power semiconductor devices - Uncontrolled Recti DC Choppers, Concept of PWM in MOSFET			0	led
UNIT III	ELECTRICAL MACHINES				9
	n and working of DC machines – types, Characteristics, Starting and n and working of AC Induction motors – Slip-Torque Characteristics, S		-		otors.
UNIT IV	INDUSTRIAL ELECTRICAL DRIVES				9
	ents – Types of Electric Drives – Factors influencing the choice of el g curves – classes of duty - Maintenance of electrical drive systems Measures.				U
	APPLICATION OF ELECTRIC DRIVES (Block Diagram Representation Only)				9
AC Drive s	al and Solid State speed control of DC Motors - Conventional and Solic systems - Inverters, AC Voltage controllers, Slip power recovery scheme emical process units - Computer based control of DC and AC Drive sys	es - Blo			
	7	FOTA	L: 45 I	'ERI(ODS

OUTC	OMES:	
Upon s	uccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Apply basic electrical laws for the electrical circuits and understand sensors and measurement principles	3
CO2.	Analyze the characteristics of various semiconductor devices and develop circuitsfor an application.	4
CO3.	Analyze and select electrical machines for drive applications based on characteristics.	4
CO4.	Identify the structure and types of Electrical drives for specific applications.	3
CO5	Apply control methods for Electrical Machine and Drives in chemical processindustries	3
TEXT	BOOKS:	

1. Nagrath.I.J. &Kothari.D.P, "Electrical Machines", Tata McGraw-Hill, 1998

Mittle V.N, Arvind Mittal "Basic Electrical Engineering", Tata McGraw Hill (India), 2ndEdition,2013
 Gopal.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House,2001

4. Vedam Subrahmaniam, "Electric Drives (concepts and applications)", Tata McGraw-Hill, 2011

5. P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition, 2003

REFERENCES:

1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics Engineering", Tata McGraw Hill, 2013.

2. J.Nagrath and D.P. Kothari, "Basic Electrical Engineering", Tata McGraw Hill ((India),3rd Edition, 2010.

3. M.H.Rashid, "Power Electronics: Circuits, Devices and Applications", Pearson Education, Third Edition, New Delhi, 2004 .

4. Mehta V K, "Principles of Electronics", S.Chand& Company Ltd, 2010.

5. Pillai.S.K "A first course on Electric drives", Wiley Eastern Limited, 1998.

COURSE ARTICULATION MATRIX PO **PSO** CO **CO1 CO2 CO3 CO4 CO5**

	COMPUTER PROGRAMMING AND	L	Т	Р	C
IT2225	51 PRACTICE (Common to AE/BT/CV/CH)	2	0	2	3
COURSE	COBJECTIVES:				
To learn p	the basics of algorithmic problem solving programming using a structured programming language. ment programs with basic features of C.				
UNIT I	FUNDAMENTALS OF COMPUTING			(6 + 3
Computin	g Devices – Identification of Computational Problems – Algorithm	ns - B	uilding	Bloc	ks of
of instruc Introducti	ns - Pseudocodes and Flowcharts- Notion of memory, addresses, variable ctions- Operating system commands, file editing, compiling, linking on to different programming languages. I Activities: Practical - Use of operating system commands and file editin	g, exec	cuting		
UNIT II	BASICS OF C				6+9
Selection	- if-else construct - iteration - while - for constructs.		nents a		
Suggested Practical I programs	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for	itput.De	emonst	ration ak, co	of ontinue
Suggested Practical I programs UNIT III	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for ARRAYS AND STRINGS	ıtput.Do r do-wh	emonsti iile, bre	ration ak, co	of ontinue 6+6
Suggested Practical I programs UNIT III Array, dec on arrays Suggested Demonstr	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for	ntput.De r do-wh	emonstr iile, bre , string	ration ak, co	of ontinue 6+6 ations
Suggested Practical I programs UNIT III Array, dec on arrays Suggested Demonstr string ope	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for ARRAYS AND STRINGS claration, initialization. Multi dimensional arrays. Strings and character Activities Practical ation of programs using arrays and operations on arrays, Demonstration of	ntput.De r do-wh	emonstr iile, bre , string	ration ak, co opera	of ontinue 6+6 ations
Suggested Practical I programs UNIT III Array, dec on arrays Suggested Demonstr string ope UNIT IV Functions and union Suggested Demonstr	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for ARRAYS AND STRINGS claration, initialization. Multi dimensional arrays. Strings and character Activities Practical ation of programs using arrays and operations on arrays, Demonstration of rations on arrays FUNCTIONS AND STRUCTURES , definition, call, arguments, call by value. Call by reference. Recursion, I	arrays	emonstr iile, bre , string rams im ction to	opera	of ontinue 6+6 ations enting 6+6 tures
Suggested Practical I programs UNIT III Array, dec on arrays Suggested Demonstr string ope UNIT IV Functions and union Suggested Demonstr	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for ARRAYS AND STRINGS claration, initialization. Multi dimensional arrays. Strings and character Activities Practical ation of programs using arrays and operations on arrays, Demonstration of rations on arrays FUNCTIONS AND STRUCTURES , definition, call, arguments, call by value. Call by reference. Recursion, I s. ActivitiesPractical ation of programs using functions,. Demonstration of programs using rec	arrays	emonstr iile, bre , string rams im ction to	ration ak, co opera opera	of ontinue 6+6 ations enting 6+6 tures
Suggested Practical I programs UNIT III Array, dec on arrays Suggested Demonstr string ope UNIT IV Functions and union Suggested Demonstr programs UNIT V Introduction Memory A	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for ARRAYS AND STRINGS claration, initialization. Multi dimensional arrays. Strings and character Activities Practical ation of programs using arrays and operations on arrays, Demonstration of rations on arrays FUNCTIONS AND STRUCTURES , definition, call, arguments, call by value. Call by reference. Recursion, I s. ActivitiesPractical ation of programs using functions,. Demonstration of programs using recusing Structures and Unions POINTERS AND FILE HANDLING IN C on to Pointers- pointers to basic variables, pointers and arrays. Poir Allocation, Files - binary, text - open, read, write, random access, close. F	itput.Do r do-wh arrays of progr	emonstring nile, bre , string rams im ction to Demor	ration ak, co opera opera	of ontinue 6+6 ations enting 6+6 tures on of 6+6 namic
Suggested Practical I programs UNIT III Array, dec on arrays Suggested Demonstr string ope UNIT IV Functions and union Suggested Demonstr programs UNIT V Introducti Memory A Suggested	Activities Demonstration of programs using data types, operators and basic input/ou using if else, else-if, switch, Demonstration of programs using, while, for ARRAYS AND STRINGS claration, initialization. Multi dimensional arrays. Strings and character Activities Practical ation of programs using arrays and operations on arrays, Demonstration of rations on arrays FUNCTIONS AND STRUCTURES , definition, call, arguments, call by value. Call by reference. Recursion, I s. ActivitiesPractical ation of programs using functions,. Demonstration of programs using rec using Structures and Unions POINTERS AND FILE HANDLING IN C on to Pointers- pointers to basic variables, pointers and arrays. Pointers	arrays of progr Introduce cursion, nters to Preproce	emonstring nile, bre , string rams im ction to Demon	ration ak, co opera opera	of ontinue 6+6 ations enting 6+6 tures on of 6+6 namic

OUTO	COM	ES:												
Upon s	succe	essful co	ompleti	on of th	e course	e, the st	udents s	should b	be able	to				
CO'S	5					ST	ATEM	ENT						RBT LEVEL
COI						1	softwa as algor		n meth	odologi	es, and	represer	nt	3
CO2	,	Analyz		problei	n scen	arios a			C pro	grams	using	sequent	tial,	4
CO3		Apprais structur	-	olem so	cenarios	and	develop	C pr	ograms	using	compl	ex stor	age	4
CO4	۱.	Design	modula	arized so	olutions	for larg	ger prob	olems						3
CO		-	the st ent stor	-	structur	e in a	compu	ter and	l desig	n C pr	ograms	to acc	cess	4
REFE 1. K Educat 2. 2. Y 3. B 4. R	REN ernig tion, asha yron eema	NCES: ghan,B. 2015. vant P. S Gottf aThareja	W and Kanetka Tried, "F a, "Prog	Ritchie ar. "Let rogram grammin	,D.M, Us C", ming w ng in C'	"The C BPB Pu ith C", ', 2nd ed	ublicatio	amming ons, 201	langua	nird Edi	tion, Ta	Edition, nta McG		on 11, 2010
COUE	KSE /	ARTIC	CULAT	ION M	ATRIX		PO							PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	3	2	2	1	0	1	3	2	0	2	0	1
CO2	2	3	2	2	2	1	0	1	3	2	0	2	0	1
CO3	2	3	2	2	2	1	0	1	3	2	0	2	0	1
CO4	3	3	2	2	2	1	0	1	3	2	0	2	0	1
CO5	1	1	1	1	2	1	0	1	3	2	0	2	0	1

	INTRODUCTION TO CHEMICAL	L	Т	P	C
CH222	ENGINEERING	3	0	0	3
	OBJECTIVES: and outline of the concepts of Chemical Engineering	1	1	1	J
UNIT I	OVERVIEW OF CHEMICAL ENGINEERING				9
achieveme	overview of Chemical Engineering; Chemical Engineering in dates on the field of Chemical Engineering, Paradigm shifts in the states and Future prospects of Chemical Engineering.	•			
UNIT II	BASICS OF CHEMICAL ENGINEERING				9
	dimensions, Dimensional Analysis – Rayleigh's and Buckingham Pi m econd law of Thermodynamics, Chemical Kinetics – Reaction rates and Re			alcula	tions,
UNIT III	MOMENTUM TRANSFER				9
	on: Nature of fluids, Concepts of Fluid flow, Properties of F devices – Variable and constant head meters.	luid F	low, I	Pumps	and
UNIT IV	HEAT TRANSFER				9
	Heat Transfer: Conduction, Convection and Radiation, Heat Transard evaporators.	isfer E	quipme	ents -	Heat
UNIT V	MASS TRANSFER				9
	- Absorption, Adsorption, Humidification and dehumidification, M s, strippers and Dryers.	ass Tra	unsfer]	Equip	ments
		TOTA	L: 45 1	PERI	ODS
OUTCOM	IES:				
Upon succ	essful completion of the course, the students should be able to				
CO'S	STATEMENT				BT VEL
CO1.	Analyze the history and future prospects of Chemical Engineering.				4
CO2.	Apply the basic Chemical Engineering Principles.				3
соз.	Construct the Concepts of Momentum Transfer.				3
CO4.	Explore the Heat Transfer concepts and understand the working princip Heattransfer equipments.	ole of			3
CO5	Explain the Mass Transfer operations and its role in Chemical process	industri	es.		3

TEXT BOOKS:

1. Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", 6th Edition, TataMcGraw Hill,1997.

- 2. Ghosal, S.K, Sanyal S.K. and Dutta.S, "Introduction to Chemical Engineering" TMHPublications, New Delhi, 1998.
- 3. Dryden, C.E., "Outlines of Chemicals Technology", Edited and Revised by Gopala Rao, M. and

M.Sittig,2nd Edition, Affiliated East-West press, 1993.

4. Randolph Norris Shreve, George T. Austin, "Shreve"s Chemical Process Industries", 5thedition, McGraw Hill, 1984.

REFERENCES:

- 1. McCabe, W.L., Smith, J. C. and Harriot, P. "Unit operations in Chemical Engineering", McGraw HillEducation, 7th Edition, 2017 ISBN-13: 978- 8184959635.
- 2. Pushpavanam, S, "Introduction to Chemical Engineering", PHI Learning Private Ltd, New Delhi, 2012, ISBN 13: 978-8120345775.

COURSE ARTICULATION MATRIX

CO]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	1		1		2		1		2	2	2
CO2	2	2	1	1		1		2		1		2	2	2
CO3	3	2	2	2		2	1	2		1		3	3	3
CO4	3	2	2	2		2	1	2		1		3	3	3
CO5	3	2	2	2		2	1	2		1		3	3	3

	மற்றும் தொழில் நுட்பத்தில் தமிழ்						
HS22251 Science an	d Technology in Ancient Tamil Society	2	0	0	2		
	(Common to all branches)						
பாடத்தின் நோக்கங்கள் :							
🔅 அறிவியலில் தமிழின் பயன்	ாபாடு பற்றி தெரிந்து கொள்வார்கள்.						
ጵ தொழில்நுட்பத்தில் தமிழ் ட	ாரம்பரியத்தின் தாக்கம் பற்றி அறிந்து கொள்வார்	கள்					
அலகு 1 அறிவியல் தமிழ்					5		
UNIT I SCIENTIFIC TAMIL					-		
கருவி உருவாக்கம் - ஆராய்ச்சி 🤇	மேம்பாடு - கல்வி வளர்ச்சி - அறிவியல் தமிழ்	சொற்க	ள் உரு	வாக்க	ம்.		
Tool Development - Research Devel	opment - Educational Development - Scientific Tami	l words (Creatior	ı.			
அலகு 2 தொழில் நுட்பத்தில்	் தமிழ்				25		
UNIT II Tamil in technology					25		
வடிவமைப்பு மற்றும் கட்டுமான	தொழில்நுட்பம் : சங்க காலத்தில் கட்டுமானப்	பொருட்	கள் - கே	சாழர்	களின்		
பெரிய கோவில்கள் மற்றும் பிற எ	வழிபாட்டு தலங்கள் - பல்லவர்களின் சிற்பங்	கள் மற்ற	றும் சே	ாவில்	்கள்		
(மாமல்லபுரம்) - நாயக்கன் கால	கோவில்கள் (மதுரை மீனாட்சி அம்மன் கோவ	ில்), தி	ருமனை	ல நாய	பக்க		
மஹால், செட்டி நாட்டு வீடுகள்.			-				
Design and Construction Technolo	ogy : Building materials in Sangam age – Great te	mples o	f Chola	is and	othe		
	emples of Pallavas (Mamallapuram) – Temples of	[°] Nayaka	s perio	d (M a	ndura		
	alai Navakar Mahal. Chetti Nadu Houses.	-			• •		
	கட்டும் கலை, உலோகவியல் ஆய்வுகள், தங்கப			юц и	றறிய		
	- சுட்டக் களிமண் மணிகள், சங்கு மணிகள், எலு	-			т		
Archeological evidences – Terracotta	of Ship building, Metallurgical studies, Knowledge beads Shell beads Bone beads	about G	ola, Co	pper,	Iron ·		
	beaus, shell beaus, bone beaus.						
	காமில்நுட்பம் : அணைகள், எரிகள், குளங்கள்	1. ഥകക്ര	கள். சே	ாமர்	கால		
குடுமி காம்ப அகியவற்றின் புக்	தாழில்நுட்பம் : அணைகள், ஏரிகள், குளங்கள் கியக்குவும் - கால்நடை பாரமரிப்ப , கால்நடை	-					
	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை	_களின்	பயன்ப	ாட்டிற்	ற்காக		
வடிவமைக்கப்பட்ட கிணறுகள். வி	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் -	-	பயன்ப	ாட்டிற்	ற்காக		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து – குளித்தல், சா	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல்.	_களின் கடல் ப	பயன்ப பற்றிய	ாட்டிற் அறில	ற்காக வு -		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து – குளித்தல், சா Agriculture and Irrigation Technol	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் -	_களின் கடல் ட umuzhi 1	பயன்ப பற்றிய Гhoomp	ாட்டிற் அறில ou of (ற்காக வு - Chola		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries, Pearl, Conche diving.	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin	_களின் கடல் ட umuzhi ி g, - Kno	பயன்ப பற்றிய Fhoomp wledge	ாட்டிற் அறில ou of C about	ற்காக வு - Chola Sea -		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries, Pearl, Conche diving. தமிழ் கணினி: அறிவியல் தமிழ்	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில	_களின் கடல் ட umuzhi ி g, - Kno ன் டிஜிட்	பயன்ப பற்றிய Fhoomp wledge டல் ம	ாட்டிற் அறில ou of C about யமாச்	ற்காக வு - Chola Sea - ககல்		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries. Pearl. Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் டிஜிட்டல் நூலகம் , தமிழ் (கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin	_களின் கடல் ட umuzhi ி g, - Kno ன் டிஜிட்	பயன்ப பற்றிய Fhoomp wledge டல் ம	ாட்டிற் அறில ou of C about யமாச்	ற்காக வு - Chola Sea - ககல்		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries. Pearl. Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் டிஜிட்டல் நூலகம் , தமிழ் (திட்டம்.	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அ	_களின் கடல் ட umuzhi ப g, - Kno ன் டிஜிட் காடமி -	பயன்ப பற்றிய Fhoomp wledge டல் ம ைரைற்	ாட்டிற் அறில about யமாச் குவை	ற்காக வு - Chola Sea - கைல் ப		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries. Pearl, Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் டிஜிட்டல் நூலகம் , தமிழ் (திட்டம். Tamil Computing : Development of	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அ f Scientific Tamil – Tamil Computing, Digitization of	_களின் கடல் ட umuzhi ப g, - Kno ன் டிஜிட் காடமி -	பயன்ப பற்றிய Fhoomp wledge டல் ம ைரைற்	ாட்டிற் அறில about யமாச் குவை	ற்காக பு - Chola Sea - கைல் ப		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries. Pearl, Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் டிஜிட்டல் நூலகம் , தமிழ் (திட்டம். Tamil Computing : Development of Library, Development of Tamil Softw	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அ f Scientific Tamil – Tamil Computing, Digitization of vares – Tamil virtual Academy – Sorkuvai project.	_களின் கடல் ட umuzhi 7 g, - Kno ன் டிஜிட் காடமி - f Tamil b	பயன்ப பற்றிய Choomp wledge டல் ம ைகாற் ooks, T	ாட்டிற் அறி about யமாச் குவை amil I	ற்காக வு - Chola Sea - க்கல் ப Digita		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries, Pearl, Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் டிஜிட்டல் நூலகம் , தமிழ் (திட்டம். Tamil Computing : Development of Library, Development of Tamil Softw தமிழின் எதிர்காலமும் தகவல் தொ	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அ Scientific Tamil – Tamil Computing, Digitization of vares – Tamil virtual Academy – Sorkuvai project. ரழில்நுட்பமும்- உலகமயமாக்கலும் தகவல் தொழ	_களின் கடல் ட umuzhi 7 g, - Kno ன் டிஜிட் காடமி - f Tamil b	பயன்ப பற்றிய Choomp wledge டல் ம ைகாற் ooks, T	ாட்டிற் அறி about யமாச் குவை amil I	ற்காக வு - Chola Sea ககல் ப Digita		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries, Pearl, Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் டிஜிட்டல் நூலகம் , தமிழ் (திட்டம். Tamil Computing : Development of Library, Development of Tamil Softw தமிழின் எதிர்காலமும் தகவல் தொ தமிழ் கற்று கொடுத்தல் - தமிழ் மொ	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அ f Scientific Tamil – Tamil Computing, Digitization of vares – Tamil virtual Academy – Sorkuvai project. ரழில்நுட்பமும்- உலகமயமாக்கலும் தகவல் தொழ ரழித் தொழில் நுட்பத்தில் வளங்கள்.	_களின் கடல் ட umuzhi 1 g, - Kno ன் டிஜிட் காடமி f Tamil b றில் நுட்ட	பயன்ப பற்றிய Fhoomp wledge டல் ம ைks, T பமும் -	ாட்டிற் அறில about யமாச் குவை கணிச	ற்காக பு - Chola Sea - க்கல் ப Digita னிக்கு		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries. Pearl, Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் கணினி: அறிவியல் தமிழ் தடிழ் கறினி: Development of Library, Development of Tamil Softw தமிழின் எதிர்காலமும் தகவல் தொ தமிழ் கற்று கொடுத்தல் - தமிழ் மொ Future of Tamil and Information '	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அ Scientific Tamil – Tamil Computing, Digitization of vares – Tamil virtual Academy – Sorkuvai project. பழில்நுட்பமும்- உலகமயமாக்கலும் தகவல் தொழ பழித் தொழில் நுட்பத்தில் வளங்கள். Technology- Globalization and Information Techn	_களின் கடல் ட umuzhi 1 g, - Kno ன் டிஜிட் காடமி f Tamil b றில் நுட்ட	பயன்ப பற்றிய Fhoomp wledge டல் ம ைks, T பமும் -	ாட்டிற் அறில about யமாச் குவை கணிச	ற்காக பு - Chola Sea - க்கல் ப Digita னிக்கு		
வடிவமைக்கப்பட்ட கிணறுகள். வி மீன்பிடித்தல், முத்து குளித்தல், சா Agriculture and Irrigation Technol period- Animal Husbandry, Wells des Fisheries. Pearl. Conche diving. தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் கணினி: அறிவியல் தமிழ் தமிழ் டிஜிட்டல் நூலகம் , தமிழ் திட்டம். Tamil Computing : Development of Library, Development of Tamil Softw தமிழின் எதிர்காலமும் தகவல் தொ தமிழ் கற்று கொடுத்தல் - தமிழ் மொ	கியத்துவம் - கால்நடை பராமரிப்பு , கால்நடை வசாயம் மற்றும் வேளாண் செயலாக்கம் - ங்கு சேகரித்தல். logy: Dams, Tank, ponds, sluice, Significance of K signed for cattle use. Agriculture and Agro processin வளர்ச்சி - தமிழ் கணினி , தமிழ் புத்தகங்களில மென்பொருள் உருவாக்கம் - தமிழ் மெய்நிகர் அ Scientific Tamil – Tamil Computing, Digitization of vares – Tamil virtual Academy – Sorkuvai project. ரழில்நுட்பமும்- உலகமயமாக்கலும் தகவல் தொழ ரழித் தொழில் நுட்பத்தில் வளங்கள். Technology- Globalization and Information Techn age Technology.	_களின் கடல் ட umuzhi 1 g, - Kno ன் டிஜிட் காடமி f Tamil b றில் நுட்ட	பயன்ப பற்றிய Fhoomp wledge டல் ம ைks, T பமும் - eaching	ாட்டிற் அறி ை about யமாச் குவை கணிச தணிச தனிச	ற்காக பு - Chola Sea - க்கல் ப Digita னிக்கு nil fo		

Upon	succe	essful co	ompleti	on of th	e course	e, the st	tudents	should b	be able	to				
CO'S	8				Ц		டத்தின் ГАТЕМ		பாடு					RBT EVEL
CO	1. ^e	அறிவியல	லில் தமி	ழ் மொழி	யின் பய		பற்றி தொ		ாள்வார்க	ள்				2
CO	2.	ல்வேறு	தொழில	ல்நுட்பத்த	நில் தமிழ்	ழ மொழி	யின் தாச்	க்கம் பற்றீ) அறிந்த	பு கொள்வ	பார்கள்			2
பாட ந	௶ல்க	ள்:TEX	KT BO	OKS:										
ாக்டர்	ர், வா	.செ .கு	ழந்தை	சாமி (1985), "	அறிவி	யல் தம	ຄ <u>ີຫຼ່</u> ,	பாரதி	பதிப்பக	<u>//</u> , 126	108, ഉ ണ്	லமான்	சானை
		நகர் , செ						•						
ப. கி					பம் கமி	ம் குற்பி	ிக்கலார்	റ്. പറഞ	ນທ ດຄາຍ	ብ ሠ የ ቤ. 3	8-B டன்	ாணக்க(கோப்	க் கெ
•	ळंगळ्ल	ப்பன், (1995), "e	រសាាិសាិរ	பும் தமி	ழ் கற்ப	ித்தலும்)", புலன	ന്ഥ ഖെ	ளியீடு, 3	^{8-B} மன்	ாணத்ந(தாட்ட	த் தெ
•	ळंगळ्ल		1995), "e	រសាាិសាិរ	பும் தமி	ழ் கற்ப	ித்தலும்) ^{",} புலன	ம வெ	ளியீடு, 3	^{8-B} மன்	எணத்ந(தாட்ட	த் தெ
, பூழ்வா	ண்ண ர்பேட்	ப்பன், (_, சென்	1995), "ദ തൽ ⁶⁰⁰	கணினி ய 018	·					_				
ழ்ற்வா ழ∙ பெ	ண்ண ரபேட் பான்வ	ப்பன், (_, சென்ல சைன்	1995), "ச னை ⁶⁰⁰ கோ, (2	ടഞ്ഞിഞി µ 018 2003), "ഒ	·					_		πணத்ந⊄ னத்திந்த		
,ழ்வா ழட்டை	ண்ண ரபேட் பான்வ	ப்பன், (_, சென்	1995), "ச னை ⁶⁰⁰ கோ, (2	ടഞ്ഞിഞി µ 018 2003), "ഒ	·					_				
ழ்ஹ்வா டைபெ மிழ்க்	ண்ண ர்பேட் ான்வ கழகட	ப்பன், (_, சென் எவைக் ^{ம்,} தஞ்ச	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹	ടങ്ങിങി ല 018 2003), "ഒ 5 005.	பளர் தட	பிழில்	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	நிய அற	றிவிய
ழழ்வா ட∂்பை மிழ்க் பிரை. ப	ண்ண ர்பேட் ான்வ கழகட மணி	ப்பன், (_, சென் ாவைக் ம், தஞ்ச கண்டல	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008)	ടങ്ങിങി ല 018 2003), "ഒ 5 005.	பளர் தட	பிழில்	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത		நிய அற	றிவிய
ழழ்வா ட∂்பை மிழ்க் பிரை. ப	ண்ண ர்பேட் ான்வ கழகட மணி	ப்பன், (_, சென் எவைக் ^{ம்,} தஞ்ச	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008)	ടങ്ങിങി ല 018 2003), "ഒ 5 005.	பளர் தட	பிழில்	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	நிய அற	றிவிய
ழழ்வா ட∂்பை மிழ்க் பிரை. ப	ண்ண ர்பேட் ான்வ கழகட மணி	ப்பன், (_, சென் ாவைக் ம், தஞ்ச கண்டல	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008)	ടങ്ങിങി ല 018 2003), "ഒ 5 005.	பளர் தட	பிழில்	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	நிய அற	றிவிய
ஆழ்வா ழ∙பெ நிற்க் திரை. ப	ண்ண ர்பேட் ான்வ கழகட மணி	ப்பன், (_, சென் ாவைக் ம், தஞ்ச கண்டல	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008)	ടങ്ങിങി ല 018 2003), "ഒ 5 005.	பளர் தட	பிழில்	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	நிய அற	றிவிய
ஆழ்வா ழ∙பெ நிற்க் திரை. ப	ண்ண ர்பேட் ான்வ கழகட மணி	ப்பன், (_, சென் ாவைக் ம், தஞ்ச கண்டல	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008)	ടങ്ങിങി ല 018 2003), "ഒ 5 005.	பளர் தட	பிழில்	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	நிய அற	றிவிய
ஆழ்வா மட பெ நமிழ்க் நுரை. ட கர், செ	ண்ண ரபேட் பான்ன கழகட மணி சன்னை	ப்பன், (_, சென் எவைக் ம், தஞ்ச கண்ட 6 ன 600 01	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008) 7.	ടങ്ങിങി ല 018 2003), "ഒ 5 005.	வளர் தட எயமும்	மிழில் 9 தமிழு	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	நிய அற	றிவிய
ஆழ்வா மட பெ நமிழ்க் துரை. ப நகர், செ	ண்ண ரபேட் பான்ன கழகட மணி சன்னை	ப்பன், (_, சென் எவைக் ம், தஞ்ச கண்ட 6 ன 600 01	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008) 7.	கணினிய 018 2 003), "எ 5 005. , "இனை	வளர் தட எயமும்	மிழில் 9 தமிழு 7	அறிவிய	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	தியாக	றிவிய
ஆழ்வா மட பெ நமிழ்க் நகர், செ	ண்ண ரபேட் பான்ன கழகட மணி சன்னை	ப்பன், (_, சென் எவைக் ம், தஞ்ச கண்ட 6 ன 600 01	1995), "ச னை ⁶⁰⁰ கோ, (2 எவூர் ⁶¹ ன், (2008) 7.	கணினிய 018 2 003), "எ 5 005. , "இனை	வளர் தட எயமும்	மிழில் 9 தமிழு 7	அறிவிய ம்", நல் إ	பல் – இ	இணைய	பத்தமிழ்	^{",} அത	னத்திந்த	தியாக	றிவிய
ஆழ்வா மட பெ நமிழ்க் துரை. ப நகர், செ	ண்ண ரபே பான்ன கழகட மணி சன்னை RSE	ப்பன், (_, சென் எவைக் ம், தஞ்ச கண்ட ன 600 01 ARTIC	1995), "ச னை 600 கோ, (2 எவூர் ⁶¹ ன், (2008) 7. ULAT	ടത്തിൽിധ 018 2003), "ഒ 5 005. , "இனை ION M	பளர் தட எயமும் ATRIX	மிழில் 9 தமிழு 7	அறிவிய ம்", நல் ! PO	பல் – இ நிலம் பத	இணைய திப்பகம்	பத்தமிழ் , 7-3, சி(^{",} அரை	னத்திந்த சாலை,	டுய அற தியாச PS	றிவிய கராய SO

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

COURSE OBJECTIVES:

1. To provide exposure to the students with hands on experience in basic of Electrical and Electronicswiring connection and measurements.

2. To introduce the students to Electrical Machines and basic laws of Electrical Circuits.

LIST OF EXPERIMENTS

1. Wiring – Residential house wiring and Stair case wiring.

2. (a) AC Analysis- Measurement of electrical quantities-voltage, current, power, and power factor usingRLC.

(b) Study of three phase system.

3. Energy conservation - Measurement and comparison of energy for incandescent lamp and LED lamp.

4. (a) Identification of circuit components (Resistor, Capacitor, Diode and BJT) and soldering practice.(b) Signal Measurement- Measurement of peak to peak, RMS, average, period, frequency of signals using CRO.

5. (a) VI Characteristics of Solar photovoltaic panel.

(b) Design of Solar PV Array and Battery sizing for Residential solar PV system.

6. Design a 5V/12V Regulated Power Supply using FWR and IC7805/IC7812.

- 7. DC Analysis- Verification of Ohm's Law and Kirchhoff's Laws.
- 8. Study of Transformer and motor characteristics.

TOTAL: 30 PERIODS

OUTCOMES:

Upon successful completion of the course, the students should be able to

CO's	STATEMENT	RBT LEVEL
CO1.	Wiring of basic electrical system and measurement of electrical parameters.	4
CO2.	Verify the basic laws of Electric circuits and select various Electrical Machines.	4
CO3.	Construct electronic circuits and design solar photovoltaic system.	4
CO4.	Apply the concept of three-phase system.	4
CO5	Construct a fixed voltage regulated power supply.	4

REFERENCES:

1. Mittle V.N, Arvind Mittal, "Basic Electrical Engineering", Tata McGraw Hill (India), 2ndEdition, 2013. Sedha R.S., "A Text Book of Applied Electronics", S.Chand& Co., 2014.

COUI	RSE A	RTIC	CULAT	ION M	ATRIX	K								
CO							PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3					2			2		3
CO2	3	3	3	3					2			2		3
CO3	3	3	3	3					2			2		3
CO4	3	3	3	3					2			2		3
CO5	3	3	3	3					2			2		3

		PHYSICS LABORATORY	L	Т	Р	(
PH 22	161	Common to all Branches	0	0	2	1
		JECTIVES: To introduce different experiments to test basic undersed in optics, thermalphysics and properties of matter.	standing	of phy	sics	
LIST OF	FEXI	PERIMENTS: (Any EIGHT Experiments)				
b) 2. D 3. D 5. D 5. D 5. D 7. D 3. E 9. D) Dete leterm leterm leterm leterm leterm nergy leterm	rmination of Wavelength, and particle size using Laser. rmination of acceptance angle in an optical fiber. ination of velocity of sound and compressibility of liquid – Ultrason ination of wavelength of mercury spectrum – spectrometer grating. ination of thermal conductivity of a bad conductor – Lee"s Disc met ination of Young's modulus by Non uniform bending method. ination of specific resistance of a given coil of wire – Carey Foster"s ination of Rigidity modulus of a given wire -Torsional Pendulum band gap of a Semiconductor ine the Hysteresis loss of a given Specimen tion of Voltmeter & Ammeter using potentiometer	thod.		ter.	
DUTCO		:	TOTAL	: 30 P	ERIC	D
Jpon suc		ul completion of the course, the students should be able to			DD	
CO'S		STATEMENT			RB LEV	
CO1.		alyze the physical principle involved in the various instruments; a nciple to new application. materials.	also relat	te the	4	ļ
CO2.		mprehend the Experiments in the areas of optics, mechanics and th nurture the concepts in all branches of Engineering.	ermal ph	nysics	3	\$
CO3.		ply the basic concepts of Physical Science to think innovatively and creative skills that are essential for engineering	l also im	prove	3	;
CO4.	Eva	luate the process and outcomes of an experiment quantitatively and	qualitati	vely	3	;
CO5	Ext	end the scope of an investigation whether or not results come out as	expected	1	3	;
REFERI	ENCE	ES:				

COU	RSE A	ARTI	CULAT	TION M	IATRI	X								
CO	PO													50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3	2				3	1		2		3
CO2	3	3		3		2			3	1		2		3
CO3	3	3	2	3	2	2			3	1		2		3
CO4	3	3		3					3	1		2		3
CO5	3	3		3	2				3	1		2		3

		L	Т	P	C
MA2235	51 APPLIED MATHEMATICS III	2	1	0	3
COURSE	OBJECTIVES:			I	
The studen	t should be				
	mpetent in solving applications of ordinary differential equations using	ng anal	ytical m	nethod	ls to
	exact solutions. d the solution of 1st & higher order PDEsusing analytical methods.				
	coduce Fourier series analysis which is central to many applications in a	enginee	ring apa	art from	m
its use inso	olving boundary value problems.	_			
	quire the knowledge of using Fourier series techniques in Boundary val	-			
	hieve an understanding of the basic concepts of the Fourier transform hniques and its application in Engineering.	and Z-t	ransfori	n	
UNIT I	APPLICATIONS OF ORDINARY DIFFERENTIAL EQUATION	S		9	9+3
Physical A	ns of Differential Equations of First Order-Geometrical Applications-O pplications-Application of Linear Differential Equations-Simple Harmo Applications of Simultaneous Linear Differential Equations.	-	•		
UNIT II	PARTIAL DIFFERENTIAL EQUATIONS			ļ	9+3
partialdiffe	of partial differential equations – Singular integrals - Solutions of star erential equations - Lagrange's linear equation – Linear homogeneous of second and higher order with constant coefficients.	•	-		order
UNIT III	FOURIER SERIES			9	9+3
	conditions – General Fourier series – Odd and even functions – Halle e series –Parseval"s identity – Harmonic Analysis.	range	sine se	ries –	Half
UNIT IV	BOUNDARY VALUE PROBLEMS			9	9+3
One dimen	ion of PDE – Method of separation of variables - Solution of one dimensional equation of heat conduction – Steady state solution of two dimension (Cartesian and polar coordinates).		-		
UNIT V	FOURIER AND Z -TRANSFORMS			9	9+3
theorem -	nsform pair – Fourier sine and cosine transforms – Properties (without Parseval''s identity. Z- Transforms – Elementary properties – Invers ction) –Convolution theorem – Solution of difference equations using Z	eZ-ti	ransfori		
	TOTAL(L:	45+T:1	5):60 I	PERIC	ODS

Chc	on succ	cessful completion of the course, the students should be able to	
CC)'S	STATEMENT	RBT LEVEL
С	01.	Develop skills in dealing with problems on ordinary differential equations and applyknowledge of LDE to solve the problems in Chemical engineering.	4
С	02.	Classify, formulate and solve the first order and second order linear, non-linear partial differential equations and apply the knowledge of partial differential equations to solve the engineering problems.	3
С	03.	Achieve an understanding of the basic concepts of periodic function and method of solving problems in Fourier series.	4
С	04.	Analyze and evaluate various partial differential equations such as wave equation, one- and two-dimensional heat flow equations.	4
C	CO5	Develop the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms and Z-transform.	4
2. 3.	Na	ewal. B.S., "Higher Engineering Mathematics", 44 th Edition, Khanna Publishers, Delhi rayanan.S., Manicavachagom Pillay.T.K and Ramanaiah. G "Advanced Mathematics gineeringStudents" Vol. II & III, S.Viswanathan Publishers Pvt. Ltd. 1998.	
RE	FERE	NCES:	
1.		IND IN TO THAT I LET THAT I THAT I THE	
	incatio	li.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7 th Edition, La	xmi
Pub	CI	nsPvtLtd , 2007.	
Pub 2.		nsPvtLtd , 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Educatio	on, 2011.
Pub 2. 3.	Ve	nsPvtLtd , 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Educatio eerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Publ	on, 2011.
Pub 2. 3.	Ve npany	nsPvtLtd, 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Educatio eerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Publi Ltd., New Delhi, 2012. rryC.Andrews, "Special Functions of Mathematics for Engineers", 2 nd Edition,	on, 2011. ishing
Pub 2. 3. Cor 4.	Ve npany Lu Hi nation	nsPvtLtd, 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education eerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Public Ltd., New Delhi, 2012. rryC.Andrews, "Special Functions of Mathematics for Engineers", 2 nd Edition, Il al Edition, 1992.	on, 2011. ishing
Pub 2. 3. Cor 4. <u>nter</u>	Ve npany Lu Hi nation B LIN	nsPvtLtd, 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education eerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Public Ltd., New Delhi, 2012. rryC.Andrews, "Special Functions of Mathematics for Engineers", 2 nd Edition, Il al Edition, 1992. KS:	on, 2011. ishing McGrav
Pub 2. 3. Con 4. <u>nter</u> VEI 1.	Ve npany Lu Hi nation B LIN Engg	nsPvtLtd , 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education eerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Public Ltd., New Delhi, 2012. rryC.Andrews, "Special Functions of Mathematics for Engineers", 2 nd Edition, Il al Edition, 1992. KS: Mathematics-3 - APPLICATION OF ORDINARY DIFFERENTIAL EQUATIONS - 1	on, 2011. ishing McGrav
Pub 2. 3. Con 4. <u>Intern</u> VEI 1. <u>Apr</u>	Ve npany Lu Hi <u>nation</u> B LIN	nsPvtLtd , 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education verarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Public Ltd., New Delhi, 2012. rryC.Andrews, "Special Functions of Mathematics for Engineers", 2 nd Edition, al Edition, 1992. KS: Mathematics-3 - APPLICATION OF ORDINARY DIFFERENTIAL EQUATIONS - 1 prof Ordinary - Studocu .	on, 2011. ishing McGrav
Pub 2. 3. Con 4. <u>Intern</u> WEI 1. 2.	Ve npanyl Lu Hi nationa B LIN Engg Dication FS PI	nsPvtLtd , 2007. yn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education eerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Public Ltd., New Delhi, 2012. rryC.Andrews, "Special Functions of Mathematics for Engineers", 2 nd Edition, Il al Edition, 1992. KS: Mathematics-3 - APPLICATION OF ORDINARY DIFFERENTIAL EQUATIONS - 1	on, 2011. ishing McGrav

COU	COURSE ARTICULATION MATRIX															
CO	РО													PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	3	3	3	2	2	1	1	1	2	3	3	3	3		
CO2	3	3	3	3	2	2	2	2	1	3	3	3	3	3		
CO3	3	3	3	3	2	1	1	1	1	2	2	3	3	3		
CO4	3	3	3	3	2	2	2	2	1	3	3	3	3	3		
CO5	3	3	3	3	3	2	2	2	1	3	3	3	3	3		

CH22301

COURSE OBJECTIVES:

- To impart knowledge on the basic fundamentals of process calculations.
- To enable the students to perform material balances on various unit operations and processes.
- To enable the students to understand the concepts and calculations associated with gases and othercombustion operations in industry which involves two phases.
- To enable the students to perform energy balance calculations on various unit operations and processes.
- To impart knowledge on unsteady state material and energy balances and enable the students to solveproblems using process simulators.

UNIT I UNITS AND DIMENSIONS

Base and derived Units - Conversion of units and conversion factors, Dimensional consistency Composition of Mixture and solutions - calculations of pressure, volume and temperature using ideal gas law. Use of partial pressure and pure component volume in gas calculations, applications of real gas relationship in gas calculations.

UNIT II

T II | MATERIAL BALANCE WITH AND WITHOUT CHEMICALREACTIONS

Stoichiometric principles, Application of material balance to unit operations like distillation, evaporation, crystallisation, drying etc., multicomponent systems species analysis and Degree-of-Freedom Analysis Material balance with chemical reaction - Limiting and excess reactants - recycle - bypass and purging - Unsteady state material balances.

UNIT III HUMIDITY AND SATURATION

Basic of humidity and application of psychrometric chart - Use of humidity in condensation and drying –application of air water systems - cooling tower, types and basic calculations.

UNIT IV ENERGY BALANCE WITH AND WITHOUT CHEMICAL REACTIONS

Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible heat and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of formation, combustion, solution, mixing etc., calculation of standard heat of reaction - Effect of pressure and temperature on heat of reaction -Energy balance for systems with and without chemical reaction - Unsteady state energy balances.

UNIT V FLUE GAS ANALYSIS

Determination of Composition by Orsat analysis of products of combustion of solid, liquid and gas fuels -Calculation of excess air from Orsat technique, Combustion processes – Flue gas analysis, Ultimate and Proximate analyses of coal. Application of Process simulators and excel solver tool in energy and material balance problems.

TOTAL: 45 PERIODS

9

9

9

9

0010	COMI	ES:													
Upon	succes	ssful co	ompletio	on of th	e course	e, the st	udents s	should t	be able	0					
CO'S	6					ST	ATEM	ENT						RBT EVEL	
CO		-		-			erent un given sys	•	ems and	l apply	various	s gas		4	
CO2	,						it opera insteady					d analyz	ze	4	
COS	3. I	Discuss humidification operations and its applications for known systems.													
CO4	4		erform and analyze energy balance calculations for steady and unsteady state memical processes. Applicate various methods used for analyzing combustion processes and												
CO	5	-					analyzi process	0		proces	ses and	1		4	
2. Bh	natt B.	I. and V	Vora S.N	M., "Sto		etry", So		dition, 7	Tata Mo	:Graw H		w Delhi,	2004	7 1.4	
 Bit Fe Joi REFE Hadright Ed Ve 	hatt B. Elder, 1 hnWil CREN Ougen dition, enkatra	I. and V R. M. ley & S CES: O A, T CBSp amani.	Vora S.M and Ro Sons, Ne Watson ublisher V, An	M., "Sto usseau, ew Yorl K M a rs, 1976	and Rag	etry", So "Elem gatz R A	A, "Che	dition, ⁷ Principl emical 1	Tata Moles of C	Graw H Chemica	Iill, Nev 1 Proce	_	, 2004 Third E		
 Bh Fe Join REFE Ha 	hatt B. elder, 1 hnWil CREN Ougen dition, enkatra all of	I. and V R. M. ley & S CES: O A, T CBSp amani. India,	Vora S.N and Ro Sons, Ne Watson ublisher V, An New D	M., "Sto usseau, ew Yorl K M a rs, 1976 atharan elhi, 20	and Rag	and Mo	A, "Che	dition, ⁷ Principl emical 1	Tata Moles of C	Graw H Chemica	Iill, Nev 1 Proce	w Delhi, esses", 7	, 2004 Third E		
 Bh Fe Joi REFE 1. Ho Ed 2. Ve Ha	hatt B. elder, 1 hnWil CREN Ougen dition, enkatra all of 1 RSE A	I. and V R. M. ley & S CES: O A, ⁷ CBSp amani. India, ARTIC	Vora S.N and Ro Sons, Ne Watson ublisher V, An New D ULAT	M., "Sto usseau, ew Yorl K M a rs, 1976 atharan elhi, 20	ichioma R. W., c, 2005 and Rag 5. nan. N 11. ATRIX	and Ma	A, "Che eera Sh	emical p	Tata Moles of C	Graw H Chemica princip "Proces	Iill, Nev I Proce	w Delhi, esses", 7	2004 Chird E cond " Pren	tice	
2. Br 3. Fe Joi REFE 1. Ho Ed 2. Ve Ha COUH	hatt B. Elder, I hnWil CRENC Dugen dition, enkatra all of E RSE A	I. and V R. M. ley & S CES: O A, T CBSp amani. India, ARTIC	Vora S.M and Ro Sons, Ne Watson ublisher V, An New D ULAT	M., "Sto usseau, ew Yorl K M a rs, 1976 atharan elhi, 20 ION M	ichioma R. W., and Rag and Rag b. nan. N 11. ATRIX	and Ma	A, "Che eera Sh PO 7	dition, ⁷ Principl emical p hariffa H	Tata Moles of C	Chemica princip "Proces 10	Hill, Nev I Proce les" Pa s Calcu	w Delhi, esses", 7 rt I, Sec ulations	, 2004 Third E cond " Pren P: 1	tice	
2. Br 3. Fe Joi REFE 1. Ho Ed 2. Ve Ha COUH CO CO1	hatt B. elder, I hnWil CRENC Dugen dition, enkatra all of 2 RSE A	I. and V R. M. ley & S CES: O A, Y CBSp amani. India, ARTIC 2 3	Vora S.N and Ro Sons, Ne Watson ublisher V, An New D ULAT ULAT	M., "Sto usseau, ew Yorl K M a rs, 1976 atharan elhi, 20 ION M 4 3	ichioma R. W., and Rag and Rag b. nan. N 11. ATRIX 5 2	etry", So "Elem gatz R A and Mo and Mo C C C C C C C C C C C C C C C C C C C	A, "Che eera Sh PO 7 1	emical planiffa H	Tata Moles of C process Begam 9 1	eGraw H Chemica princip "Proces 10 2	Hill, Nev I Proce les" Pa s Calcu 11 3	w Delhi, esses", 7 rt I, Sec ulations 12 3	2004 Chird E cond " Pren Pren 1 3	tice SO 2 3	
 Bh Fe Joi REFE 1. Ha 2. Ve Ha COUH CO CO1 CO2 CO2	hatt B. elder, 1 hnWil CRENO Dugen dition, enkatra all of 2 RSE A 1 3 3	I. and V R. M. ley & S CES: O A, CBSp amani. India, ARTIC 2 3 3 3	Vora S.N and Ro Sons, Ne Watson ublisher V, An New D ULAT ULAT 3 3 3	M., "Sto usseau, ew Yorl K M a rs, 1976 atharan elhi, 20 ION M 4 3 3	ichioma R. W., c, 2005 and Rag 5. nan. N 11. ATRIX 5 2 2 2	and Mo 6 2 2	A, "Che eera Sh PO 7 1 2	ariffa H	Tata Mo les of C process Begam 9 1 1	Chemica princip "Proces 10 2 3	Hill, Nev I Proce les" Pa s Calcu 11 3 3	w Delhi, esses", 7 rt I, Sec ulations 12 3 3	2004 Chird E cond " Pren P: 1 3 3	tice SO 2 3 3 3	
2. Br Joi Joi REFE 1. Ho Ed 2. Ve Ha COUR	hatt B. elder, I hnWil CRENC Dugen dition, enkatra all of 2 RSE A	I. and V R. M. ley & S CES: O A, Y CBSp amani. India, ARTIC 2 3	Vora S.N and Ro Sons, Ne Watson ublisher V, An New D ULAT ULAT	M., "Sto usseau, ew Yorl K M a rs, 1976 atharan elhi, 20 ION M 4 3	ichioma R. W., and Rag and Rag b. nan. N 11. ATRIX 5 2	etry", So "Elem gatz R A and Mo and Mo C C C C C C C C C C C C C C C C C C C	A, "Che eera Sh PO 7 1	emical planiffa H	Tata Moles of C process Begam 9 1	eGraw H Chemica princip "Proces 10 2	Hill, Nev I Proce les" Pa s Calcu 11 3	w Delhi, esses", 7 rt I, Sec ulations 12 3	2004 Chird E cond " Pren Pren 1 3	tice SO 2 3	

			L	Т	P	С
CH 223	02	MOMENTUM TRANSFER	2	1	0	3
		ECTIVES: To impart to the student knowledge on fluid properties or through pipesand porous medium, flow measurement and fluid n			dynan	nic
UNIT I	FUN	DAMENTALS OF FLUID AND FLUID FLOW				9
temperatu classificat	re depo ion. Cl and No	es of fluid – Continuum concept of fluid – Newton's law of endence – classification of fluids – Newtonian fluid – Non-Ne lassification of fluid flow – Incompressible and Compressible flo on – Uniform flow. Flow visualization – streamline, pathline, s	wtonia ow – S	n fluid teady,	and t Unste	their ady,
UNIT II	FLU	ID STATICS AND FLUID KINEMATICS				9
work, Nav UNIT III Reynolds internal flo	FLO number ow - flo	s equation, Bernoulli equation and with correction for fluid friction okes Equations and Applications W THROUGH CONDUITS, FIXED ANDFLUIDIZED BEDS r, experiment and significance, Hagen Poiseuelle equation and Dat ow through pipes and conduits – Moody diagram – friction factor - friction, sudden expansion and contraction. External flows - Flow	rcy-We – frictic	isbach on facto	equati or char	9 ion; rt –
-	-	g - flow through fixed and fluidized beds - Kozeny Carman equation gun equation.	on – Bla	ike Plu	mmer	
UNIT IV	TRA	NSPORTATION OF FLUIDS				9
Venturi m velocimet Types and Reciproca	neter, P ry, Par d chara ting pu	ent –classification flow measuring devices – Principle and wo Pitot tube and Rotameter. Brief introduction to non-conventional rticle image velocimetry, ultrasonic flow meters, electromagnet acteristics of Valves; Pumps – Classification and working of umps, Centrifugal pump: Cavitation and priming – performance head – factors influencing selection of pump. Introduction to	method ic flow Centrif ce char	ls: Lase meter fugal p acterist	er Dop rs. Val oumps tics –	opler lves, and Net
UNIT V	TUR	BULENCE AND SIMILARITY				9
Introductio	I on to t	turbulence: Structure of turbulence, visualization of turbulence	Revno	Jde		

Introduction to turbulence: Structure of turbulence, visualization of turbulence, Reynolds decomposition. Fundamental dimension of quantities, dimensional homogeneity – dimensional analysis: Physical significance of dimensionless numbers, Geometric – Kinematic and Dynamic Similarity

TOTAL: 45 PERIODS

Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Analyze the fluid properties and flow behaviour of fluids.	3
CO2.	Apply various equations governing fluid statics and fluid kinematics.	4
CO3.	Discuss the pressure drop during the flow of fluids through different physical systems like pipes, valves, fixed and fluidized beds.	4
CO4.	Analyze several machineries used to transport the fluid and theirperformance including the flow measurements.	3
CO5	Compare the fluid flow characteristics during the turbulent conditions using the analogies.	4
Hill,Seve	OOKS: cCabe W.L, Smith, J C and Harriot. P "Unit Operations in Chemical Engineering", McC nth Edition, 2005. hite, F.M., "Fluid Mechanics ", McGraw-Hill Inc., Seventh Edition, 2011.	Graw
Inc,Fifth 2. No. 3. J.	ENCES: obert W. Fox and Alan T. McDonald, "Introduction to Fluid Mechanics" John Wiley & Edition, 2009. Del de Nevers, "Fluid Mechanics for Chemical Engineers ", McGraw-Hill, Third Edition O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999). B. Bird, W. L. Stewart and E. L. Lightfoot, Transport Phenomena (Second edition),	
WilowSin	gapore (2002).	

COURSE ARTICULATION MATRIX

CO		РО													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	3	3	3	2	1	1	2	2	1	1	3	3	
CO2	3	3	2	3	3	3	2	1	2	2	1	3	3	3	
CO3	3	3	2	3	3	3	2	1	2	2	1	3	3	3	
CO4	3	2	2	3	3	2	2	1	2	2	1	3	3	3	
CO5	3	3	3	3	3	3	3	1	2	2	1	3	3	3	

CH22303

CHEMICAL ENGINEERING THERMODYNAMICS – I

L T P C 3 0 0 3

9

9

9

COURSE OBJECTIVES:

To apply the principles and application of first and second law of thermodynamics, and phase equilibria.

UNIT I INTRODUCTION

Introduction- scope of thermodynamics, Dimensions and Units, Temperature, Pressure, Work, Energy, Heat, Energy conservation & first law of thermodynamics; State functions; Equilibrium; Phase Rule; Reversible process; Constant P,V,T processes; Mass and energy balances for open systems

UNIT II SECOND LAW OF THERMODYNAMICS

Statements of the second law; Heat engines, Carnot's theorem, Thermodynamic Temperature Scales; Entropy; Entropy changes of an ideal gas; Mathematical statement of the second law, Entropy balance for open systems; Calculation of ideal work, Lost work

UNIT III PVT BEHAVIOUR OF FLUIDS

Phases, phase transitions, PVT behaviour; description of materials – Ideal gas law, vanderWaals, virial, and cubic equations of state; Reduced conditions & corresponding states theories; correlations in description of material properties and behaviour. Heat effects-latent heat, sensible heat, standard heats of formation, reaction, and combustion

UNIT IV THERMODYNAMIC PROPERTIES OF PURE FLUIDS

Thermodynamic property of fluids- Helmholtz free energy, Gibb's free energy, Thermodynamic property relations- Maxwell relations, Residual properties,2-phase systems, graphs, Thermodynamic property diagrams – P-H, H-T, T-S, H- S and Thermodynamic property diagrams with its constructions.

REFRIGERATION AND LIQUIFACTION, COMPRESSOR WITHUNIT VINTERCOOLING

9

9

Application of thermodynamics to flow processes-pumps, compressors, and turbines. Thermodynamic analysis of steam power plants; Rankine cycle; Internal combustion engine, Otto engine; Diesel engine; Jet engine. The Carnot refrigerator; Vapour-compression cycle; Absorption refrigeration cycle. Compressors, Types of Compressors with design calculation. Thermodynamic analysis of steam power plants; Liquefaction processes.

TOTAL: 45 PERIODS

OUTC	COME	ES:												
Upon s	succes	sful co	ompleti	on of th	e course	e, the st	udents s	should l	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEI
CO1			-	ts of hea pen syste		and en	ergy coi	nversio	n and m	ass and	energy	balance	es	3
CO2		•	-	entropy r irrever	U			U	-		detern	nine the	;	3
CO3	. E	Evaluat	te the p	ropertie	s of nor	ideal g	gases.							4
CO4	. I	llustra	te the ir	nter rela	tions be	tween 1	neasura	ble and	l non m	easurab	le prop	erties.		4
CO5	5 E	Examir	ne the p	rocess o	of lique	faction,	refrige	ration a	nd diffe	erent po	wer cyc	eles		4
The	ermod	ynami		n Ness a enth edi							0			
				1 1	6.01	· 1 F		· ന1	1	•		TT 11	CT 1'	2001
2. B. 3. M.	G. Ky J Mor	vle, Ch ran, H	emical	extbook and Pro piro, D E	cess the	ermody	namics.	Second	l Editio	n., Pren	tice Ha	ll of Ind	lia,2000)
COUR	RSE A	RTIC	CULAT	'ION M	ATRIX									
CO]	PO						P	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2

CO														
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	1	2	2	-	2	2	1	3	3
CO2	3	3	3	3	3	2	2	-	-	2	1	1	3	3
CO3	3	2	2	2	2	1	1	1	1	2	2	1	3	3
CO4	3	3	3	3	3	-	1	-	1	2	2	2	3	3
CO5	3	3	3	3	3	1	1	-	1	2	-	2	3	3

		L	Т	Р	С
CH2230	4 MECHANICAL OPERATIONS	2	1	0	3
	OBJECTIVES: To learn characterization of solids, size reduction, tec mixing and conveying ofsolids.	hniques	of soli	l d – flı	ıid
UNIT I	PARTICLE CHARACTERIZATION AND MEASUREMENT				9
particle si mixture of	ape and size, different ways of expression of particle size, shape ze analysis, standard screens, Differential and cumulative size ana particles, number of particles in a mixture. Screens, ideal and Actual ndard Screen Series, sub sieve analysis – air permeability method.	lysis, sp	ecific	surfac	e of
UNIT II	PARTICLE SIZE REDUCTION AND SIZE ENLARGEMENT				9
crushers – Equipmen	ed products, Laws of size reduction, Work Index, Energy utilization Free and choke feeding, open circuit grinding, Closed circuit grinding t's for size reduction & its operation– Jaw crusher, Roll crusher, T gy mill. Principles and importance of Size enlargement.	ng, wet	and dry	y grin	ding,
UNIT III	PARTICLE SEPARATION (GAS-SOLID AND LIQUID-SOLID	SYSTE	M)		9
gravitatior Stoke"s re Modificati Gravity se	of particle motion, Equation for one dimensional motion of par al and centrifugal field, Terminal velocity, drag coefficient, Motion gion, Newton's region, and Intermediate region, Criterion for settling on of equation for hindered settling. Equipment's for particle separ ettling, double cone classifier, rake classifier and surface area e l separation principle -cyclones and hydro cyclones.	of spheregime, ation an	erical p Hindero d its o	oarticle ed sett perati	es in tling, on –
UNIT IV	FILTRATION AND FILTRATION EQUIPMENTS				9
compressi optimum	f filtration, Batch and continuous filters, Flow through filter ole and incompressible filter cakes, filter aids. Filtration equipment's cycle of operation, Principle of operation – plate and frame filter pr ic precipitator.	- selecti	on, ope	eratior	n and
UNIT V	MIXING AND PARTICLE HANDLING				9
U	d agitation - Mixing of liquids (with or without solids), mixing of power wer requirement for mixing. Storage of solids - Bunkers, silos, bins, ar				

transportation of solids in bulk - Conveying - belt, bucket and pneumatic.

TOTAL: 45 PERIODS

OUTCOMES:		
Upon successful co	mpletion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
size ana	g the basic knowledge on the solid handling characteristics and mixed particle lysis through screening.	3
and to	e the various comminution equipment's for size reduction operations understand the principles of size enlargement techniques	4
knowle	se of various solid separation techniques through settling and basic dge on such equipment design.	3
CO4. Analyse	the various types of filtration process in mineral processing industries.	4
CO5 Apply k	nowledge to practice various mixing processes and particles storage & conveying.	3
McGraw-Hill, 2003 2. Badger W.L. and 3. Foust, A. S., We Operations", 2 nd Ed 4. Coulson, J.M. ar India, 1998.	Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7 th Edr 5. I Banchero J.T., "Introduction to Chemical Engineering", Tata McGraw Hill, 19 nzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of Unit n., John Wiley & Sons, 1994. d Richardson, J.F., "Chemical Engineering" Vol. II, 4th Edn., Asian Books Pvt.	97.
REFERENCES:		
Taylor &Francis, 22. Christie J. Geanl3. Sunggyu Lee, K4. Martin Rhodes, 1	da, KoHigashitani and Hideto Yoshida, Powder Technology Handbook, 4th Ed 006 coplis, Transport processes and unit operations, Prentice Hall, 2018. Imberly H. Henthorn, Particle Technology and Applications, CRC Press, 2017. Introduction to Particle Technology, Second Edition, John Wiley & Sons, 2008. I, Fluid Flow & Mechanical Operation, K.A Gavhane, Nirali Prakashan, 2016.	
COURSE ARTIC	ULATION MATRIX	

COURSE ARTICULATION MATRIX

CO							PO						PS	0
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	2	3	1	2	3	1	3	3	3
CO2	3	3	2	3	3	3	1	2	3	3	1	3	3	3
CO3	3	3	2	2	2	2	3	1	2	3	1	3	3	3
CO4	3	3	2	3	3	3	1	2	3	3	1	3	3	3
CO5	3	3	2	1	2	3	3	1	2	3	1	3	3	3

MECHANICS OF SOLIDS FOR CHEMICAL ENGINEERING

9

9

9

9

2

COURSE OBJECTIVES:

• To learn fundamental concepts of stress, strain and deformation of solids with applications to bars, beams, columns, thin cylinders and spherical shells.

• To know the mechanism of load transfer in beams, the induced stress resultants and deformations underaxial and transverse loading.

• To analyze the forces and stresses on pressure vessel.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Stress and strain - tension, compression, reaction forces and shear stresses in simple and compound bars-Hooke's law –Thermal stresses - Relationship among elastic constants and Poisson's ratio – Stress strain diagrams for engineering materials – Factor of safety.

UNIT II TRANSVERSE LOADING ON BEAMS

Beams – support conditions – types of Beams - forces on solids and supports – transverse loading on beams - shearforce and bending moment in beams - analysis of cantilevers, simply supported beams and over hanging beams with reaction force - relationships between loading, S.F. and B.M. In beams - S.F.& B.M. diagrams – Location of

point of contraflexure and maximum B.M.

UNIT III DEFLECTION OF BEAMS

Double integration method, Macaulay''s method, Moment-Area theorems and conjugate beams method for computation of slopes and deflections in simply supported and cantilever beams.

UNIT IV STRESSES IN BEAMS & COLUMNS

Theory of simple bending – assumptions and derivation of bending equation - analysis of bending stresses inbeams under transverse loading – loads carrying capacity of beams – proportioning beam sections - shear stress distribution in beams - determination of shear stress distribution in symmetrical and unsymmetrical sections with reaction force.Columns: Euler"s theory of long columns and critical loads for columns with different end conditions.

UNIT V DESIGN OF PRESSURE VESSELS

Codes & Standards, Vessels operating at low temperatures and elevated temperatures, design conditions and stress, design of shell and its components, supports, stress from local loads and thermal gradients, thermal stresses in cylindrical shell. Features of high pressure vessels – solid walled vessel, vessel closures, jackets.

TOTAL: 45 PERIODS

Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEI
CO1.	Recognize the fundamental concepts of stress and strain in mechanics of solids and structures.	3
CO2.	Apply the knowledge on types of beams and loads and investigate the shear forceand bending moment diagrams.	3
CO3.	Utilizing various techniques to infer the deflection of beams.	3
CO4.	Develop the models to analyze the principle stresses in beams and columns.	3
CO5	Apply the knowledge of principle stresses to design the pressure vessels.	3
3) E. P. F 4) F. P. E	 Hibbeler, Mechanics of Materials, Sixth Edition, Pearson Education, Inc., 2005 Popov, Engineering Mechanics of Solids, Prentice Hall, 1998. Beer, E. R. Johnston (Jr.) and J.T. DeWolf, Mechanics of Materials, Tata McGraw Hill, 2 Joshi, Process Equipment Design, Macmillan, 1976. 	2005.
REFERI	ENCES:	
,	Crandall, N. C. Dahl, and T. J. Lardner, An Introduction To The Mechanics Of Solid, 2 cGraw Hill, 2008.	and Ed.,
,	imoshenko, Strength of Materials, Vols. 1 & 2, CBS Publishers, 1986.	
	mes and J. M. Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, 2003.	
	Gere, Mechanics of Materials, Thomson Brooks/Cole, 2006.	

0001		MIIC				_									
CO		РО													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	2	1	2	2	2	2	1	3	3	3	3	
CO2	3	2	2	2	1	2	2	2	2	3	3	3	3	3	
CO3	3	2	2	2	1	3	2	2	3	3	2	3	3	3	
CO4	3	2	3	3	1	3	3	2	2	2	3	3	3	3	
CO5	3	3	3	3	1	3	2	3	2	3	3	3	3	3	

CH2	7211	ENVIRONMENTAL ENGINEERING	L	Т	Р	С
	2311	LABORATORY	0	0	4	2
		JECTIVES: At the end of the course, the student will be aware o quantification of qualityparameter of wastewater, soil and air.	f the st	andard		
LIST C)F EXP	PERIMENTS:				
1.	Estimat	ion of the Total Solids for a given sample of water.				
2.	Permea	bility determination of solid sample.				
3.	Direct s	shear test in cohesionless soil.				
4.	Determ	ination of chromium traces in tannery effluents.				
5.	Determ	ination of the metal concentration in solid samples.				
6.	Determ	ination of viscosity of oil samples using Brookfield Viscometer.				
7.	Determ	ination of pH range of indicator solutions.				
8.	Determ	ination of the COD of the given liquid sample.				
9.	Determ	ination of the BOD of the given liquid sample.				
10.	Determ	ination of total coliforms in water.				
11.	Determ	ination of corrosion rate of the given sample.				
		ination of air quality for indoor and outdoor environments. experiments shall be performed				
LIST C)F EQU	JIPMENTS				
1.	COD D	igester				
2.	Atomic	Absorption Spectroscopy				
3.	Brookfi	eld Viscometer				
4.	Dissolv	ed Oxygen meter				
5.	Conduc	ctivity meter				
6.	Carbon	dioxide (CO ₂) sensor				
7.	Constar	nt head permeameter				
8.	Shear b	ox assembly				
			ΓΟΤΑΙ	L:60 I	PERI(DDS

OUTC	COM	IES:												
Upon s	succe	essful c	completi	on of th	e cours	e, the st	udents	should l	be able	to				
CO'S	5					ST	ATEM	IENT						RBT EVEL
COI	l.	Analys	se the ch	aracteri	istics of	waste	water us	sing star	ndard pi	ocedure	es.			4
CO2	2.	Condu	ct tests	to deter	mine the	e perme	ability	and she	ar stren	gth of s	oils.			3
CO3	3.	Charac	cterise n	netals af	fected b	by corre	osion.							4
CO4	1.	Analys	se the ai	r quality	y presen	t in the	surrou	nding er	nvironm		4			
CO	5	Perfor	m colifo	rm anal	ysis.									3
COUR	RSE	ARTI	CULAT	ION M	ATRIX	K								
CO							PO						P	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	3	1	3	3	3	3	3	2	3	3	3
CO2	3	2	1	3	1	3	3	2	3	3	2	3	3	3
CO3	3	2	1	3	1	3	3	2	3	2	2	3	3	3
CO4	3	2	1	3	1	3	3	3	3	3	2	3	3	3
CO5	3	2	1	3	1	3	3	1	3	3	2	3	3	3

		L	Т	P	С
CH22312	TECHNICAL ANALYSIS LABORATORY	0	0	4	2
	IECTIVES: To learn basic principles involved in estimation and portant materials	l character	ization	of	<u></u>
LIST OF EXP	ERIMENTS:				
I. Soap Analysi	S				
a. Estimati	on of total fatty acid				
b. Estimati	on of percentage alkali content				
II. Oil Analysis					
a. Estimati	on of free acid				
b. Determi	nation of Saponification value				
c. Determin	nation of iodine value				
III. Cement An	alysis				
a. Estimati	on of Silica content				
b. Estimati	on of mixed oxide content				
c. Estimati	on of calcium oxide content				
d. Estimati	on of calcium oxide by rapid method				
IV. Coal Analy	sis				
	on of Sulphur present in coal				
	analysis of coal				
c. Proxima	te analysis of coal				
V. Analysis of	Bleaching Powder				
a. Estimati	on of available chlorine				
VI. Analysis of	Glycerol				
a.	Estimation of purity of glycerol				
VII. Analysis o	f fuels				
a. Flash po	int				
b. Fire poir	nt				
c. Cloud po	pint				
d. Pour poi	nt				
Aniline point.					
		ТОТА	L: 60 l	PERIC)DS

OUT	COM	IES:													
Upon	succ	essful co	ompleti	on of th	e course	e, the st	udents	should l	be able	to					
CO'S	5					ST	ATEM	ENT						RBT EVEL	
CO	1.	Estima	te the al	kali and	l total fa	atty acio	d conter	nt of soa	ap.					2	
CO2	2.	Determ	ine the	acid va	lue, iod	ine valu	e and c	loud &	pour po	oint of o	il.			3	
COS	3.	Apply	the prin	ciple of	gravim	etry to o	estimate	e the qu	antity o	f analyt	e.			3	
CO4	4.	Determ	ine the	purity o	of glyce	rol								2	
CO	5	Analyz	e the av	ailable	chlorin	e and re	sidual o	chlorine	in wate	er samp	e		3		
CO	6	Analyze	sulpha	te and tu	urbidity	in wate	er samp	le.						2	
COU	RSE	ARTIC	CULAT	ION M	ATRIX	K									
СО]	PO						P	50	
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	1	1	1		3	3	2	2			1			
CO2	1	1	1			3	3	2	2						
CO3	1	1	1	1		3	3	2	2						
CO4	1	1	1	1											
CO5	1	1	1	1		3	3	2	2			1			
CO6	1	1	1	1		3	3	2	2						

	NUMERICAL METHODS	L	Т	Р	С
MA22452	(Common to CH & EE)	3	1	0	4
• Learn the solution • Understand to • Learn how to • Familiarize in • Understand to • Understand • Understand to • Understand to • Understand to • U	hould be made to: blution of algebraic, transcendental equations, system of linear equation the concept of Interpolation and approximation. To apply numerical differentiation and Integration n solving IVP now to solve BVP in ODE and PDE DLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS computation software for numerical methods solution of algebraic and hson method- Solution of linear system of equations - Gauss eliminat method, Solution of Tri-diagonal system of equations – Gauss Seidel i Gauss Jordan method - Eigen values of a matrix by Power method	transce tion me terative and Ja	ethod – e metho	equat Pivoti d - Ma	ing - atrix
	rix. Solving equations and Eigen value problems using computational to TERPOLATION AND APPROXIMATION	0018.			12
andbackward	ce operators and its relations - Interpolation with equal intervals - difference formulae - Interpolation with unequal intervals - Lagrang ded difference interpolation. Interpolation and Approximation using o	ge's inte	erpolatio	on –	1
UNIT III NU	JMERICAL DIFFERENTIATION AND INTEGRATION				12
Simpson's 1/3 Evaluation of	n of derivatives using interpolation polynomials - Numerical integrati rule, Romberg's Method - Two point and three-point Gaussian quad double integrals by Trapezoidal and Simpson's 1/3 rules. Application differentiation and integration.	rature	formula	e –	
UNIT IV IN	ITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIA	LEQU	JATIO	NS	12
methodfor solv Multi step met	ethods – Taylor's series method, Modified Euler's method – Fourth or ving first order equations, second order equations and simultaneous fi hods – Milne's and Adams- Bash forth predictor corrector methods f ving Initial value problems using computational tools.	irst ord	er equa	tions -	
UNIT V BC	OUNDARY VALUE PROBLEMS				12
Laplace"s and explicit and	nce solution of ODE. Finite difference techniques for the soluti l Poisson"s equations on rectangular domain – One dimensional implicit (Crank Nicholson) methods – One dimensional wave ng Boundary value problems using computational tools.	heat f e equa	low eq	uation y exp	n by olicit

SEMESTER IV

TOTAL: 60 PERIODS

0	UTCO	ME	S:												
Up	on suc	cess	ful co	mpleti	on of th	e cours	e, the st	udents	should	be able	to				
С	0'S						ST	TATEM	ENT						RBT EVEL
(C O1.				mental f equati		dge of	solving	an alge	braic or	transce	endental	l equation	,	2
(C O2.						niques	of interp	olation	n in vari	ous inte	rvals			3
(C O3.	-	oply the oblem		nerical	techniq	ues of	differen	tiation	and int	egration	n for ei	ngineering	5	3
(C O4.	So	lve in	itial va	lue prol	blems u	sing an	approp	riate nu	merical	techniq	ue.			3
	CO5	So	Solve boundary value problems using finite difference method.												3
TF	EXT B	00	KS:												
1)	Grew	al. B	.S., N		al Metho , New D			ing & So	cience v	vith Prog	grams in	C, C+-	+ & MATI	LAB,	Khanna
2)	Jain 1	M.K.	, Iyen	gar. S.R		d Jain. F	R.K, Nu		Method	s for Sci	ientific a	and Eng	ineeringCo	mput	ation,
3)		-							Enginee	ers, Tata	McGrav	v Hill,7t	h Edn, Ne	wDell	hi, 2015
RI	EFERI	ENC	ES:												
1)	Sanka Delhi			, Numei	rical met	thods for	r Scienti	sts and H	Engineer	rs, Prenti	ce Hall (of India,	3rd Editio	n,Nev	N
2)	Geral	d. C.	F., an		•				-				a, New Del	hi,20	09.
3)									0	ering, N					
4)			•	Thilaga	vathy. K	K., and C	Gunavath	ni. K., Nu	umerical	l Method	ls, S. Ch	and & C	Company L	td.,Ne	ew
5)	Delhi Sastry			roducto	rv Meth	ods of N	Jumerica	al Analys	sis" Pre	ntice Ha	ll of Ind	ia 2010			
í	BLIN		<u>, </u>	1044010	iy mem	005 01 1	uniorie	<u>u runury</u>	<u>, 110</u>		<u>n or ma</u>	<i>iu</i> , 2010.	•		
1.	https://	/npte	el.ac.ii	n/cours	es/111/	107/111	107105	5/							
2.	https://	/npte	el.ac.ii	n/cours	<u>es/111/</u>	107/111	107063	<u>3/</u>							
CO	DURS	E AI	RTIC	ULAT	ION M	ATRIX	X								
С					-	_	-	PO	_	_	_	_		P	50
U		1	2	3	4	5	6	7	8	9	10	11	12	1	2
0	D1	3	3	2									2		
C			-	0						T					
C		3	3	2									2		
)2	3 3	3	2 2									2		
C(D2 2 D3 2		_		2								2		

CH22401		L	Т	Р	С
CH22401	HEAT TRANSFER	2	1	0	3
GOTID OD					

COURSE OBJECTIVES:

• To enable the students to learn the fundamental concepts of heat transfer conduction, convection, radiation, boiling, evaporation, and condensation.

To use these fundamentals in typical engineering applications in heat transfer equipments like evaporator and heat exchangers.

UNIT I HEAT TRANSFER BY CONDUCTION

Importance of heat transfer in Chemical Engineering operations - Modes of heat transfer - Fourier"s law of heat conduction - one dimensional steady state heat conduction equation for flat plate, hollow cylinder, spheres - Heat conduction through a series of resistances - Thermal conductivity measurement; effect of temperature on thermal conductivity; Heat transfer in extended surfaces.

UNIT II HEAT TRANSFER BY CONVECTION

Concepts of heat transfer by convection - Natural and forced convection, Buckingham Pi Theorem, Dimensional analysis in heat transfer, heat transfer coefficient for flow through a pipe, flow past flat plate, and flow through packed beds. Application for developing semi - empirical non- dimensional correlation for convection heat transfer.

UNIT III HEAT TRANSFER WITH PHASE CHANGE

Heat transfer to fluids with phase change - heat transfer from condensing vapours, drop wise and film wise condensation, Nusselt equation for vertical and horizontal tubes, condensation of superheated vapours, Heat transfer to boiling liquids - mechanism of boiling, nucleate boiling and film boiling.

UNIT IV EVAPORATION AND RADIATION HEAT TRANSFER

Theory of evaporation - single effect and multiple effect evaporation Thermal design calculation for single and multiple effect evaporation. Radiation heat transfer - Black body radiation, Emissivity, Stefan -Boltzman law, Plank"s law, radiation between surfaces – Concepts of shape factor, Heat exchange between grey bodies - Radiation exchange between non-black surfaces, radiation shields.

UNIT V **DESIGN OF HEAT EXCHANGERS**

Classification of heat exchangers - overall and individual film coefficients heat transfer coefficient and fouling factor - Concepts of LMTD, and NTU methods - plate heat exchangers; use of correction factor charts; heat exchangers effectiveness; - Chart for different configurations - Fouling factors.

TOTAL: 45 PERIODS

9

9

9

9

	COMI	ES:												
Upon :	succes	ssful co	ompleti	on of th	e cours	e, the st	udents	should b	be able	to				
CO'S	5	STATEMENT							RBT EVEL					
COI		Impart knowledge on the various modes of heat transfer and apply conduction heat transfer concept							t	3				
CO2		Apply convective heat transfer concept to fluids without phase change									3			
CO3	3. I	Develop the ability to model and analyze heat transfer processes with phase change								4				
CO4		Apply the concepts of evaporation to estimate steam economy, capacity of singleand multiple effect evaporators								3				
CO			hermal heat exc	•	s of hea	t excha	nger us	ing LM	TD and	NTU n	nethod	and		4
			"пеат т	ransfer	", Eight			a McGr			or mara	ı Pvt.Ltd.		
			and Ric			h Editio	on., Tat	a McGr	aw Hill	, 1997		on., Asian	Book	ks Pvt
	d., Inc	n, J.M. a dia, 199	and Ric			h Editio	on., Tat	a McGr	aw Hill	, 1997			Book	ks Pvt
Lto REFE 1. Kern 2. McO	d., Inc REN n, D.(Cabe,	n, J.M. a dia, 199 CES: Q., "Pro W.L.,	and Ric 98.	hardson eat Trar J.C., and	1, J.F., "	h Editio Chemic	on., Tat cal Eng	a McGr ineering 1999	aw Hill ,", Vol.	, 1997 I, Fourt	h Editio			cs Pvt
Lto REFE 1. Kern 2. Mc0 Edit	d., Ind REN n, D.(Cabe, tion., 1	n, J.M. a dia, 199 CES: Q., "Pro W.L., McGra	and Ric 98. Decess Hi Smith, J w-Hill,	hardson eat Trar J.C., and	n, J.F., " nsfer ", d Harrio	h Editio Chemic McGrav	on., Tat cal Eng	a McGr ineering 1999	aw Hill ,", Vol.	, 1997 I, Fourt	h Editio	on., Asian		cs Pvt
Lto REFE 1. Kern 2. McC Edit	d., Ind REN n, D.(Cabe, tion., 1	n, J.M. a dia, 199 CES: Q., "Pro W.L., McGra	and Ric 98. Decess Hi Smith, J w-Hill,	hardson eat Trar J.C., and 2005.	n, J.F., " nsfer ", d Harrio	h Editio Chemic McGrav ot, P., "1	on., Tat cal Eng	a McGr ineering 1999	aw Hill ,", Vol.	, 1997 I, Fourt	h Editio	on., Asian	enth	cs Pvt
Lto REFE 1. Kern 2. McC Edit	d., Ind REN n, D.(Cabe, tion., 1	n, J.M. a dia, 199 CES: Q., "Pro W.L., McGra	and Ric 98. Decess Hi Smith, J w-Hill,	hardson eat Trar J.C., and 2005.	n, J.F., " nsfer ", d Harrio	h Editio Chemic McGrav ot, P., "1	w-Hill, Unit Op	a McGr ineering 1999	aw Hill ,", Vol.	, 1997 I, Fourt	h Editio	on., Asian	enth	
Lto REFE 1. Kern 2. McC Edit	d., Ind REN n, D.(Cabe, tion., 1 RSE A	n, J.M. a dia, 199 CES: Q., "Pro W.L., McGra	and Ric 28. Decess Ho Smith, J w-Hill, CULAT	hardson eat Trar J.C., and 2005.	n, J.F., " nsfer ", d Harrio ATRIX	h Editio Chemic McGrav ot, P., "I	w-Hill, Unit Op	a McGr ineering 1999 berations	aw Hill ,", Vol.	, 1997 I, Fourt emical F	h Editio	ring", Sev	enth PS	50

CO3

CO4

CO5

		L	Т	Р	C
CH224	MASS TRANSFER I	2	1	0	3
COURSE	OBJECTIVES:	1			.I
 To To To To 	understand the diffusion mechanism in fluids and solids. understand the role of mass transfer coefficients in design calculations. understand the mechanism of humidification operations. understand the drying operations used in chemical and allied industries. design a crystallizer for a suitable purpose.				
UNIT I	DIFFUSION				9
Molecular	diffusion in gases and liquids, measurement and calculation of diffusivi	ties, ste	eady sta	ite	
diffusioni	multicomponent mixtures. Diffusion in solids, molecular and Knudsen	diffusi	on in p	orous	
solids, uns	teady state diffusion in solids.				
UNIT II	MASS TRANSFER COEFFICIENTS				9
Eddy diff	usion, concept of mass transfer coefficients, theories of mass trans	fer, di	fferent	tran	sport
analogies,	application of correlations for mass transfer coefficients, inter phase m	ass trai	nsfer, r	elatior	nship
between in	ndividual and overall mass transfer coefficients. NTU and NTP concept	ts, Stag	ge-wise	and	
differentia	l contractors.			r	
UNIT III	HUMIDIFICATION				9
Humidific	ation – Equilibrium, humidification operations; theory and types of cool	ing tow	ver, deh	umidi	ifiers
and humic	ifiers using enthalpy transfer unit concept.				
UNIT IV	DRYING				9
Drying Th	eory and Mechanism, Drying Characteristics, Estimation of Drying	time, d	lrying 1	rate ci	urve,
Classificat	ion of Driers, Through circulation driers design, Design of driers, Des	cription	n and A	Applic	ation
of Driers,	Analysis of continuous driers.				
UNIT V	CRYSTALLISATION				9
Crystalliza	tion - Equilibrium, classification of crystallizers, mass and energy balar	ce; kin	etics of		
crystalliza	tion – nucleation and growth; design of batch crystallizers; population b	alance	model	and de	esign
of continu	ous crystallizers.				
		TOTA	L: 45	PERI	ODS

Upon														
- Pon	succes	ssful co	ompleti	on of th	e course	e, the stu	udents s	should b	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO	I. ¹	Apply t	he prin	ciples of	f diffusi	ion in m	neasurin	ıg diffu	sivity.					3
CO2	, ,		te diffe n them.	rent typ	es of M	lass trar	nsfer co	-efficie	nt and	identify	the rela	ition		3
COS	3. <i>I</i>	Apply r	nass tra	nsfer co	oncepts	in desig	gning hu	umidifio	cation u	nits.				3
CO4	1 . (Calcula	ite rate o	of dryin	g using	Mass tr	ansfer (concept	s.					3
CO	5 ^A	Apply r	nass tra	nsfer co	oncepts	in desig	gning cr	ystalliz	ation u	nits.				3
техт	BOC	OKS:												
1.	Trey	bal, R.	E., "Ma	iss Tran	sfer Op	erations	s", Thir	d Editic	on, McC	Graw-Hi	11, 1981	•		
2.	•				-					s in Che			ring".	
			McGraw				, _ ,,	int op					,	
3.				,		esses ar	nd Sena	ration F	Process	Princip	es Inch	ides Un	it Oper	ations
		-		-		w Jerse	-		100055	1 meip			n open	utions
REFE			1101110	<u>e 11uii 1</u>			<i>j</i> , <u>2005</u>							
	oulsoi	T N /												
					on, J.F.,	"Chem	nical Er	ngineeri	ng" Vo	ol. I and	II, Fou	ırth Edi	tion, A	sian
Books	Pvt. l	Ltd., In	dia, 19	98				-	-			ırth Edi	tion, A	sian
Books 2. Fo	Pvt. l oust A	Ltd., In A.S, "Pr	dia, 19 inciple	98 5 of Uni	t Opera	tions",	Second	Editior	n, John	Wiley, 2	2008			sian
Books 2. Fo 3. So	Pvt. 1 oust A eader	Ltd., In A.S, "Pr J.D &]	dia, 199 rinciples Henley	98 s of Uni E.J, "Se	t Opera eparatio	tions", s n Proce	Second ss Princ	Edition	n, John Second	Wiley, 2 l Editior	2008 1, John ⁻	Wiley, 2	2006.	
Books 2. Fo 3. So	Pvt. 1 oust A eader	Ltd., In A.S, "Pr J.D &]	dia, 199 rinciples Henley	98 s of Uni E.J, "Se	t Opera eparatio	tions", s n Proce	Second ss Princ	Edition	n, John Second	Wiley, 2	2008 1, John ⁻	Wiley, 2	2006.	
Books 2. Fo 3. So	Pvt. l oust A eader .L. Cu	Ltd., In A.S, "Pr J.D & I Issler, '	dia, 199 rinciples Henley	98 s of Uni E.J, "Se	t Opera eparatio	tions", s n Proce	Second ss Princ	Edition	n, John Second	Wiley, 2 l Editior	2008 1, John ⁻	Wiley, 2	2006.	
Books 2. Fo 3. So 4. E	Pvt. l oust A eader .L. Cu	Ltd., In A.S, "Pr J.D & I Issler, '	dia, 199 rinciples Henley	98 s of Uni E.J, "Se	t Opera eparatio	tions", s n Proce	Second ss Princ	Edition	n, John Second	Wiley, 2 l Editior	2008 1, John ⁻	Wiley, 2	2006.	
Books 2. Fo 3. So 4. E Press	Pvt. l oust A eader .L. Cu , 1997	Ltd., In A.S, "Pr J.D & I issler, '	idia, 199 rinciples Henley "Diffus	98 s of Uni E.J, "Se ion, Ma	t Opera eparatio ss Tran	tions", a n Proce sfer in	Second ss Princ	Edition	n, John Second	Wiley, 2 l Editior	2008 1, John ⁻	Wiley, 2	2006.	
Books 2. Fo 3. So 4. E Press	Pvt. l oust A eader .L. Cu , 1997	Ltd., In A.S, "Pr J.D & I issler, '	dia, 199 rinciples Henley	98 s of Uni E.J, "Se ion, Ma	t Opera eparatio ss Tran	tions", f n Proce sfer in	Second ss Princ Fluid S	Edition	n, John Second	Wiley, 2 l Editior	2008 1, John ⁻	Wiley, 2	2006. Unive	rsity
Books 2. Fo 3. So 4. E Press	Pvt. l oust A eader .L. Cu , 1997	Ltd., In A.S, "Pr J.D & I issler, '	idia, 199 rinciples Henley "Diffus	98 s of Uni E.J, "Se ion, Ma	t Opera eparatio ss Tran	tions", f n Proce sfer in	Second ss Princ	Edition	n, John Second	Wiley, 2 l Editior	2008 1, John ⁻	Wiley, 2	2006.	rsity
Books 2. Fe 3. Se 4. E Press COUI	Pvt. l oust A eader . .L. Cu , 1997 RSE A	Ltd., In A.S, "Pr J.D & 1 assler, ' ARTIC	dia, 199 rinciple: Henley "Diffus	98 s of Uni E.J, "Se ion, Ma ION M	t Opera eparatio ss Tran ATRIX	tions", and Proce sfer in	Second ss Princ Fluid S	Editior ciples", ystems	n, John Second '', Seco	Wiley, 2 l Editior nd Editi	2008 n, John T on, Car	Wiley, 2 nbridge	2006. Univer	rsity SO
Books 2. Fe 3. Se 4. E Press.	Pvt. l oust A eader . .L. Cu , 1997 RSE A 1	Ltd., In A.S, "Pr J.D & 1 ussler, " ARTIC 2	dia, 199 rinciple: Henley "Diffus	98 s of Uni E.J, "Se ion, Ma ION M	t Opera eparatio ss Tran ATRIX	tions", and Proce sfer in	Second ss Princ Fluid S	Editior ciples", ystems	n, John Second '', Seco	Wiley, 2 l Editior nd Editi	2008 n, John T on, Car	Wiley, 2 nbridge	2006. Univer PS 1	rsity SO 2
Books 2. Fe 3. Se 4. E Press. COUI	Pvt. l oust A eader . .L. Cu , 1997 RSE A 1 3	Ltd., In A.S, "Pr J.D & 1 ussler, " ARTIC 2 3	dia, 199 rinciple: Henley "Diffus	98 s of Uni E.J, "Se ion, Ma ION M 4 1	t Opera eparatio ss Tran ATRIX	tions", and Proce sfer in	Second ss Princ Fluid S	Editior ciples", ystems	n, John Second '', Seco	Wiley, 2 l Editior nd Editi	2008 n, John T on, Car	Wiley, 2 nbridge	2006. Univer PS 1 3	SO 3
Books 2. Fe 3. Se 4. E Press. COUI CO CO CO CO CO CO CO CO CO CO CO CO CO	Pvt. l oust A eader . .L. Cu , 1997 RSE A 1 3 3	Ltd., In A.S, "Pr J.D & 1 ussler, " ARTIC 2 3 3 3	dia, 199 rinciple: Henley "Diffus	98 s of Uni E.J, "Se ion, Ma ION M 4 1 2	t Opera eparatio ss Tran ATRIX	tions", f n Proce sfer in	Second ss Princ Fluid S PO 7	Editior ciples", ystems ⁷	n, John Second '', Seco	Wiley, 2 l Editior nd Editi	2008 n, John T on, Car	Wiley, 2 nbridge	2006. Univer 1 3 3	SO 3 3 3

		L	T	Р	C
CH2240	3 CHEMICAL REACTION ENGINEERING I	2	1	0	3
COURSE	OBJECTIVES:			1	<u> </u>
• To	study the kinetics of chemical reactions and the analysis of kinetic data				
• То	design a suitable reactor for single and multiple reaction schemes				
• To	study the non-isothermal operation of reactors				
• To	impart knowledge on residence time distribution studies in non-ideal flo	w reac	tors		
UNIT I	KINETICS AND ANALYSIS OF EXPERIMENTAL KINETIC DA	ATA			9
Overview	of Chemical Reaction Engineering - Kinetics of homogeneous reactions	s - Elei	nentary	and I	Non-
elementary	reactions - Theories on reaction rates - Temperature dependence of ra	te con	stants-	Activa	ation
Energy and	d Arrhenius Equation - Kinetics of Bio-Chemical Reactions: Michaeli	s Men	ton mo	del; A	uto-
catalytic re	actions. , Analysis of experimental kinetics data, integral and differentia	l analy	sis.		
UNIT II	IDEAL REACTOR DESIGN FOR HOMOGENEOUS SINGLE RI	EACT	IONS		9
Performan	ce equations for ideal batch, Plug flow, Back-mix flow and semi batc	h reac	tors for	isoth	ermal
condition,	Size comparison of single reactors, Multiple-reactor systems, Recycle re	actor.			
UNIT III	MULTIPLE REACTIONS				9
Parallel rea	actions of different orders: Yield and selectivity, Product distribution a	and des	sign for	singl	e and
multiple re	actors - Series reactions: first-order reactions and zero-order reactions.				
UNIT IV	TEMPERATURE EFFECTS FOR SINGLE AND MULTIPLE RE	ACTI	ONS		9
Thermal st	ability of reactors and optimal temperature progression for first orde	er reve	rsible 1	eactio	ns –
Equilibriur	n conversion - Adiabatic and heat regulated reactors, Multiple Stead	y State	es in (Contin	uous
Stirred Tan	k Reactor (CSTR) - Design of non-isothermal reactors.				
UNIT V	NON – IDEAL FLOW REACTORS				9
Concept o	f residence time distribution (RTD), Measurement and moments of	of RT	D, RT	D in	batch
reactors, Pl	ug Flow Reactor and CSTR. Zero Parameter Model: One parameter	mode	l: Tanl	ks in	series
model and	Dispersion Model.				
	r	ГОТА	L: 45	PERIC	ODS

Upon successful completion of the course, the students should be able to CO'S STATEMENT CO1. Analyze kinetic data and determine the rate of the reaction. CO2. Design ideal reactors for homogeneous reactions CO3. Evaluate reactor systems to carry out multiple reactions and recommend reactor/combination of reactors for the yield of desired product. CO4. Discuss the temperature effects and design non-isothermal reactors CO5 Develop mathematical models for conversion in non-ideal flow reactors TEXT BOOKS: I) 1) H.S. Fogler,Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016. 2) O. Levenspiel,Chemical Reaction Engineering, Wiley Eastern Ltd., 2006.	RBT LEVEL 4 6 5 6 6 6 .
CO1. Analyze kinetic data and determine the rate of the reaction. CO2. Design ideal reactors for homogeneous reactions CO3. Evaluate reactor systems to carry out multiple reactions and recommend reactor/combination of reactors for the yield of desired product. CO4. Discuss the temperature effects and design non-isothermal reactors CO5 Develop mathematical models for conversion in non-ideal flow reactors TEXT BOOKS: 1) 1) H.S. Fogler,Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016.	LEVEL 4 6 5 6 6 6
CO1. Design ideal reactors for homogeneous reactions CO2. Design ideal reactors for homogeneous reactions CO3. Evaluate reactor systems to carry out multiple reactions and recommend reactor/combination of reactors for the yield of desired product. CO4. Discuss the temperature effects and design non-isothermal reactors CO5 Develop mathematical models for conversion in non-ideal flow reactors TEXT BOOKS: 1) H.S. Fogler,Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016.	6 5 6 6
CO2. Evaluate reactor systems to carry out multiple reactions and recommend reactor/combination of reactors for the yield of desired product. CO4. Discuss the temperature effects and design non-isothermal reactors CO5 Develop mathematical models for conversion in non-ideal flow reactors TEXT BOOKS: 1) 1) H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016.	5 6 6
CO3. reactor/combination of reactors for the yield of desired product. CO4. Discuss the temperature effects and design non-isothermal reactors CO5 Develop mathematical models for conversion in non-ideal flow reactors TEXT BOOKS: 1) 1) H.S. Fogler,Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016.	6
CO4. Discuss the temperature effects and design non-isothermal reactors CO5 Develop mathematical models for conversion in non-ideal flow reactors TEXT BOOKS: Text BOOKS: 1) H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016.	6
TEXT BOOKS: 1) H.S. Fogler,Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016.	
1) H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall of India Ltd., 2016.	
REFERENCES:	
 J.M. Smith, Chemical Engineering Kinetics, McGraw Hill, 1981. Keith, J. Laidler, Chemical Reaction kinetics, Pearson Education Asia, 2004. G. F. Froment, K. B. Bischoff and J. De Wilde, Chemical Reactor Analysis and Desigr Wiley&Sons, 1979. M.E.Davis, R.J.Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill, 200 	
COURSE ARTICULATION MATRIX	
CO PO	PSO
<u>1 2 3 4 5 6 7 8 9 10 11 12</u>	1 2
CO1 3 3 3 3 3 3 3 1 1 1 1	3 3

CO3

CO4

CO5

CH22404	INCTRUMENTAL METHODS OF ANALYSIS	L	Т	Р	C
CH22404	INSTRUMENTAL METHODS OF ANALYSIS	3	0	0	3
COURSE OB	JECTIVES:				

To enable the students to acquire knowledge in the field of various instruments which are used in the analysis of products in various chemical industries.

UNIT I FUNDAMENTALS OF SPECTRAL ANALYSIS

Spectral Analysis: principle, electromagnetic radiation-regions, properties and interaction with matter, classification of instrumental methods based on physical properties; Colorimetric analysis: Beer-Lambert's Law, Instrumentation, Real Limitations, Apparent Chemical Deviations, Application, Nesslerimetry and Duboscq colorimetry, Estimation of inorganic ions such as Ni and Nitrite by Colorimetry; UV-Visible and IR spectroscopy: Instrumentation and application, Solvent effects, Various electronic transitions involved in organic molecules, Characterization, Chromophore concept, Effects of auxochromes and effects of conjugation on the absorption maxima, Modes of molecular vibrations, Mull and Pressed Pellet Technique; Woodward-Fischer rules for the calculation of absorption maxima.

UNIT II ELECTROMETRIC METHODS

Conductometric Titrations: Types, Limitations, Specific-Equivalent-Molecular Instrumentation, conductance, Advantages & Application; Potentiometric Titrations: Instrumentation, Types, Advantages & Application; Measurement of pH: Instrumentation, Calibration method, Applications; Ion selective electrodes and types: Electrode setup Applications; Amperometric titrations: Principle. instrumentation, Application.

UNIT III IMPORTANT SPECTROSCOPIC METHODS OF ANALYSIS

Atomic Absorption Spectroscopy (AAS): Principle, Instrumentation, absorbance-concentration relationship, Interference and Applications; Emission Spectroscopy: Flame Photometry and Inductively coupled Plasma Atomic Emission spectroscopy (ICP-AES)- Principle, Instrumentation, Advantages& Applications; Polarimetry: Principle, Instrumentation and Applications; Refractometry: Principle, Snell's law, Instrumentation, Types and Applications; Nephlometry and Turbidimetry: Principle, Instrumentation and Applications.

UNIT IV MAGNETIC RESONANCE SPECTROSCOPY & MASSSPECTROMETRY

Absorption spectrum-emission spectrum; Magnetic resonance spectroscopy: Theory of NMR, environmental effect on NMR spectra, Modes of Nuclear Spin, Chemical shift, NMR spectrometers, applications of 1H and 13C NMR, Application; Molecular Mass Spectrum: Ion sources, Mass spectrometer, applications of molecular mass spectrometry, Electron Paramagnetic Resonance (EPR) – g values, instrumentation and applications.

UNIT V X-RAY METHODS AND SURFACE MICROSCOPY

Mosley law, Continuous and Discontinuous spectra, X-ray instrumentation, X-ray detection and measurement, The Laue method of analysis, Bragg"s law, Diffraction of X-rays, Production and detection of X-rays – Debye Scherrer method. Study of surfaces: Scanning electron Microscopy, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) microanalyzer, Scanning probe microscopes, Scanning Tunnelling Microscope (STM) and Atomic Force Microscope (AFM).

TOTAL: 45 PERIODS

9

9

9

9

OUTC	OM	ES:												
Upon s	ucces	ssful co	ompletio	on of th	e course	e, the st	udents s	should t	e able t	0				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1				ge on tl absorpti				ots and v	various	terms in	n electro	omagneti	c	3
CO2	A	Arrive a	at the k		ge in th	ne vario		lytical i	nstrum	ents wh	ich are	based of	1	4
CO3	C)btain f	amiliar		arious j		es of lie	quid ma	terials	and the	instrun	nents use	t	3
CO4	. ¹	Investig	gate the	applica	tions of	spectro	oscopic	techniq	ues in C	Chemica	ıl Indus	try.		4
CO5	Analyze the modern techniques which are used in nanoscience.												3	
 B.H Pul Pul REFEI H.H Sev H.H Pul 	K.Sha blishi REN H.Wi venth Kaur, blishe	CES: Ilard, I. Edition "Instru ers,2012	Instrum se, 2012 I.Merri a, Pearse umental 2.	tt, J.A.I	Dean an cation, 2 ds of Cl	of Che d F.A.S 2002. nemical	ettle, "I	Analysis	ental M	ethods of	of Anal	ition, Go ysis", rakashan	el	
~ ~]	PO						P	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	1	3	2	1	1	1	1	1	2	2	2
CO2	3	1	3	2	3	-	-	1	1	1	-	2	1	1
CO3	2	2	3	1	3	2	-	-	1	-	-	1	1	1
CO4	2	1	1	1	1	1	1	-	1	-	1	2	$\frac{1}{2}$	1
CO5	3	3	1	1	3		2	1	1	1	1	1	2	2

	CHEMICAL ENGINEERING	L	Т	Р	C
CH224(8 THERMODYNAMICS II:THEORY AND PRACTICE	2	0	2	3
	OBJECTIVES: Determine thermodynamic properties of gaseous mix heat effects involved in industrial chemical processes	xtures, So	olution	3 and	also
UNIT I	SOLUTION THERMODYNAMICS			(6+6
	tal property relation, Chemical potential, Partial properties, The idea olution model, Excess properties.	ıl gas mi	xture 1	nodel	,
Practical -	Prediction of Heat of solution by solubility method.				
UNIT II	APPLICATIONS OF SOLUTION THERMODYNAMICS			(6+6
reacting sy	eateffects of mixing process. Criteria for equilibrium between phases in stems in terms of chemical potential and fugacity.	multi co	ompone	nt noi	n-
	Vapour liquid equilibrium studies of an Ideal Binary system			<u> </u>	
UNIT III	PHASE EQUILIBRIUM				6+6
systems w	n of phase rule - vapour-liquid equilibrium, phase diagrams for home ith a miscibility gap - effect of temperature and pressure on azeotro librium - ternary liquid-liquid equilibrium.	-	-		
Practical –	Prediction of azeotropic composition and VLE data by vanlaar model				
,	CORRELATION AND PREDICTION OF PHASE EQUILIBRIA				
UNIT IV					6+6
Activity co the correl	befficient-composition models - thermodynamic consistency of phase ation and prediction of phase equilibria in systems of engineering and liquid extraction processes.	equilibri		licatio	on of
Activity co the correla distillation	efficient-composition models - thermodynamic consistency of phase ation and prediction of phase equilibria in systems of engineering	equilibri		licatio	on of
Activity co the correla distillation	befficient-composition models - thermodynamic consistency of phase ation and prediction of phase equilibria in systems of engineering and liquid extraction processes.	equilibri		licatio cularl	on of
Activity co the correla distillation Practical – UNIT V Standard f	efficient-composition models - thermodynamic consistency of phase ation and prediction of phase equilibria in systems of engineering and liquid extraction processes. Validating Thermodynamic consistency test using othmer VLE still CHEMICAL REACTION EQUILIBRIA ree energy change and reaction equilibrium constant - evaluation of prediction of free energy data - calculation of equilibrium composition	equilibria g interes	t parti equili	licatic cularl	on of ly to 6+6
Activity co the correla distillation Practical – UNIT V Standard f constant – chemical r	efficient-composition models - thermodynamic consistency of phase ation and prediction of phase equilibria in systems of engineering and liquid extraction processes. Validating Thermodynamic consistency test using othmer VLE still CHEMICAL REACTION EQUILIBRIA ree energy change and reaction equilibrium constant - evaluation of prediction of free energy data - calculation of equilibrium composition	equilibria g interes	t parti equili	licatic cularl	on of ly to 6+6

AES:	
essful completion of the course, the students should be able to	
STATEMENT	RBT LEVEL
Identify the partial Molar property of solutions upon mixing.	3
Envisage the equilibrium between phases in multicomponent systems and Excess property of solutions.	4
Explore and generate the phase diagram data to find the effect of temperature and pressureon azeotropic conditions.	4
Apply knowledge on various models used to evaluate the equilibrium data to test thethermodynamic consistency.	4
Identify and calculate the equilibrium constant for various systems	4
	essful completion of the course, the students should be able to STATEMENT Identify the partial Molar property of solutions upon mixing. Envisage the equilibrium between phases in multicomponent systems and Excess propertyof solutions. Explore and generate the phase diagram data to find the effect of temperature and pressureon azeotropic conditions. Apply knowledge on various models used to evaluate the equilibrium data to test thethermodynamic consistency.

TEXT BOOKS:

M. Smith, H.C. Van Ness and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, Seventh edition, McGraw-Hill International Edition, 2005.

REFERENCES:

- 1. K. V. Narayanan, A Textbook of Chemical Engineering Thermodynamics, Prentice Hall of India, 2001
- 2. B. G. Kyle, Chemical and Process thermodynamics. Second Edition., Prentice Hall of India,2000
- 3. M J Moran, H N Shapiro, D Boettner and M B Bailey, Principles of Engineering Thermodynamics, EighthEdition, Wiley

CO	РО												PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	3	3	1	2	3	2	2	2	1	3	3	
CO2	3	3	3	3	3	1	2	2	2	2	1	1	3	3	
CO3	2	2	2	2	2	1	2	2	2	1	2	1	3	3	
CO4	3	3	3	3	3	2	2	3	2	1	2	1	3	3	
CO5	3	3	3	3	3	1	2	1	1	1	2	2	3	3	

		ENVIRONMENTAL SCIENCES AND	L	Т	Р	С
GE224	51	SUSTAINABILITY	3	0	0	3
COURSE	E OB	JECTIVES:				1
1. To study	the i	nature and facts about environment, energy flow in an ecosystem and bi	odivers	sity.		
2.To study	the v	arious types, causes of pollution, its control and solutions to environme	ental pro	oblems.		
3.To study	and u	understand the various types of renewable sources of energy and its app	licatior	ıs.		
4.To know	the i	mportance of sustainability management and practices				
5.To learn	the ir	nportance of zero waste concept and green engineering for environmen	tal man	agemer	nt.	
UNIT I	EN	VIRONMENT AND BIODIVERSITY				9
threats to	bioc	diversity– values of biodiversity, India as a mega-diversity nation – h liversity: fragmentation and habitat loss, poaching of wildlife, hu endemic species of India –conservation of biodiversity: In-situ and ex-	man-wi			•
UNIT II	EN	VIRONMENTAL POLLUTION				9
Definition	, cau	ses, effects and preventive measures of air, water and soil polluti	ons. M	larine a	und th	nermal
-		ses, effects and control measures. Light and noise pollution-effect on ces, effects and control measures. Disposal of radioactive wastes (N				
		cole of an individual in prevention of pollution. Solid, hazardous a			•	
-		ealth and safety management system (OHASMS). Environmental j	protecti	on, En	vironn	nental
protection	acts,	categorization of spices according to IUCN.			<u> </u>	
UNIT III	RE	NEWABLE SOURCES OF ENERGY				9
		es: Growing energy needs, Non renewable resources - types, uses.			•	
		New energy sources, Need of new sources - geo suitability of estab	-			
sources, d	iffere	ent types new energy sources. Applications of hydrogen energy, ocea	n energ	gy resou	arces,	I ida

energy conversion. Concept, origin and power plants of geothermal energy. Role of an individual in conservation of energy.

9

UNIT IV SUSTAINABILITY AND MANAGEMENT

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols, Sustainable Development Goals-targets, indicators and intervention areas - Principles of green chemistry, Climate change-Global, Regional and local environmental issues and possible solutions-case studies - Role of nongovernmental organization, Concept of carbon credit, carbon footprint - Environmental management in industry-A case study,

UNIT V

V SUSTAINABILITY PRACTICES

Zero waste and R concept, circular economy, ISO 18000 series, material life cycle assessment, environmental impact assessment. Wasteland reclamation, Sustainable habitat: green buildings, green materials, energy efficiency and energy audit, sustainable transports. Energy cycles, carbon cycle, emission and sequestration, Green engineering: sustainable urbanization- socio-economical and technological change. Rain water harvesting, watershed management, environmental ethics: Issues and possible solutions.

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of the course, the students should be able to

CO'S	STATEMENT	RBT LEVEL
CO1.	Describe the importance of ecosystems, biodiversity and its conservation.	3
CO2.	Classify the different types of pollution, their effects and control measures.	4
CO3.	Implement the energy management and conservation.	4
CO4.	Describe the sustainable development, its importance and social issues like climate change	3
CO5	Recognize the importance of zero waste concept, circular economy, EIA and Green engineering for environmental management.	4

TEXT BOOKS:

1. AnubhaKaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 7th Edition, NewAge International Publishers, 2022.

2.Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.

3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004. 4.Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Pearson.2011.

5.Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design anddevelopment, CL Engineering, 2015.

6Environment Impact Assessment Guidelines, Notification of Government of India, 2006.

7 Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCES:

1.R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38

2.Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.3.Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.

4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 3rdedition, 2015.

5.Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient BlackswanPvt. Ltd. 3rd edition,2021.

COUR	COURSE ARTICULATION MATRIX														
СО]	PO						PS	50	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3					3	3								
CO2	3					3	3								
CO3	3	1	1			3	3								
CO4	3					3	3	3				1			
CO5	3					3	3	3				1			

			L	Т	Р	С
	CH22411	MOMENTUM TRANSFER LABORATORY	0	0	4	2
CC	OURSE OB	JECTIVES:				
•	Find pr	dents will learn experimentally to calibrate flow meters essure loss for fluid flows across various pipes beds ine Performance characteristics of different types of pumps.				
LIS	ST OF EXF	PERIMENTS:				
1)	Calibration	of Orifice and Venturimeter				
2)	Calibration	of Rotameter				
3)	Calibration	of V-Notch				
4)	Efflux time	e test rig – Open drum orifice and draining time				
5)	Flow throu	gh straight pipe				
6)	Flow throu	gh annular pipe				
7)	Flow throu	gh helical coil				
8)	Flow Throu	igh spiral coil				
9)	Losses in p	ipe fittings and valves				
10)	Performance	ce characteristics of Centrifugal pump				
11)	Performance	ce characteristics of Reciprocating pump				
12)	Performance	ce characteristics of Gear pump				
13)	Pressure dr	op studies in packed column				
14)	Hydrodyna	mics of fluidized bed				
15)	Drag coeff	cient of solid particle				
16)	Velocity M	leasurement using Pitot Tube				
· · ·	Reynolds E	1				
*M	linimum of	10 Experiments to be offered				
LIS	T OF EQU	PMENTS:				
1)	Orificemet	er				
2)	Venturime	ter				
3)	Rotameter					
4)	V-Notch					
5)	Efflux time	e test rig				
6)	Straight pip	De				

- 7) Annular pipe
- 8) Helical coil
- 9) Spiral coil
- 10) Fittings and valves
- 11) Centrifugal pump
- 12) Reciprocating pump
- 13) Gear pump
- 14) Packed column
- 15) Fluidized bed
- 16) Drag Column
- 17) Pitot Tube
- 18) Reynolds Experiment

TOTAL: 30 PERIODS

OUTCOMES:

Upon successful completion of the course, the	e students should be able to
---	------------------------------

CO'S	STATEMENT	RBT LEVEL
CO1.	Demonstrate practical understanding of various theoretical fluid flow properties	3
CO2.	Utilize basic flow and pressure measurement techniques for fluid flow	3
соз.	Demonstrate practical understanding of friction losses in internal flows	3
CO4.	Discuss the differences among measurement techniques, their relevance and applications	3
CO5	Compare the results of analytical models with the actual behavior of real fluid flows	3

СО		РО													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	1	1	2	1	1	3	1	2	1	3	3	
CO2	3	2	1	3	2	2	1	1	2	1	2	1	3	3	
CO3	2	3	2	2	1	2	1	1	2	2	2	1	3	3	
CO4	3	3	3	2	2	2	2	2	3	2	1	2	3	3	
CO5	2	3	2	3	2	2	2	1	1	1	2	1	3	3	

		L	Т	Р	С
CH22412	MECHANICAL OPERATIONS LABORATORY	0	0	4	2
	JECTIVES: To enable the students to develop a sound working kn ng equipment andseparation studies using different mechanical filte				
LIST OF EXI	PERIMENTS				
1.Screen Effec	tiveness				
2. Size Analys	is				
3. Jaw Crusher					
4. Ball mill					
5. Roll Crushe	r				
6. Drop weight	t crusher				
7. Leaf filter					
8. Plate and Fr	ame Filter press				
9. Batch Sedin	nentation Test				
10. Sub-Sieve	Analysis - Beaker decantation				
11. Cyclone se	parator				
12. Air Elutria	tor				
13. Air Permea	ıbility				
14. Mixing Inc	ex				
*Minimum 10	experiments shall be performed				
LIST OF EQU	UIPMENTS				
1. Gyratory Sie	eve shaker & Sieves				
2. Air Permeat	pility apparatus.				
3. Jaw Crusher					
4. Ball Mill					
5. Roll Crushe	r				
6. Drop Weigh	t Crusher				
7. Leaf filter					
8. Plate and Fr	ame Filter Press				
9. Cyclone Sep	parator				
10. Air Elut	riator				
		ТОТА	L: 60 I	PERIC	ODS

OUTO	COM	IES:														
Upon	succ	essful co	ompleti	on of th	e cours	e, the st	udents	should b	be able	to						
CO'S	5					ST	ATEM	ENT						RBT EVEL		
CO	Ι.	Apply	knowled	lge of v	arious 1	nechan	ical ope	rations						3		
CO2	2.	ininorganic process industry														
COS																
CO ₂	D4. Evaluate the working of equipment used for mechanical operations.															
CO	5	Develo	p the sk	till to op	perate fi	lter, scr	eens, se	ediment	ation ta	nk, crus	her, mi	11.		6		
													•			
COU	RSE	ARTIC	CULAT	ION M	ATRIX	K										
СО							PO						PS	50		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	2	2	3	2	1	2	1	1	1	1	1	3	3		
CO2	3	3	3	3	3	1	2	1	1	2	1	1	3	3		
CO3	3	3	2	2	2	1	1	1	1	1	2	2	3	3		
CO4	2	2	3	2	1	1	1	1	1	3	2	2	2	2		
CO5	3	3	3	3	2	1	1	1	1	3	2	2	2	2		

SEMESTER V

		L	Т	Р	C
CH2250	01 MASS TRANSFER II	2	1	0	3
COURSE	OBJECTIVES:	1			<u>. </u>
То	provide the basic principles on thermodynamics and mass transfer				
UNIT I	ABSORPTION				9
Gas Absor	ption and Stripping – Equilibrium; material balance; limiting gas-liquid ra	tio; tray	tower	absor	ber -
calculation	of number of theoretical stages, tray efficiency, tower diameter; determination	of heig	ht of pa	cking ı	using
HTU and N	TU calculations				
UNIT II	DISTILLATION				9
Vapour liq	uid equilibria - Raoult's law, vapor-liquid equilibrium diagrams for ide	al and	non-ide	eal sys	stems,
enthalpy c	oncentration diagrams. Principle of distillation - flash distillation, diffe	rential	distilla	tion,	steam
distillation	, multistage continuous rectification, Number of ideal stages by Mc.Cal	be - Th	iele me	ethod,	Total
reflux, mit	nimum reflux ratio, optimum reflux ratio. Introduction to azeotropic a	nd extr	active	distill	ation-
Introductio	on to Multicomponent distillation.				
UNIT III	LIQUID-LIQUID EXTRACTION				9
Liquid - li	quid extraction - solvent characteristics-equilibrium stage wise contact of	calculat	ions fo	r batc	h and
continuous	s extractors- differential contact equipment-spray, packed and mechan	ically a	gitated	conta	actors
and their d	esign calculations-packed bed extraction with reflux. Pulsed extractors,	centrifu	ıgal ext	ractor	s.
UNIT IV	LEACHING				9
Leaching-	Theory, Mechanism, Types of leaching, Solid - Liquid equilibria- Int	troduct	on to	Batch	and
continuous	s extractors- Equipments and industrial applications.				
UNIT V	ADSORPTION AND OTHER SEPARATION PROCESS				9
Adsorption	n - Types of adsorption, nature of adsorbents, adsorption equilibria	, effec	t of pr	ressure	e and
temperatur	re on adsorption isotherms, Adsorption operations - stage wise operati	ons, st	eady st	ate m	oving
bed and un	nsteady state fixed bed adsorbers, break through curves. Solid membra	ines; co	oncept	of osn	nosis;
reverse osi	nosis; electro dialysis; ultrafiltration.				
		ТОТА	L: 45 I	PERIC	ODS

OUTCO	MES:												
Upon suc	cessful co	ompleti	on of th	e cours	e, the st	udents	should	be able	to				
CO'S					ST	ATEM	ENT						RBT EVEI
CO1.	Apply m	nass and	l energy	balanc	es to an	alyze a	bsorptio	on proce	esses.				4
CO2.	Apply d appropri		-	ciples a	and ana	alyze co	omplex	distilla	tion pr	oblems	to iden	tify	4
CO3.													
CO4.													
CO5To analyze various types of adsorption equipment and apply Membrane Separation Fundamentals.													4
6. C. J. G New D	eankopol elhi, 200		insport I	Processe	es in Cł	nemical	Operati	ions", F	ourth E	dition.,	Prentice	e Hall c	of Indi
REFERE	NCES:												
New Y . N. Ana	ulson and ork, 2002 ntharama a Pvt. Lto	2 an and 1	K.M.Me	eera She		•	-					-	
COURSI	Г А РТІС	ті а т		ATDIN	ζ								
		ULAI									ī		
co —						PO						P	50

CO						1							1.	0
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3			2	2	2	2	2		3	3	3
CO2	3	3	3			2	2	2	2	2		3	3	3
CO3	3	3	2			2	2	2	2	2		3	3	3
CO4	3	3	2			2	2	2	2	2		3	3	3
CO5	3	3	2			2	2	2	2	2		3	3	3

CH22502	CHEMICAL REACTION ENGINEERING – II	L	Т	Р	C
		2	1	0	3
COURSE O	DBJECTIVES:			•	
To enable the	e students to learn the heterogeneous noncatalytic and catalytic reaction	ns and r	reactors	•	
UNIT I	CATALYSIS				9
Catalysis: Na	ature of catalysis, methods of evaluation of catalysis, factors affectin	g the c	hoice of	of cata	alysts
promoters a	and inhibitors. Catalyst preparation. Adsorption isotherms, surface	e area	and p	ore-vo	olume
distribution, o	catalyst poison, mechanism and kinetics of catalyst, deactivation.				
UNIT II	HETEROGENEOUS REACTIONS				9
Rate equation	ns for heterogeneous reactions, rates of adsorption and desorption, su	irface r	eaction	analy	sis of
rate equation	and rate controlling steps.				
UNIT III	GAS-SOLID CATALYTIC REACTIONS				9
	GAS-SOLID CATALYTIC REACTIONS ithin catalyst particle, effective thermal conductivity, mass and hea	it transf	fer with	nin ca	-
Diffusion wi					italys
Diffusion wi pellets, effect	ithin catalyst particle, effective thermal conductivity, mass and hea				italys
Diffusion wi pellets, effect factor, Thiele	ithin catalyst particle, effective thermal conductivity, mass and hea etiveness factor, internal and external transport processes, non-isotherr				italys
Diffusion wi pellets, effect factor, Thiele UNIT IV	ithin catalyst particle, effective thermal conductivity, mass and hea etiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors.	nal syst	ems, e	ffectiv	italyst veness 9
Diffusion wi pellets, effect factor, Thiele U NIT IV Models for et	ithin catalyst particle, effective thermal conductivity, mass and hea etiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors. GAS-SOLID NON-CATALYTIC REACTIONS	nal syst	ems, e	ffectiv	italyst veness 9
Diffusion wi pellets, effect factor, Thiele UNIT IV Models for ex time for com	ithin catalyst particle, effective thermal conductivity, mass and hea etiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors. GAS-SOLID NON-CATALYTIC REACTIONS explaining kinetics, volume and surface models, controlling resistances uplete conversion for single and mixed sizes, fluidized and static reactor	nal syst	ems, e	ffectiv	italyst veness 9
Diffusion wi pellets, effect factor, Thiele UNIT IV Models for ex time for comp UNIT V	ithin catalyst particle, effective thermal conductivity, mass and hea ithin catalyst particle, effective thermal conductivity, mass and hea ctiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors. GAS-SOLID NON-CATALYTIC REACTIONS explaining kinetics, volume and surface models, controlling resistances plete conversion for single and mixed sizes, fluidized and static reactor GAS-LIQUID REACTIONS	and rate	ems, e	olling	yeness 9 steps 9
Diffusion wi pellets, effect factor, Thiele UNIT IV Models for ex time for comp UNIT V Absorption c	ithin catalyst particle, effective thermal conductivity, mass and heat ithin catalyst particle, effective thermal conductivity, mass and heat ctiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors. GAS-SOLID NON-CATALYTIC REACTIONS explaining kinetics, volume and surface models, controlling resistances nplete conversion for single and mixed sizes, fluidized and static reactor GAS-LIQUID REACTIONS combined with chemical reactions; mass transfer coefficients and kinet	and rate	e contro	olling applie	yeness 9 steps 9 catior
Diffusion wi pellets, effect factor, Thiele UNIT IV Models for ex time for comp UNIT V Absorption c of film, pend	ithin catalyst particle, effective thermal conductivity, mass and hea etiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors. GAS-SOLID NON-CATALYTIC REACTIONS explaining kinetics, volume and surface models, controlling resistances uplete conversion for single and mixed sizes, fluidized and static reactor GAS-LIQUID REACTIONS combined with chemical reactions; mass transfer coefficients and kine- terration and surface renewal theories; Hatta number and enhancem	and rate	e contro e contro stants;	olling applic	9 steps 9 catior order
Diffusion wi pellets, effect factor, Thiele UNIT IV Models for ex time for comp UNIT V Absorption c of film, pene reaction, tow	ithin catalyst particle, effective thermal conductivity, mass and hea etiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors. GAS-SOLID NON-CATALYTIC REACTIONS explaining kinetics, volume and surface models, controlling resistances uplete conversion for single and mixed sizes, fluidized and static reactor GAS-LIQUID REACTIONS combined with chemical reactions; mass transfer coefficients and kine- terration and surface renewal theories; Hatta number and enhancem ver reactor design. Design of multiphase reactors: Fluidized bed reactor	and rate	e contro e contro stants;	olling applic	9 steps 9 catior order
Diffusion wi pellets, effect factor, Thiele UNIT IV Models for ex time for comp UNIT V Absorption c of film, pend	ithin catalyst particle, effective thermal conductivity, mass and hea etiveness factor, internal and external transport processes, non-isotherr e Modulus, fixed bed reactors. GAS-SOLID NON-CATALYTIC REACTIONS explaining kinetics, volume and surface models, controlling resistances uplete conversion for single and mixed sizes, fluidized and static reactor GAS-LIQUID REACTIONS combined with chemical reactions; mass transfer coefficients and kine- terration and surface renewal theories; Hatta number and enhancem ver reactor design. Design of multiphase reactors: Fluidized bed reactor	and rate and rate rs. etic cont nent fac or, trick	e contro e contro stants;	olling applic first reacto	9 steps 9 cation order or and

CO'S	STATEMENT	RBT LEVEL
со1. Е	Estimate the catalyst properties and characterization	3
CO2. E	Evaluate the rate equations for heterogeneous reactions.	4
соз. А	Analyze the role of transport effects in isothermal heterogeneous reactions	4
(()4	Determine an optimal model and predict the rate limiting step for heterogeneous eactions	4
	Employ a qualitative discussion of absorption involved reactions based on mass ransfer theories, identifying the nature of reactions.	4

- 1) Levenspiel, O., "Chemical Reaction Engineering", Third Edition, John Wiley, 2014.
- 2) Smith J.M., "Chemical Engineering Kinetics", 3rd Edition, McGraw-Hill, New York, 2014.

REFERENCES:

1) Fogler. H. S. "Elements of Chemical Reaction Engineering ", 4th Edition, Prentice Hall of India, 2010.

 Froment G.F & K.B. Bischoff, "Chemical Reaction Analysis and Design", 3rd Edition, John Wiley and Sons, 2011.

CO]	PO						PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2			3	3	2	2	3		3	3	3
CO2	3	3	3			3	3	2	2	3		3	3	3
CO3	3	3	3			3	3	2	2	3		3	3	3
CO4	3	3	3			3	3	2	2	3		3	3	3
CO5	3	2	2			3	3	2	2	3		3	3	3

CLICC						C				
- CH22'	PROCESS INSTRUMENTATION DYNAMICS AND									
		CONTROL	3	0	0	3				
	rse wi	JECTIVES: Ill enable the students to compute the response of various control strnics.	ategies	for dif	ferent					
UNIT I	PR	INCIPLES OF MEASUREMENT				9				
characteri	stics c	measurement and instrumentation - Transducer function and types - of measuring devices – Types and principle of temperature transmitt smitter - Types and principle of level transmitter - Types and princi	er – Ty	pes and	d princ	ciple				
UNIT II	TR	ANSIENT RESPONSE OF OPEN LOOP SYSTEM				9				
system-	Standa	o process control – Review of Laplace transforms principles – Trans ard input functions – Transient response and characteristic of first an of nonlinear system								
UNIT II	I DE	EVELOPMENT OF FEEDBACK CONTROL SYSTEM				9				
transfer fu	unctio	ol, Elements of control system and development of block diagram - n – Principles of pneumatic and electronic controller – Pneumatic consportation lag.								
UNIT IV	AN	ALYSIS OF CLOSED LOOP SYSTEM				9				
1						,				
		stem, Servo and regulator mechanism problems – reduction of feedbac sed loop system; Stability analysis: Routh test and Root locus diagram		ol loop	– dyna	-				
	of clo	•	•		-	-				
response UNIT V Introduct criterion	of close FR tion to – Pha	sed loop system; Stability analysis: Routh test and Root locus diagram	FROL gram – Nichols	SYSTI - Bode s	E M stabilit	umic 9 ty Coon				
response UNIT V Introduct criterion	of close FR tion to – Pha	sed loop system; Stability analysis: Routh test and Root locus diagram EQUENCY RESPONSE ANALYSIS AND ADVANCED CONT o frequency response – frequency response characteristic – Bode dia use margin and gain margin – Tuning of controller setting : Ziegler-I nced control systems : principle and applications of cascade, ratio an	F ROL gram – Nichols nd feed	SYSTI - Bode s	EM stabilit ohen-(rd cont	umic 9 ty Coon trol				
response UNIT V Introduct criterion method; OUTCO	of closent	sed loop system; Stability analysis: Routh test and Root locus diagram EQUENCY RESPONSE ANALYSIS AND ADVANCED CONT o frequency response – frequency response characteristic – Bode dia use margin and gain margin – Tuning of controller setting : Ziegler-I nced control systems : principle and applications of cascade, ratio an T	F ROL gram – Nichols nd feed	SYSTI - Bode s s and Co forwar	EM stabilit ohen-(rd cont	umic 9 ty Coon trol				
response UNIT V Introduct criterion method; OUTCO	of closent	sed loop system; Stability analysis: Routh test and Root locus diagram EQUENCY RESPONSE ANALYSIS AND ADVANCED CONT o frequency response – frequency response characteristic – Bode dia use margin and gain margin – Tuning of controller setting : Ziegler-I nced control systems : principle and applications of cascade, ratio an T	F ROL gram – Nichols nd feed	SYSTI - Bode s s and Co forwar	EM stabilit ohen-C d cont PERI	y ty Coon trol ODS				
response UNIT V Introduct criterion method; OUTCO	of closent	sed loop system; Stability analysis: Routh test and Root locus diagram EQUENCY RESPONSE ANALYSIS AND ADVANCED CONT o frequency response – frequency response characteristic – Bode dia use margin and gain margin – Tuning of controller setting : Ziegler-I nced control systems : principle and applications of cascade, ratio an T	F ROL gram – Nichols nd feed	SYSTI - Bode s s and Co forwar	EM stability ohen-C d cont PERI	umic 9 ty Coon trol				
response UNIT V Introduct criterion method; OUTCO Upon suc	of closent	sed loop system; Stability analysis: Routh test and Root locus diagram EQUENCY RESPONSE ANALYSIS AND ADVANCED CONT o frequency response – frequency response characteristic – Bode dia use margin and gain margin – Tuning of controller setting : Ziegler-I nced control systems : principle and applications of cascade, ratio an T : ful completion of the course, the students should be able to	gram – Nichols nd feed OTAL	SYSTI - Bode s and Co forwar :: 45	EM stability ohen-C d cont PERI R LE	mic 9 ty Coon trol ODS BT				
response UNIT V Introduct criterion method; OUTCO Upon suc CO'S CO1.	of close FR tion to – Pha Advan	sed loop system; Stability analysis: Routh test and Root locus diagram EQUENCY RESPONSE ANALYSIS AND ADVANCED CONT o frequency response – frequency response characteristic – Bode dia use margin and gain margin – Tuning of controller setting : Ziegler-I nced control systems : principle and applications of cascade, ratio an T : ul completion of the course, the students should be able to STATEMENT	gram – Nichols nd feed OTAL	SYSTI - Bode s and Co forwar :: 45	EM stabilit ohen-C d cont PERI R LE	y Coon trol ODS BT VEL				
response UNIT V Introduct criterion method; OUTCO Upon suc CO'S CO1.	of close FR tion to – Pha Advan MES ccessfi Ident Illusti Appli	sed loop system; Stability analysis: Routh test and Root locus diagram EQUENCY RESPONSE ANALYSIS AND ADVANCED CONT of frequency response – frequency response characteristic – Bode dia use margin and gain margin – Tuning of controller setting : Ziegler-I nced control systems : principle and applications of cascade, ratio an T : : : : : : : : : : : : : : : : : :	gram – Nichols nd feed OTAL	SYSTI - Bode s and Co forwar : 45	EM stability ohen-C d cont PERI R LE	y ty Coon trol ODS BT VEL 3				

CO5	Assess	the	frequency	response	of	closed	loop	systems	and	describe	the	advanced	1
COS	control	strat	egies										4

TEXT BOOKS:

1. Singh S K, Industrial Instrumentation and control, 3rd Ed., Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2013.

2. Donald R. Coughanowr, "Process Systems Analysis and Control", 3^{ed} Ed, McGraw Hill, New York, 2013.

REFERENCES:

1.Stephanopoulos S.G, "Chemical Process Control: An Introduction to Theory and Practice", 1st Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2012

COUI	RSE A	RTIC	CULAT	ION M	IATRIX	X								
CO]	PO						PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3	3	3	3	2	2	3	2	3	3	2
CO2	3	3	2	2	3	3	3	2	2	2	3	3	3	2
CO3	3	3	2	3	2	3	2	2	2	2	3	3	3	2
CO4	3	3	2	3	3	3	3	2	2	2	3	3	3	2
CO5	3	3	2	3	3	3	3	2	2	2	2	3	3	2

CH225		L	Т	Р	C
C11225	04 CHEMICAL PROCESS INDUSTRIES	3	0	0	3
COURSE	OBJECTIVES:	1	1	1	
-	nowledge on various aspects of production engineering and understand then in a chemical factory	e pract	ical me	ethods	of
UNIT I	Alkalies and Acids				9
	Chlor - alkali Industries: Manufacture of Soda ash, Manufacture of caust alt. Acids: Mining of sulphur and manufacture of sulphuric acid. Manufa				
UNIT II	Fertilisers				9
Phosphate	ndustries: ammonia, nitric acid, urea. Phosphorus industries: Phosphorus 2. Potassium Industries: Potassium chloride, Potassium Sulphate. Bio-fert 3. Applications of fertilisers		-		Supe
UNIT III	Gases, Cement, Glasses, and Paints				9
Carbon di	s: Producer gas, Water gas, Coke oven gas, Natural gas, Liquefied natura oxide, hydrogen, nitrogen and oxygen. Cement: Types and manufacture of the second s	-		-	es:
Glasses: 7	Types and Manufacture of glasses. Manufacture of paints and Pigment.				
Glasses: T	ypes and Manufacture of glasses. Manufacture of paints and Pigment. Natural Products processing				9
UNIT IV Pulp: Met materials, and Fats: 1		e Sugai	r indust	ry. Oi	ls
UNIT IV Pulp: Met materials, and Fats: 1	Natural Products processing hods of production, Comparison of pulping processes. Paper: Types of pa methods of production. Sugar: Methods of production, by products of the Nature of Vegetable oils and animal fats, hydrogenation of oils and fatty	e Sugai	r indust	ry. Oi	ls
UNIT IV Pulp: Met materials, and Fats: 1 soap and c UNIT V Petroleum Reforming	Natural Products processing hods of production, Comparison of pulping processes. Paper: Types of parenthods of production. Sugar: Methods of production, by products of the Nature of Vegetable oils and animal fats, hydrogenation of oils and fatty detergents. Manufacture of rubbers and allied products. Petroleum , Petrochemical and Explosives :: Petroleum Refinery products. Petroleum Conversion processes: Pyrolys g. Petrochemicals: Methanol, acetylene and ethylene. Chemicals from Arrind Xylene. Explosives: Types of explosives, Industrial explosives, Manufacture	e Sugar acids. I sis, Cra omatic	cking as: Benz	ry. Oi ing of und zene,	ls 9

OUTC	OM	ES:												
Upon s	ucce	ssful co	ompletio	on of th	e course	e, the st	udents s	should t	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1	. 0	utline a	about th	e manu	facture	of vario	ous alka	lies and	l acids.					2
CO2	. U	ndersta	and the	product	ion of f	ertiliser	s and it	s applic	ations.					2
CO3	. Ir	fer the	manufa	acture o	f Indust	trial gas	ses, Cen	nent, Gl	asses, a	nd Pain	its.			2
CO4		npart tl rocesse		vledge	on pulp	, paper	, sugar,	oils, fa	its, soaj	p and ru	ubber n	nanufactur	2	2
COS	; [1]	lustrate	the ma	nufactu	ring pro	ocess in	petroch	nemicals	s and ex	plosive	s			2
2) Dryo Seco REFE 1) "Ken	den's nd ed REN t and	"Outlin lition, A CES:	nes of C Affiliate	Chemica d East- lbook o	Il Techr West pr	nology" ress, 199	93 emistry	l and Re	evised b	y Gopa	la Rao.	8. M. and M , 11 th Edi [*] Ltd 2013		
COUR	RSE A	ARTIC	ULAT	ION M	ATRIX	X								
00]	PO						PS	0
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	0	0	3	3	3	2	3	3	3	3	3
CO2	2	2	2	0	0	3	3	3	2	3	3	3	3	3
CO3	2	2	2	0	0	3	0	3	2	3	3	3	3	3
CO4	2	2	2	0	0	3	3	3	2	3	3	3	3	3
CO5	2	2	2	0	0	3	3	3	2	3	3	3	3	3

		L	Т	Р	C
CH225	05 PROCESS EQUIPMENT DESIGN I	2	1	0	3
 To imp To acce To und To appl 	C OBJECTIVES: art the basic knowledge on the unfired pressure vessels at process industriess the high-pressure vessel design from operational point of view. erstand the importance of storage vessel design and construction at onsite ly basic textbooks methods to preliminary design valves and common indindustry	•	equipn	nent at	t Oil
UNIT I	DESIGN & ANALYSIS OF PRESSURE VESSEL				12
static and c	Standards: Unfired Pressure Vessel. Design- L/D ratio, head and thickned dynamic loads, elastic instability. Combined stress and theories of failure ure, creep, temperature effects, radiation effect, effect on fabrication methematical stress.	es and			
UNIT II	HIGH PRESSURE VESSEL AND FIXTURES & SUPPO	RTS			9
	Standards: Jacketed Vessel, Capacity, Nozzle and closures. ypes, Flange face and Standard flanges – design. Vessel support: Saddle ports.	suppo	orts, ski	rt sup	ports,
UNIT III	STORAGE VESSELS				9
Codes &	Standards, Storage of fluids: storage of non-volatile fluids, storage of v	volatile	fl	store	nge of
gases, des UNIT IV	ign of rectangular tanks, design of tanks, nozzles and mountings, large car VALVES, & FLUID MOVERS				
gases, des UNIT IV Valves: Typ Pumps: Typ Compressor	ign of rectangular tanks, design of tanks, nozzles and mountings, large car VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calculations.	pacity s, and p	storage	alcula	<u>s</u> 9
gases, des UNIT IV Valves: Typ Pumps: Typ Compresson moving equ UNIT V	ign of rectangular tanks, design of tanks, nozzles and mountings, large ca VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN	pacity s, and p	storage	alcula	<u>s</u> 9
gases, des UNIT IV Valves: Typ Pumps: Typ Compresson moving equ UNIT V	ign of rectangular tanks, design of tanks, nozzles and mountings, large car VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener	pacity s, and p ations.	storage bower c Drivers	alcula for	9 tion. 6
gases, des UNIT IV Valves: Typ Pumps: Typ Compresson moving equ UNIT V Design of I	ign of rectangular tanks, design of tanks, nozzles and mountings, large car VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener	pacity s, and p ations.	storage	alcula for	9 tion. 6
gases, des UNIT IV Valves: Typ Pumps: Typ Compresson moving equ UNIT V Design of I OUTCOM	ign of rectangular tanks, design of tanks, nozzles and mountings, large car VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener	pacity s, and p ations.	storage bower c Drivers	alcula for	9 tion. 6
gases, des UNIT IV Valves: Typ Pumps: Typ Compressor moving equ UNIT V Design of I OUTCOM	ign of rectangular tanks, design of tanks, nozzles and mountings, large ca VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener	pacity s, and p ations.	storage bower c Drivers	alcula for	s 9 tion. 6 ODS BT
gases, des UNIT IV Valves: Typ Pumps: Typ Compresson moving equ UNIT V Design of I OUTCOM Upon succ	ign of rectangular tanks, design of tanks, nozzles and mountings, large ca VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener	pacity s, and p ations.	storage bower c Drivers	e tanks alcula s for PERIC	s 9 tion. 6 ODS BT VEL
gases, des UNIT IV Valves: Typ Pumps: Typ Compressor moving equ UNIT V Design of I OUTCOM Upon succ CO'S CO1.	ign of rectangular tanks, design of tanks, nozzles and mountings, large ca VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener	pacity s, and p ations.	storage bower c Drivers	e tanks alcula alcula for PERIC	s 9 tion. 6 ODS BT VEL
gases, des UNIT IV Valves: Typ Pumps: Typ Compressor moving equ UNIT V Design of I OUTCOM Upon succ CO'S CO1.	ign of rectangular tanks, design of tanks, nozzles and mountings, large ca VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener MES: cessful completion of the course, the students should be able to STATEMENT Analyse the integrity of pressure vessels and access its failure.	pacity s, and p ations.	storage bower c Drivers	e tanks alcula alcula for PERIC	s 9 tion. 6 ODS BT VEL 4
gases, des UNIT IV Valves: Typ Pumps: Typ Compresson moving equ UNIT V Design of I OUTCON Upon succ CO'S CO1. CO2.	ign of rectangular tanks, design of tanks, nozzles and mountings, large ca VALVES, & FLUID MOVERS be and selection. Safety valves: Types and selection. be, selection, performance curves, pump efficiency, NPSH, Head calculations rs: Type, selection, performance curves, Head calculations, and power calcul- tipments COMMON INDUSTRIAL EQUIPMENT DESIGN Knockout Drum, Cyclone Separator, Thickener MES: cessful completion of the course, the students should be able to STATEMENT Analyse the integrity of pressure vessels and access its failure. Exemplify the analysis of high pressure operated pressure vessels	pacity s, and p ations.	storage	e tanks alcula alcula for PERIC	s 9 tion. 6 ODS BT VEL 4 3

TEXT BOOKS:

- 1. J.M.Coulson, J.Richardson, "Chemical Engineering", Vol. 6, Asian Books Printers, Fourth edition 2005.
- M.V. Joshi, V.V. Mahajan, "Design of Process Equipment Design", Third edition, McMillan India, 1996.

REFERENCES:

- 1. Indian Standard Specifications IS-803, 1962; IS-4072, 1967; IS-2825, Indian Standards Institution, New Delhi. 1969
- 2. R.H.Perry, "Chemical Engineers Handbook", Seventh Edition, McGraw Hill, 2004.
- 3. Suresh C.Maidargi ,"Chemical Process Equipment Design & Drawing, Volume 1, PHI Learning Ltd., 2015.
- 4. Brownell and Young, "Process Vessel Design", Wiley Eastern, 2009.
- 5. Ray Sinnott, Gavin Towler, Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2007.

со]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	1	1	3	2	2	3	3	2	3	3	3
CO2	3	3	2	1	1	3	2	2	3	3	2	3	3	3
CO3	3	3	2	1	1	3	2	2	3	3	2	3	3	3
CO4	3	3	2	1	1	3	2	2	3	3	2	3	3	3
CO5	3	3	2	1	1	3	2	2	3	3	2	3	3	3

		L	Т	Р	C
CH22511	MASS TRANSFER LABORATORY	0	0	4	2
	ify the applications of mass transfer to different types of chen	nical engineer	ing uni	t	
operatio	ns.				
LIST OF EXPH	CRIMENTS:				
1. Simple D	Distillation				
2. Steam D	istillation				
3. Tray Dry	er				
	iquid Extraction				
5. Diffusivi	ty Measurement (Liquid-Air)				
	Column Distillation				
7. Cooling	Tower				
	ty Measurement (Solid-Air)				
9. Leaching					
-	iquid Equilibrium				
11. Rotary					
-	uid Absorption				
	Evaporation				
14. Batch C	-				
*Minimum of 1	0 Experiments to be offered				
LIST OF EQU	JPMENTS:				
1. Simple distil	lation setup				
2. Steam distill	ation setup				
3. Tray dryer					
4. Liquid-liquid					
5. Diffusivity A					
5. Packed colu					
7. Cooling tow					
	id equilibrium Setup				
9. Rotary dryer					
10. Absorption c					
11. Batch Crysta	inizer Setup				
			T . ZO T		

TOTAL: 60 PERIODS

OUTO	CON	/IES:														
Upon s	succ	essful co	ompleti	on of th	e course	e, the st	udents s	should l	be able t	0						
CO'S	5					ST	ATEM	ENT					Ι	RBT LEVEL		
COI	l.	Demons	trate the	eoretica	l concep	ots for c	lata ana	lysis an	d interp	retation	l			4		
CO2	2.	Demonstrate theoretical concepts for data analysis and interpretation Exemplify the experimental techniques related to mass transfer operations Perceive the various mass transfer operations with process equipments														
CO3		Perceive distillatio								process	equip	ments	like	4		
CO4	1.	To form	ulate th	e idea o	f the dif	fferent t	types of	interfa	ce opera	ations.				4		
CO	5	Develop	experii	mental s	skills an	d confi	dence ir	n handli	ng the e	equipme	ents.			4		
COUF	RSE	ARTIC	CULAT	ION M	ATRIX											
СО	1	2	2	4	=		PO 7	Q	0	10	11	10		PSO		
001	1	2	3	4	5	6	7	8	9	10	11	12	1 3	2		
CO1	3	2			3	3	3	2	2	3	2		_	_		
CO2	3	2		3	1	3	2	2	2	3	1	2	3	3		
CO3	2	2		3	2	3		2	1	2	1		3	3		
CO4	1	1	2	1	1	3	2	2	1	1	1	2	3	3		
CO5	1	2	2			3	2	2	3	3			3	3		

GU22512		L	Т	Р	C
CH22512	HEAT TRANSFER LABORATORY	0	0	4	2
OURSE OB	JECTIVES:				
To enal equipm	ble the students to develop a sound working knowledge on differents.	erent types o	of heat t	ransfe	r
ST OF EXP	ERIMENTS:				
1) Transien	t heat conduction with constant temperature				
2) Transien	t heat conduction with constant heat flux				
3) Determin	nation of heat transfer coefficient in natural convection				
4) Determi	nation of heat transfer coefficient in forced convection				
5) Determin	nation of Stefan Boltzmann constant.				
6) Determin	nation of emissivity of a surface.				
7) Shell and	d tube heat exchanger performance				
8) Efficient	cy of double pipe heat exchanger				
9) Performa	ance of helical coil heat exchanger				
10) Fin effic	iency on bare and finned exchangers				
11) Performation	ance of open pan evaporation				
12) Econom	y of single effect evaporator				
13) Perform	ance of Vertical and Horizontal condenser operations				
14) Heat trai	nsfer through packed bed				
15) Heat Tra	unsfer studies in Jacketed vessel				
Minimum of	10 Experiments to be offered				
LIST OF EQU	UPMENTS:				
1) Conduct	ion with Constant Heat Flux apparatus				
2) Conduct	ion with Constant Temperature setup				
3) Natural	convection apparatus				
4) Forced C	Convection apparatus				
5) Stefan B	oltzmann annaratus				

5) Stefan Boltzmann apparatus

- 6) Emissivity measurement Setup
- 7) Shell and Tube Heat exchanger
- 8) Double Pipe Heat Exchanger
- 9) Helical coil heat exchanger
- 10) Bare and finned exchangers
- 11) Open Pan Evaporator
- 12) Single effect evaporator
- 13) Vertical and Horizontal condenser
- 14) Packed bed column setup
- 15) Boilers
- 16) Jacketed vessel

TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, the students should be able to								
CO'S	STATEMENT	RBT LEVEL						
CO1.	Experiment with different modes of the heat transfer	3						
CO2.	Compare the various heat exchangers performances	4						
CO3.	Distinguish the theoretical models with real time experimentation	4						
CO4.	Examine the application of heat transfer in various processes.	4						
CO5	Analyze various methods for improvement of heat transfer efficiency.	4						

CO]	PO						PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3		2	2	1	3	3		3	3	3
CO2	3	3	3	3		2	2	1	3	3		3	3	3
CO3	3	3	3	3		2	2	1	3	3		3	3	3
CO4	3	3	3	3		2	2	1	3	3		3	3	3
CO5	3	3	3	3		2	2	1	3	3		3	3	3

SEMESTER VI

			L	Т	Р	C
CH2260	01	TRANSPORT PHENOMENA	2	1	0	3
COURSE	E OB.	JECTIVES:				
To enable	stude	ents to relate the concepts of heat, mass and momentum transfer.				
UNIT I	FUN	NDAMENTALS OF TRANSPORT PHENOMENA				9
Newtonia	n and	Transport Phenomena; Analogous nature of transfer process d Non-Newtonian fluids- Rheological models; Transport propertie are and temperature effects				
		ELL MOMENTUM BALANCES AND VELOCITY DIST MINAR FLOW:	RIBU	FION	IN	9
	ulus a	and boundary conditions; Momentum flux and velocity distribution and two adjacent immiscible fluids; creeping flow around a Sphere. of Motion		U		
UNIT III	SH	ELL ENERGY BALANCES AND EQUATIONS OF CHANGE				9
Heat Cond	ductio	on with Electrical, Nuclear and Viscous Heat Sources; Heat Cond	uction	- Com	oosite	
		bling Fin; Use of equations of change to solve tangential flow in an on and Transpiration cooling	annulu	s with	visco	18
UNIT IV		ELL MASS BALANCE AND CONCENTRATION DISTRIBUT	FIONS	IN		9
		gnant Gas Film, Heterogeneous and Homogeneous Chemical Reaction orption); Diffusion and Chemical Reaction inside a Porous Catalyst		lling L	iquid	
UNIT V	AN	ALOGIES OF TRANSPORT PROCESS				9
-		and applications of analogies between momentum, heat and mass Karman and Chilton-Colburn analogies.	transfei	r- Reyn	olds,	
		· · · · · · · · · · · · · · · · · · ·	ΓΟΤΑ	L: 45 I	PERI	ODS

OUTCO	MES:				
Upon successful completion of the course, the students should be able to					
CO'S	STATEMENT	RBT LEVEL			
CO1.	Comprehend the analogous nature of Transport processes; Gain insight about different rheological models andtransport properties of fluids	3			
CO2.	Apply the shell momentum balance approach to determine momentum flux and velocity distribution; understandequations of continuity and motion	3			
CO3.	Discover the change to solve heat transfer problems; Develop shell balance approach for conduction and convection	3			
CO4.	Develop solutions for homogeneous and heterogeneous chemical reactions by applying shell mass balance	3			
CO5	Interpret the analogy between the transport processes	4			

TEXT BOOKS:

1.Bird R.B., Stewart W.E. and Lightfoot E.N, "Transport Phenomena", 2nd Edition, John Wiley & Sons, USA, 2007

REFERENCES:

1.Brodkey Robert S. and Hershey Harry C., "Transport Phenomena - A united approach", 1st Edition, Brodkey Publications, United State of America, 2003.

2.Welty J.R., Wicks C. E. and Wilson R. E., "Fundamentals of Momentum, Heat and Mass Transfer", 5th Edition, John Wiley & Sons Inc, United State of America, 2007

COUR	RSE A	RTIC	ULAT	ION M	ATRIX									
CO]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3	2	3	3	3	3	2	3	2	3	3
CO2	3	3	2	3	3	2	2	3	3	2	2	3	3	3
CO3	3	3	2	3	3	2	3	3	3	2	2	3	3	3
CO4	3	3	2	3	3	2	3	2	2	2	3	3	3	3
CO5	3	3	3	3	3	2	2	3	2	2	2	3	3	3

	PROCESS MODELING AND SIMULATION:	LT		Р	С		
CH2260	THEORY AND PRACTICES	2	0	2	3		
COURSE	OBJECTIVES:			LI			
	and fundamental principles of process simulation, including the underly cal models used to simulate various engineering processes.	ving theo	ories ar	ld			
UNIT I	INTRODUCTION AND PARAMETER ESTIMATION				12		
alculation	n to process modeling and simulation, tools of simulation, approaches of in a plant simulation. Parameter estimation techniques in theoretical as nermodynamic property estimations using property estimation and prope	well as r	numerio	-	-		
UNIT II MODELS AND THEIR CLASSIFICATION							
UNIT II	MODELS AND THEIR CLASSIFICATION				12		
Models, ne	MODELS AND THEIR CLASSIFICATION eed of models and their classification, models based on transport phenor ion of models, population balance, stochastic, and empirical models, uni	-	-	s, alter	nate		
Models, ne	eed of models and their classification, models based on transport phenor	-	-	s, alter	nate		
Models, no classificati UNIT III	eed of models and their classification, models based on transport phenor ion of models, population balance, stochastic, and empirical models, uni MODELS OF HEAT TRANSFER EQUIPMENTS nt of detailed mathematical models of evaporators, use of Newton Ra	t model	s – Cas	s, alter	nate y. 12		
Models, no classificati UNIT III Developme evaporator	eed of models and their classification, models based on transport phenor ion of models, population balance, stochastic, and empirical models, uni MODELS OF HEAT TRANSFER EQUIPMENTS nt of detailed mathematical models of evaporators, use of Newton Ra	t model	s – Cas	s, alter	nate y. 12		
Models, no classificati UNIT III Developme evaporator	eed of models and their classification, models based on transport phenor ton of models, population balance, stochastic, and empirical models, uni MODELS OF HEAT TRANSFER EQUIPMENTS nt of detailed mathematical models of evaporators, use of Newton Ra problems.	t model	s – Cas	s, alter e stud	nate y. 12		
Models, ne classificati UNIT III Developme evaporator p Practice: Si UNIT IV Separation sothermal	eed of models and their classification, models based on transport phenor ion of models, population balance, stochastic, and empirical models, uni MODELS OF HEAT TRANSFER EQUIPMENTS nt of detailed mathematical models of evaporators, use of Newton Ra problems. mulation of mixer, splitter, heat exchanger and reactive distillation colum	t model phson n mn;	s – Cas nethod	s, alter se stud	nate y. 12 Ivin 12 12 unde		
Models, ne classificati UNIT III Developme evaporator p Practice: Si UNIT IV Separation sothermal equilibrium	eed of models and their classification, models based on transport phenor ton of models, population balance, stochastic, and empirical models, unit MODELS OF HEAT TRANSFER EQUIPMENTS nt of detailed mathematical models of evaporators, use of Newton Ra problems. mulation of mixer, splitter, heat exchanger and reactive distillation colum MODELS OF SEPARATION PROCESSES of multicomponents mixtures by use of a single equilibrium stage and adiabatic conditions. Tridiagonal formulation of component	t model phson n mn;	s – Cas nethod	s, alter se stud	nate y. 12 Ivin 12 12 unde		

Classification of fixed bed reactor models, one dimensional and two dimensional fixed bed reactor models, fluidized bed reactor models, bioreactor models.

Practice: Comparing the conversion efficiency of various reactors; Simulation of methane combustion reaction.

TOTAL: (L 30 + P 30) 60 PERIODS

Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Apply simulation tools to estimate the properties of compounds by Equation of state.	3
CO2.	Analyze different types of models and their classification.	4
CO3.	Ability to develop mathematical models describing heat transfer phenomena in equipment such as heat exchangers and evaporators.	4
CO4.	Ability to analyze separation process performance based on model simulations and experimental data, including sensitivity analysis, optimization, and comparison with theoretical predictions.	4
CO5	Ability to formulate mathematical models describing the behavior of reactors, including mass and energy balances, reaction kinetics.	4

- 1. Denn M. M., "Process Modeling", Longman, 1986.
- 2. Holland C. D., "Fundamentals and Modeling of Separation Processes", Prentice Hall., 1975.

REFERENCES:

- 1. Luyben W. L., "Process Modeling Simulation and Control for Chemical Engineers", 2nd Ed., McGraw Hill, 1990.
- 2. Najim K., "Process Modeling and Control in Chemical Engineering", CRC, 1990

со	РО												PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3	3	2	2	1	3	3	2	3	3	3
CO2	3	3	3	3	3	2	2	1	3	3	2	3	3	3
CO3	3	3	3	3	3	2	2	1	3	3	2	3	3	3
CO4	3	3	3	3	3	2	2	1	3	3	2	3	3	3
CO5	3	3	3	3	3	2	2	1	3	3	2	3	3	3

COU	RSE	OBJECTIVES:	
1.	Tot	build strong foundation of parameters and properties used for preliminary design.	
2.	To i	mpart the knowledge on thermal design of process equipment governed by heat transfer pri	nciples.
3.	To i	mpart the knowledge on preliminary design of process equipment governed by mass transfe	er
	prin	ciples.	
4.		emphasize the culture of vigilance that needs to be incorporated while operating the process pment at industries.	
UNIT	I	DESIGN BASIS, DESIGN DATA AND FLUID PROPERTIES	10
require networ	ed of ks, o	information on manufacturing processes, General sources of physical properties, A engineering data, Prediction of physical properties. Flow of fluids: Properties and units, ptimum pipe diameter, non-newtonian liquids. ping and Instrumentation Diagram: Codes & Symbols: IS 3232	-
UNIT	II	HEAT TRANSFER EQUIPMENT – NO PHASE CHANGE	12
and tul coeffic	be ex tient a	ngers: Basic design procedure and theory, Overall heat-transfer coefficient, Fouling factor xchangers: Mean temperature difference, general design considerations, Tube-side heat- and pressure drop (single phase), Shell-side heat-transfer and pressure drop (single phase). spen Plus Exchanger Design Rating exercise – I.	
UNIT	III	HEAT TRANSFER EQUIPMENT – INVOLVING PHASE CHANGE	12

PROCESS EQUIPMENT DESIGN II: THEORY

AND PRACTICES

Condensers: Heat-transfer fundamentals, Condensation outside horizontal tubes, Condensation inside horizontal tubes, Condensation of steam, Mean temperature difference, Pressure drop in condensers. Reboilers: Boiling heat-transfer fundamentals, Pool boiling, Convective boiling, Design of forced-circulation reboilers.

Practice: Aspen Plus Exchanger Design Rating exercise – II.

UNIT IV SEPARATION COLUMNS

CH22609

H

с P

> Continuous distillation: Basic principles, Design variables in distillation, Design methods for binary systems, Concepts of multicomponent distillation.

> Packed columns: Types of packing, Packed-bed height, Prediction of the height of a transfer unit (HTU), Column diameter (capacity), Column internals, Wetting rates.

> Solvent extraction: Type of extraction, Liquid-liquid extraction, Extraction equipment Extractor design, Extraction columns.

Practice: Aspen Plus Column Internals exercise

UNIT V SAFE OPERATION CONSIDERATIONS

Instrumentation and control objectives, Automatic-control schemes, Plant location and site selection, Site layout, Plant layout, Utilities, Environmental considerations. Practice: Exercises involving Aspen HYSYS.

TOTAL: (L 30 + P 30) 60 PERIODS

L

2

Т

0

Р

2

С

3

15

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Apply the knowledge on the importance of design information and data and analyze its sensibility.	3
CO2.	Evaluate the basics of process design of heat transfer equipments.	4
СОЗ.	Design the thermal parameters for Condenser and Reboiler operation.	4
CO4.	Illustrate the process design of separating columns for facilitating mass transfer	3
CO5	Evaluate the concepts of piping and instrumentation diagram and site selection for establishing safe operating conditions	4
TEXT BO	OOKS:	
2. James	oulson, J.Richardson, "Chemical Engineering", Vol. 6, Asian Books Printers, Fourth edit R. Couper, James R. Fair & W. Roy Penney, "Chemical Process Equipment - Selection ", Published by Butterworth-Heinmann, 2007.	

REFERENCES:

- 1. R.H.Perry, "Chemical Engineers Handbook", Seventh Edition, McGraw Hill, 2004.
- 2. S B Thakore, B I Bhatt, "Introduction to Process Engineering and Design", Tata McGraw Hill, 2007.
- 3. B.C.Bhattacharyya, "Introduction to Chemical Equipment Design", CBS Publishers & Distributors, New Delhi, 2003
- 4. User Manual, Aspen Plus, HYSYS and Aspen EDR.

со]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	1	1	3	2	3	3	2	1	2	3	3
CO2	3	3	2	1	1	3	2	3	3	2	1	2	3	3
CO3	3	3	2	1	1	3	2	3	3	2	1	2	3	3
CO4	3	3	2	1	1	3	2	3	3	2	1	2	3	3
CO5	3	3	2	1	1	3	3	3	3	2	1	2	3	3

		L	Т	Р	C
CH22611	CHEMICAL REACTION ENGINEERING LABORATORY	0	0	4	2
COURSE OF	JECTIVES:				
To des	ign reactor and identify type of reactor by suiting chemical kinetics	and usin	ng infor	matio	n
from the	nermodynamics, heat and mass transfer and economics.				
IST OF EXP	ERIMENTS:				
1. Kinetic	studies in a Batch reactor				
2. Determ	nation of rate constant of a saponification reaction in a Semi Batch	reactor			
3. Kinetic	studies in a Plug flow reactor				
4. Determ	nation of rate constant of a saponification reaction in a CSTR				
5. Kinetic	studies in a Packed bed reactor				
6. Determ	nation of rate constant of a saponification reaction in a CSTR follow	wed by a	a PFR		
7. Kinetic	studies in Sonochemical reactor				
8. RTD st	idies in a PFR				
9. RTD st	idies in a Packed bed reactor				
10. RTD st	idies in a CSTR				
	f temperature dependence of rate constant using CSTR.				
12. RTD St	udies of reactors in series				
13. Demons	stration of photochemical reaction				
14. Demons	stration of heterogeneous reaction (catalytic / noncatalytic)				
*Minimum of	10 Experiments to be offered				
LIST OF EQ	UPMENTS:				
1. Batch R	eactor				
2. Semi ba	tch reactor				
3. Plug flo	w reactor- 2 (KINETICS + RTD)				
4. CSTR -	2 (KINETICS + RTD)				
5. Combin	ed reactor system				
6. Packed	bed reactor - 2 (KINETICS + RTD)				
7. Sonoch	emical reactor				
8. Photoch	emical reactor				
0 0 .					

- 9. Series reactor systems (CSTR, PBR)
- 10. Heterogeneous reactor setup
- 11. Temperature dependent reactor system

TOTAL: 60 PERIODS

OUTCOMES:															
Upon	succ	cessful co	ompleti	on of th	e course	e, the st	udents	should b	be able	to					
CO'S	5					ST	ATEM	ENT					1	RBT LEVEL	
CO		Impleme Enginee		oretical	conce	pts in	releva	nt prac	ctical e	experim	ents of	f React	tion	3	
CO2	2.	Gain the	skill to	solve p	oractical	l proble	ms on c	chemica	l reaction	ons.				3	
CO3															
CO4	D4. Identify the concept of RTD in different reactors.														
CO	CO5 Design different types of reactors.														
COURSE ARTICULATION MATRIX														PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	3	3		2		3	3	2	3	3	3	
CO2	3	3	3	3	3				3	3	3	3	3	3	
CO3	2	2	3	3	3				3	3	3	3	3	3	
CO4	3	3	2	2	3				3	3	3	3	3	3	
CO5	3	3	3	3	3				3	3	3	3	3	3	

		L	Т	Р	С
CH22612	PROCESS CONTROL LABORATORY	0	0	4	2
COURSE OB					
To study open	loop, closed loop control system and its tuning experimentally				
LIST OF EXP	ERIMENTS				
1) Open lo	op study of first order system				
2) Open lo	op study of second order system				
3) Response	e of Non-Interacting level System				
4) Respons	e of Interacting level System				
5) Characte	eristics of different types of control valves				
6) Closed I	oop study on a level system				
7) Closed I	oop study on a flow system				
	oop study on a pressure system				
9) Closed I	oop study on a thermal system.				
10) Closed 1	oop response of ratio control system				
11) Tuning	of a level system				
12) Digital s	simulation of linear system				
	oop study on a CSTR				
14) Study of	distributed control system				
, .	experiments shall be performed				
LIST OF EQU					
1) First ord	ler system				
2) Second	order system				
3) Interacti	ng Tank system				
4) Non-Inte	eracting Tank system				
	t types of control valves for Characteristics study				
	oop level Trainer				
	oop Temperature Trainer				
	oop flow Trainer				
	oop Pressure Trainer				
	oop CSTR setup				
	ontrol system tuner				
-	simulation of linear system setup				
13) Distribu	ted control system				
		TOTA	L: 45 I	PERIC	DDS

OUTO	CON	AES:													
Upon	succ	essful c	ompleti	on of th	e cours	e, the st	udents	should l	be able	to					
CO'S	5					ST	ATEM	ENT						RBT EVEL	
CO	l.	Identify 1	the trans	ient resp	onse of	an instru	iment an	d contro	ol valve	for a for	cing inp	ut		3	
CO2	2.	Make us	se of the	e simula	tion to	study op	pen and	closed	loop res	sponses				3	
COS	CO3. Develop closed loop response of different processes for set point changes. 3 CO4. Experiment with advanced controllers to study closed loop response of processes 3														
CO4	CO4. Experiment with advanced controllers to study closed loop response of processes 3														
CO	CO5 Analyse controller settings for open loop systems 4														
													1		
COU	RSE	ARTIC	CULAT	ION M	ATRIX	K									
CO]	PO						P	SO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	3		3		2	2	3		3	3	2	
CO2	3	3	2	3		3		2	2	3		3	3	2	
CO3	3	3	2	3		3		2	2	3		3	3	2	
CO4	3	3	2	3		3		2	2	3		3	3	2	
CO5	3	3	2	3	1	3		2	2	2		3	3	2	

HS22511	INTERVIEW AND CAREER SKILLS LABORATORY	L	Т	Р	C
11322311	(COMMON TO ALL BRANCHES)	0	0	3	2
 Build c Better l Improv Develo 	BJECTIVES: onfidence and develop learners' language proficiency. learners' performance in competitive examinations. re learners' employability skills. p entrepreneurship skills.				
	e learners to the use of professional English. ISTENING AND SPEAKING SKILLS				12
Conversation S in presenting i team) – acader employers and – seminars and	Skills – types small talk, face to face and telephonic, formal and inform ideas and collating information during conference calls (one –to or mic and workplace situations – conversing with faculty/visiting fac employees – group discussion – etiquette and dos and don'ts, turn ta d projects using digital tools; mock interview – etiquette and dos a	ne and ulty / aking – nd dor	technie guests present n'ts – a	cal gr / offic ation udio-	- skills roup / cials / skills visual
UNIT II R	hancement of listening and speaking skills. IELTS and TOEFL (Lister EADING / SPEED READING, CRITICAL THINKING AND WI KILLS	_		xerci	ses) 12
accompanying of purpose – v reading of vol	lysis and critical thinking; employability skills – writing job apprésumé – types of business letters and email writing and etiquette; we writing articles for publication style and format – creating blogs or cluminous reports / documents and exacting necessary information emination. IELTS and TOEFL(Reading related exercises)	riting r compan	eports - y profi	– stat les –	ement speed
UNIT III E	NGLISH FOR PROFESSIONAL EXAMINATIONS				12
contextual mea	agraphs and reading comprehension – vocabulary building – gener aning – spelling – subject specific words – usage and user specific mar and verbal exercises)				
UNIT IV E	NTREPRENEURSHIP SKILLS				9
and team work sector / indust environment / institutional / i - Active Listen Skills - Defend	o entrepreneurship - fundamentals of entrepreneurial skills - develo k;- marketing strategies microcosmic and macrocosmic levels of pro- try appraisal and appreciation (review and understanding state of sector reports published) interaction and understanding the role of ndustrial agencies such as World Bank, ADB, UNDP, CII - Influenc ing and responding - Role-play - Strengthening – Negotiating/ Argu d a character/idea or attack it Networking Skills - engaging strate emselves, making small talk.	oduct s the na of mult ing in l mentat	ales an ation / ilateral Busines ive and	d sur econe finar s Me Persu	rvey – omy / ncial / etings uasive
		ΤΟΤΑ	L: 45 F	PERI	ODS

Upon successful completion of the course, the students should be able to								
STATEMENT	RBT LEVEL							
Develop approaches for mastering international English language tests such as IETLS and TOEFL, as well as national-level competitive exams.								
Make presentations and participate in Group Discussions.								
Face interviews with confidence and develop strategies for negotiating job offers.								
Build effective resumes, cover letters and professional emails to enhance job application success.								
e strategies for scaling and growing entrepreneurial ventures.								
F B aj	Develop approaches for mastering international English language tests such as ETLS and TOEFL, as well as national-level competitive exams. Make presentations and participate in Group Discussions. Face interviews with confidence and develop strategies for negotiating job offers. Build effective resumes, cover letters and professional emails to enhance job pplication success.							

REFERENCES:

1. Business English Certificate Materials, Cambridge University Press.

2. *Graded Examinations in Spoken English and Spoken English for Work* downloadable materials from Trinity College, London.

3. International English Language Testing System Practice Tests, Cambridge University Press.

4. Interactive Multimedia Programs on Managing Time and Stress.

5. Personality Development (CD ROM), Times Multimedia, Mumbai.

WEB SOURCES:

http://www.slideshare.net/rohitjsh/presentation on group discussion http://www.washington.edu/doit/TeamN/present_tips.html http://www.oxforddictionaries.com/words/writingjobapplications http://www.kent.ac.uk/careers/cv/coveringletters.html http://www.mindtools.com/pages/article/newCDV_34.html

COURSE ARTICULATION MATRIX														
00	PO CO										PS	50		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1										3				
CO2										3				
CO3										3				
CO4										3				
CO5										3				

SEMESTER VII

General overall design considerations, Anatomy of chemical engineering projects, Process design code Standard sources of information, Plant location, Plant layout, Plant operation and control, Importance laboratory development to pilot plant, scale up methods. Introduction to block, process flow, Log Information flow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, cole of pipeline, Equipment datasheets, Layout engineering (Plot Plan). VNIT II MATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN 9 Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation. 9 Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthed development of process flow diagram, mass and energy balance, P& ID diagram, use of process design of process design of process flow diagram, mass and energy balance, P& ID diagram, use of process design of process flow diagram, mass and energy balance, P& ID diagram, use of process design procesend process design of process design of proce	CH22701		т		D	C							
COURSE OBJECTIVES: To design a chemical process plant and also analyzing the cost300COURSE OBJECTIVES: To design a chemical process plant and also analyzing the cost9UNIT IFUNDAMENTALS OF ENGINEERING DESIGN AND ENGINEERING FLOW DIAGRAMS9General overall design considerations, Anatomy of chemical engineering projects, Process design cond Standard sources of information, Plant location, Plant layout, Plant operation and control, Importance laboratory development to pilot plant, scale up methods. Introduction to block, process flow, Log Information flow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, col code of pipeline, Equipment datasheets, Layout engineering (Plot Plan).9Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of flu Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations. in design and engineering ethics, Break-even analysis, Optimum production rates in p operation.9UNIT IIPLANT DESIGN, PROCESS DESIGN CASE STUDIES9Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process design colspan="2">OUNIT II													
To design a chemical process plant and also analyzing the cost FUNDAMENTALS OF ENGINEERING DESIGN AND ENGINEERING FLOW DIAGRAMS 9 General oreal design considerations, Anatomy of chemical engineering projects, Process design code Standard sources of information, Plant location, Plant layout, Plant operation and control, Importance laboratory development to pilot plant, scale up methods. Introduction to block, process flow, Log Information flow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, coll code of pipeline, Equipment datasheets, Layout engineering (Plot Plan). 9 UNIT II MATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN 9 Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation. 9 Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process design of proces													
UNIT IFUNDAMENTALS OF ENGINEERING DESIGN AND ENGINEERING FLOW DIAGRAMS9General overall design considerations, Anatomy of chemical engineering projects, Process design code Standard sources of information, Plant location, Plant layout, Plant operation and control, Importance laboratory development to pilot plant, scale up methods. Introduction to block, process flow, Log Information flow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, cole code of pipeline, Equipment datasheets, Layout engineering (Plot Plan).9UNIT IIMATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation.9Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process design9	COURSE O	DBJECTIVES:	1										
UNIT 1 pIAGRAMS 9 General overall design considerations, Anatomy of chemical engineering projects, Process design code Standard sources of information, Plant location, Plant layout, Plant operation and control, Importance laboratory development to pilot plant, scale up methods. Introduction to block, process flow, Log Information flow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, coll code of pipeline, Equipment datasheets, Layout engineering (Plot Plan). 9 UNIT II MATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN 9 Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation. 9 Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthedevelopment of process flow diagram, mass and energy balance, P& ID diagram, use of process design of process design concept set of process flow diagram, mass and energy balance, P& ID diagram, use of process design concept set of process flow diagram, mass and energy balance, P& ID diagram, use of process design concept set of process flow diagram, mass and energy balance, P& ID diagram, use of process design concept set of process flow diagram, mass and energy balance, P& ID diagram, use of process design concept set of process design concept set of process flow diagram, mass and energy balance, P& ID diagram, use of procest design concept set o	-												
Standard sources of information, Plant location, Plant layout, Plant operation and control, Importance laboratory development to pilot plant, scale up methods. Introduction to block, process flow, Log Information flow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, col- code of pipeline, Equipment datasheets, Layout engineering (Plot Plan).9UNIT IIMATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN9Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluid Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation.9UNIT IIIPLANT DESIGN, PROCESS DESIGN CASE STUDIES9Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process design9			NG FL	OW		9							
laboratorydevelopment to pilot plant, scale up methods. Introduction to block, process flow, Log Information flow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, coll code of pipeline, Equipment datasheets, Layout engineering (Plot Plan).9UNIT IIMATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN9Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation.9UNIT IIIPLANT DESIGN, PROCESS DESIGN CASE STUDIES9Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process design9					-								
Informationflow diagrams. Preparation of PID, trip and interlock systems, MOC and valve selection, coll code of pipeline, Equipment datasheets, Layout engineering (Plot Plan).UNIT IIMATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN9Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation.9UNIT IIIPLANT DESIGN, PROCESS DESIGN CASE STUDIES9Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process design9		• •		-									
code of pipeline, Equipment datasheets, Layout engineering (Plot Plan). UNIT II MATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN 9 Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in properation. 9 UNIT III PLANT DESIGN, PROCESS DESIGN CASE STUDIES 9 Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthed development of process flow diagram, mass and energy balance, P& ID diagram, use of process designed of the synthesis of process designed of the synthesis of process designed of the synthesis of process flow diagram, mass and energy balance, P& ID diagram, use of process designed of the synthesis of process flow diagram, mass and energy balance, P& ID diagram, use of process designed of the synthesis of process designed of the synthesis of process designed of the synthesis of process flow diagram, mass and energy balance, P& ID diagram, use of process designed of the synthesis of process flow diagram, mass and energy balance, P& ID diagram, use of process designed of the synthesis of process flow diagram, mass and energy balance, P& ID diagram, use of process designed of the synthesis of process flow diagram, mass and energy balance, P& ID diagram, use of process designed of the synthesis of process designed of the synthesis of process desynthesis of proces designed of the synthesis of the synt	•		· •			•							
UNIT IIMATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN9Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation.9UNIT IIIPLANT DESIGN, PROCESS DESIGN CASE STUDIES9Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process desidered9			nd valv	ve selec	ction,	color							
Basic concepts-Piping in fluid transports processes- Pumping of fluids-Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation. UNIT III PLANT DESIGN, PROCESS DESIGN CASE STUDIES 9 Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process destance 9	code of pipel	line, Equipment datasheets, Layout engineering (Plot Plan).											
Compression and expansion of fluids- Agitations and mixing of fluids-Flow measurement- Storage containment of fluids-Transport of solids-handling of solids. Economic aspects and optimum design, pract considerations in design and engineering ethics, Break-even analysis, Optimum production rates in p operation. UNIT III PLANT DESIGN, PROCESS DESIGN CASE STUDIES 9 Plant design case studies for any one of the chemical, petrochemical and polymer products: process synthe development of process flow diagram, mass and energy balance, P& ID diagram, use of process destinations 9	UNIT II	MATERIALS-HANDLING EQUIPMENT & OPTIMUM DESIGN				9							
development of process flow diagram, mass and energy balance, P& ID diagram, use of process des	consideration		-	in desig		rootioo							
development of process flow diagram, mass and energy balance, P& ID diagram, use of process des	-	PLANT DESIGN, PROCESS DESIGN CASE STUDIES	produc	tion ra									
	UNIT III P		-		tes in	n plan							
UNIT IVINTEREST, INVESTMENT COSTS & ESTIMATION AND PROFITABILITY9	UNIT III P Plant design development	case studies for any one of the chemical, petrochemical and polymer pr	roducts	: proces	tes in	n plan 9 nthesis							
Time Value of money; capital costs and depreciation, amortization, estimation of capital cost, manufacturi costs and working capital, capital budgeting and project feasibility. Estimation of project profitabili sensitivity analysis; investment alternatives; replacement policy; forecasting sales; inflation and its impact.	UNIT III P Plant design development software's su	case studies for any one of the chemical, petrochemical and polymer part of process flow diagram, mass and energy balance, P& ID diagram, uch as COMSOL, ASPEN HYSYS, Technical project report writing	roducts: m, use	process of pro	tes in	n plan 9 nthesis							
UNIT VECONOMIC BALANCE AND QUALITY CONTROL9	UNIT IIIPPlant design development software's suIUNIT IVITime Value costs and w	case studies for any one of the chemical, petrochemical and polymer part of process flow diagram, mass and energy balance, P& ID diagram uch as COMSOL, ASPEN HYSYS, Technical project report writing INTEREST, INVESTMENT COSTS & ESTIMATION AND PROFIN of money; capital costs and depreciation, amortization, estimation of carvorking capital, capital budgeting and project feasibility. Estimation	roducts m, use FABIL pital co	proces of pro ITY ost, man oject pr	tes in ss syr ocess nufac rofita	n plan 9 nthesis design 9 turing bility,							
Economic decisions in Chemical Plant - Economics of size - Essentials of economic balance –Economic bala approach, economic balance for insulation, evaporation, heat transfer.	UNIT IIIPPlant design development software's suIUNIT IVITime Value costs and w sensitivity an	case studies for any one of the chemical, petrochemical and polymer protects of process flow diagram, mass and energy balance, P& ID diagram uch as COMSOL, ASPEN HYSYS, Technical project report writing INTEREST, INVESTMENT COSTS & ESTIMATION AND PROFIN of money; capital costs and depreciation, amortization, estimation of call vorking capital, capital budgeting and project feasibility. Estimation nalysis; investment alternatives; replacement policy; forecasting sales; infl	roducts m, use FABIL pital co	proces of pro ITY ost, man oject pr	tes in ss syr ocess nufac rofita	n plan 9 nthesis design 9 turing bility,							

TOTAL: 45 PERIODS

OUT	COM	IES:												
Upon	succ	essful c	ompleti	on of th	e course	e, the st	udents	should l	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO		Identify design.	variou	s flow o	diagram	is, draw	vings, s	tandard	s and c	odes in	volved	in proc	ess	3
CO	,	0	0			gn of e	quipme	nt perta	aining t	o mater	rials ha	ndling a	and	3
CO		Classify				tware a	nd its a	pplicabi	ility in i	ndustrie	es.			3
CO	4	Apply replacen	-	ues for	findir	ng proj	ject pr	ofitabili	ity, inv	vestmen	t alter	native a	and	3
CO	-	Perform analysis				s, balar	nce shee	et and i	ncome	stateme	ent and	understa	and	3
ТЕХТ	TEXT BOOKS:													
 Peter Fou Fou Her 201 REFE Jam Cou B.M 	ers, N arth E ald K 0 E RE I nes R alson 1.Sur	Edition, I Knottz ar NCES: . Cooper , J.M., R	McGraw nd Heinz r, "Proce Cichards ii, S.P.S	/ Hill, 20 z Weihri ess Engi on J.E. a	008. ch, "Ess neering und Sinn	Econon ott R.K	of Mana nics", N	agement larcel D nical Er	t", Tata elkker I	McGrav nc, New ng", Vol	v Hill E v York, 2 VI, Pe	nical En ducation 2003 rgamon ring", N	Pvt. L	td., 1991.
COUI	RSE	ARTIC	CULAT	ION M	ATRIX	X								
СО					-		PO							SO
	1 3	2	3	4	5	6 2	7 2	8 2	9 3	10	11 3	12 3	1 3	2
CO1	3	3				2	2	2	3	3	3	3	3	3
CO2		_							3	3	3	3 3	3	3
CO3	3					2	2	2			_	3		_
CO4	3	3				2	2	2	3	3	3	-	3	3
CO5	3	3 3 2 2 2 3 3 3 3												3

CH22702	PROFESSIONAL ETHICS	L	Т	Р	С
		3	0	0	3
COUDEE OD					

COURSE OBJECTIVES:

To understand and create awareness on ethical and social responsibility of an engineer and to solve ethical dilemma while discharging duties in professional life.

UNIT I HUMAN VALUES

Morals, values and ethics, Integrity, Work ethics, Service learning, Civic virtue, Respect for other. Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation. Commitment, Empathy, Self-confidence, Character, Spirituality. Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Senses of engineering Ethics, Variety of moral issues, Types of inquiry, Moral dilemmas, Moral autonomy, Kohlberg's theory, Gilligan's theory. Consensus and controversy, Models of professional roles, Theories about right action, Self-interest, Customs and religion, Uses of ethical theories. Ethics in Process safety.

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, A balanced outlook on law.

UNIT IV ETHICS IN PROFESSIONAL SAFETY

Process safety, Assessment of safety and risk, Risk benefit analysis and reducing risk. Ethical Reasoning, Professional Practice in Engineering, Commitment to Safety, Central Professional Responsibilities of Engineers, Workplace rights and responsibilities, Responsibility of engineer for Environmental protection and Bioethics.

UNIT V RIGHTS AND RESPONSIBILITIES IN ETHICS

Respect for authority, Collective bargaining, Confidentiality, Conflicts of interest. Occupational crime, Professional rights, Employee rights, Rights and Responsibilities: Regarding Intellectual Property Rights (IPR), Engineers as Expert Witnesses and Advisors: Moral Leadership, Moral leadership, Code of conduct, Corporate social responsibility

TOTAL: 45 PERIODS

9

9

9

9

9

OUTC	OMI	ES:												
Upon s	ucces	ssful co	ompletio	on of th	e course	e, the st	udents s	should b	e able	O				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1.	. Id	lentify	the hun	nan valu	ies in th	e socie	ty.							3
CO2	. Se	elect er	ngineeri	ng ethio	es in the	respon	sibilitie	es and ri	ghts of	the soci	ety.			3
CO3	. B	uild en	gineerii	ng ethic	s as soc	ial exp	eriment	ation						3
CO4	A	pply o	verall k	nowled	ge of etl	hics in p	professi	onal saf	ety					3
CO5	Pl	an righ	ts and re	sponsib	ilities of	profess	sionals i	in the sc	ociety					3
TEXT	BOC)KS:												
			eering,	Mike V	V. Mart	in and l	Roland	Schinzi	nger, Ta	ata McC	Graw Hi	ll, New	Delhi,	2003.
										. S, Pre				
Dell	hi, 20)04.				0								
REFEI	REN	CES:												
1) Eng	ineer	ring Etl	nics,Cha	arles B.	Fledde	rmann,	Pearsor	n Prentic	ce Hall,	New Je	ersey, 20	004		
2) Bus	iness	Ethics	: Decis	ion Ma	king fo	r Perso	nal Inte	grity ar	nd Soci	al Resp	onsibili	ty, Lau	ra P. H	artman
and	Joe I	Desjard	lins, Mo	Graw	Hill edu	cation,	India P	vt. Ltd.	, New I	Delhi 20	13.			
COUD	SE A	DTIC			ATRIX	-								
	SL A		ULAI		ΑΙΚΙΛ		PO						D	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1		•		3	3	3	3	2		3	3	3
CO2	3	1				3	3	3	3	2	<u> </u>	3	3	3
CO3	3	1				3	3	3	3	2		3	3	3
CO4	3	1				3	3	3	3	2		3	3	3
CO5	3	1				3	3	3	3	2		3	3	3

SEMESTER VIII

												L	Т	P	C
CH	2281	1			P	ROJEC	T WOR	RK			0		0	20	10
COUI	Th	e object	CTIVES ive of the ee cours	ne proje	ct is to 1	make us	se of the	e knowl	edge ga	ined by t	the stu	dent	at var	ious s	tages
should Studer work,	stude 1 be nts, i outs nal as	ent is red based of n additi ide the ssessme	n the inf on to th departm	formatic e home	on availa problen	able in 1 n will b	the liter e permi	ature or tted to u	data ol underta	im by the otained in ke indust oportiona	n the la trial/ co	abora onsu	atory/in ltancy	ndustr proje	y. ct
			ompleti	on of th	e cours	e, the st	udents	should l	be able	to					
CO'S	5					ST	ATEM	ENT							BT VEL
CO	1.	Demons	strate a s	sound te	chnical	knowle	edge of	their se	lected p	project to	pic.			4	
CO	2.	Analyz	e literat	ure to le	arn the	technic	al adva	ncemen	ts in the	e selected	l topic			4	
CO.	3.	Underta	ake proł	olem ide	entificat	ion, for	mulatio	n and s	olution.					4	
CO	4.	Design	enginee	ering sol	lution to	o compl	ex prob	lems ut	ilizing	a system	atic ap	proa	ch	4	
CO	5	Estimat	te the co	st analy	vsis for	the opti	mized s	olution							4
COU	RSE	ARTIC	CULAT	ION M	ATRIX	K									
CO							PO							PSC)
CO	1	2	3	4	5	6	7	8	9	10	11	12	2	1	2
CO1	3		3	3	3	3	3	3	3	3	3	3		3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3		3	3
CO3	3		3	3	3	3	3	3	3	3	3	3		3	3
CO4	3		3	3	3	3	3	3	3	3	3	3		3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3		3	3

PROFESSIONAL ELECTIVES / VERTICALS

VERTICAL – II HYDROCARBON PROCESSING

	DRILLING TECHNOLOGY AND WELL	L	Т	Р	C
CH22021	ENGINEERING	3	0	0	3
COURSE	OBJECTIVES:				1
To learn and	d gain expertise in the key areas of design of drilling wells and its opera	tion ma	anagem	ent.	
UNIT I	DRILLING GEOLOGY, OIL AND GAS MIGRATION				9
•	ths and Stresses, Hydrostatic Pressure Forced by a Fluid. Rock Properties, Prir Rock and Secondary Migration. Reservoir Drives, Problems Related Fluids in t	•	0	Rese	rvoir
UNIT II	PLANNING AND DRILLING OF WELL				9
-	al, Gathering Data, Designing the Well, Drilling the Well and Testing the Wel Sizes and Drilling the Well. Selecting a suitable Drilling Rig, Classification of ents.		-		
UNIT III	DRILL BITS AND DRILLING FLUIDS				9
Roller Cone	Bits, Fixed Cutter Bits and Cone Bits. Optimizing Drilling Parameters- Gradin	ng the D	ull Bit a	and Bi	it
Selection. Fu	unctions of Drilling Fluid, Basic Mud Classification Designing the Drilling Flu	iid			
UNIT IV	DIRECTIONAL DRILLING, CASING, CEMENTING AND EVAI	LUATI	ON		9
Well, Design and Cement	he Well Path of a Deviated Well, Horizontal Wells and Multi Lateral Well. Im hing the Casing String, Role of the Cement Outside the Casing, Mud Removal, Casing and other Cement Jobs. Evaluation Techniques, Physical Sampling at S ogging and Production testing.	, Cemer	t Desig	n, Rur	nning
	MANAGING DRILLING OPERATIONS, SAFETY AND ENVIRO ISSUES	ONME	NTAL		9
Cost. Safety	volved in Drilling Operation, Decision Making at the Well site and in the Offic Meetings, New Comers on the Rig, Training and Certification, Permit to Work ments, Minimizing Spills and Environmental Impact Studies.	-	U		
		ΤΟΤΑ	L:45 P	ERI	ODS

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Understand the drilling geology and well migration	2
CO2.	Analyze the design and classification of drilling rigs	4
СО3.	Explicate the various drill bits and drilling fluids	4
CO4.	Discuss the directional drilling, casing and cementing procedures	4
CO5	Evaluate the environmental safety aspects in drilling operations	4

- 1. Devereux, S., "Drilling Technology", PennWell Publishing Company, 1999.
- 2. Rao V.K., Sahoo P. K, "A beginner's guide to Drilling Technology Oil and gas wells drilling and completion", Shashwat publication, 2020
- 3. Guan Z., "Theory and Technology of Drilling Engineering", Springer, 2021.

REFERENCES:

- 1. Oilfield Processing: Crude Oil (Oilfield Processing of Petroleum R. Solvay, Pennwell Books 1995.
- 2. Devereux, S., "Practical Well Planning and Drilling", PennWell Corporation, 1998.
- 3. Paulo Davim J., "Drilling Technology:Fundamentals and recent advances, De Gryter, 2018.

CO]	PO						PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	2				1	2	1	2	3	3
CO2	3	3	3	2	2				1	2	1	1	3	3
CO3	3	2	2	2	2	3			1	2	1	1	3	3
CO4	3	2	2	2	2				1	2	1	1	3	3
CO5	2	3	2	2	2	3	3	3	1	2	1	1	3	3

CH2202		L	Т	Р	C
	2 NATURAL GAS ENGINEERING	3	0	0	3
COURSE	OBJECTIVES:				
To learn t	e basic concepts and applications of Natural gas engineering				
UNIT I	NATURAL GAS TECHNOLOGY AND EARTH SCIENCE				9
engineerin process, Pe	technology and earth science: Branches of petroleum Industry. Sources of Info and its applications. Geology and earth sciences: Earth sciences-Historical ge troleum reservoirs, Origin of petroleum. Earth temperatures & pressure, Earth etroleum: Natural gas, LP gas, Condensate, & Crude oil.	ology, S	edimen	tation	ιs
UNIT II	PROPERTIES OF NATURAL GAS				9
	n, acid gas treating, gas dehydrations, compressors, process control deliverabili n, and natural gas liquefaction. GAS COMPRESSION	ity test, ş	gatherin	g and	9
	ession: Positive displacement and centrifugal compressors; fans. Calculation o le Flow in Pipes: Fundamental equations of flow: continuity, momentum, eleg	-	•	nents.	
UNIT IV	GOVERNING EQUATIONS FOR FLOW OF NATURAL GAS				9
of Gas flow	flow in pipes: the Weymouth equation. Static and flowing bottom-hole pressure in porous media: Steady state flow equations. Definition of pseudo-pressure f reservoirs: general equation for radial flow of gases in symmetrical homogeneous	function.	Gas flo		tals
UNIT V	GAS WELL DELIVERABILITY AND DRAW DOWN				9
reservoir s	sional forms of the equation; derivation of coefficients relation dimensionless lution: Pseudo-steady-state solution. Gas Well Deliverability Tests: Flow-after and AOF for the well. Isochronal tests. Draw down tests: need for data at two f	r-flow te	ests: pre		

OUTCO	MES:					
Upon suc	cessful completion of the course, the students should be able to					
CO'S						
CO1.	Understand the natural gas technology and exploration of natural gas	2				
CO2.	Analyze the properties of natural gas	4				
CO3.	Explain the gas compression and compressible flow of natural gas	3				
CO4.	Apply the governing equations for flow of natural gas.	3				
CO5	Analyze the testing strategies for gas well deliverability and draw down	4				

- 1. Katz D.L.et al., Natural Gas Engineering (Production & storage), McGraw-Hill, Singapore.
- 2. Lyons, W.C., "Standard Handbook of Petroleum and Natural Gas Engineering", Vol.2, Gulf Professional Publishing, Elsevier Inc., 2006.
- 3. Boyun Guo., "Natural gas engineering handbook", second edition, Gulf publishing company, 2005.

REFERENCES:

- 1. Katz, D. L. and Lee, R.L., "Natural Gas Engineering", McGraw Hill, 1990.
- 2. Dring, M.M., "The Natural Gas Industry A Review of World Resources and Industrial Applications", Butterworth, 1974.
- 3. Saied Mokhatab, William A. Poe, and James G. Speight, "Handbook of Natural Gas Transmission and Processing", Gulf Professional Publishing, Elsevier Inc., 2006.

CO]	PO						PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	2	2	3	2		1	2	2	3	3	3	
CO2	3	2	3	3	2				1	2	2	2	3	3	
CO3	3	3	2	2	2				1	2	2	2	3	3	
CO4	3	3	2	2	2				1	2	2	2	3	3	
CO5	3	3	3	3	3	3	2		1	2	2	2	3	3	

Fo develop the fundamentals of refining of petroleum crude oil and its fractionation in different useful petroleum roducts and to understand, design and analyze the various petroleum refinery processes including primary, secondary and supporting processes. 9 UNIT I INTRODUCTION TO HYDROCARBON PROCESSING 9 Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric listillation, Vacuum distillation of residue products 9 UNIT II THERMAL AND CATALYTIC CRACKING PROCESS 9 Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. 9 UNIT II CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9					
3 0 0 3 COURSE OBJECTIVES: Fo develop the fundamentals of refining of petroleum crude oil and its fractionation in different useful petroleum products and to understand, design and analyze the various petroleum refinery processes including primary, secondary and supporting processes. UNIT I INTRODUCTION TO HYDROCARBON PROCESSING 9 Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric listillation, Vacuum distillation of residue products 9 UNIT II THERMAL AND CATALYTIC CRACKING PROCESS 9 Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. 9 UNIT II CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Svaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9		L	Т	P	C
Fo develop the fundamentals of refining of petroleum crude oil and its fractionation in different useful petroleum roducts and to understand, design and analyze the various petroleum refinery processes including primary, secondary and supporting processes. 9 UNIT I INTRODUCTION TO HYDROCARBON PROCESSING 9 Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric listillation, Vacuum distillation of residue products 9 UNIT II THERMAL AND CATALYTIC CRACKING PROCESS 9 Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. 9 UNIT II CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, leawaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	CH22023 HYDROCARBON PROCESSING TECHNOLOGY	3	0	0	3
products and to understand, design and analyze the various petroleum refinery processes including primary, secondary and supporting processes. 9 UNIT I INTRODUCTION TO HYDROCARBON PROCESSING 9 Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric listillation, Vacuum distillation of residue products 9 UNIT II THERMAL AND CATALYTIC CRACKING PROCESS 9 Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. 9 UNIT II CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	COURSE OBJECTIVES:	I		<u> </u>	
products and to understand, design and analyze the various petroleum refinery processes including primary, secondary and supporting processes. 9 UNIT I INTRODUCTION TO HYDROCARBON PROCESSING 9 Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric listillation, Vacuum distillation of residue products 9 UNIT II THERMAL AND CATALYTIC CRACKING PROCESS 9 Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. 9 UNIT II CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	To develop the fundamentals of refining of petroleum crude oil and its fractionation in differen	nt 115	eful ne	trolem	m
Becondary and supporting processes. 9 UNIT I INTRODUCTION TO HYDROCARBON PROCESSING 9 Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric listillation, Vacuum distillation of residue products 9 UNIT II THERMAL AND CATALYTIC CRACKING PROCESS 9 Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. 9 UNIT II CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	* * *		-		
UNIT IINTRODUCTION TO HYDROCARBON PROCESSING9Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric distillation, Vacuum distillation of residue products9UNIT IITHERMAL AND CATALYTIC CRACKING PROCESS9Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating.9UNIT IICATALYTIC CONVERSION PROCESS9Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries.9UNIT IVLUBE DISTILLATE TREATMENT TECHNIQUES9Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils.9UNIT VACID GAS TREATING AND DEHYDRATION OF NATURAL GAS9		ung	, printa	<i>J</i> ,	
Deverall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, Atmospheric listillation, Vacuum distillation of residue products UNIT II THERMAL AND CATALYTIC CRACKING PROCESS 9 Phermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. 9 UNIT II CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, dewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9					
 distillation, Vacuum distillation of residue products UNIT II THERMAL AND CATALYTIC CRACKING PROCESS P Thermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating. UNIT III CATALYTIC CONVERSION PROCESS Q Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES Q Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, dewaxing, hydrofining, clay contact process – Production of lubricating oils. UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 	UNIT I INTRODUCTION TO HYDROCARBON PROCESSING				9
UNIT IITHERMAL AND CATALYTIC CRACKING PROCESS9Chermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydroprocessing and Hydro reating.Hydroprocessing and Hydro reating.UNIT IIICATALYTIC CONVERSION PROCESS9Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries.9UNIT IVLUBE DISTILLATE TREATMENT TECHNIQUES9Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils.9UNIT VACID GAS TREATING AND DEHYDRATION OF NATURAL GAS9	Overall Refinery Flow, Refinery products – Refinery Feedstocks, Pretreatment of crude oils, A	Atmo	ospheric	2	
Image: Construct of the construction of the constructio	distillation, Vacuum distillation of residue products		-		
Image: Construct of the construction of the constructio					
reating. UNIT III CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, dewaxing, hydrofining, clay contact process – Production of lubricating oils. UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	UNIT II THERMAL AND CATALYTIC CRACKING PROCESS				9
reating. UNIT III CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, dewaxing, hydrofining, clay contact process – Production of lubricating oils. UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	Thermal Cracking - Visbreaking, Coking, Fluid Catalytic cracking and Hydrocracking - Hydro	onro	cessing	and F	Ivdro
UNIT III CATALYTIC CONVERSION PROCESS 9 Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9		pro	eessing	und II	iyaro
Catalytic Reforming, Isomerization, Alkylation and Polymerization, Product blending – Supporting Processes and Pollution Control in Refineries.9UNIT IVLUBE DISTILLATE TREATMENT TECHNIQUES9Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils.9UNIT VACID GAS TREATING AND DEHYDRATION OF NATURAL GAS9					
Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, dewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	UNIT III CATALYTIC CONVERSION PROCESS				9
Pollution Control in Refineries. 9 UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, dewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	Catalutia Deferming Jaconomization Alludation and Dalumanization Draduat blanding. Suma		~ Duo oo		
UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9 Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, lewaxing, hydrofining, clay contact process – Production of lubricating oils. 9 UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9		m	g Proce	sses a	na
Evaluation of crude oils for lube oil base stocks, Solvent de-asphalting, Solvent extraction of lube oil fractions, dewaxing, hydrofining, clay contact process – Production of lubricating oils. UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	Tonuton Control in Remieries.				
dewaxing, hydrofining, clay contact process – Production of lubricating oils. UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9	UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES				9
dewaxing, hydrofining, clay contact process – Production of lubricating oils. UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9					
UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS 9		ube	oil frac	tions,	
	dewaxing, hydrofining, clay contact process – Production of lubricating oils.				
	UNIT V ACID GAS TREATING AND DEHYDRATION OF NATURAL GAS				9
Acid gas removal: Metal oxide process Slurry process Amine process Carbonate washing process Methanol					-
serie gas removal. Metal oxide process – Shurry process – Annue process – Carbonate washing process – Methanor	Acid gas removal: Metal oxide process - Slurry process - Amine process - Carbonate washing	g pro	cess –]	Metha	nol
based process and other process – Sulphur recovery process. Dehydration: Glycol dehydration – Solid desiccant		-S	olid des	siccant	t
lehydration.	dehydration.				
TOTAL: 45 PERIODS		TT 4 T			ODC

Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Explain the types of crude and their primary refining technology.	3
CO2.	Analyze the various secondary processing technologies to improve the quality of petroleum products.	4
CO3.	Explicate the appropriate technologies to meet the specified needs of the industries with consideration for safety, environment and society.	4
CO4.	Evaluate the manufacturing techniques involved in lubricating oil.	4
CO5	Analyze the treatment technologies for natural gas	4
TEXT B	OOKS:	
M 2. Bh	nes H. Gary and Glenn E. Handwerk., "Petroleum Refining Technology and Economics", Fourth farcel Dekker Inc., 2001. askara Rao, B.K., "Modern Petroleum Refining Processes", Third edition, Oxford and IBH Public	
3. Ro	ompany Pvt. Ltd, 2009. bert A. Meyers, "Handbook of Petroleum Refining Processes", Fourth edition, cc-Graw Hill, 2016.	
REFERI	ENCES:	

1.Standard Handbook of Petroleum and Natural Gas Engineering. Second Edition. William C Lyons, Gary, C Plisga. Gulf Professional Publishing.

2.Ram Prasad, "Petroleum Refining Technology", Khanna Publishers, 2020.

3.Nelson, W.L., "Petroleum Refinery Engineering", McGraw Hill Publishing Company Limited, 1985.

COUR	COURSE ARTICULATION MATRIX														
00	РО												PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	3	1				1	2	1	2	3	3	
CO2	3	3	2	3	3		2		1	2	1	2	3	3	
CO3	3	3	2	3	3	3	3	2	1	2	1	2	3	3	
CO4	3	3	2	3	1				1	2	1	2	3	3	
CO5	3	3	2	3	3				1	2	1	2	3	3	

CH2202	UNIT PROCESSES IN PETROCHEMICAL	L	Т	Р	C
СП2202	TECHNOLOGY	3	0	0	3
COURSE	OBJECTIVES:				
• To l	earn feed stock and source of petrochemicals, synthesis gas production.				
• To i	mpart knowledge on primary, secondary and tertiary unit processes.				
UNIT I	INTRODUCTION AND SOURCE OF PETROCHEMICALS				9
Overview	of Petrochemical Industry – The key growth area of India, Economics –	Feed st	ock sel	ection	IS
for Petrocl	nemicals – Steam cracking of Gas and Naphtha to produce Olefins, Diole	fins an	d Produ	uction	of
Acetylene					
UNIT II	SYNTHESIS GAS PRODUCTION				9
Steam refo	orming of Natural gas- endothermic reactions involved in steam reforming	g –Coa	l gasifi	cation	1-
Compositi	on, pathway for formation, and thermochemistry- Naphtha and Heavy di	stillate	to prod	uce	
Hydrogen	and Synthesis gas – Production of Methanol –Oxo process (Hydroformy	lation)			
UNIT III	PRIMARY UNIT PROCESSES				9
Fundamen	tal and Technological principles involved in Alkylation-catalysts used-ne	ew tech	nologie	es use	d-
HFAU pro	cess and SAAU Process – Oxidation –total oxidation and selective oxida	tion– l	Vitratio	n-	
advantage	s and limitations- and Hydrolysis process-mechanism.				
UNIT IV	SECONDARY UNIT PROCESSES				9
Fundamen	tal and Technological principles involved in Sulphonation-basic chemistr	ry- Sulf	fation-S	Sulfan	nic
acid sulfat	ion-commercial scale sulfation equipment-Continuous Tandem Type Sul	fonatio	n-Sulfa	ution v	with
Oleum and	I Isomerisation-skeletal isomerisation process.				
UNIT V	TERTIARY UNIT PROCESSES				9
Fundamen	tal and Technological principles involved in Halogenation-mechanism and	nd appl	ication	5-	
Halogenat	ion of OiLsands Bitumen, Maltenes, and Asphaltenes- and Esterification	-reactic	n mecł	nanisn	n-
different n	nethods of esterification-applications.				
	Τ	OTAL	: 45 F	PERIC	ODS

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Analyse the growth of petrochemical industry and feed sources.	3
CO2.	Apply steam reforming process for the production of hydrogen and synthesis gas.	3
CO3.	Analyse the primary unit processes involved in petrochemical industries.	4
CO4.	Distinguish the principles involved in Sulphonation, Sulfation and Isomerization.	4
CO5	Inspect the Fundamental and Technological principles involved in tertiary unit processes	4

1.Bhaskara Rao, B.K., "A Text on Petrochemicals", Khanna Publishers, 2000. 2.Sukumar Maiti, "Introduction to Petrochemicals", 2nd Edition, Oxford and IBH Publishers, 2002.

REFERENCES:

1.Margaret Wells, "Handbook of Petrochemicals and Processes", 2nd Edition, Ash Gate Publishing Limited, 2002.

2.Sami Matar, and Lewis F. Hatch., "Chemistry of Petrochemical Processes", 2nd Edition, Gulf Publishing Company, 2000.

3. Dryden, C.E., "Outlines of Chemical Technology", 2nd Edition, Affiliated East-West Press, 1993.

CO]	PO						PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	3	3	-	-	3	3	3	3	3	3	3	3	3	
CO2	2	3	3	3	-	3	3	3	-	3	3	3	3	3	
CO3	2	3	3	-	3	3	3	3	-	3	3	3	3	3	
CO4	2	3	3	-	-	3	3	3	-	3	3	3	3	3	
CO5	2	3	3	-	-	3	3	3	-	3	3	3	3	3	

		L	Т	Р	C
CH220	25 PETROCHEMICAL DERIVATIVES	3	0	0	3
COURSE	COBJECTIVES: To understand the concepts of petrochemical derivativ	es.			I
UNIT I	PRECURSORS				9
Classifica	rochemical Industry - Sources of Petrochemicals - Classification of Petro tion of Hydrocarbons - Alternate routes with flow diagram for production , acetylene. Chemicals from methane, ethylene, propylene, acetylene.			ethyle	ne,
UNIT II	FIRST GENERATION PETROCHEMICALS				9
	routes with flow diagram for production of butadiene, related dienes, aro ylene – Chemicals from butadiene, related dienes, aromatics – Benzene,				
UNIT III	SECOND GENERATION PETROCHEMICALS				9
	routes with flow diagram for production of ethylene glycol, ethylene oxidile, phenol, adipic acid, hexmethylenediamine, DMT, TPA, maleic anhyd	•		ene, V	ΥCM,
UNIT IV	THIRD GENERATION PETROCHEMICALS				9
•	ation – Modes and techniques – Production of polyethylene – LDPE, HI lene, SBR, SAN, ABS, PU.	OPE, pr	opylene	;-	
UNIT V	FIBERS, RESINS AND EXPLOSIVES FROM PETROCHEMICA	LS			9
Polyacryle organic dy	onitrile, polyvinyl chloride, polycarbonates, nylon 6, nylon 66, polyesters yes.	s, resins	, explo	sives,	
		TOTA	L: 45 B	PERIC	ODS
OUTCOM	MES:				
Upon suce	cessful completion of the course, the students should be able to				
CO'S	STATEMENT			RF LEV	
CO1.	Construct the techniques and their alternate production of petrochemicals.	precurs	ors of	3	
CO2.	Identify the various chemicals from first generation petrochemicals and routes for production.	their al	ternate	3	3
CO3.	Develop the manufacturing process of second generation of petrochem alternate routes for production.	icals ar	d their	3	3
	Explain the production processes of various types of polymers			3	3
CO4.	Explain the production processes of various types of polymens			-	,

1.Bhaskara Rao, B.K., "A Text on Petrochemicals", Khanna Publishers, 2000. 2.SukumarMaiti, "Introduction to Petrochemicals", 2nd Edition, Oxford and IBH Publishers, 2002.

REFERENCES:

1.Margaret Wells, "Handbook of Petrochemicals and Processes", 2nd Edition, Ash Gate Publishing Limited, 2002.

2.Sami Matar, and Lewis F. Hatch., "Chemistry of Petrochemical Processes", 2nd Edition, Gulf Publishing company, 2000.

3. Dryden, C.E., "Outlines of Chemical Technology", 2nd Edition, Affiliated East-West Press, 1993.

COUI	RSE A	RTIC	ULAT	ION M	ATRIX	K								
CO]	PO						PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	1	2	3	3	2	1	3	2	3	3	2
CO2	2	2	1	1	2	3	3	2	1	3	3	3	3	2
CO3	2	2	1	1	2	3	3	2	2	3	3	3	3	2
CO4	2	2	1	1	2	3	3	2	2	3	2	3	3	2
CO5	2	2	1	1	2	3	3	2	1	3	2	3	3	2

CH2202	26 MULTI-COMPONENT DISTILLATION	L	Т	Р	C
CH220.		3	0	0	3
COURSE	OBJECTIVES:				
To unders	and the concepts of Multicomponent distillation systems.				
UNIT I	THERMODYNAMIC PRINCIPLES				9
enthalpies – Estimati	tal Thermodynamic principles involved in the calculation of vapor – liqu of multi component mixtures – Use of multiple equation of state for the on of the fugacity coefficients for the vapor phase of polar gas mixtures vity coefficients.	calcula	tion of	K val	
UNIT II	THERMODYNAMIC PROPERTY EVALUATION				9
point and	tal principles involved in the separation of multi component mixtures – Dew Point Temperatures for multi component mixtures – equilibrium fla as for multi component mixtures – separation of multi component mixture	ash disti	illation		bble-
UNIT III	MINIMUM REFLUX RATIO FOR MCD SYSTEM				9
– Key con	α onsiderations in the design of columns – Column sequencing – Heuristics aponents – Distributed components – Non-Distributed components – Ad- reflux ratio – calculation of R_m for multi component distillation – Under	jacent k	keys. De	efiniti	on of
UNIT IV	VARIOUS METHODS OF MCD COLUMN DESIGN				9
Theta met	hod of convergence – K_b method and the constant composition method – hod to complex columns and to system of columns – Lewis Matheson m hts – Short cut methods and Simplified graphical procedures.				flux
UNIT V	VARIOUS TYPES OF MCD COLUMNS				9
	sieve, bubble cap, valve trays and structured packing columns for multi on of plate efficiencies-various types and applications.	compor	ient dis	tillatio	on –
		TOTA	L: 45 I	PERIC	ODS

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Apply the fundamental thermodynamic principles involved in VLE	3
CO2.	Identify the fundamental concepts of binary and multicomponent distillation.	3
CO3.	Distinguish the key components in distributed and non distributed system.	4
CO4.	Analyze and solve problems related to various methods of multi component distillation.	4
CO5	Inspect the various types of column in multi component distillation.	4

1.Holland, C.D., "Fundamentals of Multi Component Distillation", McGraw Hill Book Company, 1981. 2. Van Winkle, "Distillation Operations", McGraw Hill Publications, 1987.

REFERENCES:

King, C.J., "Separation Process Principles", Mc Graw Publications, 1986.
 Treybal, R.E., "Mass Ttransfer Operations", 3rd Edition, Mc Graw Hill publications. 2017.
 Mc Cabe and Smith, J.C., Harriot, "Unit Operation of Chemical Engineering", 7th Edition, McGraw Hill, 2017.

CO	РО										PS	50		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	3	1	-	-	3	3	3	1	3	2	2
CO2	3	3	3	3	1	-	-	3	3	3	1	3	2	2
CO3	3	3	3	3	1	-	-	3	3	3	1	3	2	2
CO4	3	3	3	3	1	-	-	3	3	3	1	3	2	2
CO5	3	2	3	3	1	-	-	3	3	3	1	3	2	2

		L	Т	Р	C
CH2202	27 PETROLEUM REFINERY ENGINEERING AND DESIGN	L 3	1 0	г 0	3
	OBJECTIVES: To learn the process design of multi-component distilla puipment used in refining and process industry.	ation co	olumns	and h	eat
UNIT I	MULTI-COMPONENT DISTILLATION				9
of variable	and bubble point for multi component mixtures. Design of multi component dis s, Selection of key components, Selection of column pressure, Feed condition, F short cut methods, Introduction to rigorous solution procedures.				
UNIT II	PETROLEUM REFINERY DISTILLATION				9
refinery dis number of	ASTM distillation curves and their relevance, Material balance and flash zone of stillation columns, Pump around and pump back calculations, Overall energy recequilibrium stages, Design using Packie charts and Watkins method, Introduction based on pseudo components.	quireme	nts, Est	imatio	n of
UNIT III	COLUMN DESIGN				9
	sign of distillation towers. Flooding charts. Trays and packings. Vacuum devices upports. Piping requirements. Aspects of mechanical design. A typical P&ID fo		-		-
UNIT IV	FIRED HEATERS				9
	calculations for furnace heaters used in crude refining, Basic constructional feature work of factors to be considered in the design of fired heaters, Introduction to man				
UNIT V	PUMPS AND COMPRESSORS				9
• • •	umps and compressors. Selection criteria. Power rating calculations based on produces of centrifugal pump. NPSHR and NPSHA. Pump Cavitation. Surge problem		-		
]	ΓΟΤΑ	L: 45 I	PERI	ODS
OUTCOM	AES:				
	MES: cessful completion of the course, the students should be able to				
				RI	
Upon succ	cessful completion of the course, the students should be able to			LEV	
Upon succ CO'S CO1.	cessful completion of the course, the students should be able to STATEMENT				/EL
Upon succ CO'S CO1. CO2.	cessful completion of the course, the students should be able to STATEMENT Explain the multi-component distillation				VEL
Upon succ CO'S CO1. CO2. CO3.	Explain the multi-component distillation Design the petroleum refinery distillation columns				7 EL 3 5

- 1. Van Winkle M., "Distillation", McGraw Hill, 1967.
- 2. Watkins, "Petroleum Refinery Distillation", McGraw Hill, 1993.
- 3. Marc Boremanns, "Pumps and Compressors, John Wiley & Sons., 2019.

REFERENCES:

- 1. Nelson, W.L., "Petroleum Refinery Engineering", McGraw Hill Publishing Company Limited, 1985.
- 2. Kern, D.Q., "Process Heat Transfer", McGraw-Hill, 1999.
- 3. Kayode Coker, A., "Petroleum refining Design and applications handbook", Wiley, 2018.

COU	COURSE ARTICULATION MATRIX													
CO	РО												PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	2				1	2	1	2	3	3
CO2	3	3	3	3	2				1	2	1	2	3	3
CO3	3	2	1	3	2	3			1	2	1	2	3	3
CO4	3	2	2	3	2				1	2	1	2	3	3
CO5	3	3	2	3	2	3	3	2	1	2	1	2	3	3

CHARAC		L	Т	Р	C
CH2202	28 PETROLEUM PROCESS EQUIPMENT AUXILIARIES	3	0	0	3
COURSE processes.	OBJECTIVES: To give an overview of various equipment auxiliaries i	nvolve	d in the	e chen	nical
UNIT I	ELECTRICAL MOTORS AND STARTERS				9
	motors-Types of motors and its applications– Induction-squirrel cage ind otor–Synchronous – Electrical Starters- Manual Starters and AC Magnetic				
UNIT II	ROTARY EQUIPMENT				9
and positiv	ntrifual pump,gear pump –Turbines-wind, gas and steam turbines – Blow ve displacement blowers – Compressors- Rotary screw, vane and reciproconcept – Working and application.				
UNIT III	INDUSTRIAL VALVES				9
Needle va	lve – Globe, gate and ball valves – Butterfly valve – Check valve – Pipin relief valves- Working and application.	g syste	m-plug	; valve	es-
safety and	rener valves- working and application.				
UNIT IV	INDUSTRIAL DRYERS	~		~	9
UNIT IV Rotary dry dryer-type Electro os	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary f es, advantages and applications and freeze dryers – rotary, manifold and tr motic dryers – Electro-Osmosis Dehydrator		-	-	cay
UNIT IV Rotary dry dryer-type Electro os UNIT V	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary fluid bed dryer –comparative study of rotary dryer and rotary fluid s, advantages and applications and freeze dryers – rotary, manifold and tr motic dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS	ray free	eze dry	ers	-
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary f es, advantages and applications and freeze dryers – rotary, manifold and tr motic dryers – Electro-Osmosis Dehydrator	ray free	eze dry	ers	cay
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary fluid sed applications and freeze dryers – rotary, manifold and the motic dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration sents and their functions- Flare system –Equipments for waste water treatment	ray free	eze dry –main ems.	ers	ray 9
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d componen	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary frees, advantages and applications and freeze dryers – rotary, manifold and transition dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration softs and their functions- Flare system –Equipments for waste water treatments	ystems	eze dry –main ems.	ers	eay 9
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d componen	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary frees, advantages and applications and freeze dryers – rotary, manifold and transition dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration softs and their functions- Flare system –Equipments for waste water treatments	ystems	eze dry –main ems.	ers	ray 9
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d componen	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary frees, advantages and applications and freeze dryers – rotary, manifold and transition dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration sents and their functions- Flare system –Equipments for waste water treatments INDUSTRIAL DRYERS INDUSTRIAL DRYERS	ystems	eze dry –main ems.	ers	ray 9 ODS BT
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d componen OUTCOM Upon succ CO'S	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary frees, advantages and applications and freeze dryers – rotary, manifold and tremotic dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration s ints and their functions- Flare system –Equipments for waste water treatment TMES: Cessful completion of the course, the students should be able to STATEMENT Apply the working principle, types, operation, selection and applications motors and starters.	ystems ent syst FOTA	-main ems. L: 45 1	PERIO	ray 9 ODS BT
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d componen OUTCOM Upon succ CO'S	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary f es, advantages and applications and freeze dryers – rotary, manifold and tr motic dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration s its and their functions- Flare system –Equipments for waste water treatme TMES: cessful completion of the course, the students should be able to STATEMENT Apply the working principle, types, operation, selection and applications	ystems ent syst FOTA	-main ems. L: 45 1	PERIO	9 9 ODS BT VEL
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d componen OUTCOM Upon succ CO'S CO1.	INDUSTRIAL DRYERS ver-Rotary fluid bed dryer –comparative study of rotary dryer and rotary fles, advantages and applications and freeze dryers – rotary, manifold and the motic dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration s and their functions- Flare system –Equipments for waste water treatments and their functions flare system –Equipments for waste water treatments for the course, the students should be able to STATEMENT Apply the working principle, types, operation, selection and applications motors and starters. Compare the working of rotary equipments namely pumps, blowers, turb compressors and fans. Distinguish the various types of Industrial Valves and its applications.	ystems ent syst FOTA	-main ems. L: 45 1	PERIO	9 0008 BT VEL 3
UNIT IV Rotary dry dryer-type Electro os UNIT V Vacuum d componen OUTCOM Upon succ CO'S CO1. CO2.	INDUSTRIAL DRYERS yer-Rotary fluid bed dryer –comparative study of rotary dryer and rotary f es, advantages and applications and freeze dryers – rotary, manifold and tr motic dryers – Electro-Osmosis Dehydrator PROCESS UTILITY EQUIPMENTS levices – Cooling towers –Forced draft and induced draft- Refrigeration s its and their functions- Flare system –Equipments for waste water treatment MES: cessful completion of the course, the students should be able to STATEMENT Apply the working principle, types, operation, selection and applications motors and starters. Compare the working of rotary equipments namely pumps, blowers, turb compressors and fans.	ystems ent syst FOTA	-main ems. L: 45 1	PERIO	ray 9 0DS BT VEL 3 4

1.Walas, S.M., "Chemical Process Equipment", Butterworth – Heinemann Oxford Publishing Ltd., 1999. 2.Thomas, C.E., "Process Technology – Equipment and systems", Uhai Publishing, Inc., 2002.

REFERENCES:

1.Ludwig, E.E., "Applied Process Design for Chemical and Petrochemical Plants", Vol.I and III, Gulf Professional Publishing, 2002.

2.Perry, R.H. and Green, D.W., "Perry's Chemical Engineer's Hand Book", 7th Edition, McGraw Hill – International, 1997.

3.Sahu, G.K., "Hand Book of Piping Design", New Age International Publishers, 2005.

СО		РО												50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	3	3	1	3	3	3	3	3	2	3	3	3
CO2	3	1	3	3	1	3	3	3	3	3	2	3	3	3
CO3	2	1	3	3	1	3	3	3	3	3	2	3	3	3
CO4	2	1	3	3	1	3	3	3	3	3	2	3	3	3
CO5	2	1	3	3	1	3	3	3	3	3	2	3	3	3

VERTICAL III HSE IN PROCESS INDUSTRIES

GUQQQQ1	FIRE ENGINEERING AND EXPLOSION	L	Т	Р	C
CH22031	CONTROL	3	0	0	3
COURSE OB	JECTIVES:	•			•
• To provide an	n in-depth knowledge about the science of fire.				
• To understan	d the causes and effects of fire.				
• To know the	various fire prevention systems and protective equipments.				
• To understan	d the science of explosion and its prevention techniques.				
• To understan	d the various fire prevention techniques to be followed in a building	•			
UNIT I PH	YSICS AND CHEMISTRY OF FIRE				9
combustion an explosion, sho Flixborough, M	of solid, liquid and gases - fire spread - toxicity of products of comb d explosion – vapour clouds–flash fire–jet fires –pool fires –unconfi ck waves-auto-ignition – boiling liquid expanding vapour explosion Mexico disaster, Pasedena Texas, Piper Alpha, Bombay Victoria doc v explosion, Nagothane vapour cloud explosion and Vizag refinery d	ned vaj – case k ship e	pour clo studies explosio	oud —	
UNIT II FII	RE PREVENTION AND PROTECTION				9
fire protection Dry chemical p powders – type lay out of stand	ition – fire triangle Fire Tetrahedron – principles of fire extinguishin systems – various classes of fires – A, B, C, D, E-Fire extinguishing bowder, Carbon-dioxide- Halon alternatives Halocarbon compounds es of fire extinguishers – fire stoppers – hydrant pipes – hoses – mon d pipes – fire station – fire alarms and sirens, Assembly points –main rs–escape from fire rescue operations – fire drills – first aid for burns	g agents -Inert g iitors – ntenanc	- Water gases , d fire wat	r ,Foa lry tchers	m,
UNIT III INI	DUSTRIAL FIRE PROTECTION SYSTEMS				9
criteria of the a systems. Other system – need	ants-stand pipes – special fire suppression systems like deluge and e above installations, reliability, maintenance, evaluation and standard suppression systems – CO_2 system, foam system, dry chemical pow for halon replacement – smoke venting. Portable extinguishers – fla s of inflammability-firefighting systems.	s – alar vder (D	m and c CP) sys	detect stem, l	halon
UNIT IV BU	ILDING FIRE SAFETY				9
protection -str	ire safe building design, Fire load, fire resistant material and fire tes uctural integrity – concept of egress design - exit – width calculation nents for high rise buildings.	-			

UNIT V	EXPLOSION PROTECTING SYSTEMS	9
Principles	of explosion-detonation and blast waves-explosion parameters – Explosion Protection,	
Containme	ent, Flame Arrestors, isolation, suppression, venting, explosion relief of large enclosure-exp	olosion
venting-in	ert gases, plant for generation of inert gas rupture disc in process vessels and lines explosio	n,
suppressio	n system based on Carbondioxide (CO ₂) and halons - hazards in LPG, ammonia(NH ₃)	

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of the course, the students should be able to

CO'S	STATEMENT	RBT LEVEL
CO1.	Appraise the basic concepts of fire and explosion science and analyze various case studies.	4
CO2.	Categorize different sources of ignition and their prevention techniques.	3
CO3.	Explore the operating principles of various types of fire fighting equipments.	4
CO4.	Exemplify the causes of building fire and prevention techniques.	3
CO5	Employ explosion protection techniques to suit the industrial requirements.	4

REFERENCES:

1. "Accident Prevention manual for industrial operations" N.S.C., Chicago, 1982.

- 2. "Davis Daniel et al, "Hand Book of fire technology"
- 3. "Fire Prevention and fire fighting", Loss prevention Association, India.
- 4. Derek, James, "Fire Prevention Hand Book", Butter Worths and Company, London, 1986.
- 5. Dinko Tuhtar, "Fire and explosion protection"
- 6. Fire fighters hazardous materials reference book
- 7. Fire Prevention in Factories", Nostrand ReinHold, New York, 1991.
- 8. Gupta,R.S., "HandBook of Fire Technology" Orient Longman, Bombay 1977.
- 9. Relevant Indian Acts and rules, Government of India.

COU	COURSE ARTICULATION MATRIX															
со		РО														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3		

CH2203	2 INDUSTRIAL SAFETY ASSESSME	NT		T	P	C				
			3	0	0	3				
COURSE	OBJECTIVES:									
To give a	n overview of the assessment methodologies applicable	for industrial sa	fety							
To elabo	rate the hazard identification techniques and implement	safety procedure	es							
To apply	various risk assessment techniques and evaluate risks									
-	various mitigation techniques based on cost benefits nent and communicate hazards to relevant authorities									
UNIT I	INTRODUCTION TO INDUSTRIAL SAFETY					9				
Historical perspective and evolution of safety standards. Introduction to Hazard Identification; Importance of hazard identification in risk management; Historical perspective on hazard identification and accident prevention; Role of hazard identification in safety culture development. Types of Hazards; Physical hazards, Chemical hazards, Biological hazards, Ergonomic hazards Psychosocial hazards.										
UNIT II	HAZARD IDENTIFICATION TECHNIQUES					9				
and operation operation chemical i	walkthroughs and inspections; Job hazard analysis (JH ility studies (HAZOP); Failure mode and effects analys nventory reviews, Safety Management Systems: Overvie ing safety policies and procedures; Incident reporting an	is (FMEA); Safe ew of safety man	ty data	sheets	(SDS)					
UNIT III	RISK ASSESSMENT					9				
analysis ar Evaluation	ling risk assessment concepts; Qualitative vs. quantitative d risk scoring systems; Probability and consequence ass ; Factors influencing hazard severity and likelihood; Us y evaluation; Assessing the probability of hazard occurre	sessment; Hazaro	l Sever ta and i	ity and ncident	Likel analy	ihood /sis				
UNIT IV	MITIGATION STRATEGIES					9				
protective mitigation	of controls for hazard mitigation; Engineering controls, equipment (PPE); Developing control measures and cor strategies, Emergency Preparedness and Response; Dev v evacuation procedures; Training for emergency situation	rective actions; (veloping emerger	Cost-be	nefit ar	nalysis					
UNIT V	HAZARD COMMUNICATION AND DOCUMENTA	TION				9				
Hazard ide	cating identified hazards to stakeholders; Safety data she ntification and risk assessment documentation; Regulate ation; Case Studies and Practical Applications - Applica t industries and settings	ory requirements	for ha	zard						
			тота	L: 45 F	PERIC	ODS				

		ES:												
Upon s	ucces	ssful co	ompleti	on of th	e course	e, the st	udents s	should b	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1.		laborat		nportanc	ce of ha	zard ide	entificat	ion in e	ensuring	safety	and pre	venting		4
CO2	. Aı	nalyze	various	s system	natic ap	proache	es and te	chnique	es for h	azard id	entifica	tion.		4
CO3.	. Ex	xplore	differer	nt risk a	ssessme	ent meth	nodolog	ies and	severit	y evalua	tion.			4
CO4.	. De	evelop	various	s hazard	l mitiga	tion pro	ocedures	s and co	ost bene	fit analy	/sis.			4
CO5		ommui fective		nd Doci	ument t	he ident	tified ha	izards a	nd miti	gation r	nethods	1		3
2. Guio Nige	deline el Hy	es for I ratt, CF	Process RC Pres	Hazard s Inc; 1	s Analy st editic	vsis (PH on , 200		ZOP), H	lazards	Identifi	cation,	and Ris	k Anal <u>y</u>	ysis",
 Guid Nige Haze Haze Indu McC 	deline el Hy ard Ic ustrial Graw	es for I ratt, CF dentific I Safet Hill E	Process RC Pres cation M y Mana ducatio	Hazard s Inc; 1 Aethods gement n (India	s Analy st editic , Frank : Hazaro 1) Privat	vsis (PH on , 200 Crawle d Identi te Limit	A, HAZ	ZOP), H n Tyler, and Ria	lazards Icheml	Identifi E, 2003	cation,			
2. Guid Nige 3. Haz 4. Indu McC	deline el Hy ard Ic ustrial Graw	es for I ratt, CF dentific I Safet Hill E	Process RC Pres cation M y Mana ducatio	Hazard s Inc; 1 Aethods gement n (India	s Analy st editic , Frank : Hazaro 1) Privat	vsis (PH on , 200 Crawle d Identi te Limit	A, HAZ 3. ey, Brian fication	ZOP), H n Tyler, and Ria	lazards Icheml	Identifi E, 2003	cation,		Deshm	
2. Guio Nige 3. Haz 4. Indu McC	deline el Hya ard Ic istrial Graw SE A 1	es for I ratt, CF dentific I Safet <u>y</u> Hill E RTIC	Process RC Pres cation N y Mana ducatio ULAT 3	Hazard s Inc; 1 Aethods gement n (India ION M	s Analy st editic , Frank : Hazaro 1) Privat	vsis (PH on , 200 Crawle d Identi te Limit	A, HAZ 3. ey, Brian fication red, 200 PO 7	ZOP), H n Tyler, and Ria	lazards Ichemi sk Cont	Identifi E, 2003 rol, 1st	cation, Edition	, <u>L. M.</u> 12	Deshm	<u>ukh</u> , SO 2
2. Guid Nige 3. Haz 4. Indu McC COUR	deline el Hy ard Ic istrial Graw SE A	es for I vatt, CF dentific I Safet Hill E ARTIC	Process RC Pres cation N y Mana ducatio ULAT 3 3	Hazard s Inc; 1 Aethods gement n (India ION M 4 3	s Analy st editic , Frank : Hazaro) Privat	vsis (PH on , 200 Crawle d Identi te Limit	A, HAZ 3. ey, Brian fication red, 200 PO 7 3	ZOP), H n Tyler, and Ris 5.	Iazards Ichemi sk Cont	Identifi E, 2003 rol, 1st	cation, Edition	, <u>L. M.</u> 12 3	Deshm Ps 1 3	<u>ukh</u> , SO 2 3
2. Guid Nige 3. Haz 4. Indu McC COUR COUR	deline el Hy ard Ic istrial Graw SE A 1 3 3	es for I ratt, CF dentifie I Safety Hill E ARTIC 3 3	Process RC Pres cation N y Mana ducatio ULAT 3 3 3	Hazard s Inc; 1 Aethods gement n (India ION M 4 3 3	s Analy st editic s, Frank : Hazard a) Privat ATRIX 5 3	vsis (PH on , 200 Crawle d Identi te Limit	A, HAZ 3. ey, Brian fication red, 200 PO 7 3 3	ZOP), H n Tyler, and Ris 5. 8 3	Iazards Ichemi sk Cont 9 3 3 3	Identifi E, 2003 rol, 1st 10 3 3	Edition	, <u>L. M.</u> 12 3 3	Deshm P 1 3 3	SO 2 3 3
2. Guid Nige 3. Haz 4. Indu McC COUR CO1 CO1 CO2	deline el Hy ard Ic istrial Graw SE A 1 3 3 3	es for I ratt, CF dentific I Safet Hill E ARTIC 3 3 3 3	Process RC Pres cation N y Mana ducatio ULAT 3 3 3 3 3	Hazard s Inc; 1 Aethods gement n (India ION M 4 3 3 3	s Analy st editic s, Frank : Hazaro a) Privat ATRIX 5 3 3 3	vsis (PH on , 200 Crawle d Identi te Limit 6 3 3 3 3	A, HAZ 3. ey, Brian fication red, 200 PO 7 3 3 3 3	ZOP), H n Tyler, and Ris 5. 8 3 3	Iazards Ichemi sk Cont 9 3 3 3 3	Identifi E, 2003 rol, 1st 10 3 3 3	Edition 11 2 3 3	, <u>L. M.</u> 12 3 3 3	Deshm P 1 3 3 3	<u>ukh</u> , SO 2 3 3 3 3
2. Guid Nige 3. Haz 4. Indu McC	deline el Hy ard Ic istrial Graw SE A 1 3 3	es for I ratt, CF dentifie I Safety Hill E ARTIC 3 3	Process RC Pres cation N y Mana ducatio ULAT 3 3 3	Hazard s Inc; 1 Aethods gement n (India ION M 4 3 3	s Analy st editic s, Frank : Hazard a) Privat ATRIX 5 3	vsis (PH on , 200 Crawle d Identi te Limit	A, HAZ 3. ey, Brian fication red, 200 PO 7 3 3	ZOP), H n Tyler, and Ris 5. 8 3	Iazards Ichemi sk Cont 9 3 3 3	Identifi E, 2003 rol, 1st 10 3 3	Edition	, <u>L. M.</u> 12 3 3	Deshm P 1 3 3	SO 2 3 3

	L	Т	Р	С					
CH22033 ACTS AND REGULATIONS FOR HEALTH,	ACTS AND REGULATIONS FOR HEALTH,								
SAFETY ANDENVIRONMENT	3	0	0	3					
COURSE OBJECTIVES:									
To provide exposure to the students about safety and health provisions related to	hazaro	lous pro	ocesse	es as					
laid out in Factories act 1948.		r i							
To familiarize students with powers of inspectorate of factories.									
To help students to learn about Environment act 1986 and rules framed under the a	ct.								
To provide wide exposure to the students about various legislations applicable to an		trial un	it.						
UNIT I FACTORIES ACT-1948				9					
Statutory authorities–inspecting staff, health, safety, provisions relating to hazardou	is proc	PSCAS W	velfare	2					
working hours, employment of young persons – special provisions – penalties and	-								
Factories Rules1950 under Safety and health chapters of Factories Act 1948. Forms	-								
– Tamilnadu Safety Officer Rules 2005 - with updated Amendments	-, 8-								
				0					
UNIT II ENVIRONMENT ACT-1986				9					
General powers of the central government, prevention, control and abatement of en		1							
Biomedical waste (Management and handling Rules, 1989 - The noise pollution (R	-			ol)					
Rules, 2000 - The Batteries (Management and Handling Rules) 2001- No Objection									
statutory authorities like pollution control board. Air Act 1981 and Water Act 1974 boards for the prevention and control of air pollution – powers and functions of boa				d					
control of air pollution and water pollution – fund – accounts and audit, penalties a	-			u					
H AZARDOUS CHEMICAL RULES 1989 AND MAJOR ACCIDENT									
UNIT III CONTROL RULES		Ш		9					
Definitions – duties of authorities – responsibilities of occupier – notification of ma	ajor acc	idents -	_						
information to be furnished - preparation of offsite and onsite plans - list of hazard				icals					
- safety reports - safety data sheets. Major Accident Hazard Control Rules. Hazard	lous Wa	astes							
(management, handling and Trans-boundary Movement) Rules 2016.									
UNIT IV OTHER ACTS AND RULES				9					
Indian Boiler (Amendments) Act 2007, static and mobile pressure vessel rules (SM	PV), m	otor ve	hicle						
rules, The Mines and Minerals (Development & Regulation) Amendment Act, 2013	5, work	man							
compensation act, rules -electricity act and rules - hazardous wastes (management	, handli	ng and							
transboundary) rules, 2008 - the building and other construction workers act 1996.,	Petrole	eum rul	es, Ga	as					
cylinder rules 2016, Explosives Act 1884-Pesticides Act - E waste (management) r	rules 20	16.							
UNIT V INTERNATIONAL ACTS AND STANDARDS				9					
Occupational Safety and Health act of USA (The Williames - Steiger Act of 1970)			•						
act(HASAWA 1974, UK) - ISO 14001 - ISO 45001, European Safety and Health	0	,		ican					
Petroleum Institute (API) Standards, Oil Industry Safety Directorate (OISD) Standa									
Protection Association(NFPA) Standards, Atomic Energy Regulatory Board(AERE	3), Ame	erican N	ation	al					
Standards Institute(ANSI).									
<u> </u>	ΓΟΤΑΙ	L: 45 P	PERIC	DDS					

	COMI	ES:												
Upon	succes	ssful co	mpleti	on of the	e course	e, the stu	udents s	should t	e able t	0				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO	1.	Appreci	iate the	importa	ant clau	ses expl	lained in	n Facto	ries Act	•				3
CO	2	Elabora pollutio		nitigation.	on meth	odologi	es requi	ired as j	per envi	ronmen	t Act fo	or		3
CO	3. Intricate the rules and regulations to be followed for Hazardous materials act													3
CO	Elucidate verticus acts and miles related to Industrial sofety													3
CO	5	Explain various international acts and rules related to Environmental and Industrial safety											ıl	3
 There is a constraint of the second se	ne Fac ne Env l'ater (I ew De elhi. ne Indi ne Mir ne man hennai	etories A vironme Prevent elhi. eventior ian boil nes Act nufactu i.	ent Act ion and and co lers act 1952, o re, stor	ontrol of 1923, C Comme age and	tion) 19 l of polluti Commer rcial La import	86, Cor ution) a on) act cial Lav w Publi of haza	nmercia act 1974 1981, C w Publia ishers (1	al Law 1 4, Comr Commer shers (I India) P	Publisho nercial ccial Lav ndia) Pv vt. Ltd.	Law pu w Publi vt. Ltd., , Allaha	blishers shers (I Allaha ıbad.	Ltd., No (India) ndia) Py bad. ook Ag	Pvt. Lt	d.,
8. Sr Ec	dition,	2017					ers Rule	es 2005'	' Madra	as Book		y, Chenn	nai, 28 ^t	h
8. Sr Ec	dition,	2017		mil Nad ION M				es 2005'	' Madra	ls Book		y, Chen		
8. Sr Ec	dition,	<u>, 2017</u>	ULAT	ION M	ATRIX		20				Agenc		PS	50
8. Sr Ec COUI	dition,	2017						es 2005' 8 3	' Madra 9 3	10 3		y, Chenn 12 3		
8. Sr Ec COUI CO CO	RSE A	2017 ARTIC	ULAT	ION M	ATRIX	5 6	20 7	8	9	10	Agency 11	12	PS 1	SO 2
8. Sr Ec COUI CO CO1 CO2	RSE A	2017 ARTIC	ULAT 3 2	ION M 4 1	ATRIX <u>5</u> 1	6 3	PO 7 3	8 3	9 3	10 3	Agency 11 3	12 3	PS 1 3	50 2 3
8. Sr Ec	RSE A	2017 ARTIC	ULAT 3 2 2	ION M 4 1 3	ATRIX <u>5</u> 1 2	6 3 3	PO 7 3 3	8 3 3	9 3 3	10 3 3	Agency 11 3 3	12 3 3	PS 1 3 3	30 2 3 3

CH22034 DISASTER MANAGEMENT IN PROCESS INDUSTRIES L T P	С
COURSE OBJECTIVES:	
To educate students about various Industrial Disasters	
To train students in various risk reduction methods	
To develop students in preparing offsite and onsite plans	
To improvise various disaster relief and management strategies	
To plan and execute disaster recovery and Rebuilding.	
UNIT I INTRODUCTION	9
Concept, Need and Importance of Industrial Disaster Management. Chemical hazards, Biological hazards, Radiological hazards, nuclear hazards, Physical hazards, Electrical hazards, Fire hazard, Gas hazards	
UNIT II DISASTER RISK REDUCTION STRATEGIES	9
Hazard and Risk Reduction Strategies -: Mainstreaming DRR, Objectives of Disaster Risk Reduction, Understanding Resilience, Hyogo and Sendai framework for action and its History (Yokohama Strate Resilience linking vulnerability, Disaster Risk Reduction and Disaster Recovery at Community and National Level.	
UNIT III ONSITE AND OFFSITE DISASTER MANAGEMENT PLANS	9
Onsite: Standard operating procedures, control room, safety officer, Different committees for Di	saster
management, rescue team, training, exercises and mock drills.	
Offsite: Identification of vulnerable locations, Dissemination of information, need and damage assess rescue and Relief plans, compensation	ment,
UNIT IV DISASTER RELIEF AND MANAGEMENT	9
Concept of Relief- policy, Relief delivery and management. Standards and Best Practices in Relief operations –SPHERE standards. Early Warning systems and public evacuation, search and rescue, Sanitation, Dead body disposal, Debris Management, Restoration of key infrastructure. Public heath- Impact on public health and mental health, Planning and managing public health care during a disaste preparedness and response plan. Ethics and standards in public health care delivery.	r
UNIT V DISASTER RECOVERY AND REBUILDING	9
Disaster Recovery, Rebuilding & Rehabilitation, Recovery Time- frames and differential recovery rat long-term Recovery, Post disaster Recovery Planning & Reconstruction, Post Disaster Housing & Ha Planning, and Rights- based approach to disaster rehabilitation.	
TOTAL: 45 PER	IODS

OUTCOM	MES:	
Upon suce	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Comprehend the importance of disaster management	3
CO2.	Develop risk reduction strategies through various methodologies in process plants.	4
CO3.	Analyze situations and prepare onsite and offsite emergency plans	3
CO4.	Evaluate the standards and Best Practices in disaster relief management	4
CO5	Appraise the steps involved in Disaster recovery.	4
		1

REFERENCES:

- 1. Disaster Administration and Management, Text & Case studies- SL Goel-Deep and Deep Publications
- 2. Hazardous Materials Disaster Management Arunkumar Talwar, Common wealth Publisher
- 3. Heinrich H.W. "Industrial Accident Prevention" McGraw-Hill Company, NewYork, 1980
- 4. "Safety in Industry" N.V.Krishnan Jaico Publishery House, 1996

COUR	COURSE ARTICULATION MATRIX													
			PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	0	3	0	0	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	2	3	3	3	0	3	3	3	3	3	3	3	3	3
CO4	2	2	3	3	0	3	3	3	3	3	3	3	3	3
CO5	2	2	3	0	0	3	3	3	3	3	3	3	3	3

		L	Т	Р	C
CH220	35 ACCIDENT INVESTIGATION AND REPORTING	3	0	0	3
	OBJECTIVES: learn and analyze various causes of accidents and preventive methods				
UNIT I	INDUSTRIAL ACCIDENTS				9
accidents,	of accidents and incidents, Importance of accident investigation, reporta and contribution factor for accident – principles of accident prevention, committee – Accident causation models - Cost of accident.			-	
UNIT II	ACCIDENT INVESTIGATION				9
investigat	injury, Near misses, Dangerous occurrences, Moral, legal and ions, Management system requirements (ISO 45001), Benefits of ing near misses		0		
UNIT III	ACCIDENT REPORTING				9
	ccident investigation process - Response to accidents, India reportir, Planning matrix, Investigators Kit, functions of investigator, four types			t, Pla	nning
UNIT IV	ACCIDENT ROOT CAUSE ANALYSIS				9
	e analysis: advanced incident investigation techniques Fault tree analy l effect analysis/fishbone diagram	vsis, Ev	ent tree	e anal	lysis,
UNIT V	ACCIDENT PREVENTION				9
confidenti	e of accurate reporting , Elements of an effective accident report, ality, Records of accidents, Developing corrective action plans, Monitoring and evaluating effectiveness. Accident reports - Class exerc	Implem ise with	enting	preve tudy	entivo
OUTCO			L. 43 I		
	cessful completion of the course, the students should be able to				
CO'S	STATEMENT			RI LEV	
CO1.	Assess accident, accident causation models and its impacts			2	4
CO2.	Analyze the fundamental requirements and importance of accident inves	stigation	1.	2	4
CO3.	Investigate accidents and incidents.			3	3
CO4.	Analyse root cause and effects of accidents.			4	4

1. Heinrich H.W. "Industrial Accident Prevention" McGraw-Hill Company, New York, Fifth Edition 2007 2. Lees, F.P. "Loss Prevention in Process Industries" Butterworths and Company, Fourth Edition, 2012.

REFERENCES:

- 1. Accident Prevention Manual for Industrial Operations", N.S.C.Chicago, Third edition 2008.
- 2. Introduction To Incident Investigation, A course book for the NEBOSH HSE Introduction to Incident Investigation
- 3. Lee N. Vanden Heuvel, "Root Cause Analysis Handbook: A Guide to Efficient and Effective Incident Investigation" 3rd Edittion, ABS Consulting.

COU	COURSE ARTICULATION MATRIX														
CO			PSO												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	1	0	0	3	3	3	1	1	0	1	3	3	
CO2	3	2	1	0	0	3	3	3	1	1	0	1	3	3	
CO3	2	2	3	2	3	3	3	2	2	1	3	3	3	3	
CO4	3	3	3	3	3	3	3	2	2	2	3	3	3	3	
CO5	3	3	3	3	3	3	2	1	3	3	3	3	3	3	

CLIDDO	26		L	Т	Р	C
CH2203	36	FIRST AID AND SAFETY PRECAUTIONS	3	0	0	3
COURSE	E OB	JECTIVES:				
То	edu	cate the students on basic first aid techniques and regulatory complia	ances			
UNIT I	IN	FRODUCTION				9
process in	ndust	First aid, importance of first aid in process Industries, overview ries. Identification of common hazards in process industries an each hazard. Material Safety Data Sheet.		• 1		
UNIT II	BA	SIC FIRST AID TECHNIQUES				9
		scene and ensuring the safety, assessing the victim and identifying to opulmonary Resuscitation), Basic wound care: cuts, burns, fractu				
UNIT III	SP	ECIFIC FIRST AID SITUATIONS IN PROCESS INDUSTRIE	S			9
UNIT IV	EN EQ	h injuries, amputations, etc., IERGENCY RESPONSE PROCEDURE AND PERSONAL PROUPMENTS emergency response systems, Evacuation procedures, Communi				9
emergenci	ies, I	Role of first aiders in emergency situation, Selection and proper ortance of PPE in preventing injuries and exposure to hazardous ma	use of	f PPE		-
UNIT V	SA		DITAN	ICE		9
T (FETY TRAINING, EDUCATION AND REGULATORY COM	I LIAN			
Role of r Responsib	mana pilitie	FETY TRAINING, EDUCATION AND REGULATORY COM safety training for all employees, Regular drills and exercises for gement in promoting a safety culture, Overview of relevant re s of employers and employees in ensuring workplace safety, th safety regulations.	emerge	ns and	stan	dards,
Role of r Responsib	mana pilitie	safety training for all employees, Regular drills and exercises for gement in promoting a safety culture, Overview of relevant re s of employers and employees in ensuring workplace safety, th safety regulations.	emerge gulatio Cons	ns and	standes of	dards, non-

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Demonstrate proficiency in basic first aid techniques.	3
CO2.	Identify and mitigate workplace hazards.	3
СО3.	Assess the importance of personal protective equipment(PPE).	4
CO4.	Develop Emergency response Skills.	3
CO5	Comply with regulatory requirements.	3

REFERENCES:

- James S. Angle "Occupational Safety and Health in the Emergency Services" 4th edition Jones & Bartlett Learning, 2015
- Daniel A. Crowl and Joseph F. Louvar, "Chemical Process Safety: Fundamentals with Applications", 4th edition, Pearson Prentice Hall, 2020
- "Emergency Care and Transportation of the Sick and Injured" by American Academy of Orthopaedic Surgeons (AAOS)
- Jeremy W. Stranks , "Health and Safety at Work: An Essential Guide for Managers" Kogan Page, 10th Eddition, 2016
- 5. Roger L. Brauer, "Safety and Health for Engineers", Wiley, 3rd Edition, 2016.
- 6. Tao Le, Vikas Bhushan, and Matthew Sochat, "First Aid for the USMLE Step 1", dnamart, 2022.

COURSE ARTICULATION MATRIX

CO		РО												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	1	0	3	0	3	1	2	0	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	1	2	2	0	1	3	3	1	0	0	1	3	3
CO4	2	2	2	2	3	1	3	1	3	3	3	2	3	3
CO5	2	2	1	0	0	3	3	1	2	1	2	0	3	3

CH220		L	Т	Р	C
	37 SAFETY IN PROCESS INDUSTRIES	3	0	0	3
	OBJECTIVES:				
	give an overview of safety in process design, commissioning and maint	enance	stages.		
UNIT I	SAFETY IN PROCESS DESIGN AND PRESSURE SYSTEM DESIGN				9
types, bat operation works and and desig	ocess, conceptual design and detail design, assessment, inherently safer of ch reactors, reaction hazard evaluation, assessment, reactor safety, operat and equipment, utilities. Pressure system, pressure vessel design, standa valves- heat exchangers- process machinery- over pressure protection, p n, fire relief, vacuum and thermal relief, special situations, disposal- flare pressure system.	ting con ards and pressure	nditions 1 codes- e relief (, unit - pipe device	
UNIT II	PLANT COMMISSIONING AND INSPECTION				9
commissi piping sys	oning phases and organization, pre-commissioning documents, process coning problems, post commissioning documentation Plant inspection, pretem, non destructive testing, pressure testing, leak testing and monitoring tee monitoring, condition, vibration, corrosion, acoustic emission-pipe line	essure v g- plant	vessel, p t monito	oressu	
UNIT III	PLANT OPERATIONS				9
permit sy	discipline, operating procedure and inspection, format, emergency proce tem- startup and shut down operation, refinery units- operation of fired h activities and hazards- trip systems- exposure of personnel PLANT MAINTENANCE, MODIFICATION AND EMERGENCY	neaters,	driers,	storag	
spaces, pe repairs- n	ent of maintenance, hazards- preparation for maintenance, isolation, purg rmit system- maintenance equipment- hot works- tank cleaning, repair an aintenance of protective devices- modification of plant, problemscontrol y planning, disaster planning, onsite emergency- offsite emergency, APE	nd dem s of mo	olition-	onlin	
UNIT V	STORAGES				9
<u>C1.</u>	Disideration, petroleum product storages, storage tanks and vessel- storage distance, secondary containment- venting and relief, atmospheric vent, j stors, fire relief- fire prevention and protection- LPG storages, pressure s				

TT		C 1	1 . •	C .1		. 1	1 .	1 111	11					
Upon s	succes	essful co	mpletio	on of the	e course	e, the st	udents s	should b	be able t	tO				
CO'S	5					ST	ATEM	ENT						RBT EVEL
COI	-	Asses sat o design	-		-		n are ess	sential t	o the ch	nemical	industr	y and lead	ls	4
CO2	2. C	Commiss	sioning	and Ins	pection	of Plar	nt							5
CO3	7.	ind inn naintena			ons wh	ile indu	ustries t	facing 1	Problem	ns in co	ommiss	ioning an	d	3
CO4	1. Pi	repare t	he eme	rgency	plannin	g for ch	nemical	industr	y proble	ems				3
CO	5 C	Create sa	fe stor	age syst	ems									6
Faw Seco	ustries vcett, l ond E	s, Centr H.h. an Edition.1	e for C d Wood 1965.	hemical d, "Safe	Proces ty and A	s safety Accider	y. Secon nt Preve	d Eddit ntion in	tion, 20 Chemi	10 cal Ope	erations	of Chemi " Wiley in		
Faw Seco GRI Lee REFE "Ac Carl Petr	ustries vcett, 1 ond E EEN, s, F.P CREN cciden bide c roleun	s, Centr H.h. an Edition.1 A.E., " P. "Loss ICES: Int Preve of Calci m Act an	e for C d Wood 1965. High R <u>Preven</u> ntion N um Rul nd Rule	hemical d, "Safe isk Safe tion in fanual f les, Gove	Process ty and A ety Tech Process for Indu ernment	s safety Accider mology Indust strial O at of Ind	y. Secon nt Preve 7", John ries" Bu peration dia.	d Eddit ntion in Wiley utterwor	tion, 20 Chemi and Sor ths and	10 cal Ope ns,. 1984 Compa	erations ⁷ 4. Iny, Fot		ters,	2012.
. Faw Seco . GRI . Lee REFE . "Ac . Carl . Petr	ustries vcett, 1 ond E EEN, s, F.P CREN cciden bide c roleun	s, Centr H.h. an Edition. 7 A.E., " CES: CES: nt Preve of Calci	e for C d Wood 1965. High R <u>Preven</u> ntion N um Rul nd Rule	hemical d, "Safe isk Safe tion in fanual f les, Gove	Process ty and A ety Tech Process for Indu ernment	s safety Accider mology Industr strial O at of Industr of Industr	y. Secon nt Preve y", John ries" Bu peration lia. ia	d Eddit ntion in Wiley utterwor	tion, 20 Chemi and Sor ths and	10 cal Ope ns,. 1984 Compa	erations ⁷ 4. Iny, Fot	" Wiley in	on, 2	
Faw Secc GRI Lee REFE "Ac Carl Petr	ustries vcett, 1 ond E EEN, s, F.P CREN cciden bide o coleun	s, Centr H.h. an Edition.1 A.E., " P. "Loss ICES: Int Preve of Calci m Act an ARTIC	e for C d Wood 1965. High R Preven ntion N um Rul nd Rule	hemical d, "Safe isk Safe ition in fanual f les, Gove s, Gove	Process ty and A ety Tech Process for Indu ernment ATRIX	s safety Accider mology Indust strial O at of Indi	7. Secon nt Preve 7", John ries" Bu peration dia. ia PO	nd Eddit ntion in Wiley ntterwor	tion, 20 Chemi and Sor ths and C, Chica	10 cal Ope ns,. 1984 Compa ago, 198	erations ⁷ 4. my, Fou 32.	" Wiley in	on, 2	SO
Faw Seco GRI Lee REFE "Ac Carl Petr COUF	ustries /cett, 1 ond E EEN, s, F.P CREN CREN CCIDEN bide of coleun	s, Centr H.h. an Edition.1 A.E., " P. "Loss ICES: INT Preve of Calci m Act an ARTIC	e for C d Wood 1965. High R Preven ntion M um Rul nd Rule ULAT	hemical d, "Safe isk Safe ition in fanual f les, Gove S, Gove ION M	Process ty and 2 ety Tech Process for Indu rernment ATRIX	s safety Accider mology Industr strial O at of Indi of Indi	 y. Secon nt Preve y", John ries" Bu peration dia. <lidia.< li=""> dia. <lidia.< li=""> dia. dia. dia</lidia.<></lidia.<>	d Eddit ntion in Wiley itterwor	tion, 20 Chemi and Sor ths and C, Chica 9	10 cal Ope ns,. 1984 Compa ago, 198 ago, 198	erations ² 4. my, Fou 32. 11	" Wiley in urth Edditi	ters, on, 2	SO 2
Faw Seco GRI Lees REFE "Ac Carl Petr COUR	ustries vcett, 1 ond E EEN, s, F.P CREN cciden bide o coleun	s, Centr H.h. an Edition.1 A.E., " P. "Loss ICES: Int Preve of Calci m Act an ARTIC	e for C d Wood 1965. High R Preven ntion N um Rul nd Rule	hemical d, "Safe isk Safe ition in fanual f les, Gove s, Gove	Process ty and A ety Tech Process for Indu ernment ATRIX	s safety Accider mology Indust strial O at of Indi	y. Secon nt Preve y", John ries" Bu peration dia. ia	nd Eddit ntion in Wiley ntterwor	tion, 20 Chemi and Sor ths and C, Chica	10 cal Ope ns,. 1984 Compa ago, 198	erations ⁷ 4. my, Fou 32.	" Wiley in	on, 2	SO
Faw Secc GRI Lees REFE "Ac Carl Petr COUF CO CO1 CO2	ustries /cett, 1 ond E EEN, s, F.P CREN cciden bide o coleun RSE A 1 3	s, Centr H.h. an Edition.1 A.E., " CES: ICES: ICES: IN Preve of Calci IN Act an ARTIC	e for C d Wood 1965. High R Preven ntion M um Rul nd Rule ULAT: 3 3	hemical d, "Safe isk Safe ition in fanual f les, Gove s, Gove ION M 4 2	Process ty and 2 ety Tech Process For Indu For Indu Pernment ATRIX 5 2	s safety Accider mology Industr strial O at of Indi of Indi	y. Second nt Preve y", John ries" Bu peration dia. dia. dia. dia. dia. dia. dia. dia.	d Eddit ntion in Wiley itterwor	tion, 20 Chemi and Sor ths and C, Chica 9 3	10 cal Ope ns,. 1984 Compa ago, 198 10 3	erations ² 4. uny, Fou 32. 11 3	"Wiley in urth Edditi	ters, on, 2 P 1 3	SO 2 3
Faw Seco GRI Lee REFE "Ac Carl Petr	ustries vcett, 1 ond E EEN, s, F.P CREN cciden bide o coleun RSE A 1 3 3	s, Centr H.h. an Edition. 7 A.E., " CES: ICES: ICES: Int Preve of Calci In Act an ARTIC	e for C d Wood 1965. High R Preven ntion M um Rul nd Rule ULAT: 3 3 3 3	hemical d, "Safe isk Safe ition in fanual f les, Gove s, Gove ION M 4 2 2	Process ty and 2 ety Tech Process For Indu Vernment ATRIX 5 2 2 2	s safety Accider mology Industrial O at of Indi t of Indi t of Indi	7. Second at Preve 7", John ries" Bu operation dia. dia. dia. dia. dia. dia. dia. dia.	A Eddit ntion in Wiley Itterwor	tion, 20 Chemi and Sor ths and C, Chica 9 3 3 3	10 cal Ope ns,. 1984 Compa ago, 198 10 3 3	erations ³ 4. uny, Fou 32. 11 3 3 3	"Wiley in urth Edditi	ters, on, 2 P 1 3 3	SO 2 3 3

		L	Т	Р	C
CH2203	8 PROCESS SAFETY MANAGEMENT				_
		3	0	0	3
COURSE	OBJECTIVES:				
То	educate students on Process safety and management				
UNIT I	PROCESS SAFETY LEADERSHIP				9
	of Process Safety, Importance of Process safety in industrial operations Organizational learning, Management of change, Worker engagement,		-	ý	
UNIT II	MANAGEMENT OF PROCESS RISK				9
Establishir	g a process safety management system, Risk management techniques u	sed wit	hin the	proces	SS
	Asset management and maintenance strategies, Role and purpose and fe			-	
	m, Safe shift handover and Contractor management.		Ĩ		
UNIT III	PROCESS SAFETY HAZARD CONTROL				9
Operating	procedures, Safe start-up and shut-down, Safety critical performance sta	indards	, Utilitie	es,	
Electricity	static electricity, Dangerous substances, Reaction hazards, Bulk storage	operat	ions. H	azard	
Identificat	on and Risk assessment, Process safety information, Process Hazard Ar	nalysis			
UNIT IV	FIRE AND EXPLOSION PROTECTION				9
Fire hazaro	ls, Fire and explosion control, Dust explosions, Primary and secondary of	explosi	ons, Pre	ventio	on
	losions, Mitigation of dust explosions.	-			
UNIT V	EMERGENCY RESPONSE				9
Purpose of	an emergency plan, Development of an emergency plan, Content of an	emerge	ency pla	ın,	
Informatio	n management during emergencies including liaison with the media, Co / command team.	-	• •		ency
		ТОТА	L: 45 I	PERIC	ODS

OUTC	COM	ES:												
Upon s	succe	ssful co	ompleti	on of th	e cours	e, the st	udents	should l	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
COI		nalyze peratio		ndament	al princ	iples of	f proces	s safety	and its	import	ance in	industria	1	4
CO2	2. A	ssess tl	he Proc	ess safe	ety and o	comprel	hend ris	k mana	gement	in cher	nical pr	ocess pla	ints	4
CO3	з. A	nalyze	the Pr	ocess H	azard i	n chem	ical pro	cess inc	lustries					4
CO4	I. Ić	lentify	and co	ntrol fire	e and ex	plosior	n hazard	ls.						3
CO	5 D	evelop	emerg	ency res	sponse j	plans an	d partic	cipate						5
TEXT	BOO	OKS:												
2. "Qu Cen REFE . Lee: 2. Dan Boo 3. Des 4. Dev HSC 5. Guid HSI	antita tre fo REN s, F.P gerou ks, IS ignin relopi G254, dance E Boo	tive Ri r Chen CES: . "Loss is subs SBN: 9 g and c ng proc HSE I e on per oks, ISI	isk Ass nical Pr s Preven tances a 78-0-71 operatin cess saf 300ks, rmit-to- 3N: 978	ntion in and exp 176-661 g safe c ety indi ISBN: 9	rocess Process losive a 6-4. hemica cators, 978-0-7 ystems. 6-2943-	s Indust tmosph l reactic A step- 176-618 A guide 5.	ries" Bu ere, Ap on proce by-step 30-0.	utterwor proved esses, H guide fe	rths and Code of SG143, or chem	l Compa f Practio , HSE E nical and	any, 199 ce and g books, I d major	96 guidance,	L138, 8-0-71 [°] ndustri	76-1051-8 es,
C O							PO							PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	2	0	0	3	3	3	0	0	0	0	3	3
CO2	3	3	3	2	3	3	3	3	2	0	0	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	0	2	3	3	0	3	3	3	3	0	3	3	3	3
CO5	0	3	3	2	0	3	3	3	3	3	3	0	3	3

VERTICAL IV: ENERGY ENGINEERING

~~~~~	1 RENEWABLE ENERGY RESOURCES	L	Т	Р	С
CH2204	1 (COMMON TO CH, ME AND MR)	3	0	0	3
Understand Explore so Study the j	<b>OBJECTIVES:</b> d energy scenario, energy sources and their utilization. ciety's present needs and future energy demands. principles of renewable energy conversion systems. o energy conservation methods	1	I		
UNIT I	INTRODUCTION				9
implication description	on: Principles of renewable energy; energy and sustainable development as. worldwide renewable energy availability, renewable energy availabil as on solar energy, wind energy, tidal energy, wave energy, ocean therm l energy, oil shale. Introduction to Internet of energy (IOE)	ity in I	ndia, br	ief	
UNIT II	SOLAR ENERGY				9
surfaces; S systems: F generation	gy: Fundamentals; Solar Radiation; Estimation of solar radiation on hor olar radiation Measurements- Pyrheliometers, Pyrometer, Sunshine Rec lat plate collector; Solar distillation; Solar pond electric power plant. So - Principle of Solar cell, Photovoltaic system for electric power generati ages and applications of solar photovoltaic system.	order.S lar elec	olar Th tric pov	ermal ver	
UNIT III	WIND AND BIOMASS ENERGY				9
major probl Classificatio darrieus typ conversion	gy: Properties of wind, availability of wind energy in India, wind velo ems associated with wind power, Basic components of wind energy of on of WECS- Horizontal axis- single, double and multiblade system. es. Biomass Energy: Introduction; Photosynthesis Process; Biofuels; B technologies-fixed dome; Urban waste to energy conversion; Biomass g	convers Vertica siomass	ion sys 11 axis- 3 Resou	tem (' Savor rces; I	WECS); nius and Biomass aft)
UNIT IV	TIDAL AND OCEAN THERMAL ENERGY				9
power, harr	r: Tides and waves as energy suppliers and their mechanics; fundam tessing tidal energy, advantages and limitations. Ocean Thermal Energy FEC power stations in the world, problems associated with OTEC.				
UNIT V	GREEN ENERGY				9
Concepts.	rgy: Introduction, Fuel cells: Classification of fuel cells – $H_2$ ; Operating Benefits of hydrogen energy, hydrogen production technologies (electro energy storage, applications of hydrogen energy, problem associated wit	lysis m	ethod c	only),	rgy
		ΤΟ	TAL:	PEF	RIODS

OUT	COMI	ES:												
Upon	succes	ssful co	ompleti	on of th	e course	e, the st	udents s	should b	be able t	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO				nvironm nventio		-			<b>U</b> .			Compari	son	3
CO2	D 2. թյ	escribe	e the u on with	se of se	olar en	ergy an	d the v	various	compo	nents u	sed in	the ene ion, po		3
COS	- i			ersion p	rinciple	s of wi	nd and t	idal ene	ergy					3
CO4	<b>1</b> . A	pply th	ne conce	ept of bi	iomass	energy 1	resource	es and g	reen en	ergy.				3
CO		cquire hergy	the ba	isic kno	owledge	e of oc	ean the	ermal e	nergy c	convers	ion and	1 hydro	gen	3
2. <b>REFE</b> 1. 2. 3.	Princi Non-C ZREN D. Y Editic Imen Wind John	ples of Conver CES: ogi Go on, 201 e Yah Energ Twiddo	ntion Er oswami 6 yaoui, 4 ies, 201 el & To	Advance	k Krein es in R r, Renev	s, Shobl th, Ene enewab vable E	h Nath S rgy Eff le Ener	Singh, F ficiency gies an	Pearson, and R d Powe	, 2018 Renewal				x, Secon Solar and
00						]	PO						I	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	1	1	2	1	3	1	1	1	3	2	2
CO2	2	2	2	1	1	2	3	3	2	3	1	3	2	2
CO3	2	2	2	1	1	3	3	3	2	3	1	3	2	2
	3	2	2	1	1	3	3	3	2	3	1	3	3	2
CO4	5	-												2

CHOO		L	Т	Р	С
CH2204	42 ENERGY AND ENVIRONMENT	3	0	0	3
COURSE	OBJECTIVES:			I	
Under	stand the various sources of energy and their environmental implications				
Impar	t energy conversion processes and technologies.				
Evalu	ate the environmental impact of energy production and consumption.				
Explo	re sustainable energy solutions and their implementation.				
Devel	op critical thinking and problem-solving skills to address energy and env	ironme	ental ch	alleng	es.
UNIT I	INTRODUCTION TO ENERGY AND ENVIRONMENT				9
Definition	of energy and its forms - Environmental challenges related to energy pro-	oductio	n and		
consumpti	on, Role of chemical engineers in energy and environmental sustainabili	ty			
UNIT II	ENERGY RESOURCES				9
Fossil fuel	s - Coal, Oil and natural gas, Renewable energy sources - Solar, Wind,	Hydro	electric,	, Bion	iass
and Nucle	ear energy				
UNIT III	ENERGY CONVERSION TECHNOLOGIES				9
Thermal p	ower plants, Renewable energy systems, Energy storage technologies, E	nergy	efficien	cy and	1
conservati	on				
UNIT IV	ENVIRONMENTAL POLLUTION AND CLIMATE CHANGE				9
Air polluti	on: sources, effects, and control measures, Water pollution: sources	s, effec	ets, and	l treat	ment
methods, S	oil contamination and remediation. Greenhouse effect and global warr	ning, I	mpacts	of cl	imate
change on e	ecosystems and human health, Mitigation and adaptation strategies				
UNIT V	SUSTAINABLE ENERGY SOLUTIONS AND ROLE OF CHEMI	CAL			9
UNIT	ENGINEERS				,
Sustainabl	e development principles, Energy policy and regulations, Case studies of	f sustai	nable ei	nergy	
projects, A	pplication of chemical engineering principles to energy and environmen	tal prol	olems,		
Technolog	ical innovations for sustainable energy production and environmental pr	otectio	n		
		ТОТА	L: 45 F	PERIC	DDS
					]

OUTCO	DMES:	
Upon su	ccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Understand the various forms of energy and environmental sustainability	3
CO2.	Impart the knowledge on various energy resources	3
CO3.	Understand different energy conservation technologies for an efficient usage	3
CO4.	Develop the information on environmental pollution and climate change	3
CO5	Acquire the information on sustainable energy solutions and role of Chemical Engineers	3
2. David 3. Richar 4. Gilber	Peirce, P.Aarne Vesilind, and Ruth F. Weiner "Introduction to Energy and Environment" J.C. MacKay "Sustainable Energy - Without the Hot Air" 2010 d Wolfson "Energy, Environment, and Climate" 2018 M. Masters "Renewable and Efficient Electric Power Systems"2005 nzie L. Davis and Susan J. Masten "Principles of Environmental Engineering and Science	
REFER	ENCES:	
2. C (I	harucha, E., Textbook of Environmental Studies, Universities Press (2005). hapman, J.L. and Reiss, M.J., Ecology-Principles and Application, Cambridge Unive .PE) (1999). Vright, R.T., Environmental Science-Towards a sustainable Future, Prentice Hall (2008) 9	•
COURS	SE ARTICULATION MATRIX	
	РО	PSO

со		РО												
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	2	2	2	1	3	2	2	1	3	3	2
CO2	2	2	2	2	2	2	3	3	2	3	1	3	3	2
CO3	2	2	2	2	2	3	3	3	2	3	1	3	3	2
<b>CO4</b>	3	2	2	2	2	3	3	3	2	3	1	3	3	2
CO5	3	2	2	2	2	3	3	3	2	3	1	3	3	2

പ്പാറവ		L	Т	Р	C
CH2204	3 ENERGY CONSERVATION IN UTILITIES	3	0	0	3
COURSE	OBJECTIVES:				
Impa App Eval	erstand the importance of energy conservation in industrial utilities. rt energy consumption patterns and identify opportunities for energy sa y principles of heat integration and process optimization to maximize en late technologies and strategies for waste heat recovery and cogeneration loop skills to design, implement, and assess energy conservation measure	nergy e		cy.	
UNIT I	INTRODUCTION TO ENERGY CONSERVATION IN UTILITIE	ES			9
Importance	of energy conservation in industrial operations, Overview of energy	consun	nption i	n utili	ities:
Steam, Ele	ctricity & Refrigeration, Economic and environmental benefits of energy	gy effi	ciency r	neasu	res
UNIT II	ENERGY AUDITS AND ENERGY MANAGEMENT SYSTEMS				9
	energy audits - Walk-through audit, Preliminary audit, Detailed audithed frameworks (ISO 50001), Energy performance indicators and bench HEAT INTEGRATION AND PROCESS OPTIMIZATION AND I EFFICIENCY MEASURES	markin	g		9
recovery, efficiency	rsis and heat exchanger network design, Process integration techniques: Optimization of utility systems: Steam generation, Cooling water a improvement techniques, Steam system optimization : Steam traps a systems efficiency improvement, Lighting and HVAC system optimization	nd refand con	rigeratio	on, l	Boile
	COGENERATION AND COMBINED HEAT AND POWER (CHI	<b>P</b> )			
UNIT IV	of cogeneration and CHP systems, Types of prime movers: Steam		0	tumb	9
Principles	ng engines, Cogeneration system design and performance evaluation	turbin	es, Gas	s turb	
Principles Reciprocat					
Principles Reciprocat <b>UNIT V</b> Sources o	ng engines, Cogeneration system design and performance evaluation WASTE HEAT RECOVERY AND EMERGING TECHNOLOGIE	ES AN	D BEST	ſ	ines, 9
Principles Reciprocat <b>UNIT V</b> Sources o Organic Ra Advanced	ng engines, Cogeneration system design and performance evaluation WASTE HEAT RECOVERY AND EMERGING TECHNOLOGIE PRACTICES	ES AN	D BEST	Г kchan	9 gers,

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Familiarity with energy conservation in utilities	2
CO2.	Ability to understand about energy audits and energy management systems	3
CO3.	Acquire the concept of heat integration and process optimization and energy efficiency measures	3
CO4.	Apply the concepts of cogeneration and combined heat and power	3
CO5	Acquire the knowledge on waste heat recovery and emerging technologies and best practices	3
TEXT BO	OOKS:	
-	Turner and Steve Doty, "Energy Management Handbook" 2013 oswami and Frank Kreith, "Industrial Energy Management: Principles and Applications	" 2012
REFERE	ENCES:	

Francis S. Lee and George E. Kelly, "Energy Conservation in the Process Industries" 2018 Henning H. Meier and Hans-Peter Kau, "Cogeneration: Combined Heat and Power (CHP): Thermodynamics and Economics" 2003

Kuppan Thulukkanam, "Heat Exchanger Design Handbook"2013

# COURSE ARTICULATION MATRIX

CO	CO PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	2	2	2	1	3	1	1	1	3	3	2
CO2	2	2	2	2	2	2	3	3	2	3	1	3	3	2
CO3	2	2	2	2	2	3	3	3	2	3	1	3	3	2
<b>CO4</b>	3	2	2	2	2	3	3	3	2	3	1	3	3	2
CO5	3	2	2	2	2	3	3	3	2	3	1	3	3	2

	ENERGY CONVERSION AND STORAGE	L	Т	P	C
CH2204	4 TECHNIQUES	3	0	0	3
Und Exp Stuc	<b>OBJECTIVES:</b> erstand energy storage systems and their utilization. lore batteries magnetic and electric storage systems and its usage in pres y the principles of renewable energy conversionsystems. osed to fuel cells and its	ent sce	nario	<u> </u>	L
UNIT I	ENERGY CONVERSION AND STORAGE				9
electromag	MECHANICAL, THERMAL AND ELECTROCHEMICAL ENEI	emical one plo	-	ergy	9
UNII II	CONVERSION				9
Thermal po systems	Pumps and Compressors wer generation technologies: Steam turbines, Gas turbines and Combine ypes, working principles, and applications, Electrochemical capacitors a		-		CHP)
UNIT III	ENERGY STORAGE SYSTEMS				9
•	ergy storage: types, construction, and operation, Thermal energy storage eat storage, Flywheel energy storage and Compressed air energy storage	: Phase	change	e mate	erials,
UNIT IV	INTEGRATION OF ENERGY CONVERSION AND STORAGE I RENEWABLE ENERGY SYSTEMS	N			9
-	ation of renewable energy sources, Energy management and control stra energy systems	tegies,	Case s	tudies	of
UNIT V	EMERGING TRENDS AND INNOVATIONS				9
	in energy conversion technologies: Nanotechnology and materials science terials and systems, Future directions in energy conversion and storage r			s in er	nergy
	,	ΓΟΤΑ	L: 45 1	PERIO	ODS

OUT	COMI	ES:												
Upon	succes	ssful co	ompletio	on of th	e course	e, the st	udents s	should b	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO							torage ion dev				pes of	batteri	ies,	3
CO2	2. A	bility t	o under	stand al	oout dif	ferent e	energy c	onversi	on tech	niques				3
CO	3. A	pply th	ne mech	anism a	nd prin	ciple of	various	s energy	v storag	e syster	ns			3
CO4			he conc ystems	cepts of	integra	ation of	f energ	y conve	ersion a	and stor	rage in	renewa	ble	3
CO			the kno echnolo		on eme	erging t	rends a	nd inno	vations	in ener	gy conv	version a	and	3
	Syster	ns Des					Therma ations" 2		gy Stor	age Teo	chnolog	ies for	Sustai	nability
2. 3.	Funda Electr Super Frack	umenta ochem capacito owiak	tors: M ,Wiley-	wer Sou aterials, VCH	rces: Pr Syster	rimary a ns, and	n , B. So and Sec Applic chemica	ondary ations,	Batterie Kindle	es , P. P Edition	eregrine 1, Franc	ois Beg	uin , l	Elzbieta
COUI	RSE A	RTIC	CULAT	ION M	ATRIX									
СО			-	-	_		PO –	-	-					SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	1	2	2	1	3	1	1	1	3	2	2
CO2	2	2	2	1	2	2	3	3	2	3	1	3	2	2

CO3

**CO4** 

CO5

		L	Т	Р	C
CH2204	45 WASTE MANAGEMENT AND ENERGY RECOVERY	3	0	0	3
covering a advancem thermal co mining an	<b>C OBJECTIVES:</b> Provides with a comprehensive overview of waste man a spectrum of practices from collection to disposal. Through detailed stud- nents in waste-to-energy technologies, including anaerobic digestion, land ponversion methods. Additionally, recent innovations in waste disposal technologies of bioreactor landfills will be explored, highlighting their potential for mind d promoting resource recovery.	ly, insig lfill gas chnique	ghts into recove s such a	o the l ry, an as land	atest d dfill
UNIT I	CHARACTERISTICS AND PERSPECTIVES				9
	Types – Composition – Generation – Estimation Techniques – Character n System – Transfer Stations – Transfer Operations – Material Recycle / I		• •		
UNIT II	UNIT OPERATIONS & TRANSFORMATION TECHNOLOGIES	S			9
: Densifica	n & Processing: Size Reduction – Separation through Density Variation, ation - Physical, Chemical and Biological Properties and Transformation of Proper Mix of Technologies.	-			Field
Sciection					
UNIT III	WASTE DISPOSAL				9
UNIT III Landfill C Technique	WASTE DISPOSAL Classification – Types – Siting Considerations – Landfill Gas (Generation es) – Leachates Formation, Movement, Control Techniques – Environme closure & Post Closure Operation – Reclamation.				age
UNIT III Landfill C Technique	Classification – Types – Siting Considerations – Landfill Gas (Generation es) – Leachates Formation, Movement, Control Techniques – Environme Closure & Post Closure Operation – Reclamation.	ntal Qu			age
UNIT III Landfill C Technique Layout, C UNIT IV Physical T Combustic	Classification – Types – Siting Considerations – Landfill Gas (Generation es) – Leachates Formation, Movement, Control Techniques – Environme Closure & Post Closure Operation – Reclamation.	ental Qu DN Transfo	ality M	n –	age ring - <b>9</b>
UNIT III Landfill C Technique Layout, C UNIT IV Physical T Combustic	Classification – Types – Siting Considerations – Landfill Gas (Generation es) – Leachates Formation, Movement, Control Techniques – Environme Closure & Post Closure Operation – Reclamation. TRANSFORMATION TECHNOLOGIES AND VALUE ADDITIC Fransformation: Component Separation & Volume Reduction: Chemical Con/Gasification/ Pyrolysis: Energy Recovery - Biological Transformation	ental Qu DN Transfo	ality M	n –	age ring - <b>9</b>
UNIT III Landfill C Technique Layout, C UNIT IV Physical T Combustic – Anaerob UNIT V Definition	Classification – Types – Siting Considerations – Landfill Gas (Generation es) – Leachates Formation, Movement, Control Techniques – Environme Closure & Post Closure Operation – Reclamation. TRANSFORMATION TECHNOLOGIES AND VALUE ADDITIC Transformation: Component Separation & Volume Reduction: Chemical ' on/Gasification/ Pyrolysis: Energy Recovery - Biological Transformation pic Digestion.	ntal Qu ON Transfo n – Aero Combus	ormation obic Co	n – mpos	age ring - 9 ting 9
UNIT III Landfill C Technique Layout, C UNIT IV Physical T Combustic – Anaerob UNIT V Definition RDF / Ma	Classification – Types – Siting Considerations – Landfill Gas (Generation es) – Leachates Formation, Movement, Control Techniques – Environme Closure & Post Closure Operation – Reclamation. TRANSFORMATION TECHNOLOGIES AND VALUE ADDITIC Transformation: Component Separation & Volume Reduction: Chemical ' on/Gasification/ Pyrolysis: Energy Recovery - Biological Transformation bic Digestion. HAZARDOUS WASTE MANAGEMENT & WASTE RECYCLING n – Sources – Classification – Incineration Technology - Incineration vs C	ntal Qu ON Transfo n – Aero Combus f White	ormation obic Co	n – mpos chnol & E-	age ring - 9 ting 9 ogy -
UNIT III Landfill C Technique Layout, C UNIT IV Physical T Combustic – Anaerob UNIT V Definition RDF / Ma Wastes.	Classification – Types – Siting Considerations – Landfill Gas (Generation         es) – Leachates Formation, Movement, Control Techniques – Environme         Closure & Post Closure Operation – Reclamation.         TRANSFORMATION TECHNOLOGIES AND VALUE ADDITION         Fransformation: Component Separation & Volume Reduction: Chemical '         on/Gasification/ Pyrolysis: Energy Recovery - Biological Transformation         big	ntal Qu ON Transfo n – Aero Combus f White	ormation obic Co stion Te Goods	n – mpos chnol & E-	age ring - 9 ting 9 ogy -
UNIT III Landfill C Technique Layout, C UNIT IV Physical T Combustic – Anaerob UNIT V Definition RDF / Ma Wastes.	Classification – Types – Siting Considerations – Landfill Gas (Generation         es) – Leachates Formation, Movement, Control Techniques – Environme         Closure & Post Closure Operation – Reclamation.         TRANSFORMATION TECHNOLOGIES AND VALUE ADDITION         Fransformation: Component Separation & Volume Reduction: Chemical '         on/Gasification/ Pyrolysis: Energy Recovery - Biological Transformation         big	ntal Qu ON Transfo n – Aero Combus f White	ormation obic Co stion Te Goods	n – mpos chnol & E-	age ring - 9 ting 9 ogy -
UNIT III Landfill C Technique Layout, C UNIT IV Physical T Combustic – Anaerob UNIT V Definition RDF / Ma Wastes.	<ul> <li>Classification – Types – Siting Considerations – Landfill Gas (Generation Classification – Types – Siting Considerations – Landfill Gas (Generation es) – Leachates Formation, Movement, Control Techniques – Environme Closure &amp; Post Closure Operation – Reclamation.</li> <li>TRANSFORMATION TECHNOLOGIES AND VALUE ADDITIC Transformation: Component Separation &amp; Volume Reduction: Chemical 'on/Gasification/ Pyrolysis: Energy Recovery - Biological Transformation on Gasification.</li> <li>HAZARDOUS WASTE MANAGEMENT &amp; WASTE RECYCLING an – Sources – Classification – Incineration Technology - Incineration vs Cass Firing – Material Recycling: Paper / Glass / Plastics etc., - Disposal of MES:</li> </ul>	ntal Qu ON Transfo n – Aero Combus f White	ormation obic Co stion Te Goods	n – mpos chnol & E-	age ring - 9 ting 9 ogy - ODS BT

CO2.	Acquire the expertise needed to design, implement, and enhance solid waste separation, processing, and transformation processes, promoting sustainable waste management practices and maximizing resource utilization.	U
CO3.	Demonstrate proficiency in designing, operating, and managing landfills with environmental responsibility, ensuring regulatory compliance, and minimizing adverse effects on public health and the environment.	AP
CO4.	Evaluate, select, and implement physical, chemical, and biological transformation technologies for sustainable waste management and resource recovery initiatives.	AP
CO5	Apply recycling technologies for sustainable waste management and resource recovery initiatives.	AP

## **TEXT BOOKS:**

Energy Cogeneration Hand book, George Polimveros, Industrial Press Inc, New York 1982 Howard S. Peavy etal, "Environmental Engineering", McGraw Hill International Edition, 1985. LaGrega, M., et al., "Hazardous Waste Management", McGraw-Hill, c. 1200 pp., 2nd ed., 2001

## **REFERENCES:**

Manoj Datta, "Waste Disposal in Engineered Landfills", Narosa Publishing House, 1997. Parker Colin and Roberts, "Energy from Waste – An Evaluation of Conversion Technologies", Elsevier Applied Science, London, 1985.

Tchobanoglous, Theisen and Vigil, "Integrated Solid Waste Management", 2d Ed. McGrawHill, New York, 1993

COUH	RSE A	RTIC	CULAT	ION M	ATRIX									
<b>CO</b>						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2			3	3	2	1	2	2	3	3	2
CO2	3	3	2			3	3	2	1	2	2	3	3	2
CO3	3	3	2			3	3	2	1	2	2	3	3	2
<b>CO4</b>	3	3	2			3	3	2	1	2	2	3	3	2
CO5	3	3	2			3	3	2	1	2	2	3	3	2

		L	Т	P	С
CH22046	5 ALTERNATIVE ENERGY RESOURCES	3	0	0	3
renewable e	<b>OBJECTIVES:</b> To understand the concept of various forms of energy a energy sources for both domestic and industrial applications, and to stud nics of using renewable energy sources compared to fossil fuels.				
UNIT I	COMMERCIAL ENERGY				9
projections	Vatural gas, Nuclear power and Hydro - their utilization pattern in the pa of consumption pattern - Sector-wise energy consumption – environme rgy scenario in India – Growth of energy sector and its planning in India	ntal im			
UNIT II	SOLAR ENERGY				9
- solar therr desalination of solar ene	ion at the earth's surface – solar radiation measurements – estimation of nal flat plate collectors - concentrating collectors – solar thermal applica n, drying, cooking, etc – solar thermal electric power plant - principle of rgy, types of solar cells - Photovoltaic applications: battery charger, dor atter pumping etc - solar PV power plant – Net metering concept.	ations - photo	- heatin voltaic	g, coo convei	ling, rsion
UNIT III	WIND ENERGY				9
wind speed devices - cl	he wind – power in the wind – factors influencing wind – wind data and monitoring - wind resource assessment - Betz limit - site selection - win assification, characteristics, applications – offshore wind energy - Hybri atal aspects – wind energy potential and installation in India - Repowerin	nd ener id syste	gy con ems - sa	versio	
UNIT IV	BIO-ENERGY				9
direct comb	sources and their classification - Biomass conversion processes - Therm pustion – biomass gasification - pyrolysis and liquefaction - biochemical types of biogas Plant - applications - alcohol production from biomass – e to energy conversion - Biomass energy programme in India.	l conve	rsion -	anaero	obic
Urban wast					
	OTHER TYPES OF ENERGY				9

OUT	CON	IES:												
Upon	succ	essful co	ompleti	on of th	e cours	e, the st	udents s	should b	be able	to				
CO'S	5					ST	ATEM	ENT					]	RBT LEVEL
CO	1.	Achieve trends, e challeng	valuati	ng the e	nvironn	nental i	mpact o	f fossil	fuel uti				on	U
CO2	4.	Apply so and adva			_				dressing	g global	energy	challen	ges	AP
CO3	3.	Develop deploym transitio	ient, an	d mana	gement	of win	nd energ			-		-		AP
CO4	4.	Apply 1 manager and utili	nent of											AP
CO	5	Apply co based teo stewards	chnolog										-	AP
ТЕХТ	T BC	OKS:												
		t Sorens Igurater									Press,	1981		
REFE	RE	NCES:												
2.	Pres	hony Sai s, 1980. lfrey Boy 6					2			0.		ŕ		
COUI	RSE	ARTIC	CULAT	ION M	ATRIX	K								
со		-		_			PO		-	_				PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2			3	3	2	2	3	2	3	3	2
CO2	3	2	2			3	3	2	2	3	2	3	3	2
CO3	3	2	2			3	3	2	2	3	2	3	3	2
CO4	3	2	2			3	3	2	2	3	2	3	3	2
CO5	3	2	2			3	3	2	2	3	2	3	3	2

9

9

9

9

9

#### **COURSE OBJECTIVES:**

To understand the principle and use of sensors for measurement of different thermal and electrical parameters and concept of control systems, modes, design and their applications.

## UNIT I MEASUREMENT CHARACTERISTICS

Introduction to measurements, Errors in measurements, Statistical analysis of data, Regression analysis, Correlation, Estimation of uncertainty and Presentation of data, Design of experiments – Experimental design factors and protocols

## UNIT II | MEASUREMENTS IN ENERGY SYSTEMS

Basic Electrical measurements, Transducers and its types, Signal conditioning and processing -Measurement of temperature, pressure, velocity, flow rate, thermo-physical and transport properties of solids liquids and gases, Radiation properties of surfaces, Vibration and noise - Computer assisted data acquisition, Data manipulation and data presentation.

# UNIT III CONTROL SYSTEMS

Introduction, Open and closed loop control systems, Transfer function. Types of feedback and feedback control system characteristics – Effect of disturbances – Dynamic characteristics.

# UNIT IV CONTROL COMPONENTS AND CONTROLLER

Process characteristics, Control system parameters – DC and AC servomotors, servo amplifier, potentiometer, synchro transmitters, synchro receivers, synchro control transformer, stepper motors – continuous, discontinuous and composite control modes – Analog and Digital controllers.

# UNIT V DESIGNING OF MEASUREMENT AND CONTROL SYSTEMS

Designing of temperature, pressure, flow and liquid level measurement and control system – Performance – Steady state accuracy – Transient response – Frequency response – Fault finding – Computer based controls.

# **TOTAL: 45 PERIODS**

OUTCO		
CO'S	ccessful completion of the course, the students should be able to STATEMENT	RBT LEVEI
CO1.	Develop a solid foundation in measurement principles, error analysis, statistical data analysis including regression and correlation techniques,	U
CO2.	Equip with the knowledge and skills in basic electrical measurements, Additionally, proficient in computer-assisted data acquisition, manipulation, and presentation techniques.	AP
CO3.	Build clarity on control aspects, particularly in relation to Energy Conservation Schemes.	U
CO4.	Develop proficiency in understanding process characteristics and control system parameters.	U
CO5	Acquire the skills to design measurement and control systems for temperature, pressure, flow, and liquid level.	AP
	OOKS: rris and Reza Langari, "Measurements and Instrumentation – Theory and Application", Elsevier "Industrial Control and Instrumentation", University Press, 2004.	Inc, 2012
REFER	ENCES:	
Doblin E.C	hnson, 'Process Control Instrumentation Technology", PHI Learning Private Limited, 2011. ), 'Measurement System Application and Design", Second Edition, McGraw Hill, 1978. an.S.P, "Mechanical Measurements", Ane Books Pvt Ltd, 2010	
COURS	E ARTICULATION MATRIX	
	PO	PSO

<b>CO</b>						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3			2	2	2	1	3		3	3	2
CO2	3	3	3			2	2	2	1	3		3	3	2
CO3	3	3	3			2	2	2	1	3		3	3	2
CO4	3	3	3			2	2	2	1	3		3	3	2
CO5	3	3	3			2	2	2	1	3		3	3	2

01100		L	Т	Р	C
CH2204	8 ENERGY AUDIT	3	0	0	3
COURSE	<b>OBJECTIVES:</b> To provide advanced knowledge and skills in energy	manage	ement ar	nd aud	iting
enabling tl	nem to analyze, optimize, and implement effective energy conservation	strategi	es acros	s dive	erse
sectors, the	ereby fostering sustainable energy practices and resource utilization.				
UNIT I	ENERGY SCENARIO				9
Energy nee	ds of growing economy, long term energy scenario, Energy pricing, Energy se	ctor refo	orms, En	ergy a	nd
environmer	t: Air pollution, Climate change, Energy security, Energy conservation and its	s import	ance, En	ergy	
strategy for	the future, Energy conservation Act-2001 and its features				
UNIT II	ENERGY MANAGEMENT:				9
Concept of	energy management, energy demand and supply, economic analysis; Duties a	nd respo	onsibiliti	es of e	nergy
managers. l	Energy Conservation: Basic concept, energy conservation in Household, Trans	portatio	n, Agric	ultural	,
service and	Industrial sectors, Lighting, HAVC.				
UNIT III	MATERIAL ENERGY BALANCE				9
Method for	preparing process flow; material and energy balance diagrams. Energy Action	Plannii	ng: Key	elemer	nts,
force field	analysis; Energy policy purpose, perspective, content, formulation, rectificatio	n.			
UNIT IV	MONITORING AND TARGETING				9
Definition	nonitoring & targeting; Data and information analysis. Electrical Energy Man	agement	: energy		
conservatio	n in motors, pumps and fan systems; energy efficient motors.				
UNIT V	THERMAL ENERGY MANAGEMENT:				9
Energy con	servation in boilers, steam turbine and industrial heating system; Application	of FBC;	Cogener	ration a	and
waste heat	recovery; Thermal insulation; Heat exchangers and heat pump; Building Energy	gy Mana	gement.		
		ТОТА	L: 45 I	PERIC	ODS

OUTO	COM	ES:												
Upon	succe	essful co	ompleti	on of th	e course	e, the st	udents s	should b	be able t	0				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO	<b>1.</b> ^A	Analyse	about e	energy s	cenario	nationv	wide and	d world	wide.				AN	-
CO2	2. ^A	Apply er	nergy m	nanagen	nent in r	nore ef	fective	way.					AP	
CO3	4		<b>•</b>	ind man sustaina	0	<b>U</b> .				0	ational c	contexts	, AN	-
CO4				age and 1mental									AP	
CO	⊿ 5 n	Acquire neasure	knowle s across	edge and	l skills 1 range o	necessar of indus	ry to im trial and	plemen d comm	t effecti	ive ener	gy cons	servation uting to		
	Asho	k Kuma		l Gokul Energy					-	ment, C	RC pres	ss, 2022	2	
REFE	REN	ICES:												
	U	-		g Energy		•	•							
		-	-	gy Manag iting and	-									
COUI	RSE	ARTIC	ULAT	ION M	ATRIX									
							PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2			2	3	2	2	3	2	3	3	2
CO2	3	2	2			2	3	2	2	3	2	3	3	2
CO3	3	2	2			2	3	2	2	3	2	3	3	2
<b>CO4</b>	3	2	2			2	3	2	2	3	2	3	3	2
CO5	3	2	2			2	3	2	2	3	2	3	3	2

# VERTICAL V: ENVIRONMENTAL ENGINEERING (Common to CH & CE)

	С
CH22051 INDUSTRIAL WASTE MANAGEMENT	
$\begin{array}{c} 1122031 \\ 3 \\ 0 \\ 0 \\ \end{array}$	3
COURSE OBJECTIVES: To provide an understanding of solid waste classification, characteristics an	nd its
management, by following regulations and including environment risk assessment.	
UNIT I FUNDAMENTALS	9
Types of industries and industrial pollution - Characteristics of industrial wastes - Population equivalen	nt –
Bioassay studies - effects of industrial effluents on streams, sewer, land, sewage treatment plants and	
human health – ISI tolerance limits for discharging industrial effluents into surface water, into public	
sewers and on to land for irrigation- Environmental legislations related to prevention and control of	
industrial effluents and hazardous wastes.	
UNIT II CLEANER PRODUCTION	9
Waste management Approach – Waste Audit – Volume and strength reduction – Material and process	
modifications – Removal of Nitrogen and Phosphorus –Boiler water treatment methods and cooling wat	ter
treatment methods Recycle, reuse and byproduct recovery – Applications	
UNIT III POLLUTION FROM MAJOR INDUSTRIES	9
Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries,	,
Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Cement, Steel plants, Refine	eries,
fertilizer, thermal power plants – Wastewater reclamation concepts.	
UNIT IV TREATMENT TECHNOLOGIES	9
Equalisation - Neutralisation - Flotation - Precipitation - Heavy metal Removal- Aerobic and anaerobi	ic
biological treatment - Sequencing batch reactors - High Rate reactors - Chemical oxidation - Ozonation	n –
carbon adsorption - Photocatalysis - Wet Air Oxidation - Evaporation - Ion Exchange - Membrane	
Technologies – Nutrient removal Treatability studies	
UNIT V     HAZARDOUS WASTE MANAGEMENT     9	9
Hazardous wastes - Physico chemical treatment – solidification – incineration – Secured landfills, Zero	
effluent discharge system.	
TOTAL:45 PERIO	DDS

OUTC	COM	ES:												
Upon s	succe	essful co	ompleti	on of th	e course	e, the st	udents s	should b	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
C01	l. D	Develop	the kno	owledge	e on the	sources	s and ch	aracteri	stics of	polluta	nts.			3
CO2		Analyze ampling			-	-	osition	of solid	waste	with me	thods c	of handli	ng,	4
CO3		nspect edistrib				ethod	for so	olid w	aste c	ollection	n, trar	nsportati	on,	4
CO4	I. ^{Io}	dentify	the met	hods of	dispos	al of ha	zardous	& radio	oactive	solid wa	aste.			3
CO	5 ^{Iı}	nfer abo	out the 1	risk asse	essment	and reg	gulation	s of sol	id waste	e manag	gement.			3
TEXT	BO	OKS:												
2.	W.W		nfelder	· ·			,			Publica Graw-H		95. ok Comp	oany, N	[ew
REFE														
1. '	T.T.S	Shen, "I	ndustri	al Pollu	tion Pre	evention	n", Sprin	nger, 19	99.					
		Stephen isher, N				ırn, Jr.	, "Indu	istrial '	Wastew	ater Sy	ystems	Hand	book",	Lewis
3.	H.M.	Freema	ın, "Ind	ustrial l	Pollutio	n Preve	ntion H	and Bo	ok", Mo	Graw-I	Hill Inc	., New I	Delhi, 1	995.
4.	Bisho	op, P.L.	, "Pollu	ition Pr	evention	n: Fund	amental	& Prac	ctice", N	AcGraw	-Hill, 2	2000.		
COUR	RSE /	ARTIC	CULAT	ION M	ATRIX	K								
СО				I	I	]	PO	1	1				P	<b>SO</b>
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2		3	2	3	3	2	2	2	2	2	2
CO2	2	3	2	2	2	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	3	3	2	2	2	2	2	3
CO4	2	2	2	2	2	2	3	3	2	2	2	2	2	2
CO5	2	2	1	2	2	2	2	3	3	2	2	2	1	1

GUAGA		L	Т	Р	C
CH2205	52 AIR POLLUTION MANAGEMENT	3	0	0	3
COURSE	COBJECTIVES: This subject covers the sources, characteristics and eff	fects of	air and	noise	1
pollution	and the methods of controlling the same. The student is expected to know	v about	source	inven	tory
and contro	ol mechanism.				
UNIT I	SOURCES AND EFFECTS OF AIR POLLUTANTS				9
Classificati	ion of air pollutants – Particulates and gaseous pollutants – Sources of air pollu	tion – S	ource in	ventor	y –
Effects of a	air pollution on human beings, materials, vegetation, animals – global warming	-ozone l	ayer dep	oletion	,
Sampling a	and Analysis – Basic Principles of Sampling – Source and ambient sampling –	Analysis	s of poll	utants	_
Principles-	Impacts of Air pollution on building materials and structures.				
UNIT II	DISPERSION OF POLLUTANTS				9
Elements o	of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheri	c stabili	ty and to	ırbuler	nce -
Plume rise	- Air Quality Index-Dispersion of pollutants - Dispersion models - Applicatio	ons			
UNIT III	AIR POLLUTION CONTROL				9
Concepts c	of control – Principles and design of control measures – Particulates control by	gravitati	onal, ce	ntrifug	gal,
filtration, s	crubbing, electrostatic precipitation - Selection criteria for equipment - gaseous	s polluta	ant contr	ol by	
adsorption	, absorption, condensation, combustion – Pollution control for specific major in	dustries	- Air Po	llution	1
control dev	vices.				
UNIT IV	AIR QUALITY MANAGEMENT				9
Air quality	standards – Air quality monitoring – Sampling and Analysis of SO ₂ and NO ₂ in	n ambie	nt air-Pr	eventi	ve
measures -	Air pollution control efforts - Zoning - Town planning regulation of new indu	stries –	Legislat	ion an	d
enforceme	nt – Environmental Impact Assessment and Air quality-Various models for che	cking A	ir Quali	ty.	
					0
UNIT V	AIR QUALITY SAMPLING AND MONITORING				9
UNIT V	Ding - instrumentation and methods of analysis of SO ₂ , CO etc - legislation for	control	of air po	ollutior	

# **TOTAL: 45 PERIODS**

IES:	
essful completion of the course, the students should be able to	
STATEMENT	RBT LEVEL
Interpret the sources and effects of air pollutants.	2
Inspect the various dispersion of pollutants.	4
Identifying the concepts involved in air pollution control.	3
Analyze the air quality standards and management policies.	4
Judge the monitoring levels of SO2,CO etc	5
	essful completion of the course, the students should be able to STATEMENT Interpret the sources and effects of air pollutants. Inspect the various dispersion of pollutants. Identifying the concepts involved in air pollution control. Analyze the air quality standards and management policies.

# **TEXT BOOKS:**

- 1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.
- 3. Rao M.N., and Rao H. V. N., Air Pollution Control, Tata-McGraw-Hill, New Delhi, 1996.

## **REFERENCES:**

- 1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997.
- 2. Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing Company, New Delhi, 1991.
- 3. Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, New Delhi, 1985.
- 4. Garg, S.K., "Environmental Engineering Vol. II", Khanna Publishers, New Delhi.
- 5. Mahajan, S.P., "Pollution Control in Process Industries", Tata McGraw-Hill, New Delhi, 1991

## COURSE ARTICULATION MATRIX

со						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2		3	3	3	2	3	3	2	2	2
CO2	2	3	2		2	3	3	2	2	2	2	2	2	2
CO3	1	2	2	2	3	3	3	3	2	2	2	2		
<b>CO4</b>	2	2	2	2	3	2	3	3	2	2	2	1	2	2
CO5	2	2	2	2	2	3	3	2	2	2	2	2	2	2

010005		L	Т	Р	C
CH22053	3 DISASTER MITIGATION AND MANAGEMENT	3	0	0	3
COURSE	OBJECTIVES:		1		
To impart k	nowledge of causes of various disaster and its impact.				
To understar	nd the concept of Disaster Management Cycle and Framework.				
To build ski	lls to respond to disaster.				
To explain t	he Applications of Science and Technology for Disaster Management & Mitig	gation			
UNIT I	INTRODUCTION				9
Understandi	ing the Concepts and definitions of Disaster and its types, Hazard, Vulnerabilit	ty, Risk	, Capaci	ty, Dis	saster
and Develop	pment, and disaster management.				
UNIT II	DISASTER RISK REDUCTION (DRR)				9
10 Disaster	Risk Reduction Strategies, Disaster Cycle, Phases of Disaster, Preparedne	ss Plan	s, Actio	n Plar	ns ar
		isaster	Relief-(	Water,	, foo
Procedures,	Early warning Systems, Models in disaster preparedness, Components of D	isuster			
	Early warning Systems, Models in disaster preparedness, Components of D shelter, Health and Waste Management), Community based DRR, Structura		ructural	measu	ures i
sanitation, s		1 nonsti			
sanitation, s DRR, Facto	shelter, Health and Waste Management), Community based DRR, Structura	l nonstr oment, U	Jndertak	ting ris	sk an
sanitation, s DRR, Facto vulnerability	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop	l nonsti oment, U ness Pl	Jndertak anning,	ting ris	sk an
sanitation, s DRR, Facto vulnerability Responsibili	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedn	l nonsti oment, U ness Pl	Jndertak anning,	ting ris	sk an
sanitation, s DRR, Facto vulnerability Responsibili	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term	l nonstr oment, U ness Pl reconst	Undertak anning, ruction.	ting ris Role	sk an s an 9
sanitation, s DRR, Facto vulnerability Responsibili <b>UNIT III</b> Disaster Ma	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b>	l nonstr oment, U ness Pl reconst	Undertak anning, ruction.	Roles	sk an s an <b>9</b> aalysi
sanitation, s DRR, Facto vulnerability Responsibili UNIT III Disaster Ma Risk Mappi	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk	l nonstr oment, U ness Pl reconst c Assess cs, Earl	Undertak anning, ruction. sment a y Warn	Roles	sk an s an 9 aalysi ysten
sanitation, s DRR, Facto vulnerability Responsibili <b>UNIT III</b> Disaster Ma Risk Mappi Preparednes	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk ing, zonation and Micro zonation, Prevention and Mitigation of Disaster	l nonstr oment, U ness Pl reconst c Assess cs, Earl Commu	Undertak anning, ruction. sment a sment a y Warn nication	Roles Roles nd An ing Sy	sk an s an 9 alysi ysten ch an
sanitation, s DRR, Facto vulnerability Responsibili <b>UNIT III</b> Disaster Ma Risk Mappi Preparednes Rescue, Em	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk ing, zonation and Micro zonation, Prevention and Mitigation of Disaster ss, Capacity Development, Awareness During Disaster Evacuation, Disaster C	l nonstr oment, U ness Pl reconst c Assess cs, Earl Commu- itation,	Undertak anning, ruction. sment a y Warn nication Damage	nd An ing Sy Searce and	sk an s an 9 alysi ysten ch an Neec
sanitation, s DRR, Facto vulnerability Responsibili <b>UNIT III</b> Disaster Ma Risk Mappi Preparednes Rescue, Em Assessment	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk ing, zonation and Micro zonation, Prevention and Mitigation of Disaster ss, Capacity Development, Awareness During Disaster Evacuation, Disaster Compared Disaster Command System, Relief and Rehabilitation intervention Command System, Relief and Rehabilitation	l nonstr oment, U ness Pl reconst c Assess cs, Earl Commu- itation,	Undertak anning, ruction. sment a y Warn nication Damage	nd An ing Sy Searce and	sk an s an 9 alysi ysten ch an Neec
sanitation, s DRR, Facto vulnerability Responsibili <b>UNIT III</b> Disaster Ma Risk Mappi Preparednes Rescue, Em Assessment Yokohama S	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk ing, zonation and Micro zonation, Prevention and Mitigation of Disaster ss, Capacity Development, Awareness During Disaster Evacuation, Disaster C hergency Operation Centre, Incident Command System, Relief and Rehabilit , Restoration of Critical Infrastructure, Early Recovery, Reconstruction and	l nonstr oment, U ness Pl reconst c Assess cs, Earl Commu- itation,	Undertak anning, ruction. sment a y Warn nication Damage	nd An ing Sy Searce and	sk an s an 9 alysi ysten ch an Neec
sanitation, s DRR, Facto vulnerability Responsibility <b>UNIT III</b> Disaster Ma Risk Mappi Preparednes Rescue, Em Assessment Yokohama S	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk ing, zonation and Micro zonation, Prevention and Mitigation of Disaster ess, Capacity Development, Awareness During Disaster Evacuation, Disaster Chergency Operation Centre, Incident Command System, Relief and Rehabilit , Restoration of Critical Infrastructure, Early Recovery, Reconstruction and Strategy, Hyogo Framework of Action.	l nonstr oment, U ness Pl reconst c Assess cs, Earl Commu itation, d Rede	Jndertak anning, ruction. sment a y Warn nication Damage velopme	nd An ing Sy , Searce and ont, ID	sk an s an 9 aalysi ysten ch an Neec DNDF 9
sanitation, s DRR, Facto vulnerability Responsibility <b>UNIT III</b> Disaster Ma Risk Mappi Preparedness Rescue, Em Assessment Yokohama S <b>UNIT IV</b> Disaster Pro	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedness ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk ing, zonation and Micro zonation, Prevention and Mitigation of Disaster ess, Capacity Development, Awareness During Disaster Evacuation, Disaster Chergency Operation Centre, Incident Command System, Relief and Rehabilit , Restoration of Critical Infrastructure, Early Recovery, Reconstruction and Strategy, Hyogo Framework of Action. <b>MITIGATION AND DISASTER MANAGEMENT</b>	l nonstr oment, U ness Pl reconst c Assess cs, Earl Commu- itation, d Rede	Jndertak anning, ruction. sment a y Warn nication Damage velopme	nd An ing Sy , Searce and ent, ID	sk an s an 9 alysi ysten ch an Need DNDF 9 tional
sanitation, s DRR, Facto vulnerability Responsibility <b>UNIT III</b> Disaster Ma Risk Mappi Preparedness Rescue, Em Assessment Yokohama S <b>UNIT IV</b> Disaster Pro and Financi	shelter, Health and Waste Management), Community based DRR, Structura ors affecting Vulnerabilities, Mainstreaming disaster risk reduction in develop y assessments, Policies for Disaster Preparedness Programs, Preparedre ities, Public Awareness and Warnings, Rehabilitation measures and long term <b>DISASTER MANAGEMENT CYCLE AND FRAMEWORK</b> anagement Cycle, Paradigm Shift in Disaster Management Pre-Disaster Risk ing, zonation and Micro zonation, Prevention and Mitigation of Disaster ss, Capacity Development, Awareness During Disaster Evacuation, Disaster C nergency Operation Centre, Incident Command System, Relief and Rehabilit , Restoration of Critical Infrastructure, Early Recovery, Reconstruction and Strategy, Hyogo Framework of Action. <b>MITIGATION AND DISASTER MANAGEMENT</b> ofile of India, Mega Disasters of India and Lessons Learnt, Disaster Managem	l nonstr oment, U ness Pl reconstr c Assess cs, Earl Commu- itation, d Reder	Jndertak anning, ruction. sment a y Warn nication Damage velopme	nd An ing Sy , Searce and e and ent, ID	sk an s an <b>9</b> alysi ysten ch an Neec DNDF <b>9</b> tional saster

# UNIT V

# APPLICATIONS OF SCIENCE AND TECHNOLOGY FOR DISASTER MANAGEMENT & MITIGATION

Geo-informatics in Disaster Management, Disaster Communication System, Land Use Planning and Development Regulations, Structural and Non Structural Mitigation of Disasters, S&T Institutions for Disaster Management in India.

#### **TOTAL: 45 PERIODS**

## **OUTCOMES:**

Upon successful completion of the course, the students should be able to

CO'S	STATEMENT	RBT LEVEL
CO1.	Classifying the various types of disasters, causes and their impact on environment and society.	2
CO2.	Analyze and evaluate the measures adopted to mitigate the impacts.	4
CO3.	Relate the skills in various stages of disaster preparedness, mitigation and management.	3
CO4.	Explain about organizational and administrative strategies for managing disasters.	2
CO5	Summarise the methodologies for disaster risk assessment with the help of latest tools like GPS, GIS, Remote sensing, information technologies, etc.	2

## **TEXT BOOKS:**

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- Disaster Management by Dr. Mrinalini Pandey, Published by Wiley India, 2014 ISBN 10:8126549246/ISBN 13:9788126549245
- Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]

#### **REFERENCES:**

- 1. Disaster Management Act, Publisher by Govt. of India.
- Publications of National Disaster Management Authority (NDMA) on Various Templates and Guidelines for Disaster Management 6. NIDM Publications, GoI.
- 3. National Disaster Management Policy, Gol.
- Roy, P.S. (2000): Space Technology for Disaster management: A Remote Sensing & GIS Perspective, Indian Institute of Remote Sensing (NRSA) Dehradun

9

COU	RSE A	RTIC	CULAT	ION M	ATRIX	X								
CO						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2	3	2	3	3	2	2	2	1	2	2
CO2	2	3	2	2	2	2	3	3	2	3	2	2	1	1
CO3		3	2	2	3	2	3	2	2	2	3	2	2	2
<b>CO4</b>	2	2	2	2	2	2	3	2	2	2	3	1	1	1
CO5	2	2	2	2	2	2	3	3	2	2	2	1		1

S       0       0         COURSE OBJECTIVES:         • To educate about Climate system and its changes and causes       •         • To impart knowledge about impacts, adaptation and mitigation of climate change       •         • To provide knowledge about clean technology and clean energy.       •         UNIT I       INTRODUCTION TO CLIMATE CHANGE SCIENCE       •         Introduction - The basics of climate change science -Climate in the spotlight - The Earth's Climate Machine – Clim Classification - Global Wind Systems – Trade Winds and the Hadley Cell – The Westerlies - Cloud Formation Monsoon Rains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation – El Nino and its Effect Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle.         UNIT II       OBSERVED CHANGES AND ITS CAUSES       •         Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effect Climate Change – Patterns of Large Scale Variability – Drivers of Climate Change – Climate Sensitivity and Feedbac The Montreal Protocol – history of international climate change negotiations and introduces the United Nations Framework Convention on Climate Change daptation - Framework for assessing climate vulnerability - Impacts of Climate Change various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement Society – Methods and Scenarios – Projected Impact for Different Regions – Uncertainties in the Projected Impact Climate Change – Risk of Irreversible Changes. Introduction to linkages between climate change adaptation initatives and program			L	Τ	Р	C
To educate about Climate system and its changes and causes       To inpart knowledge about impacts, adaptation and mitigation of climate change         To provide knowledge about clean technology and clean energy.       INTRODUCTION TO CLIMATE CHANGE SCIENCE       9         Introduction - The basics of climate change science -Climate in the spotlight - The Earth's Climate Machine - Clin Classification - Global Wind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effe Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle.       9         UNIT II       OBSERVED CHANGES AND ITS CAUSES       9         Observation of Climate Change - Changes in patterns of temperature, precipitation and sea level rise - Observed effect Climate Change - Clanges in patterns of Large negotiations and introduces the United Nations Framer Convention on Climate Change duPFCCO - IPCC - Evidences of Changes in Climate and Environment - on a Globa Scale and in India - Climate change modeling.       9         UNIT III       IMPACTS OF CLIMATE CHANGE       9         Concept of climate change adaptation - Framework for assessing climate vulnerability - Impacts of Climate Change adaptation environment on a Globa Scale and in India - Climate Change - Projected Impacts for Different Regions - Uncertainties in the Projected Impact for Different Regions - Uncertainties in the Projected Impact so for Different Regions - Uncertainties in the Projected Impact sones - Matter Agriculture - Matter Adaptation Gasta zones - Human Health - Tourism - Transport - Energy - Key Mitigation Technologie and P	CH2205	4 GLOBAL CLIMATE CHANGE	3	0	0	3
Introduction- The basics of climate change science -Climate in the spotlight - The Earth's Climate Machine - Clim Classification - Global Wind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effe Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle. UNIT II OBSERVED CHANGES AND ITS CAUSES Observation of Climate Change - Changes in patterns of temperature, precipitation and sea level rise - Observed effect Climate Changes - Patterns of Large Scale Variability - Drivers of Climate Change - Climate Sensitivity and Feedbac The Montreal Protocol - history of international climate change negotiations and introduces the United Nations Framew Convention on Climate Change (UNFCCC) - IPCC - Evidences of Changes in Climate and Environment - on a Globa Scale and in India - climate change modeling. UNIT III IMPACTS OF CLIMATE CHANGE Concept of climate change adaptation- Framework for assessing climate vulnerability -Impacts of Climate Change various sectors - Agriculture, Forestry and Ecosystem - Water Resources - Human Health - Industry, Settlement Society - Methods and Scenarios - Projected Impacts for Different Regions - Uncertainties in the Projected Impact Society - Methods and Scenarios - Projected Impacts Introduction to linkages between climate change adaptation development. Important international adaptation initiatives and programmes. UNIT IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES Adaptation Strategy/Options in various sectors - Water - Agriculture - Infrastructure and Settlement including coasta zones - Human Health - Tourism - Transport - Energy – Key Mitigation Technologies and Practices - Energy Supply Transport - Buildings - Industry - Agriculture - Forestry - Carbon sequestration - Carbon capture and storage (CCS) - Waste (MSW & Bio waste, Biomedical, Industrial waste - International an	To educa To impar	e about Climate system and its changes and causes t knowledge about impacts, adaptation and mitigation of climate change	1	L	1	
Classification - Global Wind Systems – Trade Winds and the Hadley Cell – The Westerlies - Cloud Formation Monsoon Rains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation – El Nino and its Effe Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle. UNIT II OBSERVED CHANGES AND ITS CAUSES 9 Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effect Climate Changes – Patterns of Large Scale Variability – Drivers of Climate Change – Climate Sensitivity and Feedbac The Montreal Protocol – history of international climate change negotiations and introduces the United Nations Framer Convention on Climate Change (UNFCCC) – IPCC – Evidences of Changes in Climate and Environment – on a Globa Scale and in India – climate change modeling. UNIT III IMPACTS OF CLIMATE CHANGE 9 Concept of climate change adaptation- Framework for assessing climate vulnerability -Impacts of Climate Change various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impact Climate Change – Risk of Irreversible Changes. Introduction to linkages between climate change adaptation development. Important international adaptation initiatives and programmes. UNIT IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES Adaptation Strategy/Options in various sectors – Water – Agriculture – Infrastructure and Settlement including coasta zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation. UNIT V CLEAN TECHNOLOGY & CLIMATE CHANGE FINANCE 9 Clean Development Mechanism – Carbon Trad	UNIT I	INTRODUCTION TO CLIMATE CHANGE SCIENCE				9
Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effect         Climate Changes – Patterns of Large Scale Variability – Drivers of Climate Change – Climate Sensitivity and Feedbac         Convention on Climate Change (UNFCCC) – IPCC – Evidences of Changes in Climate and Environment – on a Globa         Scale and in India – climate change modeling.         UNIT III       IMPACTS OF CLIMATE CHANGE         Concept of climate change adaptation- Framework for assessing climate vulnerability -Impacts of Climate Change various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impact Climate Change – Risk of Irreversible Changes. Introduction to linkages between climate change adaptation development. Important international adaptation initiatives and programmes.         UNIT IV       CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES       9         Adaptation Strategy/Options in various sectors – Water – Agriculture – Infrastructure and Settlement including coasta zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) - Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.       9         UNIT IV       CLEAN TECHNOLOGY & CLIMATE CHANGE FINANCE       9         Clean Development Mechanism – Carbon Trading - examples of future Clean Technology – Biodiesel – Natural Comp – Eco- Frie	Classification Monsoon R	on - Global Wind Systems – Trade Winds and the Hadley Cell – The Wester ains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation	lies - Cl on – El I	oud Foi Nino and	rmatior 1 its Ef	n and fect -
Climate Changes – Patterns of Large Scale Variability – Drivers of Climate Change – Climate Sensitivity and Feedback The Montreal Protocol – history of international climate change negotiations and introduces the United Nations Frame Convention on Climate Change (UNFCCC) – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling. UNIT III IMPACTS OF CLIMATE CHANGE 9 Concept of climate change adaptation- Framework for assessing climate vulnerability -Impacts of Climate Change various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impact Climate Change – Risk of Irreversible Changes. Introduction to linkages between climate change adaptation development. Important international adaptation initiatives and programmes. UNIT IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES 9 Adaptation Strategy/Options in various sectors – Water – Agriculture – Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) - Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation. UNIT V CLEAN TECHNOLOGY & CLIMATE CHANGE FINANCE 9 Clean Development Mechanism – Carbon Trading - examples of future Clean Technology – Biodiesel – Natural Comp – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding. National financing and the centrality of the national budget in leveraging other sources of finance, including private sector finance. The major streams of international climate finance	UNIT II	<b>OBSERVED CHANGES AND ITS CAUSES</b>				9
Concept of climate change adaptation- Framework for assessing climate vulnerability -Impacts of Climate Change various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impace Climate Change – Risk of Irreversible Changes. Introduction to linkages between climate change adaptation development. Important international adaptation initiatives and programmes. UNIT IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES Adaptation Strategy/Options in various sectors – Water – Agriculture –- Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) - Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation. UNIT V CLEAN TECHNOLOGY & CLIMATE CHANGE FINANCE Clean Development Mechanism – Carbon Trading - examples of future Clean Technology – Biodiesel – Natural Comp – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding. National financing and the centrality of the national budget in leveraging other sources of finance, including private sector finance. The major streams of international climate finance	Climate Ch The Montre Convention	anges – Patterns of Large Scale Variability – Drivers of Climate Change – Climate al Protocol – history of international climate change negotiations and introduces th on Climate Change (UNFCCC) – IPCC – Evidences of Changes in Climate and E	Sensitiv e United	vity and I Nation	Feedba s Fram	acks – eworl
<ul> <li>various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impact Climate Change – Risk of Irreversible Changes. Introduction to linkages between climate change adaptation development. Important international adaptation initiatives and programmes.</li> <li>UNIT IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES</li> <li>Adaptation Strategy/Options in various sectors – Water – Agriculture – Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) - Waste (MSW &amp; Bio waste, Biomedical, Industrial waste – International and Regional cooperation.</li> <li>UNIT V CLEAN TECHNOLOGY &amp; CLIMATE CHANGE FINANCE</li> <li>Clean Development Mechanism – Carbon Trading - examples of future Clean Technology – Biodiesel – Natural Comp – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding. National financing and the centrality of the national budget in leveraging other sources of finance, including private sector finance. The major streams of international climate finance</li> </ul>	UNIT III	IMPACTS OF CLIMATE CHANGE				9
Adaptation Strategy/Options in various sectors – Water – Agriculture –- Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) - Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.         UNIT V       CLEAN TECHNOLOGY & CLIMATE CHANGE FINANCE         Clean Development Mechanism – Carbon Trading - examples of future Clean Technology – Biodiesel – Natural Comp – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding. National financing and the centrality of the national budget in leveraging other sources of finance, including private sector finance. The major streams of international climate finance	various sec Society – M Climate Ch	tors – Agriculture, Forestry and Ecosystem – Water Resources – Human Healt Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties ange – Risk of Irreversible Changes. Introduction to linkages between clir	h – Indu s in the	istry, Se Projecte	ettleme ed Impa	nt an acts o
zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply         Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) -         Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.         UNIT V       CLEAN TECHNOLOGY & CLIMATE CHANGE FINANCE         Clean Development Mechanism – Carbon Trading - examples of future Clean Technology – Biodiesel – Natural Comp         – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power –         Mitigation Efforts in India and Adaptation funding. National financing and the centrality of the national budget in         leveraging other sources of finance, including private sector finance. The major streams of international climate finance	UNIT IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	5			9
Clean Development Mechanism – Carbon Trading - examples of future Clean Technology – Biodiesel – Natural Comp – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding. National financing and the centrality of the national budget in leveraging other sources of finance, including private sector finance. The major streams of international climate finance	zones – Hu Transport –	nan Health – Tourism – Transport – Energy – Key Mitigation Technologies and Pr Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon cap	ractices - oture and	- Energy	y Suppl	ly –
– Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding. National financing and the centrality of the national budget in leveraging other sources of finance, including private sector finance. The major streams of international climate finance	UNIT V	CLEAN TECHNOLOGY & CLIMATE CHANGE FINANCE				9
TOTAL: 45 PERIO	– Eco- Frier Mitigation	ndly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – H Efforts in India and Adaptation funding. National financing and the centrality of the	Iydroele e nationa	ctric Pov al budge	wer – t in	-
			ТОТА	L: 45 I	PERIC	ODS

OUTC	OMI	ES:												
Upon s	succes	ssful co	mpletio	on of th	e course	e, the st	udents	should b	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1	. Oı	utline al	bout the	e basics	of earth	's climat	e systen	n.						2
CO2	. Id	Identifying the changes in climate change and its causes.												3
CO3	. Sı	Summarise the impacts of climate change											2	
CO4	. D	Discover the adaption and mitigation measures for climate change.										4		
CO5	; A	nalyzin	g clean t	echnolc	gy and e	energy								4
TEXT	BOC	)KS:											1	
2. 3. 1 4. 1	Bates, of the IPCC	B.C., Z Intergo fourth a fourth a	vernmer assessm assessme assessme	ntal Pano ent repo ent repoi ent repoi	el on Cli rt - The rt –Work rt - Work	mate Ch AR4 syn ting Gro ting Gro	nange, IF nthesis r up I Rep oup II Re	kof, Eds PCC Secr eport, 20 port, " Th eport, " I deport" M	retariat, 007. ne physi mpacts,	Geneva, cal Scier Adaptat	2008. nce Basi	s", 2007 Vulneral	bility", 2	
COUR	SE A	RTIC	ULAT	ION M	ATRIX	<b>K</b>							1	
со							PO –						50	
<u>CO1</u>	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1 CO2	1	2	2	2	2	2	3	2	2	2	2	2		2
CO2 CO3	2	2 2	2 2	2	2	2	3	3	2 2	2	2	2	2	2
CO4	2	2	2	2	2	3	3	2	2	2	1 2	2	2	1
	4	4	4	4	4	5	5	5	4	-	-		1	

				Р	С
CE22051	MUNICIPAL SOLID WASTE MANAGEMENT	3	0	0	3
COURSE O	BJECTIVES:			l	
To m	ake the students conversant with the types, sources, generation, storag	e, colle	ction, t	ranspo	ort,
proce	essing and disposal of municipal solid waste				
UNIT I S	OURCES AND TYPES				9
Sources and	types of municipal solid wastes-waste generation rates-factors affectin	g gene	ration,		
characteristic	cs-methods of sampling and characterization; Effects of improper disp	osal of	solid w	astes-	
Public health	and environmental effects. Elements of solid waste management -So	cial and	d Finan	cial	
aspects – Mu	inicipal solid waste handling and management rules – integrated mana	gement	t-Public	;	
awareness; F	Role of NGO"s.				
UNIT II	ON-SITE STORAGE AND PROCESSING				9
On-site stora	ge methods – Effect of storage, materials used for containers – segrega	ation of	f solid v	vastes	-
Public health	and economic aspects of open storage – waste segregation and storag	e – cas	e studie	s unde	er
Indian condi	tions – source reduction of waste – Reduction, Reuse and Recycling.				
UNIT III	COLLECTION AND TRANSFER				9
Methods of I	Residential and commercial waste collection – Collection vehicles – M	[anpow	er– Col	lection	n
routes – Ana	lysis of collection systems; Transfer stations – Selection of location, o	peratio	n & ma	intena	nce;
options unde	er Indian conditions – Field problems- solving.				
UNIT IV	OFF-SITE PROCESSING				9
Objectives o	f waste processing – Physical Processing techniques and Equipment; F	Resourc	e recov	ery fro	om
solid waste c	composting and bio-methanation; Thermal processing options – case st	udies u	nder In	dian	
conditions.					
UNIT V I	DISPOSAL				9
Land dispose	al of solid waste; Sanitary landfills – site selection, design and operation	on of sa	nitary l	andfill	ls –
Landfill line	rs – Management of leachate and landfill gas- Landfill bioreactor– Dur	mpsite	Rehabi	litation	a.
		ТОТА	L: 45 F	PERIC	DDS

	COM	IES:												
Upon	succe	essful co	mpleti	on of th	e course	e, the st	udents s	should b	be able	to				
CO'S		STATEMENT										RBT EVEL		
CO	. i	Explain the sources, types, generation rates, characteristics, sampling, effects of improper disposal of municipal solid wastes and the elements, regulatory requirements regarding municipal solid waste management.										3		
CO2	, F	Explain the onsite storage methods, processing and source reduction of municipal solid waste.										al	3	
CO3		Analyse vehicles,			•		-			ection n	nethods	, collectio	on	3
CO4		Describe recovery	-	•		-		g of mu	inicipal	solid v	aste ar	d resour	ce	3
CO		Determine the size of sanitary landfill and explain the operation and maintenance of sanitary landfill and dumpsite rehabilitation.								of	3			
ТЕХТ	BO	OKS:												
Yo <b>REFE</b> 1. Gov	rk, 2 <b>REN</b> vernn	002. NCES:	India,	"Manua	l on M							t", McGra		
<ol> <li>Tche Issu</li> <li>Ves 198</li> <li>Paul</li> <li>Bhic</li> </ol>	obano es". I ilind, 1. T W le A.	oglous, C McGraw , P.A. ar /illams, '	G., Thei Hill, N nd Rimo Waste undares	sen, H. lew Yor er, A.E. Treatme san, B.B	M., and k, 1993. , "Unit ent and I "Solid	Operati Disposal Waste	ons in I I", John Manage	olid. Wa Resourc Wiley a	astes: Er e Recov	ngineeri very Eng s, 2005.	ng Princ	O, Minis ciples and g", Prenti nd Dispos	Mana ce Ha al, 20	agemen all, Inc. 01.
<ol> <li>Tche Issu</li> <li>Ves 198</li> <li>Paul</li> <li>Bhic</li> </ol>	obano es". 1 ilind, 1. T W le A. <b>RSE</b>	oglous, C McGraw , P.A. ar /illams, ' D. and S ARTIC	G., Thei Hill, N nd Rimo Waste undares <b>ULAT</b>	sen, H. lew Yor er, A.E. Treatme san, B.B ION M	M., and k, 1993. , "Unit ent and I "Solid <b>ATRIX</b>	Operati Disposal Waste	ons in I I", John Manage <b>PO</b>	olid. Wa Resource Wiley a ment Co	astes: End e Recov and Sons ollection	ngineeri very Eng s, 2005. n", Proce	ng Princ gineerin essing a	ciples and g", Prentind Dispos	Mana ce Ha al, 20	agemen all, Inc. 001.
<ol> <li>Tche Issu</li> <li>Ves 198</li> <li>Paul</li> <li>Bhic</li> <li>COUF</li> <li>CO</li> </ol>	bband es". ] ilind, 1. T W le A. <b>RSE</b>	oglous, C McGraw , P.A. ar /illams, ' D. and S ARTIC 2	G., Thei Hill, N nd Rimo Waste ULAT 3	sen, H. lew Yor er, A.E. Treatme san, B.B ION M	M., and k, 1993. , "Unit ent and I "Solid ATRIX 5	Operation Disposal Waste 2 C	ons in I I", John Manage PO 7	olid. Wa Resource Wiley a ment Co	astes: End e Recover and Sons pollection	ngineeri very Eng s, 2005.	ng Princ gineerin essing a 11	eiples and g", Prenti nd Dispos	Mana ce Ha al, 20 PS 1	agemen all, Inc. 001. 50 2
2. Tcho Issu 3. Ves 198 4. Paul 5. Bhio COUE CO	bband       es". 1       ilind,       1.       T W       le A. <b>RSE</b> 1       3	oglous, C McGraw , P.A. ar /illams, ' D. and S ARTIC 2 1	G., Thei Hill, N nd Rimo Waste undares ULAT 3 1	sen, H. lew Yor er, A.E. Treatme san, B.B ION M	M., and k, 1993. , "Unit ent and I "Solid <b>ATRIX</b>	Operation Disposal Waste 2 C Disposal Waste 2 C Disposal Market 2 C Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disposal Disp	ons in I I", John Manage PO 7 3	olid. Wa Resource Wiley a ment Co	astes: End e Recov and Sons ollection	ngineeri very Eng s, 2005. n", Proce	ng Princ gineerin essing a	ciples and g", Prentind Dispos	Mana ce Ha aal, 20 PS 1 3	agemen all, Inc. 001. <b>SO</b> 2 3
<ol> <li>Tche Issu</li> <li>Ves 198</li> <li>Paul</li> <li>Bhic</li> <li>COUF</li> <li>CO</li> </ol>	bband es". ] ilind, 1. T W le A. <b>RSE</b>	oglous, C McGraw , P.A. ar /illams, ' D. and S ARTIC 2	G., Thei Hill, N nd Rimo Waste ULAT 3	sen, H. lew Yor er, A.E. Treatme san, B.B ION M 4 -	M., and k, 1993. , "Unit ent and I "Solid ATRIX 5 -	Operation Disposal Waste 2 C	ons in I I", John Manage PO 7	olid. Wa Resource Wiley a ment Co 8 -	astes: End Sonsollection	ngineeri very Eng s, 2005. n", Proce 10 -	ng Princ gineerin essing at 11 -	eiples and g", Prenti nd Dispos	Mana ce Ha al, 20 PS 1	agemen all, Inc. 001. 50 2
2. Tcho Issu 3. Ves 198 4. Paul 5. Bhio COUH COU CO1 CO2	$\frac{1}{3}$	oglous, C McGraw , P.A. ar /illams, ' D. and S ARTIC 2 1 1	G., Thei Hill, N d Rimo Waste undares ULAT 3 1 1	sen, H. lew Yor er, A.E. Treatme san, B.B ION M 4 -	M., and k, 1993. , "Unit ent and I . "Solid ATRIX 5 - -	Operation Disposal Waste 2 C <b>6</b> 3 3	ons in I I", John Manage PO 7 3 3 3	olid. Wa Resource Wiley a ment Co 8 -	astes: Energy astes: Energy astes: Energy and Sons of the second	ngineeri very Eng s, 2005. n", Proce 10 -	ng Princ gineerin essing a 11 - -	eiples and g", Prenti nd Dispos	Mana ce Ha aal, 20 PS 1 3 3	agemen all, Inc. 001. <b>SO</b> 2 3 3 3

CE22052	2 ENVIRONMENTAL POLICY AND LEGISLATIONS	L	Т	Р	С					
CE22032	ENVIRONMENTAL FOLICT AND LEGISLATIONS	3	0	0	3					
The adm subs will UNIT I Significanc	OBJECTIVES: course will analyze the legislative and judicial responses to environment inistrative system of environment related laws such as air, water, land, a stances etc. Environment advocacy and approaches for using litigation is receive special attention. INTRODUCTION TO ENVIRONMENTAL LEGISLATIONS AN INTERNATIONAL SCENARIO e of Environmental Law -International Environmental Law -Developmental ntal Law -Source and General principals of International Environmental	and ha n envir <b>D</b> ent of I	zardous conment nternati	prote	ction 9					
and obligations of States -General Issues of the international Environmental Law –General fights and obligations of States -General Issues of the international law related to environmental protection - Stockholm Declaration-Rio Declaration on Environment and Development-Basel Convention on the Control of Trans boundary Movement of Hazardous Wastes and their disposal - Convention of Biological Diversity - U.N Frame Work Convention on Climate Change-Montreal Protocol on Substances that deplete Ozone Layer-Kyoto Protocol.										
UNIT II	INDIAN CONSTITUTIONS AND ENVIRONMENTAL PROTEC	TION			9					
Indian Constitution and Environmental Protection -Constitutional provisions concerning EnvironmentArticles 14,15,(2) (b) 19 (e),21,31,32,38,39,42,47, 48-A,49,51,51-A: Indian Environmental Policy 2006Administrative machinery for pollution control Common Law & Criminal Law Nuisance, Negligence,Strict liability and Absolute liability, Provisions of IPC relating to environmental problems (public nuisanceu/s 268 and others (Sections 269,270,277,284,285,286,425 to 440) Section 133 of Cr.P.C.UNIT IIIREMEDIES FOR ENVIRONMENTAL POLLUTION9										
		Danal (	Todo on		-					
Common Law Remedies/Remedies under Law of Tort – Penal Remedies – Indian Penal Code and Code of Criminal Procedure – Remedies under Constitutional Law – Writs – Public Interest Litigation - Public Liability Insurance Act, 1991 – The National Green Tribunal Act 2010.										
UNIT IV	MAJOR INDIAN LEGISLATIONS				9					
Water Act (1974) Air Act (1981) Environmental Protection Act (1986) Major Notifications, The Municipal solid Wastes (Management and Handling) Rules 2000-Bio Medical Wastes (Management and Handling) Rules 1998- Hazardous Wastes (Management and Handling Rules 1989 - Environment Impact Assessment Notifications- Coastal Regulation Zone Notification- Public Hearing Notifications.										
UNIT V	ENVIRONMENT AND DEVELOPMENT CASE LAWS				9					
Meaning and concept of development - Its impact on environment; conflict between environment and development, Concept of Sustainable Development., Polluter Pay Principle, Precautionary Principle, Put Trust Doctrine. Landmark Judgments - Olium gas leakage case, Rural Litigation and Entitlement Kendr Dehradun, (1985) Supp SCC 487) Vellore Citizen Welfare Forum v. Union of India, (1996) 5SCC 647) Ganga Pollution case (1988) I SCC) S. Jagannath v. UOI (1997) SCC867) Vellore Citizens welfare foru case M.C. Mehta V. Kamalnath (1997) I SCC 388).										
		ТОТА	L: 45 F	PERIC	ODS					

OUTC	OMI	ES:													
Upon s	ucces	ssful co	mpleti	on of th	e course	e, the st	udents s	should t	be able t	0					
CO'S		STATEMENT											RBT EVEI		
CO1		Describe origins and sources of environmental laws, and understand how and by whom environmental laws are made and interpreted.											у	2	
CO2	. D	Describe Indian constitutions and environmental protection.											2		
CO3	. Ez	Explain the remedies for environmental pollution.											2		
CO4	. Ez	Explain the major Indian environmental management legislations.										2			
CO5	5 D	escribe	the en	vironme	ent and	develop	ment ca	ase laws	5.					2	
<b>ГЕХТ</b> 1			nnan P.	, Enviro	onmenta	l Law i	n India,	Buttery	worths,	1998					
Z	. Let			, Enviro			D00K, L		200						
REFE	REN	CES:													
2. \$	Shyan	n Diwa	in and A	Environ Armin F ION M	Rosencra	anz, En						Oxford, 2	001		
<b>CO</b>						]	PO						PS	PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	1	2	-	-	3	3	3	-	2	-	-	3	3	
	3	1	2	-	-	3	3	3	-	2	-	-	3	3	
CO2		1	2	_	-	3	3	3	-	2	-	-	3		
CO3	3	1										-		3	
CO2 CO3 CO4 CO5	3 3 3	1 1 1	$\frac{2}{2}$	-	-	3	3	3	-	2 2	-	-	3	3 3 3	

		L	Т	Р	С				
CE22053	ENVIRONMENT, HEALTH AND SAFETY	3	0	0	3				
COURSE OF	JECTIVES:								
To educate ov	erview of EHS in industries and related Indian regulations, types of H	Iealth l	nazards	, effec	et,				
assessment an	d control methods and EHS Management System								
UNIT I IN	TRODUCTION				9				
Need for deve	loping Environment, Health and Safety systems in work places- Inter	nationa	alinitiat	ives,					
National Polic	y and Legislations on EHS in India - Regulations and Codes of Pract	ice - R	ole of t	rade					
union safety r	epresentatives - Ergonomics.								
UNIT II 0	CCUPATIONAL HEALTH AND HYGIENE				9				
Definition of o	occupational health and hygiene - Categories of health hazards – Exp	osure p	athway	's and					
human respon	ses-Exposure Assessment-occupational exposure limits - Hierarchy of	of contr	ol mea	sures	-				
Role of person	al protective equipment and the selection criteria.								
UNIT III W	ORKPLACE SAFETY AND SAFETY SYSTEM				9				
Features of Sa	tisfactory and Safe design of work premises - good housekeeping - li	ighting	and co	lor,					
Ventilation an	d Heat Control, Noise, Chemical and Radiation Safety – Electrical Sa	afety –	Fire Sa	fety –	-				
Safety at Construction sites, ETP – Machine guarding – Process Safety, Working at different levels.									
UNIT IV H	AZARDS AND RISK MANAGEMENT				9				
Safety apprais	al – Job Safety Analysis-Control techniques – plant safety inspection	– Acci	dent	l					
investigation - Analysis and Reporting – Hazard and Risk Management Techniques – Onsite and Offsite									
emergency Plans. Employee Participation- Education and Training- Case Studies.									
UNIT V EN	VIRONMENTAL HEALTH AND SAFETY MANAGEMENT				9				
Concept of Er	vironmental Health and Safety Management – Elements of Environn	nental I	Health a	and Sa	afety				
Management	Policy and implementation and review – ISO 45001-Strucure and Cla	uses-C	ase Stu	dies					
		ТОТА	L: 45 F	PERIC	ODS				

OUTCO	ME	ES:												
Upon su	cces	sful co	ompleti	on of th	e cours	e, the st	udents s	should b	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1.	Su	ımmar	ise the	need for	r EHS i	n indust	tries and	d related	l Indian	regulat	tions			2
CO2.	De	escribe	variou	s types	of Heal	th haza	rds, effe	ect, asse	ssment	and cor	ntrol me	ethods		2
<b>CO3.</b> Enumerate various safety systems in working environments													2	
<b>CO4.</b> Explain the methodology for preparation of Emergency Plans and Accident investigation														2
CO5	Su	ımmar	iseEHS	Manag	ement S	System	and its	element	S					2
TEXT I	00	KS:												
G 2. E1 Ta 3. E1	dust over fecti iyloi oviro Gra	rial Ho nment ive Er r, Culin onmen iffia, V	of Indi nvironm nary an tal and Villiam	a. hental, l d Hospi Health Andrev	Health, itality Ii and Sa v Inc. N	and Sa ndustry fety Ma IY, 1993	fety Ma Publica mageme	anagem tions Se	ent Usi ervices,	rry of L ng the 2005. s P.Che	Team A	Approac	h by B	ill
						]	PO						PS	50
co –	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	3	-	3	-	3	-	3	2	-	1	2	3	3
CO2	2	2	2	3	-	-	-	-	2	-	-	3	3	3
CO3	-	-	2	-	3	3	1	1	2	-	2	3	3	3
CO4	-	-	3	2	-	1	2	-	-	-	-	-	3	3
CO5	1	-	-	-	2	_	_	_	1	_	1	_	3	3

CE22054	SUSTAINABILITY AND SOCIAL DEVELOPMENT	L	Т	Р	C	
CE22034	SUSTAINABILITT AND SOCIAL DEVELOPMENT	3	0	0	3	

**COURSE OBJECTIVES:** To impart knowledge on environmental, social and economic dimensions of sustainability and the principles evolved through landmark events so as to develop an action mind-set for Sustainable development.

## UNIT I SUSTAINABILITY AND DEVELOPMENT CHALLEGES

Definition of sustainability – environmental, economic and social dimensions of sustainability - sustainable development models – strong and weak sustainability – defining development millennium development goals – mindsets for sustainability: earthly, analytical, precautionary, action and collaborative– syndromes of global change: utilisation syndromes, development syndromes, and sink syndromes – core problems and cross cutting Issues of the 21 century - global, regional and local environmental issues – social insecurity - resource degradation – climate change – desertification.

## UNIT II PRINCIPLES AND FRAME WORK

History and emergence of the concept of sustainable development - our common future - Stockholm to Rio plus 20 – Rio Principles of sustainable development – Agenda 21 natural step peoples earth charter – business charter for sustainable development – UN Global Compact – Role of civil society, business and government – United Nations' 2030 Agenda for sustainable development – 17 sustainable development goals and targets, indicators and intervention areas.

## UNIT III SUSTAINABLE DEVELOPMENT AND WELLBEING

The Unjust World and inequities - Quality of Life - Poverty, Population and Pollution – Combating Poverty - - Demographic dynamics of sustainability - Strategies to end Rural and Urban Poverty and Hunger – Sustainable Livelihood Framework- Health, Education and Empowerment of Women, Children, Youth, Indigenous People, Non-Governmental Organizations, Local Authorities and Industry for Prevention, Precaution, Preservation and Public participation.

# UNIT IV SUSTAINABLE SOCIO-ECONOMIC SYSTEMS

Sustainable Development Goals and Linkage to Sustainable Consumption and Production Investing in Natural Capital- Agriculture, Forests, Fisheries - Food security and nutrition and sustainable agriculture-Water and sanitation - Biodiversity conservation and Ecosystem integrity – Ecotourism - Sustainable Cities – Sustainable Habitats- Green Buildings – Sustainable Transportation — Sustainable Mining - Sustainable Energy– Climate Change – Mitigation and Adaptation - Safeguarding Marine Resources - Financial Resources and Mechanisms.

# UNIT V SUSTAINABILITY AT GLOBAL AND NATIONAL LEVEL

Nature of sustainable development strategies and current practice- Sustainability in global, regional and national context –Approaches to measuring and analysing sustainability– limitations of GDP- Ecological Footprint-Human Development Index- Human Development Report – National initiatives for Sustainable Development -Hurdles to Sustainability - Science and Technology for sustainable development –Performance indicators of sustainability and Assessment mechanism – Inclusive Green Growth and Green Economy – National Sustainable Development Strategy Planning and National Status of Sustainable Development Goal

**TOTAL: 45 PERIODS** 

9

9 D

9

9

9

OUTO	COM	ES:												
Upon	succe	essful co	mpleti	on of th	e course	e, the st	udents s	should b	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO		Explain a ocial, er				Ũ			•	luding 1	nodern	world		2
CO2	,	dentify a ustainat		-	-						ic dime	nsions of		3
COS	ζ	Develop vellbein			-			onomic	and eco	ological	linkage	e o Huma	n	3
CO ₂		Evaluate connection								pproach	n that fo	ocuses on		3
CO	5 e	ntegrate nvironn limensio	nental l	imits go	overning	-						ustice		3
<b>REFE</b> 1. 2.	A gu Pari REN Kare Roul The Mart UNF	is, 2017. NCES: 1 Mulde edge Ta New Gl ine,Gore PA, Ear	DG inte- er, Sust lylor an obal Fr don M rthscan,	tainable d Franc contier cGrana UK, 20	Develo Develo Dis, 2017 Urban Man,Man D08.	opment 7. ization, rk Mor	for En	gineers y and E	- A H	Iandboc mentin 1	ok and the 21st	Resource Century astilla, II	Guio	de, ·ge
COU	RSE	ARTIC	ULAT	ION M	ATRIX									10
CO	1	2	3	4	5	6	PO 7	8	9	10	11	12	<u>Р</u> 1	50 2
CO1	-	3	-	-	-	-	-	3	-	3	-	-	3	3
CO2	-	3	-	2	-	2	-	-	-	3	-	-	3	3
CO3	-	-	3	2	-	2	-	-	-	3	-	-	3	3
<b>CO4</b>	-	-	3	2	-	-	-	3	2	3	-	-	3	3
		- T	3	2										

# VERTICAL VI MATERIAL TECHNOLOGY

	L T P								
CH2206	51 MATERIALS ENGINEERING FUNDAMENTALS	3	0	0	3				
COURSE	OBJECTIVES:								
То	give an overview of the material engineering fundamentals								
UNIT I	INTRODUCTION TO MATERIALS SCIENCE AND ENGINEER	RING			8				
Overview	of material science and engineering; Atomic structure and bonding in ma	aterials	; Classi	ficatio	m				
of materia	s: metals, ceramics, polymers, and composites; Properties of materials:	mechar	ical, th	ermal	,				
electrical,	and optical.								
UNIT II	STRUCTURE AND PROPERTIES OF ENGINEERING MATER	IALS			9				
Crystal str	ucture and crystalline defects; Phase diagrams and phase transformation	s; Mecl	nanical	prope	rties				
of materia	s: strength, hardness, toughness, and elasticity; Thermal properties of m	aterials	: condu	ctivity	y,				
expansion	and heat capacity.								
UNIT III	PROCESSING OF ENGINEERING MATERIALS				9				
Manufactu	ring processes for metals: casting, forming, machining, and welding; Pro-	ocessin	g of cer	amics	:				
sintering, f	iring, and glazing; Polymer processing techniques: extrusion, moulding,	and co	mpoun	ding;					
Composite	fabrication methods: lay-up, compression moulding, and filament wind	ing.							
UNIT IV	CHARACTERIZATION TECHNIQUES FOR ENGINEERING M	IATER	RIALS		10				
Microscop	ic techniques: optical microscopy, electron microscopy; Spectroscopic te	echniqu	ies: X-r	ay					
diffraction	(XRD), Fourier-transform infrared spectroscopy (FTIR); Thermal analy	sis tecl	nniques	:					
differentia	l scanning calorimetry (DSC), thermogravimetric analysis (TGA); Mech	anical	testing						
techniques	: tensile testing, hardness testing, impact testing.								
UNIT V	Applications of Engineering Materials				9				
Material se	election criteria for engineering applications; Case studies on the use of a	materia	ls in ae	rospac	æ,				
automotiv	e, construction, and biomedical engineering; Emerging trends in materia	ls scien	ce and						
engineerin	g; Sustainability and environmental considerations in material selection	and dea	sign						
<u> </u>	,	ТОТА	L: 45 I	PERIC	DDS				

OUTCO	MES:	
Upon suc	ccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEI
CO1.	Demonstrate a fundamental understanding of the principles of materials science and engineering.	2
CO2.	Analyze the relationship between material structure and properties, including mechanical and thermal behaviour.	3
CO3.	Identify and describe common manufacturing processes used for metals, ceramics, polymers, and composites.	3
CO4.	Demonstrate proficiency in using various characterization techniques to analyze the structure, composition, and properties of engineering materials.	3
CO5	Evaluate material selection criteria for specific engineering applications, analyze case studies of material usage in different industries.	5
TEXT B	OOKS:	
Ne 2. Bu Pea	Ilister, W. D., & Rethwisch, D. G. (1964). Materials Science and Engineering: An Introd w York: Wiley. dinski, K. G., & Budinski, M. K. (1998). Engineering Materials: Properties and Selection arson Education Inc. Imore, C. (2014). Materials Science and Engineering Properties. Cengage Learning.	
REFERI		
2. Sh	ghavan, V. (2015). <i>Materials Science and Engineering: A first course</i> . PHI Learning Pvt ackelford, J. F. & Muralidhara, M. K. (2016). <i>Introduction to materials science for enginarson Education Inc</i> .	

	RSE A	RTIC	ULAT	ION M	ATRIX									
CO						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	1	3	3	2	1	2	1	3	3	3
CO2	3	3	2	2	2	3	3	2	1	2	1	3	3	3
CO3	3	3	3	3	2	3	3	2	1	2	1	3	3	3
<b>CO4</b>	3	3	3	3	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	3	3	3	3	2	1	2	1	3	3	3

CU220/22	CLIDEACE ENGINEERING	L	Т	Р	С
CH22062	SURFACE ENGINEERING	3	0	0	3
COURSE OB	JECTIVES:				
To familiarize	the students with basic principles of various surface modification tec	hnique	s in eng	gineer	ing
materials.					
UNIT I					9
Topography of	f Surfaces-Surface features - Properties and measurement-Surface	interac	tion - A	dhesi	ve
Theory of Slid	ing Friction-Rolling Friction- Friction properties of metallic and nor	metall	ic mate	rials–	
Friction in ext	reme conditions – Thermal considerations in sliding contact.				
UNIT II					9
Introduction –	Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Fre	tting W	ear La	ws of	wear
– Theoretical v	wear models – Wear of metals and nonmetals – International standard	ds in fri	ction a	nd we	ar
measurement.					
UNIT III					9
Introduction –	principle - parameters of electrodeposition -Faraday's laws of electro	rodepos	sition	•	
electrodepositi	on of copper, nickel, chromium and gold for industrial practices – or	ganic c	oatings	paint	ts -
requirements of	f good paints-constituents of paints-function-formulation of durable	paint e	namel o	coatin	gs-
special paints-	heat resistant and fire retardant paints-electroless coatings conversion	n coatir	igs.		
UNIT IV					9
Introduction-S	Surface properties, Superficial layer–Changing surface metallurgy–W	'ear res	istant c	oating	gs
and Surface tre	eatments – Techniques – PVD – CVD – Physical CVD – Ion implant	ation –	Surfac	e weld	ding
- Thermal spra	aying – Laser surface hardening and alloying, laser re-melting, and la	iser cla	dding. I	New	
trends in coati	ng technology –DLC – CNC. Nano-engineered coatings.				
UNIT V					9
Introduction-A	Advanced alloys–Super alloys, Titanium alloys, Magnesium alloys, A	lumini	um allo	oys, ar	nd
Nickel based a	lloys-Ceramics-Polymers-Biomaterials-Applications-Bio Tribolog	y Nano	Tribolo	ogy.	
		тота	L: 45 F	PERIC	DDS

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Examine the various surface features and different types of friction in metals and nonmetals.	3
CO2.	Analyze the different types of wear mechanism and international standard used in friction and wear measurement	3
CO3.	Appraise the different types surface modification techniques.	3
CO4.	Persuade the different types of surface treatments.	4
CO5	Interpret the different types of Engineering materials and its applications.	3

K. G. Budinski (Ed.): Surface Engineering for Wear Resistance, Prentice Hall, New Jersey 1988 J. R. Davis (Ed.): Surface Engineering for Corrosion and Wear Resistance, ASM International, Materials Park, Ohio, 2001.

## **REFERENCES:**

Budinski, K.G., Surface Engineering for Wear Resistance, Prentice Hall (1988). Mathews, A., Advanced Surface Coatings: A Hand book of Surface Engineering, Spinger (1991).

CO						]	PO						PSO						
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2					
CO1	2	2	1	1	2	3	3	2	1	1	1	1	3	3					
CO2	1	3	2	3	1	3		2	1	1	1	1	3	3					
CO3	1	2	1	1	1	3	2	2	1	1	1	1	3	3					
CO4	1	1	2	1	1	3	2	2	1	1	1	2	3	3					
CO5	1	1	2	2	1	3	2	2	2	2	1	2	3	3					

	- 0		L	Т	Р	С
CH220	63	FRONTIER MATERIALS	3	0	0	3
То	selec	<b>JECTIVES:</b> et and design components based on their properties and requirements. dge about bio materials like, titanium and stainless steel based.	•	1		
UNIT I						9
Structural steels.	Steels	s: Introduction, Classification: HSLA steels, Dual phase steels, TRIP steels	s, Marag	ging stee	els, HS	S
UNIT II						9
		roduction, Classification, Applications and properties of Ni, Fe, Co based s ical treatments.	superall	oys and	their	
UNIT III			_	_		9
		Electronic Materials: Introduction, Classification, Applications and properties sic and Intrinsic semiconductors; super conducting materials.	es of Py	vro, Piez	o, Feri	0-
electrics, E						
UNIT IV Classificat	ion of	f composite materials – the concept of load transfer - matrix materials - pol	-			9
UNIT IV Classificat ceramics -	ion of fibers s - fib	f composite materials – the concept of load transfer - matrix materials - pol s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechar	nents - p	particle 1	einfor	
UNIT IV Classificat ceramics - composites	ion of fibers s - fib	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem	nents - p	particle 1	einfor	
UNIT IV Classificat ceramics - composite composite UNIT V	ion of fibers s - fib s.	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem	nents - p nical be	barticle 1 havior c	reinfor of	ced
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria	ion of fibers s - fib s.	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechan ntroduction, Property requirements for biomaterials, concept of biocompatib	bility, in	barticle 1 havior c	reinfor of t bio	9
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria	ion of fibers s - fib s. als: In loys.	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechan ntroduction, Property requirements for biomaterials, concept of biocompatil	bility, in	mportan	reinfor of t bio	9
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria metallic al	ion of fibers s - fib s. als: In loys.	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechan ntroduction, Property requirements for biomaterials, concept of biocompatil	bility, in	mportan	reinfor of t bio	9
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria metallic al	ion of fibers s - fib s. als: In loys.	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechar ntroduction, Property requirements for biomaterials, concept of biocompatil	bility, in	mportan	reinfor of t bio	ced 9 DDS BT
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria metallic al OUTCOI Upon succ	ion of fibers s - fib s. als: In loys. <b>MES</b> cessfu	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechan ntroduction, Property requirements for biomaterials, concept of biocompatil	bility, in	mportan	reinfor of t bio PERIC	ced 9 DDS BT /EL
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria metallic al OUTCOI Upon succ CO'S	ion of fibers s - fib s. als: In loys. <b>MES</b> cessfi	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechar ntroduction, Property requirements for biomaterials, concept of biocompatil	bility, in	mportan	reinfor of t bio PERIC	ced 9 DDS BT /EL
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria metallic al OUTCOI Upon succ CO'S CO1.	ion of fibers s - fib s. als: In loys. <b>MES</b> cessfi	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangem ore reinforced composites – interface region bonding mechanisms – mechar ntroduction, Property requirements for biomaterials, concept of biocompatile <b>T</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b>	bility, in	mportan	reinfor of t bio PERI( RH LEV	ced 9 DDS BT /EL 4
UNIT IV Classificat ceramics - composites composites UNIT V Biomateria metallic al OUTCOI Upon succ CO'S CO1. CO2.	ion of fibers s - fib s. als: In loys. <b>MES</b> cessft Eluc Com	s - glass, boron, carbon, organic and metallic fibers-fiber packing arrangemore reinforced composites – interface region bonding mechanisms – mechanism – mechanis	bility, in	mportan	reinfor of t bio PERI( LEV	ced 9 DDS BT /EL 4 3

1.

1.

An Introduction to Materials Science and Engineering, W. D. Callister, John Wiley & Sons (2007).

2. Superalloys-II edited by C.T. SIMS, N.S. Stoloff and W.C.Hagel A Wiley-Interscience publication John wiley and sons, Newyork, 1972.

- Materials Science and Engineering, V. Raghavan, PHI, 2004.
- 2. V.R. Gowarikar, N.V.Viswanathan & J.Sreedhar. Polymer Science. New Age International, 2019.

COURSE ARTICULATION MATRIX														
CO	РО											PS	50	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	1	1	3	3	3	1	2	1	1	1	2
CO2		2	2	3	2		3	2	1	2	2	1		2
<b>CO3</b>	1	2	1	3	2	3		2	1	1	1	1	1	2
<b>CO4</b>	1	1	2				1		1	2	2	1	1	1
CO5	2	1	1	1	1	3	3	1	2	1	2	2	2	1

			Т	Р	C
CH220	64	BIOMATERIALS 3 0		0	3
• Lea	arn ch	JECTIVES: aracteristics and classification of Biomaterials. and different metals, ceramics and its nanomaterial's characteristics as biomaterial	erials	5.	I
UNIT I					9
		actural characteristics of solid material: mechanical properties, visco ela onding, crystalline structures and defects.	sticit	y, ato	omic
UNIT II					9
metallic i	mplar	nts - Stainless steels, co-based alloys, Ti-based alloys, shape memory alloy, nts, degradation and corrosion, ceramic implant – bio inert, biodegradable o nics, nanostructured bio ceramics.			
UNIT II	[				9
		Natural versus synthetic, Inert versus bioactive polymers, Biodegradable polymers is a synthetic properties, Different combinations and logistic applications applications and logistic applications and logistic applications applications applied appl		•	rogel
UNIT IV					9
		on of biomaterials: Physical and physicochemical surface characterization ectrochemical characterization.	: M	echan	ical,
UNIT V					9
Opthalmo	ologic	f Biomaterials Cardiovascular Applications; Dental implants; Adhesives Applications; Orthopedic Applications; Drug Delivery System; Sutures; nsors and Biosensors.			
		TOTAL	:45 F	PERIC	ODS
OUTCO	MES:				
Upon suc	cessfu	al completion of the course, the students should be able to			
CO'S		STATEMENT		RI LEV	
CO1.		yze different types of Biomaterials and its classification and apply the concep technology towards biomaterials use.	t of	Ζ	1
CO2.	Crea	te combinations of materials that could be used as a replacement implant.			3
CO3.		pose the various Polymeric materials and its applications.			3
CO4.	Appr	raise the various characterisation techniques for biomaterials.		۷	1
CO5		tify significant gap required to overcome challenges and further development naterials		2	1

1. Sujata V. Bhatt, "Biomaterials", Second Edition, Narosa Publishing House, 2005.

2. Sreeram Ramakrishna, Murugan Ramalingam, T. S. Sampath Kumar, and Winston O. Soboyejo,

"Biomaterials: A Nano Approach", CRC Press, 2010.

## **REFERENCES:**

 Myer Kutz, "Standard Handbook of Biomedical Engineering & Design", McGraw Hill, 2003
 John Enderle, Joseph D. Bronzino, Susan M.Blanchard, "Introduction to Biomedical Engineering", Elsevier, 2005.

со						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1											3	2
CO2	2	2		3				1		1			2	3
CO3	1	1	2	1	1	3						1	1	2
<b>CO4</b>	1	1	2				2				1	1	2	1
CO5	2	1	1	1	1				1	1		1	2	2

	<b>ΠΩΗ ΤΕΜΠΕΡΑΤΙΡΕ ΜΑΤΕΡΙΑΙ Ο</b>	L	Т	Р	C
CH220	HIGH TEMPERATURE MATERIALS	3	0	0	3
To exam	E <b>OBJECTIVES:</b> ine the various deformation mechanisms that take place under given for proper design.	stress	and te	empera	ature
UNIT I					9
creep, str	reep phenomena, various stages of creep, Andrade's analysis, metallurgica ess rupture test, structural changes during creep, activation energy for cree l life of components at elevated temperatures.			•	-
UNIT II					9
	hermal fatigue, ageing, structural changes, material damage, crack propages, life time analysis.	gation,	damage	;	
UNIT II	[				9
	sms of oxidation: Oxidation of pure metals, Oxidation of alloys, High Ten eactions of metals in mixed environments.	nperatu	re Oxic	lation	
uleory, K					
					9
UNIT IV Ceramics temperatu	, composites, Refractory metals and alloys. High temperature Polymers.Mure applications: Heat resistance steels, Stainless steels, Super alloys, Tita			gh	9
UNIT IV Ceramics temperatu Intermeta	, composites, Refractory metals and alloys. High temperature Polymers.Mure applications: Heat resistance steels, Stainless steels, Super alloys, Tita			gh	9 9
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud	, composites, Refractory metals and alloys. High temperature Polymers. Aure applications: Heat resistance steels, Stainless steels, Super alloys, Tita Allics.	nium a	lloys,		9
UNIT IV Ceramics temperatu Intermeta UNIT V	, composites, Refractory metals and alloys. High temperature Polymers. Nure applications: Heat resistance steels, Stainless steels, Super alloys, Tita Illics.	nium al	lloys,	and g	<b>9</b> jas
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud turbine m	, composites, Refractory metals and alloys. High temperature Polymers.Mare applications: Heat resistance steels, Stainless steels, Super alloys, Tita ullics. lies: Power plant materials, boiler materials, turbine materials, steam enginaterials.	nium al	lloys, engines	and g	<b>9</b> jas
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud turbine m	, composites, Refractory metals and alloys. High temperature Polymers.Mare applications: Heat resistance steels, Stainless steels, Super alloys, Tita ullics. lies: Power plant materials, boiler materials, turbine materials, steam enginaterials.	nium al	lloys, engines	and g	<b>9</b> jas
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud turbine m	, composites, Refractory metals and alloys. High temperature Polymers.Mure applications: Heat resistance steels, Stainless steels, Super alloys, Tita Illics. lies: Power plant materials, boiler materials, turbine materials, steam enginaterials.	nium al	lloys, engines	and g	9 ;as DDS 3T
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud turbine m OUTCO Upon suc	, composites, Refractory metals and alloys. High temperature Polymers.Mure applications: Heat resistance steels, Stainless steels, Super alloys, Tita allics.         lies: Power plant materials, boiler materials, turbine materials, steam enginaterials.         MES:         cessful completion of the course, the students should be able to         STATEMENT         Elucidate the mechanisms of creep and Factors influencing functional lif components.	nium a ne, jet e TOTA	lloys, engines	and g	9 as DDS BT /EL
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud turbine m OUTCO Upon suc CO'S	, composites, Refractory metals and alloys. High temperature Polymers.Mure applications: Heat resistance steels, Stainless steels, Super alloys, Tita allics.         lies: Power plant materials, boiler materials, turbine materials, steam enginaterials.         MES:         ccessful completion of the course, the students should be able to         STATEMENT         Elucidate the mechanisms of creep and Factors influencing functional lift components.         Compile the various changes associated with thermal fatigue.	nium al ne, jet e <b>TOTA</b>	lloys, engines L: 45 I	and g PERI( RH LEV	9 as DDS BT /EL
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud turbine m OUTCO Upon suc CO'S CO1.	, composites, Refractory metals and alloys. High temperature Polymers.Mure applications: Heat resistance steels, Stainless steels, Super alloys, Tita allics.         lites.         lites: Power plant materials, boiler materials, turbine materials, steam enginaterials.         mess:         recessful completion of the course, the students should be able to         STATEMENT         Elucidate the mechanisms of creep and Factors influencing functional lif components.         Compile the various changes associated with thermal fatigue.         Appraise the principles of oxidation of metals and oxidation of high ter corrosion and alloys.	nium al ne, jet e <b>TOTA</b> fe of	lloys, engines L: 45 I	and g PERI( RH LEV	9 ;as DDS 3T /EL 4
UNIT IV Ceramics temperatu Intermeta UNIT V Case stud turbine m OUTCO Upon suc CO'S CO1. CO2.	, composites, Refractory metals and alloys. High temperature Polymers.Mure applications: Heat resistance steels, Stainless steels, Super alloys, Tita allics.         lites:       Power plant materials, boiler materials, turbine materials, steam enginaterials.         metarials.       ,         MES:       ,         excessful completion of the course, the students should be able to       ,         Elucidate the mechanisms of creep and Factors influencing functional lif components.       ,         Compile the various changes associated with thermal fatigue.       ,         Appraise the principles of oxidation of metals and oxidation of high termaterials       ,	nium al ne, jet e <b>TOTA</b> fe of	lloys, engines L: 45 I	and g PERIC RH LEV	9 as DDS BT /EL 4 3

1. Materials for High Temperature Engineering Applications, G.W. Meetham, M.H. Van de Voorde, Springer, 2000.

2. Fundamentals of Creep in Metals and Alloys, Michael E. Kassner Maria-Teresa Perez-Prado, Elsevier, 2004.

#### **REFERENCES:**

1. Introduction to creep, Institute of Materials, R.W. Evans, B Wilshire, 1993.

2. High Temperature Oxidation and Corrosion of Metals, David young, Elsevier Publications, 2016, 2nd Edition.

COUI	RSE A	RTIC	ULAT	ION M	ATRIX	X								
00		РО												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	1	1	3	3	2	1		1	1	2	3
<b>CO2</b>	2	2	2	2	1		2	2	1	3	1	1	2	2
<b>CO3</b>	1	1	1	1	1	3	2	2	1	2	1	1	3	2
<b>CO4</b>	1	1	2	1	1		2	2	1	2	1	1	2	2
CO5	1	1	1	2	1	3	2	2	1	2	1	1	3	3

		L	Т	Р	C
CH220	66 PARTICULATE PROCESSING	3	0	0	3
COURSE	C OBJECTIVES:				
То	educate the students on particle characterization techniques and proces	sing me	thods		
UNIT I	INTRODUCTION TO PARTICULATE MATERIALS				9
Classifica	tion of particulate materials. Properties of particulate materials: size,	shape,	surface	area,	and
porosity.	Characteristics of particulate systems: flow behaviour, segregation, an	d packii	ng. Imp	ortanc	ce of
particulate	e materials in various industries.				
UNIT II	PARTICLE CHARACTERIZATION TECHNIQUES				9
Technique	es for particle size analysis: sieving, sedimentation, laser diffraction;	Surface	area m	easure	emer
methods:	BET analysis, mercury intrusion porosimetry; Particle shape ch	aracteriz	zation	techni	iques
microscop	by, image analysis; Methods for assessing particle morphology, surfac	e proper	ties, an	d che	mica
compositi	on.				
UNIT III	PARTICLE HANDLING AND STORAGE				9
Basics of	particle handling: conveying, feeding, and storage; Considerations for	or design	ning and	d oper	rating
	particle handling: conveying, feeding, and storage; Considerations for andling systems; Techniques for minimizing particle attrition, degrae	Ū	U		
particle h		Ū	U		
particle h	andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.	Ū	U		
particle h Safety coi UNIT IV	andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.	lation, a	and con	tamin	ation 9
particle h Safety con <b>UNIT IV</b> Particle s	andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.           PARTICLE PROCESSING TECHNIQUES	lation, a	and con	tamin	ation 9 ation
particle h Safety con <b>UNIT IV</b> Particle s technique	andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.           PARTICLE PROCESSING TECHNIQUES           ize reduction methods: milling, grinding, crushing; Particle agglorentical and the procession of the procesion of the procession of the procession of the procession of	lation, a	and con	tamin ranula meth	ation 9 ation
particle h Safety con <b>UNIT IV</b> Particle s technique fluidized	andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.          PARTICLE PROCESSING TECHNIQUES         ize reduction methods: milling, grinding, crushing; Particle agglores: spray drying, fluidized bed granulation; Particle coating and surface	lation, a	and con	tamin ranula meth	ation 9 ation
particle h Safety con <b>UNIT IV</b> Particle s technique fluidized	andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.          PARTICLE PROCESSING TECHNIQUES         ize reduction methods: milling, grinding, crushing; Particle agglores: spray drying, fluidized bed granulation; Particle coating and surfate bed coating, spray coating; Techniques for particle separation and surfate coating, spray coating; Techniques for particle separation and surfate coating, spray coating; Techniques for particle separation and surfate coating, spray coating; Techniques for particle separation and surfate coating, spray coating; Techniques for particle separation and surfate coating, spray coating; Techniques for particle separation and surfate coating, spray coating; Techniques for particle separation and surfate coating and surfate coating, spray coating; Techniques for particle separation and surfate coating and surfate coating, spray coating; Techniques for particle separation and surfate coating and surfate coating spray coating; Techniques for particle separation and surfate coating spray coating; Techniques for particle separation and surfate coating spray coating; Techniques for particle separation and surfate coating spray coating; Techniques for particle separation and spray coating; Techniques for particle separation; Techniques for particle separation; Techniques for partic	lation, a	and con	tamin ranula meth	ation 9 ation
particle h Safety con UNIT IV Particle s technique fluidized cyclones, UNIT V	andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations. <b>PARTICLE PROCESSING TECHNIQUES</b> ize reduction methods: milling, grinding, crushing; Particle agglor s: spray drying, fluidized bed granulation; Particle coating and surfa bed coating, spray coating; Techniques for particle separation and centrifuges.	lation, a neration ce modi d classi	and con and g fication fication	tamin ranula meth	9 ation nods: ving, 9
particle h Safety con UNIT IV Particle s technique fluidized cyclones, UNIT V Applicatio	<ul> <li>andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.</li> <li><b>PARTICLE PROCESSING TECHNIQUES</b></li> <li>ize reduction methods: milling, grinding, crushing; Particle agglories: spray drying, fluidized bed granulation; Particle coating and surfate bed coating, spray coating; Techniques for particle separation and centrifuges.</li> <li><b>APPLICATIONS OF PARTICULATE PROCESSING</b></li> </ul>	lation, a neration ce modi d classi g; Utiliz	and con and g fication fication	tamin ranula meth : siev	9 ation nods: ving, 9 culat
particle h Safety con UNIT IV Particle s technique fluidized cyclones, UNIT V Application materials	<ul> <li>andling systems; Techniques for minimizing particle attrition, degradensiderations and regulations in particle handling operations.</li> <li><b>PARTICLE PROCESSING TECHNIQUES</b></li> <li>ize reduction methods: milling, grinding, crushing; Particle aggloris: spray drying, fluidized bed granulation; Particle coating and surfate bed coating, spray coating; Techniques for particle separation and centrifuges.</li> <li><b>APPLICATIONS OF PARTICULATE PROCESSING</b></li> <li>of particulate processing techniques in pharmaceutical manufacturin</li> </ul>	lation, a neration ce modi d classi g; Utiliz	and con and g fication fication	tamin ranula meth : siev	9 ation nods: ving, 9 culat

OUTC	OMI	ES:												
Upon s	ucces	ssful co	mpleti	on of th	e course	e, the st	udents	should b	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1.	U U	ndersta	and the	fundam	ental pr	opertie	s and cl	assificat	tions of	particu	late ma	terials.		2
CO2.								techniqu naterials		analyze	e the s	ize, sha	pe,	3
CO3.		0	sign and implement efficient and safe particle handling systems while minimiz rition, degradation, and contamination risks.											
CO4.				-	-	-	0	chnique dify par		•		reducti	on,	3
CO5					e role o se appl	1	1	rocessin	g techn	iques in	variou	s industr	ries	3
TEXT	BOC	OKS:												
2. F 3. F	Rhode Iiroal P <i>roce</i>	es, M ki Mas <i>ss Insti</i>	J. (2008 uda, K.	8). <i>Intro</i> H., & `	<i>duction</i> Yoshida	<i>to part</i> , H. (20	ticle tec )06). Po	separati hnology owder T CRC Pre	y. John Jechnold	Wiley &	z Sons.	:. and Ope	ration	s,
р 2. F	<i>artic</i> Fayed Busin	les and , M., d ess Me	<i>l powde</i> & Otter edia.	ers: Fun n, L. (2	ndament 2013). 1	tals and Handbo	l compu	tational	appro	aches. E	Butterwo	n engina orth-Hei . Spring	nemar	nn.
00						]	PO						Р	so
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1	1	1		1	2	1	3	3	3
CO2	2	2	3	1	3	1	1		1	2	1	3	3	3
CO3	3	2	2	2	3	1	1		1	2	1	3	3	3
CO4	3	2	2	2	3	1	1		1	2	1	3	3	3
CO5	2	2	3	3	3	1	1		1	2	1	3	3	3

CH2206	7 POLYMER PROCESSING	3	0		
		2	0	0	3
	<b>OBJECTIVES:</b> impart knowledge on polymer processing	1	1		<u> </u>
UNIT I	INTRODUCTION TO POLYMERS				5
structure a	of polymers and their significance in modern industries; Classification of and properties; Polymerization techniques: addition polymerization, cond ation; Polymer structure and morphology: amorphous vs. crystalline poly- ng.	lensatio	on		
UNIT II	RHEOLOGY AND POLYMER FLOW BEHAVIOUR				8
polymer m characteriz	heology and its importance in polymer processing, Newtonian vs. non-lelts; Flow phenomena: shear-thinning, viscoelasticity, relaxation behav ation techniques: rheometers, capillary viscometers; Influence of tempor n polymer flow behaviour.	iour; Rl	heologi	cal	
UNIT III	POLYMER PROCESSING TECHNIQUES				8
selection; requireme	principles, equipment, and applications; Injection molding: process step Blow molding: types, advantages, limitations; Compression molding: pr hts; Thermoforming: principles, sheet extrusion, forming processes.		-		ling
UNIT IV	ADVANCED POLYMER PROCESSING TECHNIQUES				12
Polymer for manufactu processing electrospin phase sepa	In to advanced polymer processing methods beyond traditional molding pam processing: principles, types of foaming agents, applications; Polyn ring: overview of composite materials, reinforcement techniques, fabric : in-situ polymerization, reactive extrusion, advantages, and challenges; ning: principles, equipment, and applications in nanofiber production; S ration techniques for polymer film formation; Emerging trends and futu polymer processing technologies.	ner com ation m Electro Solvent	nposite ethods; ospinnin casting	Reac ng and and	
UNIT V	QUALITY CONTROL AND OPTIMIZATION IN POLYMER PR	ROCES	SING		12
dimension and impro	e of quality control in polymer processing industries; Inspection techniq al measurement, non-destructive testing; Statistical process control (SPC ving process consistency; Process optimization techniques: Design of Ex rameter optimization; Case studies and real-world examples demonstrat l optimization on product quality and cost-effectiveness.	C) meth xperime	ods for ents (D0	moni DE),	torin

Upon suc	ccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Understand the basics of polymers, including their types and how their structure affects their properties.	2
CO2.	Predict the flow of polymers under different manufacturing process conditions.	3
CO3.	Operate common polymer processing equipment and understand the basic steps involved in making polymer products.	3
CO4.	Assess the suitability and potential applications of various advanced polymer processing techniques	3
CO5	Implement quality control measures to ensure that polymer products meet specified standards.	3
TEXT B	OOKS:	

3. Morrison, F. A. (2001). Understanding rheology. Oxford University Press

## **REFERENCES:**

1. Tadmor, Z., & Gogos, C. G. (2013). Principles of polymer processing. John Wiley & Sons.

2. Mark H. F. (2014). Encyclopedia of Polymer Science and Technology. John Wiley & Sons.

CO						]	PO						PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	2	2	1	1	1		1	1	1	3	3	3
CO2	3	3	2	2	2	1	1		1	1	1	3	3	3
CO3	3	2	3	2	3	1	1		1	1	1	3	3	3
<b>CO4</b>	3	2	3	2	3	1	1		1	1	1	3	3	3
CO5	2	3	3	2	3	1	1		1	1	1	3	3	3

CH2206	8 NANO MATERIALS AND APPLICATIONS			Р	C
		3	0	0	3
COURSE	OBJECTIVES:				<u> </u>
То	learn the basic synthesis and characterization of nano materials				
UNIT I	FUNDAMENTALS OF NANOSCIENCE				9
Introductio	n to nanoscience: history, significance, and interdisciplinary nature; Qu	antum	mechan	ics ba	sics
and its rele	vance to nanomaterials; Size effects and quantum confinement phenom	ena; Na	nomate	erials	
classificati	on: zero-dimensional, one-dimensional, and two-dimensional structures				
UNIT II	SYNTHESIS TECHNIQUES FOR NANO MATERIALS				9
Bottom-up	synthesis methods: sol-gel, chemical vapor deposition (CVD), and hyd	rothern	nal synt	hesis;	Тор
down syntl	nesis methods: lithography, etching, and mechanical exfoliation; Hybrid	and te	mplated	l syntl	nesis
approaches	s; Green synthesis methods and their advantages in nanomaterial fabrica	tion.			
UNIT III	CHARACTERIZATION METHODS FOR NANO MATERIALS				9
Microscop	y techniques: scanning electron microscopy (SEM), transmission electro	on micr	oscopy	(TEN	<b>I</b> ),
and atomic	e force microscopy (AFM); Spectroscopic techniques: X-ray diffraction	(XRD)	, Ramai	1	
spectrosco	py, and Fourier-transform infrared spectroscopy (FTIR); Surface analys	is techr	iques: 2	X-ray	
photoelect	ron spectroscopy (XPS) and Auger electron spectroscopy (AES); Therm	al and	mechan	ical	
characteriz	ation methods for nanomaterials.				
UNIT IV	PROPERTIES AND APPLICATIONS OF NANO MATERIALS				9
Electronic	properties of nanomaterials: quantum dots, carbon nanotubes, and nano	wires; (	Optical	prope	rties
of nanoma	terials: plasmonic effects, photonic crystals, and quantum confinement;	Mecha	nical pr	operti	es
of nanoma	terials: strength, elasticity, and ductility; Applications of nanomaterials	in elect	ronics,	photo	nics,
medicine,	and catalysis.				
UNIT V	ADVANCED NANO MATERIAL APPLICATIONS				9
Nanomate	rials for energy applications: solar cells, batteries, and fuel cells; Nanom	edicine	: drug o	lelive	ry
systems, d	agnostics, and therapeutics; Nanocomposites and their role in enhancing	g mater	ial prop	oerties	;
Environme	ental applications of nanomaterials: pollution remediation and water pur	ificatio	n		
		ТОТА	L: 45 I	PERI	ODS

OUTC	COM	ES:												
Upon s	succe	essful co	ompletio	on of th	e course	e, the st	udents s	should t	be able t	0				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1	-	Demonst anoscie		thorou	ıgh un	derstan	ding o	of the	princip	les and	l signi	ficance of	of	2
CO2		dentify own ap		-	for fa	bricatin	g nanoi	material	ls, inclu	iding b	ottom-u	p and to	<u>)</u> -	3
CO3	• E	Employ advanced characterization techniques to analyze nanostructures.												3
CO4		Evaluate the unique properties of nanomaterials, such as electronic, optical, mechanical properties, and understand their applications in various fields.											ıd	3
CO5	5 10	dentify	and ana	lyze ad	vanced	applica	tions of	nanom	aterials					3
TEXT	BO	OKS												
2. H s 3. H H REFE 1. C t 2. V c	Parar synth Das, Distr REN Goya Goya techn Willa analy	A. K., <i>E</i> ibutors I <b>CES:</b> I, R. K.	operties & Das, I Pvt. Lto (2017) and app H., Mer & Publi	s and ap M. (200 l. . Nanor lication ritt Jr, I shers &	pplicatio 05). An I materian es. CRC 2. L., De 2. Distrib	ons. CR Introduc Is and n Press. ean, J. A putors P	C Press ction to canocom	s. Nanom nposites ettle Jr, 1	aterial : synthe	and Na	noscien perties,	ite matern ce. CBS I , characte ntal meth	Publi	tion
со						]	PO	1	1	T			P	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	1	2	1	2	1	1	1		3	3	3
CO2	3	3	2	1	2	1	2	1	1	1		3	3	3
CO3	3	3	2	1	2	1	2	1	1	1		3	3	3
<b>CO4</b>	3	3	2	1	2	1	2	1	1	1		3	3	3
CO5	3	3	2	1	2	1	2	1	1	1		3	3	3

#### VERTICAL VII PROCESS ENGINEERING

CH CO C	DECCESS OPTIMIZATION								
CH220'	71 PROCESS OPTIMIZATION	3	0	0	3				
	<b>OBJECTIVES:</b> To impart knowledge on the formulation and solution of Clon problems	hemical	Process						
UNIT I	INTRODUCTION				9				
	n; formulation of objective functions; fitting models to data; classification of fu onditions for optimum; unimodal, multimodal functions; analytical methods, L			-					
UNIT II	NON-LINEAR UNCONSTRAINED OPTIMIZATION				9				
Newton's i	of function, convex and concave function, unconstrained NLP, methods for on nethod, Quasi Newton's method, Newton's method for Uni-dimensional search ion methods.			earch,					
UNIT III	NON-LINEAR CONSTRAINED AND MULTI VARIABLE OPTIMIZA	TION			9				
	stitution, Quadratic programming, Penalty, Barrier and Augmented methods, w osilon constraints method and Goal attainment.	eighted	sum of s	square	es				
UNIT IV	LINEAR PROGRAMMING AND NON-LINEAR PROGRAMMIN	G			9				
SIMPLEX integer pro	method, Barrier method, Sensitivity analysis, Quadratic programming, Introdu gramming	ction to	integer a	and m	ixed				
UNIT V	APPLICATIONS OF OPTIMIZATION IN CHEMICAL ENGINEERIN	G			9				
separation	er and energy conservation; Optimizing recovery of waste heat, shell and tube processes, Optimal design of staged distillation column, liquid-liquid extraction operation, optimal design of an ammonia reactor.		-	-					
		тота	L: 45 H	PERI	ODS				
OUTCOM	AES:								
Upon suce	cessful completion of the course, the students should be able to								
CO'S	STATEMENT				BT VEL				
CO1.	Apply the concepts of process optimization techniques.				3				
CO2.	Solve non-linear unconstrained optimization problems.				3				
CO3.	Apply various optimization techniques to solve multi-variable optimizat	ion pro	olems.		3				
CO4.	Analyze the methods of linear and dynamic programming.				4				
CO5	Formulate and solve optimization problems for chemical engineering ap	plicatio	ns.		4				

- 1. Edgar, T.F., Himmelblau, D.M., "Optimisation of Chemical Processes", McGraw-Hill II Edition, 2001
- 2. Kalyanmoy Deb., "Optimization for Engineering Design: Algorithms and Examples", Prentice Hall of India, New Delhi, 2005.
- 3. Ioannis K. Kookos., "Practical Chemical Process Optimization: with MATLAB and GAMS:197, Springer International Publishing AG, 2022.

- 1. Venkataraman P., Applied Optimization with MATLAB Programming, John Wiley & Sons, Inc., 2009.
- 2. Rangaiah G P., Petriciolet A B., Multi-Objective Optimization in Chemical Engineering: Developments and Applications, John Wiley & Sons, Inc., 2013.
- 3. Rao, S. S., Engineering Optimization: Theory and Practice, IV Edition John Wiley & Sons, Inc., 2009.

COUR	COURSE ARTICULATION MATRIX														
CO						]	PO						PS	50	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	3	3				1	2	1	2	3	3	
CO2	3	3	3	3	3				1	2	1	2	3	3	
CO3	3	3	3	3	3				1	2	1	2	3	3	
<b>CO4</b>	3	3	3	3	3				1	2	1	2	3	3	
CO5	3	3	3	3	3		2		1	2	1	2	3	3	

<b>ATTA A</b>		L	Т	Р	C
CH22072	CHEMICAL REACTOR ANALYSIS	3	0	0	3
COURSE O	BJECTIVES:				
Chemical Rea	ctor Analysis and Design is a unique, capstone course in the chemical engine	eering.	This cou	rse wi	11
provide an intr	roduction to the principles and calculation techniques used to analyze and de	esign ch	emical r	eactors	s for
the production	n of petrochemicals, advanced materials, polymers, and biochemical.				
UNIT I					9
Models for No	on-Ideal flow Reactors: Two- parameter models- RealCSTR modeled using b	bypass a	and dead	l space	<b>,</b>
real CSTR mo	odeled as twoCSTR interchange, testing a model and determining its paramet	ters. Mi	xing of f	luids:	Zero
parameter mo	dels-Segregation model, and qualitative concept of Maximum Mixedness mo	odel.			
UNIT II					9
Fluid-Particle	Reactions-Design: Various types of contacting in gas-solid operations; Deve	elopme	nt of per	forma	nce
equation for fi	requently met contacting pattern assuming uniform gas composition- Particle	es of a s	ingle siz	ze, plug	g flo
of solids, Mix	ture of particles of different but unchanging sizes, Application to a fluidized	l bed wi	th entra	inment	t of
	ture of particles of different but unchanging sizes, Application to a fluidized	l bed wi	th entra	inment	t of
solidfines.	ture of particles of different but unchanging sizes, Application to a fluidized	l bed wi	th entra		t of 9
solidfines.	ture of particles of different but unchanging sizes, Application to a fluidized				9
solidfines. UNIT III Fluid-Fluid Re		ight ma	ss Trans	fer: Pl	<b>9</b> ug
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai	ight ma action: H	ss Trans Plug flov	fer: Pl v G/Pl	<b>9</b> ug ug
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea	ight ma action: H	ss Trans Plug flov	fer: Pl v G/Pl	<b>9</b> ug ug
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass tower.	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea	ight ma action: H	ss Trans Plug flov	fer: Pl v G/Pl	<b>9</b> ug ug
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass tower. UNIT IV	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea	ight ma action: I mass tra	ss Trans Plug flov Insfer in	fer: Pl v G/Pl a cocu	9 ug urren 9
solidfines. <b>UNIT III</b> Fluid-Fluid Re flow G/Plug fl flow L – mass tower. <b>UNIT IV</b> Catalysis and o	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea s transfer and reaction in a countercurrent tower. Plug flow G/Plug flow L – r	ight ma action: I mass tra	ss Trans Plug flov Insfer in	fer: Pl v G/Pl a cocu	9 ug urren 9
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass tower. UNIT IV Catalysis and a design; catalys	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea s transfer and reaction in a countercurrent tower. Plug flow G/Plug flow L – r catalytic reactors: Design of reactors for gas-solid reactions. Heterogeneous	ight mar action: I mass tra data ana	ss Trans Plug flov Insfer in alysis fo	fer: Pl v G/Pl a cocu r react	<b>9</b> ug urren <b>9</b> or
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass tower. UNIT IV Catalysis and design; catalys External diffus	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea s transfer and reaction in a countercurrent tower. Plug flow G/Plug flow L – r catalytic reactors: Design of reactors for gas-solid reactions. Heterogeneous of st deactivation–Types of Deactivation, Moving bed Reactors.	ight mar action: I mass tra data ana	ss Trans Plug flov Insfer in alysis fo	fer: Pl v G/Pl a cocu r react	<b>9</b> ug urren <b>9</b> or
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass tower. UNIT IV Catalysis and design; catalys External diffus mass transfer	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea s transfer and reaction in a countercurrent tower. Plug flow G/Plug flow L – r catalytic reactors: Design of reactors for gas-solid reactions. Heterogeneous st deactivation–Types of Deactivation, Moving bed Reactors. sion effects on heterogeneous reactions- External resistance to mass Transfer	ight mar action: I mass tra data ana	ss Trans Plug flov Insfer in alysis fo	fer: Pl v G/Pl a cocu r react	<b>9</b> ug urren <b>9</b> or
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass tower. UNIT IV Catalysis and design; catalys External diffus mass transfer to UNIT V	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea s transfer and reaction in a countercurrent tower. Plug flow G/Plug flow L – r catalytic reactors: Design of reactors for gas-solid reactions. Heterogeneous st deactivation–Types of Deactivation, Moving bed Reactors. sion effects on heterogeneous reactions- External resistance to mass Transfer	ight ma action: I mass tra data ana r: Mass	ss Trans Plug flov Insfer in alysis fo transfer	fer: Pl v G/Pl a cocu r react coeffi	9 ug urren 9 or cient
solidfines. UNIT III Fluid-Fluid Re flow G/Plug fl flow L – mass tower. UNIT IV Catalysis and design; catalys External diffus mass transfer to UNIT V Non- isotherm	eactions- Design: Factors to consider in selecting a gas liquid contactor, Strai low L – counter current flow in a tower. Mass transfer plus not very slow rea s transfer and reaction in a countercurrent tower. Plug flow G/Plug flow L – r catalytic reactors: Design of reactors for gas-solid reactions. Heterogeneous st deactivation–Types of Deactivation, Moving bed Reactors. sion effects on heterogeneous reactions- External resistance to mass Transfer to a single particle, mass transfer limited reactions in packed beds.	ight ma action: I mass tra data ana r: Mass	ss Trans Plug flov Insfer in alysis fo transfer	fer: Pl v G/Pl a cocu r react coeffi	9 ug urrent 9 or cient 9

OUTCO		
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Describe the two parameter models for non-ideal flow reactors.	L1
CO2.	Explain and Design the various types of contacting in gas-solid operations.	L3
CO3.	Design the various factors to be considered in selecting a gas liquid contact.	L3
CO4.	Define catalysis, catalyst deactivation, diffusion and reaction in porous catalysts.	L4
CO5	Discuss the non isothermal reactor design and multiple steady states and solve the problems on adiabatic flow reactors at steadystate.	L4

Froment G, Bischoff K and De Wilde J, "Chemical Reactor Analysisand Design", 3rd Edition, John Wiley and Sons, 2011

- 1. Fogler, H.S., "*Elements of Chemical ReactionEngineering*", 4thEdition, Prentice Hall, New Jersey, 1986.
- 2. Levenspiel, O., "Chemical Reaction Engineering", 3rd Edition, JohnWiley and Sons, 2007

<b>COURSE ARTICULATION MATRIX</b>
-----------------------------------

			0			_								
СО		РО												50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2					3						3	2
CO2	3	2	2	1			3	1			1		3	2
CO3	3	1	2				3						3	2
CO4	3	2	2		2		3					2	3	3
CO5	3	2	2	1			3					2	3	2

		L	Т	P	C
CH2207	73 SCALE-UP IN CHEMICAL ENGINEERING	3	0	0	3
	<b>OBJECTIVES:</b> To learn the basic knowledge and design requirements ering with and without chemical reactions	for the	e scale-	ıp mo	dels
UNIT I	DIMENSIONAL ANALYSIS AND CONCEPT OF SCALE-UP				9
	nal Analysis: Pi Theorem and Rayleigh's method; Similitude: Principles of Regime concept; Scale-up criterion, methods, procedures; Mock-up & Pi		•		•
UNIT II	TRANSPORT PROCESSES				9
Mixing an	d Heat Transfer equipment: Mixing of solids and Mixing vessels, Pipes.	Excha	nger		
UNIT III	SEPARATIONS				9
Separation	Equipment: packed bed absorbers and bubble columns.				
UNIT IV	REACTOR ENGINEERING				9
Noncataly	zed Chemical Reactors: Kinetics, reactor development, Tubular reactor,	Fluidiz	ed reac	tor.	
UNIT V	REACTION KINETICS				9
	lyzed Chemical Reactors: Pseudo-homogeneous and heterogeneous mod cale-up considerations.	lels, Tv	vo-dime	ension	al
		TOTA	L: 45 ]	PERIC	ODS
OUTCOM	AES:				
Upon suce	cessful completion of the course, the students should be able to				
CO'S	STATEMENT			RI LEV	
CO1.	Apply the theoretical principles /concepts of scaling up the Laborator designing equipment for the pilot plant	y proc	ess and		3
CO2.	Solve the problems raised during converting a process from a Lab sc production unit.	ale to	a large	3	3
CO3.	Analyze the relevant theoretical knowledge on scale-up models for desi equipment for separation.	gning	Process	3	3
CO4.	Explore the scale-up of common process equipment used as reactors.			3	3
<b>CO5</b>	Examine the scaled-up equipment to carry out a unit process				3

- 1. Marko Zlokarnik, Scale-up in chemical engineering, Wiley-VCH, 2006
- 2. R.E. Johnstone and M.W. Thring, Pilot Plants, Models and Scale-up Methods in Chemical Engineering, McGraw-Hill 1957

- 1. Colin Divall, Sean Johnston, Scaling up: The Institution of Chemical Engineers and the rise of a new profession, Springer 2000.
- 2. Bisio, A. and Kabel, R.L., Scale-up of Chemical Processes, John Wiley 1985.
- 3. Jean-Paul Euzon, Pierre Trambouze, Jean Pierre Wauquier, Scale-up Methodology for Chemical Processes, Editions Technip, 1993.
- 4. Donald G. Jordan, Chemical Process Development (Part 1 and 2), Interscience Publishers 1998.

COU	RSE A	RTIC	ULAT	ION M	ATRIX	Σ.								
CO		РО												50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	1	1	3	2	2	2	2	2	2	3	3
CO2	3	2	2	1	1	3	2	2	2	2	2	2	3	3
CO3	3	2	2	1	1	3	2	2	2	2	2	2	3	3
<b>CO4</b>	3	2	2	1	1	3	2	2	2	2	2	2	3	3
CO5	3	2	2	1	1	3	2	2	2	2	2	2	3	3

	7.4		L	Т	P	C
CH220	74	PIPING DESIGN	3	0	0	3
<b>COURSE</b> plant pipi		<b>CCTIVES:</b> To impart knowledge on the basic fundamentals and d	esign a	spects of	of pro	cess
UNIT I	FUN	DAMENTALS OF PROCESS PLANT PIPING				9
	-	ng Components their introduction, applications. Piping MOC, Buc cation and Installations of piping, piping materials, Pipeline Econo	-			
UNIT II	PIPE	HYDRAULICS AND SIZING				9
pipe draw	ing bas	ipe sizing based on velocity and pressure drop consideration, leas ics, dimensions and drawing of piping, different types of joints ar alculation Procedure				
UNIT III	PLO'	Γ PLAN				9
utility pip	ing lay	plot plan for different types of fluid storage, equipment layout, pro out. Stress analysis -Different types of stresses and its impact on p mic analysis, and flexibility analysis	-		•	
UNIT IV	PIPI	NG SUPPORTS				9
		Pipe Supports, Selection Criteria for process plant piping supports es of loads	s, Pipe	support	desig	n
UNIT V	PIPI	NG INSTRUMENTATION				9
	d piping	ements; measuring devices, instrumentation symbols introduction g & instrumentation diagram (P&ID), data processing, Computer-				
			TOTA	AL: 45 1	PERIC	ODS
OUTCO	MES:					
Upon suc	cessful	completion of the course, the students should be able to				
CO'S		STATEMENT			RI LEV	
CO1.	Identif	y the various piping components			2	2
CO2.	Apply	the principles of pipe hydraulics and sizing				3
соз.	Perform	m stress analysis and pipe support design calculations			4	5
	Dovolo	op plot plan for Chemical Process Industries				
<b>CO4.</b>	Devel	p plot plan for chemical ribeess madsules			-	3

M.L. Nayyar, "Piping Handbook, Seventh edition", Mc Graw-Hill, Inc., 2000
 John J McKetta, "Piping Design Handbook", CRC Press, 1992

#### **REFERENCES:**

1. Moe Toghraei, "Piping and Instrumentation Diagram Development", John Wiley & Sons Inc., 2019

 Ed Bausbacher, Roger Hunt, "Process Plant Layout and Piping Design", PTR Prentice hall, 1993
 Peter Smith, "Process Piping Design Handbook vol 1. The Fundamentals of Piping Design", Gulf Publishing Company, 2007

COU	RSE A	RTIC	ULAT	ION M	ATRIX	K								
00		РО												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	3	1	3					3		3	3	3
CO2	3	2	3	3	3					3		3	3	3
<b>CO3</b>	3	3	3	3	3				3	3		3	3	3
<b>CO4</b>	3	3	3	3	3				3	3	3	3	3	3
CO5	3	2	2	2	2				3	3	1	2	3	3

		L	Т	Р	C
CH2207	75 CHEMICAL PROCESS INTENSIFICATION	3	0	0	3
COURSE	<b>OBJECTIVES:</b> Understand the techniques and applications of process	intensi	ficatior		
	<b>ODD D D D D D D D D D</b>	lincensi	ii cution	-	
UNIT I	INTRODUCTION				9
Technique	s of Process Intensification (PI) Applications, The philosophy and oppor	tunities	s of Pro	cess	
Intensifica	tion, Main benefits from process intensification, Process- Intensifying E	quipme	ent, Proe	cess	
intensifica	tion toolbox, Techniques for PI application, AI & ML in Process intensit	fication	l		
	COMBINED CHEMICAL REACTOR HEAT EXCHANGERS AN	ND REA	ACTO	R	
UNIT II	SEPARATORS				9
Principles	of operation; Applications, Reactive absorption, Reactive distillation, Application, Application	pplicati	ons of l	RD	
Processes,	Fundamentals of Process Modelling, Reactive Extraction Case Studies:	Absorp	otion of	NOx	Coke
Gas Purifi	cation. Compact heat exchangers: Classification of compact heat exchan	gers, Pl	ate hea	t	
exchanger	s, Spiral heat exchangers, Flow pattern, Heat transfer and pressure drop,	Flat tul	be-and-	fin he	at
exchanger	s,				
UNIT III	REACTIVE AND HYBRID SEPARATIONS				9
The conce	pt of reactive separations, reactive distillation, membrane-based reactive	separa	tion rea	ctive	
adsorption	, reactive extraction, reactive crystallization, hybrid separations, extracti	ve disti	llation,	adsor	rptive
distillatior	, membrane distillation, membrane chromatographic separation, design,	applica	ation		
UNIT IV	ENHANCED FIELDS				9
Enhanced	fields: Energy based intensifications, Sono-chemistry, Basics of cavitation	on, Cav	itation	React	ors,
Flow over	a rotating surface, Hydrodynamic cavitation applications, Cavitation rea	ctor de	sign, N	usselt	
flow mode	el and mass transfer, The Rotating Electrolytic Cell, Microwaves, Electro	static f	ields, S	ono-	
crystalliza	tion, Reactive separations, Supercritical fluids.				
	PROCESS INTENSIFICATION THROUGH MICRO REACTION	N			
UNIT V	TECHNOLOGY				9
Effect of r	niniaturization on unit operations and reactions, Implementation of Micro	oreactio	on Tech	nolog	gy,
From basi	c Properties To Technical Design Rules, Inherent Process Restrictions in	Miniat	urized	Devic	es
and Their	Potential Solutions				
		ТОТА	L: 45 I	PERI	ODS

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Understand principles of process intensification.	3
CO2.	Develop compact heat exchangers for enhanced heat suty	4
CO3.	Develop compact reactors for process industries	4
CO4.	Design intensified processes with enhanced performance	4
CO5	Apply intensification techniques in process industries	3
	1	

1. Reengineering the Chemical Process Plants, Process Intensification, Stankiewicz, A. and Moulijn, (Eds.), Marcel Dekker, 2018.

2. Process Intensification, David Reay, Colin Ramshaw, Adam Harvey, Butterworth Heinemann, Second Edition, 2013

3. Modelling of Process Intensification, Frerich Johannes Keil, Wiley VCH, 2008.

#### **REFERENCES:**

1. Integrated Reaction and Separation Operations: Modelling and experimental validation, Schmidt-Traub Henner, Gorak, Andrzej, Springer, 2007..

2. Micro Process Engineering'A Comprehensive Handbook, Hessel, V., A. Renken, J.C. Schouten and J.-I. Yoshida (eds.). Wiley-VCH, 2009.

3. Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing, Boodhoo, K. and A. Harvey, John Wiley & Sons Inc., 2013.

COU	KSE A	RTIC	ULAT	ION M	ATRIX									
СО						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	3	2	3	3	2	1	1	1	2	3	3
CO2	3	3	3	3	3	3	2	2	3	3	3	2	3	3
CO3	3	3	3	3	3	3	3	2	3	3	3	2	3	3
<b>CO4</b>	3	3	3	1	3	3	2	2	3	3	3	2	3	3
CO5	3	3	2	1	2	3	3	3	1	2	3	3	3	3

# COUDCE ADVICULATION MATDIN

		L	Т	P	C
CH2207	76 PROCESS PLANT UTILITIES	3	0	0	3
COURSE	OBJECTIVES:				
		ahnian	a to on	timia	
	the students to understand the process plant utilities and optimization te	chinque	es to op	umize	•
various pa	rameters in chemical industries.				
UNIT I	IMPORTANCE OF UTILITIES				9
Requisites	of Industrial Water and its uses. Methods of water Treatment such as C	hemica	l Softer	ing a	nd
Deminera	ization, Resins used for Water Softening and Reverse Osmosis. Effects	of impu	ıre Boil	er Fee	ed
Water.					
UNIT II	STEAM AND STEAM GENERATION				9
	Troubleshooting. Steam Traps and Accessories. REFRIGERATION				9
	ion Cycles, Methods of Refrigeration used in Industry and Different Ty	pes of R	efriger	ants si	uch
-	nloro difluro Methane, Chlorofluro Carbons and Brins. Refrigerating Ef	-	0		
UNIT IV	COMPRESSED AIR				9
Classificati	on of Compressor, Reciprocating Compressor, Single Stage and Two S	tage Co	mpresso	or, Ve	locity
Diagram fo	r Centrifugal Compressor, Slip Factor, Impeller Blade Shape. Propert	ies of A	ir – W	ater V	apors
and use of I	Humidity Chart. Equipments used for Humidification, Dehumidification	and Co	ooling T	ower	S
UNIT V	FUEL AND WASTE DISPOSAL				9
Types of I	Fuel used in Chemical Process Industries for Power Generation such as	Natural	Gas, Li	quid	
Petroleum	Fuels, Coal and Coke. Waste Disposal.				
		TOT	AL:45 ]	PERI	ODS

Upon suc	ccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Exemplify the knowledge on the various process plant utilities.	3
CO2.	Examine an efficient steam operation is imperative for economic and safe operation for the process industries.	4
CO3.	Contrast the concept of refrigeration and its cycles	4
CO4.	Categorize the types of compressor and cooling towers and Industrial applications	4
CO5	Assess the effective ways of waste disposal & types of fuel used for power generation.	4

- 1. Eckenfelder, W. W, Jr. "Industrial Water Pollution Control" McGraw-Hill: New York, 1966.
- 2. P. L. Ballaney, "Thermal Engineering", Khanna Publisher New Delhi, 1986.

- 1. P. N. Ananthanarayan, "Basic Refrigeration & Air conditioning", Tata McGraw Hill, New Delhi, 2007.
- 2. S.C.Arora & S.Domkumdwar; A course in refrigeration and air conditioning

со	РО													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	3	3	3	3	3	1	3	2	1	3	3	
CO2	2	2	3	1	3	3	3	3	2	1	1	3	3	3	
CO3	1	2	2	2	3	2			1	1		1	3	3	
CO4	1	1	3	1		2	2		2	2		2	3	3	
CO5		2	3	2		3	2	2	3	2	3	3	3	3	

GUIDADO		L	Т	Р	C						
CH2207	7 COMPUTATIONAL FLUID DYNAMICS	3	0	0	3						
COURSE OBJECTIVES:											
1. To demonstrate competence in setting up computational fluid dynamics models for industrially											
impo	important applications										
2. To appraise the numerical analysis of transport processes at process industries.											
3. To understand the life cycle of CFD simulation for solving industrial problems.											
UNIT I CONSERVATION LAWS AND TURBULENCE MODELS											
Governing	equation for fluid flow and heat transfer -mass conservation, momentum	m and e	energy e	equati	on,						
differential	and integral forms, conservation and non-conservation form. Boundary	layer t	reatmei	nt, RA	NS						
turbulence	models: k-epsilon and k – omega.										
UNIT II	FINITE DIFFERENCE APPROXIMATION				9						
Mathemati	cal behaviour of Partial Differential Equation, basic aspects of discretiza	ation by	FDM:	Taylo	or						
series. Fini	te difference operators, explicit and implicit methods, error and stability	analys	is.								
UNIT III	FINITE ELEMENT METHOD				9						
One-dimen	sional elements: Rayleigh-Ritz, Galerkin, and Least square methods										
UNIT IV	FINITE VOLUME METHOD				9						
Diffusion problems – explicit and implicit time integration; Convection-diffusion problems – properties of											
discretization schemes, central, upwind, hybrid, QUICK schemes; Solution of discretized equations.											
UNIT V FLOW FIELD COMPUTATION & CONVERGENCE											
Spatial discretization, Temporal discretization. Pressure velocity coupling, staggered grid, SIMPLE											
algorithm, and PISO algorithm for steady and unsteady flows. Convergence – asymptotic grid convergence.											
	TOTAL: 45 PERIODS										

OUTO	COM	ES:												
Upon	succe	essful co	ompleti	on of th	e cours	e, the st	udents	should b	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO			t the go eat tran		equation of the second s	on for s	solving	transpo	rt proce	esses in	volving	fluid f	low	3
CO		Explore the algorithms to solve the difference and discretized equation based on Taylor series										on	3	
CO.	7.	Acquire the skill to computationally solve the governing equation of the transport process using elements									oort	2		
CO	•.	Apply the fundamental knowledge on solving the transport processes using control volume								trol	3			
<b>CO5</b> Infer the techniques for computationally solving the physical model by providing the verification of results.									the	2				
ТЕХТ	<b>BO</b>	OKS:												
1. Anderson, J. D., "Computational Fluid Dynamics: The Basics with Applications", McGraw-Hil 2012.										Hill,				
		-	.K. and ne Metł						o Comp	outation	al Fluid	l Dynan	nics: Th	ne
REFE	REN	ICES:												
1.	Fletc	her, C.	A. J., "	Comput	tational	Techni	ques for	r Fluid I	Dynami	cs", Spi	ringer V	verlag, 2	011	
2.	Chur	ng T.J C	Computa	ational I	Fluid D	ynamics	s Cambi	ridge Ui	niversit	y Press,	2003.			
3.	Suba	s, V. Pa	atankar	"Nume	rical hea	at transf	fer fluid	l flow",	Hemisp	here Pu	ıblishin	g Corpo	oration,	1980.
COUI	RSE	ARTIC	CULAT	ION M	ATRIX	ζ								
							PO						P	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	2	3	3	2	2	3	2	1	3	3	3
CO2	3	3	1	2	3	3	2	2	3	2	1	3	3	3
CO3	3	3	1	2	3	3	2	2	3	2	1	3	3	3
<b>CO4</b>	3	3	1	2	3	3	2	2	3	2	1	3	3	3
CO5	3	3	1	2	3	3	2	2	3	2	1	3	3	3

CH2207	QUALITY CONTROL, ASSURANCE AND	L	Τ	Р	C						
0112207	RELIABILITY	3	0	0	3						
COURSE OBJECTIVES:											
1. To develop the awareness and understanding about Quality control at process industries.											
2. To introduce the students in Quality management and their assessment in chemical manufacture.											
3. To enable the students to access the process industries, about the Quality of product and ways to give											
assur	ance to stake holders.										
4. To ir	troduce the role of reliability and acceptance in process industries.										
UNIT I INTRODUCTION TO QUALITY CONTROL AND TOTAL QUALITY SYSTEM											
Evolution of	f Quality Control - Components of Quality Control, Quality Assurance	and Re	eliabilit	y K	lano						
Model. Tot	al Quality System - Benefits of Quality control and Total Quality system	n Dei	ning's								
philosophy, Crosby's philosophy and Juran's philosophy – Impact of Philosophies over Quality.											
UNIT II PRODUCT QUALITY CONTROL AND PROCESS QUALITY CONTROL											
Concepts in	sampling, Frequency distributions and Histograms, Run charts, Stem-	and-lea	f plots,	Paret	to						
diagram, C	ause-and-effect diagram, Normal probability plot, Scatter diagrams, Mu	ltivaria	ble cha	rts.							
Causes of v	ariation, Statistical Basis for Control Charts, Selection of Rational Sam	ples. V	arious <b>(</b>	Contro	ol						
charts – Me	ean and Range, Standard deviation, X and R Charts – CUSUM charts.										
UNIT III	QUALITY ASSURANCE				9						
Process Ca	pability Analysis – Tolerance – Process Capability Indices: Taguchi Cap	oability	Index.	Gage	<b>;</b>						
Repeatabili	ty and Reproducibility. Sampling Plans – Types, Evaluating Sample pla	ın: - Ba	yes Ru	le –							
Deming's I	Rule. Acceptance Sampling Plans for Attributes and Variables: Operatin	g Char	acterist	ic Cu	rve.						
UNIT IV	RELIABILITY AND ACCEPTANCE				8						
Failure Rat	e:- Probability Distribution, Life cycle Curve, System Reliability and Li	fe Test	ing pla	ns,							
Quality Fun	action Deployment (QFD):- Experimental Design – Taguchi method.										
UNIT V	TQM AND QUALITY SYSTEMS				8						
Total Quality Management (TQM) Principles. Continuous process improvement – PDSA cycle, 5S,											
KAIZEN. Six Sigma Principles: - FMEA stages. Quality Systems: ISO 9000 and 14001: - Concepts and											
Benefits.											
TOTAL: 45 PERIODS											

OUTC	OME	ES:												
Upon su	icces	sful co	ompleti	on of th	e course	e, the st	udents	should b	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1.	-		he prin t proces	-	• •	uiring l	knowled	dge abo	out Qua	ality co	ntrol a	nd Qual	ity	2
CO2.		Contrast the visualization techniques used to describe Product quality and quality in production process.											n a	2
CO3.		Develop the practice of sampling to analyse the process quality and its assurance at process industries											at	3
CO4.		Make use of Testing, Failure rate, life cycle charts to access the Reliability and Acceptance at manufacturing industries										nd	2	
CO5	Re	Relate the quality management and standards at process industries										2		
TEXT	BOC	)KS:												
<ol> <li>Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education Asia, 3rd Edition, Indian Reprint (2006).</li> <li><b>REFERENCES:</b> <ol> <li>Gryna, F. M., Chua, R. C. H. and Defeo, J. A., Juran's Quality Planning and Analysis for Enterprise Quality, Tata McGraw Hill, 5th Edition, 2007.</li> <li>Montgomery, D. C., Introduction to Statistical Quality Control, John Wiley &amp; Sons, 4th Edition, 2003.</li> <li>Kapur, K. and Lamberson, L., Introduction to Reliability Engineering, John Wiley &amp; Sons, 2nd Edition, 1989.</li> <li>Montgomery, D.C., Design and Analysis of Experiments, John Wiley &amp; Sons, 3rd Edition, 2000.</li> <li>James R. Evans and William M. Lindsay, "The Management and Control of Quality", (6thEdition), South-Western (Thomson Learning), 2005.</li> <li>Janakiraman,B and Gopal, R.K, "Total Quality Management – Text and Cases", Prentice Hall (India) Pvt. Ltd.(2006)</li> </ol> </li> <li>COURSE ARTICULATION MATRIX</li> </ol>											)03. ition,			
co -						]	PO						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	2	1	1	3	3	3	3	2	2	2	3	2
CO2	3	1	2	1	1	3	3	3	3	2	2	2	3	3
CO3	3	1	2	1	1	3	3	3	3	2	2	2	2	3
CO4	3	1	2	1	1	3	3	3	3	2	2	2	2	3
CO5	3	1	2	1	1	3	3	3	3	2	2	2	3	3

#### DIVERSIFIED VERTICAL GROUP I:

CUODO		L			С						
CH2208	1 BIOCHEMICAL ENGINEERING	3	0	0	3						
<b>COURSE OBJECTIVES:</b> To learn about the role of microbial kinetics, enzyme kinetics and downstrea processing of bioproducts											
UNIT I	NIT I INTRODUCTION TO BIOSCIENCE										
Role of biochemical engineers in various industries. Comparing chemical and biochemical processes. Types of Microorganisms: Structure and function of microbial cells. Fundamentals of microbial growth, batch and continuous culture. Cell growth measurement.											
UNIT II	ENZYME KINETICS				9						
Enzyme kinetics, Enzyme reactor with simple kinetics, Inhibition of enzyme reactions, Other influences enzyme activity. Immobilization of enzymes, immobilized enzyme kinetics,. Effect of mass transfer in immobilised enzyme particle systems. Industrial applications of enzymes. Enzyme Bioreactors. Case studies.											
UNIT III	MICROBIAL CELL KINETICS AND FERMENTER				9						
Growth cycle for batch cultivation, Elemental balances, degree of reduction of substrate and biomass, electron balances, yield co-efficient, maintenance co-efficient, Kinetics and design considerations for batc and continuous cultivation, Stirred-tank fermenter, fermenters connected in series. Cell recycling, Structured Model, Medium design and optimization, Thermal death kinetics of cells and spores, sterilization, sizing of continuous sterilizer											
UNIT IV	BIOREACTOR DESIGN				9						
Transport phenomena in bioprocess systems; Continuously stirred aerated tank bioreactors, Mixing powe correlation, Determination of volumetric mass transfer rate of oxygen from air bubbles, effect of mechanical mixing and aeration on oxygen transfer rate, power requirements for sparged and agitated vessels, scaling of bioreactors, heat transfer and power consumption, Multiphase bioreactors.											
UNIT V	DOWNSTREAM PROCESSING AND PRODUCT RECOVERY										
Strategies to recover and purify products, Separation of insoluble products, filtration and centrifugation, Cell disruption: mechanical and non-mechanical methods; Separation of soluble products: liquid-liquid extractions, membrane separation (dialysis, ultra-filtration and reverse osmosis). Chromatographic separation: gel permeation chromatography, electrophoresis Final steps in purification: crystallization and drying. Case studies.											

TOTAL: 45 PERIODS

OUT	COMI	ES:													
Upon	succes	ssful co	ompleti	on of th	e course	e, the st	udents	should	be able	to					
CO'S	5					ST	ATEM	ENT						RBT EVEL	
CO	I. Id	lentify	microb	es and c	ultivati	on for l	pioproce	ess.					3		
CO2	2. D	evelop	enzym	e kineti	cs and a	apply in	bio rea	ctions.					3		
CO														4	
CO	Analyze the dynamics and design of his restore													4	
CO	CO4.     V     V       CO5     Apply downstream processing and product recovery in bioprocess.													3	
Hil 2) Bio		ess Eng	gineerin	g by Mi	chael S	huler a	nd Fikre	et Kargi	i, Secon	d editio	on, perso	on educa	ation, 20	001	
REFE	REN	CES:													
			-	ng by Ja g princi						Academ	ics pres	s, 2013.			
COUI	RSE A	ARTIC	ULAT	ION M	ATRIX	<u> </u>									
CO							PO						PS	50	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
<b>CO1</b>	<u>1 2 3 4 5 6 7 8 9 10 11 12</u>														

**CO2** 

CO3

**CO4** 

CO5

			-			
CH220	FOOD PROCESSING TECHNOLOGY		L	T	P	C
СП2206	52 FOOD PROCESSING TECHNOLOGT		3	0	0	3
COURSE	<b>OBJECTIVES:</b> The course provides knowledge on basic unit	operations su	ch as po	ost harve	st	<u> </u>
processing	size reduction, mechanical separation and To impart knowledge	of drying, hea	ting and	d cooling	g as	
preservatio	n techniques in food processing.					
UNIT I	PRE-PROCESSING OPERATIONS					9
Post-harves	t losses in field crops - Cleaning - Peeling - Grading and Sorting	- Principles, t	types an	d equip	ment's	5.
Moisture c	ontent – free moisture, bound and unbound moisture. Equilibrium	moisture con	tent - de	etermina	tion	
methods, n	odels - Hysteresis effect. Water activity					
UNIT II	PROCESSING TECHNOLOGY OF FRUITS AND FRUIT	BEVERAGE	ËS			9
Unit operat	ions involved in Juice preparation-equipments-screw type juice ex	stractor, pulp	er, press	sing, Rad	ck and	cloth
press,Hydr	aulic Press, Filters, clarification and concentration by membranes.	Classificatio	n of fru	it juices.	- Squa	sh,
cordial, neo	tar, RTS.IMF products -Jam, Jelly, marmalade, candied preserves	5.				
UNIT III	SAMPLING AND STATISTICAL QUALITY CONTROL					9
Sampling-	concept, methods and importance. Statistical Process and Quality	Control – cor	ncept, ir	nportanc	e and	tools.
Control cha	rts: importance, types, design process, Control limits and errors, l	Process Capal	bility.			
UNIT IV	FOOD PRESERVATION					9
Methods of	applying heat to food - Blanching, Pasteurization, Sterilization. T	Thermal death	time re	elationsh	ips (D	, Z
and F value	s), Chilling - Equipments, Cold storage. Freezing - Thermodynan	nics of food f	reezing,	Phase d	liagrar	ns,
Ice crystals	formation, Properties of frozen foods.					
UNIT V	FOOD PACKAGING TECHNOLOGY					9
Definition	and basic functions of a food package. Food package design and	nd developm	ent Act	ive and	intelli	gent
packaging	modified atmosphere packaging - vacuum and inert gas packag	ging, biodegr	adable	and edib	ole	
packaging	aseptic packaging, self-heating and cooling cans. Recycling of	non-biodegr	adable	packagi	ng	
materials.						
		,	ТОТА	L: 45 I	PERI	ODS

Upon suc	ccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	identify appropriate pre-processing operations and determine the moisture characteristics of food products	L2
CO2.	select suitable storage and preservation techniques for fruits and vegetables	L2
CO3.	analyze and Categorize sampling and statistical quality control techniques.	L2
CO4.	identify appropriate thermal preservation techniques for food materials and make use of low temperature processing as a preservation techniques	L2
CO5	select and adapt recent trends in food packaging	L3
ТЕХТ В	OOKS:	

2. Earle R.L., "Unit Operations in Food Processing", 2nd Edition, Pergamon Press, U.K., 2004.

# **REFERENCES:**

1.Paul Singh R. and Dennis R. Heldman, "Introduction to Food Process Engineering", 5th Edition, Academic Press, USA, 2014.

Han Jung H, "Innovations in Food Packaging", 2nd Edition, Academic Press, USA, 2014.

CO						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2					3						3	2
CO2	3	2	2				3				2		3	2
CO3	3	1	2				3						3	2
CO4	3	2	2		2		3					2	3	3
CO5	3	2	2				3					2	3	2

CH2203	83 PULP AND PAPER TECHNOLOGY	3	0	0	3				
COURSE	<b>COBJECTIVES:</b> To provide a fundamental knowledge on paper products a	nd their	chemica	l, phys	ical				
and mecha	nical behavior, the processing techniques, along with the production of different	ent types	of paper	<b>:</b> .					
UNIT I	INTRODUCTION				9				
Importanc	e of paper industry, historical background of paper making, developme	nt of pa	per indu	ıstry in	n				
India, Imp	portance of paper, definitions of pulp, paper, and paperboard, Selection	of pulp a	and pap	er mal	king				
raw mater	rials - Wood based raw materials, Non woody raw materials, Recycled	ibers an	d Synth	netics					
fibers.									
UNIT II	RAW MATERIALS PREPARATION AND STORAGE				9				
Classification of fibres, characteristics and composition of some important vegetable fibers (hard woods									
Classifica	tion of fibres, characteristics and composition of some important veget	able fibe	rs (narc	i wood	ls,				
	tion of fibres, characteristics and composition of some important vegets, bagasse, straws, rags and paper stock), Wood preparation – pulp woo								
softwoods		d measu	rement,	barki	ng,				
softwoods chipping,	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo	d measu	rement,	barki	ng,				
softwoods chipping, on pulpinį	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith.	d measu	rement,	barki	ng,				
softwoods chipping, on pulping UNIT III	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith.	d measu pithing,	rement, effect o	barkii of depi	ng, thing 9				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. PULPING PROCESSES	d measu pithing, mical pu	rement, effect o	barkin of depi	ng, thing 9 ry of				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic cooking c	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. PULPING PROCESSES al pulping, alkaline pulping (Soda and Kraft), sulfite pulping, semi-che	d measu pithing, mical pu	rement, effect o	barkin of depi	ng, thing 9 ry of				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic cooking c	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. <b>PULPING PROCESSES</b> al pulping, alkaline pulping (Soda and Kraft), sulfite pulping, semi-che hemicals from spent cooking liquors, Bleaching agents, bleaching methe bleaching	d measu pithing, mical pu	rement, effect o	barkin of depi	ng, thing 9 ry of				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic cooking c multistage <b>UNIT IV</b>	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. <b>PULPING PROCESSES</b> al pulping, alkaline pulping (Soda and Kraft), sulfite pulping, semi-che hemicals from spent cooking liquors, Bleaching agents, bleaching methe bleaching	d measu pithing, mical pu ods – si	rement, effect o lping, r ngle sta	barkin of depi recover ge and	ng, thing 9 ry of 1 9				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic cooking ci multistage <b>UNIT IV</b> Beating an	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. PULPING PROCESSES al pulping, alkaline pulping (Soda and Kraft), sulfite pulping, semi-che hemicals from spent cooking liquors, Bleaching agents, bleaching methe bleaching MANUFACTURE OF PAPER	d measu pithing, mical pu ods – si	rement, effect o lping, r ngle sta	barkin of depi recover ge and	ng, thing 9 ry of 1 9				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic cooking ci multistage <b>UNIT IV</b> Beating an paper – fo	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. PULPING PROCESSES al pulping, alkaline pulping (Soda and Kraft), sulfite pulping, semi-che hemicals from spent cooking liquors, Bleaching agents, bleaching methe bleaching MANUFACTURE OF PAPER nd refining, sizing and loading (filling), Paper machines (Fourdrinier ar	d measu pithing, mical pu ods – si	rement, effect o lping, r ngle sta	barkin of depi recover ge and	ng, thing 9 ry of 1 9				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic cooking cl multistage <b>UNIT IV</b> Beating an paper – fo <b>UNIT V</b>	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. PULPING PROCESSES al pulping, alkaline pulping (Soda and Kraft), sulfite pulping, semi-che hemicals from spent cooking liquors, Bleaching agents, bleaching methe bleaching MANUFACTURE OF PAPER nd refining, sizing and loading (filling), Paper machines (Fourdrinier ar prming section, press section, dryer section, calendaring section	d measu pithing, mical pu ods – si d Cyline	rement, effect o lping, r ngle sta	barkin of depi recover ge and aking o	ng, thing 9 ry of 1 9 of 9				
softwoods chipping, on pulping <b>UNIT III</b> Mechanic cooking cl multistage <b>UNIT IV</b> Beating an paper – fo <b>UNIT V</b> Testing an	s, bagasse, straws, rags and paper stock), Wood preparation – pulp woo screening and conveying of chips), Bagasse depithing – dry and wet de g and paper making properties, disposal of pith. PULPING PROCESSES al pulping, alkaline pulping (Soda and Kraft), sulfite pulping, semi-che hemicals from spent cooking liquors, Bleaching agents, bleaching methe bleaching MANUFACTURE OF PAPER nd refining, sizing and loading (filling), Paper machines (Fourdrinier ar orming section, press section, dryer section, calendaring section TESTING OF PAPER	d measu pithing, mical pu ods – si d Cyline	rement, effect o lping, r ngle sta der), ma	barkin of depi recover ge and aking o	ng, thing 9 ry of 1 9 of 9				

OUTCOMES:										
Upon successful completion of the course, the students should be able to										
CO'S	STATEMENT	RBT LEVEL								
CO1.	Identify the importance of paper industry with their applications	U								
CO2.	Interpret complete understanding of papermaking terms, equipment, process technology, science, and engineering fundamentals, operations, and variables. Use of various energy sources.									
CO3.	Apply the knowledge about various unit operations in pulping processes	AP								
CO4.	Interpret the processes involved in the manufacture of paper	U								
CO5	Develop the various testing and evaluation procedures for different types of paper.	AP								

Britt K W, Handbook of Pulp and Paper Technology, Reinhold Publishing Corporation, New York G.A. Smook, Handbook of Pulp and Paper technologists, 4 th Edition, Tappi Press, 2016

#### **REFERENCES:**

MacDonald R G, Pulp and Paper Manufacture Vol I to III, Second Edition., McGraw Hill, New York Pulp and Paper: Chemistry and Chemical Technology Vol I to IV, Casey JP, Ed., Wiley Inter science, New York

Pulp and Paper Manufacture, Kocurek, Tappi Publication. Mark, Handbook of Physical and Mechanical Testing of Paper and Board, Vol.I & II, Dekker Publication

CO						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3			2	3	2	2	3		3	3	2
CO2	3	3	3			2	3	2	2	3		3	3	2
CO3	3	3	3			2	3	2	2	3		3	3	2
CO4	3	3	3			2	3	2	2	3		3	3	2
CO5	3	3	3			2	3	2	2	3		3	3	2

		L	Т	P	C					
CH220	84 FLUIDIZATION ENGINEERING	3	0	0	3					
COURSE	E OBJECTIVES: To enable the students to learn the design aspects of flu	uidized	l beds.	1	I					
UNIT I	BASICS OF FLUIDIZATION				9					
fluidizatio	ed – Velocity – Pressure drop relations – Correlations of Ergun, Kozney k on – Properties of fluidized beds – Development of fluidization from fixed ages of fluidized beds.				nd					
UNIT II FLUIDIZED BED TYPES AND APPLICATIONS										
	fluidization conditions – Expanded bed – Elutriation – Moving solids an ustrial applications of fluidized beds: Coal gasification	d dilut	e phase	– spo	uted					
UNIT III	DESIGN ASPECTS				9					
Channeling	g – Bed expansion in liquid – Solid and gas – Solid fluidizations. Design aspects	s of flui	dized be	ed syste	ems.					
Concept of	I KID									
					9					
Concept of UNIT IV Heat and I	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS mass transfer in fluidized beds: Heat transfer mechanism, principles of ga neat transfer to liquid fluidized systems, generalized correlation for fluidized				ace					
Concept of UNIT IV Heat and transfer, h	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS mass transfer in fluidized beds: Heat transfer mechanism, principles of ga neat transfer to liquid fluidized systems, generalized correlation for fluidized				ace					
Concept of UNIT IV Heat and transfer, h and its lin UNIT V	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS mass transfer in fluidized beds: Heat transfer mechanism, principles of ga neat transfer to liquid fluidized systems, generalized correlation for fluidiz nitations.				ace er					
Concept of UNIT IV Heat and transfer, h and its lin UNIT V	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of ganeat transfer to liquid fluidized systems, generalized correlation for fluidized intations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.	zed bec		ransfe	face or 9					
Concept of UNIT IV Heat and transfer, h and its lin UNIT V	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of ganeat transfer to liquid fluidized systems, generalized correlation for fluidized initations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.	zed bec	l mass t	ransfe	face or 9					
Concept of UNIT IV Heat and t transfer, h and its lin UNIT V Single stag	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of ganeat transfer to liquid fluidized systems, generalized correlation for fluidized initations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.	zed bec	l mass t	ransfe	face or 9					
Concept of UNIT IV Heat and t transfer, h and its lin UNIT V Single stag	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of ganeat transfer to liquid fluidized systems, generalized correlation for fluidized initations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.         MES:	zed bec	l mass t	ransfe	ace er 9 DDS BT					
Concept of UNIT IV Heat and t transfer, h and its lim UNIT V Single stag OUTCOM Upon succ	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of ganeat transfer to liquid fluidized systems, generalized correlation for fluidized initations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.         MES:         cessful completion of the course, the students should be able to	zed bec	l mass t	PERIC	ace or 9 DDS BT /EL					
Concept of UNIT IV Heat and r transfer, h and its lin UNIT V Single stag OUTCOM Upon succe CO'S	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of gameat transfer to liquid fluidized systems, generalized correlation for fluidized initations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.         MES:         cessful completion of the course, the students should be able to         STATEMENT	zed bec	l mass t	PERIC	ace er 9 0DS 3T /EL 3					
Concept of UNIT IV Heat and r transfer, h and its lin UNIT V Single stag OUTCOM Upon succ CO'S CO1.	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of gane transfer to liquid fluidized systems, generalized correlation for fluidized intations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.         MES:         cessful completion of the course, the students should be able to         STATEMENT         Calculate pressure drop for packed bed and fluidized bed.	zed bec	l mass t	PERIC PERIC	ace ar 9 DDS BT /EL 3 3					
Concept of UNIT IV Heat and t transfer, h and its lim UNIT V Single stag OUTCOM Upon succ CO'S CO1. CO2.	HEAT AND MASS TRANSFER IN FLUIDIZED BEDS         mass transfer in fluidized beds: Heat transfer mechanism, principles of ganeat transfer to liquid fluidized systems, generalized correlation for fluidiznitations.         OTHER TYPES OF FLUIDIZATION         ge and multistage fluidization – Collection of fines – Use of cyclones.         MES:         cessful completion of the course, the students should be able to         STATEMENT         Calculate pressure drop for packed bed and fluidized bed.         Understand different types of fluidization and its applications	zed bec	l mass t	PERIO	ace or 9 0DS 3T 7EL 3 3					

 Kunni, D., Levenspiel O., "Fluidization Engineering", Second Edition, Butterworth – Heinmann, 2012
 Robert H. Perry and Don W. Green, "Perry"s Chemical Engineer"s Handbook", Seventh Edition, Mc Graw Hill – International, 1997.

- 1. Davidson J. F., Harrison D, "Fluidization", Academic Press, 1971.
- 2. Wen-Ching Yang, "Handbook of Fluidization and Fluid-Particle Systems", Marcel Dekker Inc, 2003.
- Liang Shih FAN, Howard Brenner, "Gas-Liquid-Solid Fluidization Engineering" Butterworth Publishers, 1989

COU	RSE A	RTIC	CULAT	ION M	ATRIX									
<b>CO</b>						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1			2	2	1	3	3		3	3	3
CO2	3	3	1			2	2	1	3	3		3	3	3
CO3	3	3	3			2	2	1	3	3		3	3	3
CO4	3	3	1			2	2	1	3	3		3	3	3
CO5	3	3	1			2	2	1	3	3		3	3	3

		L	Т	Р	C							
CH220	B5 DESIGN OF EXPERIMENTS AND PARAMETER ESTIMATION	3	0	0	3							
COURSE OBJECTIVES: To enable the students to learn the design methodologies												
UNIT I	FUNDAMENTALS OF EXPERIMENTATION				9							
-	perimentation in rapid scientific progress, Historical perspective of experimentation, Principles of experimentation.	al appro	aches, S	teps in								
UNIT II	COMPARATIVE EXPERIMENTS				9							
	epts of probability and statistics, Comparison of two means and two variances, two) means & ANOVA.	Compa	rison of	multip	le							
UNIT III	FACTORIAL DESIGN				9							
	esigns, fractional factorial designs, orthogonal arrays, standard orthogonal arra the orthogonal arrays, selection of suitable orthogonal array design, analysis of				,							
UNIT IV	RESPONSE SURFACE METHODOLOGY				9							
Concept, li	near model, steepest ascent, second order model, regression, optimization.											
UNIT V	TAGUCHI TECHNIQUE				9							
-	experiments using Orthogonal Arrays, Data analysis from Orthogonal experime NOVA- attribute data analysis- Robust design- noise factors, Signal to noise ra		-	-	esign.							
		ТОТА	L: 45 1	PERIC	ODS							
OUTCOM	MES:											
Upon suce	cessful completion of the course, the students should be able to											
CO'S	STATEMENT			RI LEV								
CO1.	CO1.Apply the fundamental principles of Classical Design of Experiments.3											
CO2.	Analyze data to identify its significance in the model			2	1							
СОЗ.	Apply Factorial Design principles for analyzing process parameters			3	3							
CO4.	Evaluate and optimize process parameter by Response Surface method			-	5							
CO5	Apply Taguchi's approach to experimental design for attaining robustness				3							

1. Montgomery DC, Design and Analysis of Experiments, Seventh Edition, John Wiley & Sons, NY, 2008.

2. Krishnaiah K, Shahabudeen P, Applied design of experiments and Taguchi method, Second edition, PHI, 2012.

- 1. Daniel Coleman, Belt Gunter, A DOE, Handbook, Create space publisher, 2013
- 2. Ross PJ, Taguchi Techniques for Quality Engineering, McGraw-Hill Book Company, NY, 2008.

COUI	COURSE ARTICULATION MATRIX													
						J	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3		3	2	2	2	3	3	2	3	3	3
CO2	3	3	3		3	2	2	2	3	3	2	3	3	3
CO3	3	3	3		3	2	2	2	3	3	2	3	3	3
CO4	3	3	3		3	2	2	2	3	3	2	3	3	3
CO5	3	3	3		3	2	2	2	3	3	2	3	3	3

				-							
CHOOM	2086 DRUG AND PHARMACEUTICAL TECHNOLOGY										
CH2208	DRUG AND PHARMACEUTICAL TECHNOLOGY	3	0	0	3						
COURSE	<b>OBJECTIVES:</b> To gain knowledge in formulation and manufacturing of dru	igs and	its quali	ity ana	lysis.						
UNIT I	PRINCIPLES AND KINETICS				9						
	n to drugs and pharmaceutical, application of organic therapeutic agents, pha- , Distribution, metabolism and Excretion-mechanism and physico chemical pri										
UNIT II	PROCESS SYNTHESIS				9						
	Conversion process- alkylation, carboxylation, condensation and cyclisation, n, oxidation and sulfonation reactions.	dehydr	ation, e	sterifi	cation,						
UNIT III											
	capsules -Types of Tablets and capsules -Formulation and Manufacturing; p ections and ointments- methods of preparation.	arential	solution	ns, ora	ા						
UNIT IV	PHARMACEUTICAL PRODUCTS:				9						
	unctions, laxatives-classification and uses, analgesics-Types and Mechanisms, on, mechanism and applications.	antacio	ls and a	ntisep	tics-						
UNIT V	QUALITY CONTROL:				9						
•	quality control-IPQC tests for tablets, Quality analysis – raw materials, proce	ess and	finished	l prod	ucts.						
		ТОТА	L:45 I	PERI	ODS						
OUTCOM	IES:										
Upon succ	essful completion of the course, the students should be able to										
CO'S	STATEMENT				BT VEL						
CO1.	explain the drug metabolism and pharmaco-kinetic principles			L	.2						
CO2.	illustrate the different chemical conversion processes in pharmaceutical industr	ies		L	.2						
CO3.	outline the formulation and manufacturing of drug delivery systems			L	.3						
<b>CO4</b> .	describe the manufacturing processes of different types of pharmaceutical prod			L	.3						
CO5	elaborate the importance of good manufacturing practices and quality control p	rocedur	res	L	.3						

- 1. Brahmankar D.M. and Sunil B. Jaiswal, "Bio pharmaceutics and Pharmacokinetics: A Treatise", 1st Edition, Vallabah Prakashan India, 2017 forunits I, II & III.
- Arthur Owen Bentley, "Text book of Pharmaceutics", 8th Edition, All India Traveller Book Seller, India, 2002 for units IV & V.

### **REFERENCES:**

1.Banker G.S. and Rhodes C.T., "Modern Pharmaceutics", 4th Edition, Marcel Dekker Inc, United State of America, 2002.

COU	RSE A	RTIC	CULAT	ION M	ATRIX										
CO						]	PO						PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3				2						3	2	2	
CO2	3	3				2						3	2	2	
CO3	3	3				2						3	2	2	
<b>CO4</b>	3	3				2						3	2	2	
CO5	3	3				2						3	2	2	

CH2208	37 CHEMICAL PROCESS AUTOMATION	L	Т	Р	C
CI12200	S7 CHEMICAL FROCESS AUTOMATION	3	0	0	3
COURSE	OBJECTIVES:				<u>.</u>
To gain kr	owledge about automation and control systems in industries				
UNIT I	INTRODUCTION				9
Automation	n overview, Requirement of automation systems, Architecture of Industrial Automation	omatior	n system	,	
Introductio	n of PLC and supervisory control and data acquisition (SCADA). Industrial bus	system	ns : Mod	bus &	2
Profibus					
UNIT II	AUTOMATION COMPONENTS				9
Sensors for	temperature, pressure, force, displacement, speed, flow, level, humidity and pH	I measu	irement.	Actua	ators,
process cor	trol valves, power electronics devices DIAC, TRIAC, power MOSFET and IG	BT. Intr	roductio	n of D	C and
AC servo d	rives for motion control.				
UNIT III	COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS				9
Role of cor	nputers in measurement and control, Elements of computer aided measurement	and cor	ntrol, ma	in-ma	chine
interface, c	omputer aided process control hardware, process related interfaces, Communica	ation an	id netwo	rking,	,
Industrial c	ommunication systems, Data transfer techniques, Computer aided process contra	rol soft	ware, Co	mpute	er
based data	acquisition system, Internet of things (IoT) for plant automation.				
UNIT IV	PROGRAMMABLE LOGIC CONTROLLERS				9
Programma	ble controllers, Programmable logic controllers, Analog digital input and output	ıt modu	les, PLC		
programmi	ng, Ladder diagram, Sequential flow chart, PLC Communication and networkir	ıg, PLC	selectio	on, PL	С
Installation	, Advantage of using PLC for Industrial automation, Application of PLC to pro	cess co	ntrol ind	ustrie	s.
UNIT V	DISTRIBUTED CONTROL SYSTEM				9
Overview of	f DCS, DCS software configuration, DCS communication, DCS Supervisory C	Compute	er Tasks	, DCS	
integration	with PLC and Computers, Features of DCS, Advantages of DCS.				
	,	ΓΟΤΑ	L: 45 I	PERI	ODS

Upon suc	ccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Design a signal conditioning circuits for various application	5
CO2.	Acquire a detail knowledge on different sensors	2
соз.	Understand the basics and Importance of communication buses in applied automation Engineering	2
CO4.	Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block	3
CO5	Acquire a detail knowledge on DCS and able to develop a PLC logic for a specific application on real world problem	3
2. C D	OOKS: Singh, "Industrial Instrumentation", Tata Mcgraw Hill, 2nd edition companies,2003. Johnson, "Process Control Instrumentation Technology", Prentice Hall India,8th Edition, 2006. Parr, Newnes ,NewDelhi, "Industrial Control Handbook",3rd Edition, 2000	
Edition 2. Fran	ENCES: n W. Webb and Ronald A. Reis, "Programmable Logic Controllers: Principles and Applica , Prentice Hall Inc., New Jersey, 2003 k D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw- Hill, New York, 201 hna Kant, "Computer - Based Industrial Control", 2nd Edition, Prentice Hall, New Delhi, 2011.	
	/ Dunning, Thomson Delmar, "Programmable Logic Controller", CeneageLearning, 3rd Edition,	2005

COUL	RSE A	RTIC	ULAT	ION M	ATRIX									
CO						]	PO						PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3		2		2		3	3	2	3	3	3
CO2	2	3	3		2				3	3	2	3	3	3
CO3	2	3	3		2		3		3	3	2	3	3	3
<b>CO4</b>	3	3	3		2				3	3	2	3	3	3
CO5	2	2	3		2		3		3	3	2	3	3	3

CH22088       DATA ANALYTICS & MACHINELEARNING FOR CHEMICAL ENGINEERS       L       T       P       C         3       0       0       3       0       0       3         COURSE OBJECTIVES: To introduce Data Analytics & MachineLearning For Chemical Engineers       9         Overview of data analytics and its importance in chemical engineering; Basic concepts of data exploration, visualization, and descriptive statistics; Introduction to data mining techniques for extracting patterns and trends from chemical engineering data; Case studies demonstrating the use of data analytics in process optimization and quality improvement.       9         UNIT II       STATISTICAL METHODS FOR DATA ANALYSIS       9         Fundamentals of probability theory and statistical inference; Parametric and non-parametric statistical tests for hypothesis testing and confidence intervals; Regression analysis techniques for modelling relationships entement process variables; Design of experiments (DOE) principles and methodologies for process optimization.       9         UNIT III       MACHINE LEARNING FUNDAMENTALS       9         Introduction to machine learning concepts and algorithms; Supervised learning techniques: clustering algorithms, principal component analysis (PCA); Model evaluation and validation techniques for assessing predictive performance.       9         UNIT IV       ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL Engineers analysis and forecasting methods for predicting process behaviour; Anomaly detection tracheniques for identifying abnormal process conditions; Feature engineering and						
CHEMICAL ENGINEERS3003COURSE OBJECTIVES: To introduce Data Analytics & MachineLearning For Chemical EngineersUNIT IINTRODUCTION TO DATA ANALYTICS IN CHEMICAL ENGINEERING9Overview of data analytics and its importance in chemical engineering: Basic concepts of data exploration, visualization, and descriptive statistics; Introduction to data mining techniques for extracting patterns and trends from chemical engineering data; Case studies demonstrating the use of data analytics in process optimization and quality improvement.9UNIT IISTATISTICAL METHODS FOR DATA ANALYSIS9Pundamentals of probability theory and statistical inference; Parametric and non-parametric statistical tests for hypothesis testing and confidence intervals; Regression analysis techniques for modelling relationships enteween process variables; Design of experiments (DOE) principles and methodologies for process 	CH2208					
To introduce Data Analytics & MachineLearning For Chemical Engineers       9         UNIT I       INTRODUCTION TO DATA ANALYTICS IN CHEMICAL ENGINEERING       9         Overview of data analytics and its importance in chemical engineering: Basic concepts of data exploration, visualization, and descriptive statistics; Introduction to data mining techniques for extracting patterns and trends from chemical engineering data; Case studies demonstrating the use of data analytics in process optimization and quality improvement.       9         UNIT II       STATISTICAL METHODS FOR DATA ANALYSIS       9         Fundamentals of probability theory and statistical inference; Parametric and non-parametric statistical tests of hypothesis testing and confidence intervals; Regression analysis techniques for modelling relationships between process variables; Design of experiments (DOE) principles and methodologies for process optimization.       9         UNIT III       MACHINE LEARNING FUNDAMENTALS       9         Introduction to machine learning concepts and algorithms; Supervised learning techniques: linear regression, logistic regression, decision trees; Unsupervised learning techniques: clustering algorithms, principal component analysis (PCA); Model evaluation and validation techniques for assessing predictive performance.       9         Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques to real-word chemical engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-word chemical engineering problems.       9         Time series analysis and forecasting	0112200	CHEMICAL ENGINEERS	3	0	0	3
Overview of data analytics and its importance in chemical engineering; Basic concepts of data exploration, visualization, and descriptive statistics; Introduction to data mining techniques for extracting patterns and trends from chemical engineering data; Case studies demonstrating the use of data analytics in process optimization and quality improvement.         UNIT II       STATISTICAL METHODS FOR DATA ANALYSIS       9         Fundamentals of probability theory and statistical inference; Parametric and non-parametric statistical tests for hypothesis testing and confidence intervals; Regression analysis techniques for modelling relationships between process variables; Design of experiments (DOE) principles and methodologies for process optimization.       9         UNIT III       MACHINE LEARNING FUNDAMENTALS       9         Introduction to machine learning concepts and algorithms; Supervised learning techniques: linear regression, logistic regression, decision trees; Unsupervised learning techniques for assessing predictive performance.       9         UNIT IV       ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL ENGINEERING       9         Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.       9         Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging app				1		
visualization, and descriptive statistics; Introduction to data mining techniques for extracting patterns and trends from chemical engineering data; Case studies demonstrating the use of data analytics in process optimization and quality improvement.          UNIT II       STATISTICAL METHODS FOR DATA ANALYSIS       9         Fundamentals of probability theory and statistical inference; Parametric and non-parametric statistical tests for hypothesis testing and confidence intervals; Regression analysis techniques for modelling relationships between process variables; Design of experiments (DOE) principles and methodologies for process optimization.       9         UNIT III       MACHINE LEARNING FUNDAMENTALS       9         Introduction to machine learning concepts and algorithms; Supervised learning techniques: linear regression, logistic regression, decision trees; Unsupervised learning techniques for assessing predictive performance.       9         UNIT IV       ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL ENGINEERING       9         Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.       9         UNIT V       APPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGINEERING       9         Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of	UNIT I	INTRODUCTION TO DATA ANALYTICS IN CHEMICAL ENG	SINEE	RING		9
Fundamentals of probability theory and statistical inference; Parametric and non-parametric statistical tests for hypothesis testing and confidence intervals; Regression analysis techniques for modelling relationships between process variables; Design of experiments (DOE) principles and methodologies for process optimization.         UNIT III       MACHINE LEARNING FUNDAMENTALS       9         Introduction to machine learning concepts and algorithms; Supervised learning techniques: linear regression, logistic regression, decision trees; Unsupervised learning techniques: clustering algorithms, principal component analysis (PCA); Model evaluation and validation techniques for assessing predictive performance.       9         UNIT IV       ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL ENGINEERING       9         Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.       9         UNIT V       APPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGINEERING       9         Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.       9	visualizati trends from	on, and descriptive statistics; Introduction to data mining techniques for n chemical engineering data; Case studies demonstrating the use of data	extract	ing patt	erns a	ind
For hypothesis testing and confidence intervals; Regression analysis techniques for modelling relationships between process variables; Design of experiments (DOE) principles and methodologies for process optimization.         UNIT III       MACHINE LEARNING FUNDAMENTALS       9         Introduction to machine learning concepts and algorithms; Supervised learning techniques: linear regression, logistic regression, decision trees; Unsupervised learning techniques: clustering algorithms, principal component analysis (PCA); Model evaluation and validation techniques for assessing predictive performance.       9         UNIT IV       ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL ENGINEERING       9         Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.       9         UNIT V       APPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGINEERING       9         Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.       9	UNIT II	STATISTICAL METHODS FOR DATA ANALYSIS				9
Introduction to machine learning concepts and algorithms; Supervised learning techniques: linear         regression, logistic regression, decision trees; Unsupervised learning techniques: clustering algorithms, principal component analysis (PCA); Model evaluation and validation techniques for assessing predictive performance.         UNIT IV       ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL ENGINEERING       9         Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.       9         UNIT V       APPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGINEERING       9         Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.       9	for hypothe between p	sis testing and confidence intervals; Regression analysis techniques for occess variables; Design of experiments (DOE) principles and me	or mode	elling re	elatior	nships
regression, logistic regression, decision trees; Unsupervised learning techniques: clustering algorithms, principal component analysis (PCA); Model evaluation and validation techniques for assessing predictive performance.           UNIT IV         ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL ENGINEERING         9           Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.         9           UNIT V         APPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGINEERING         9           Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.         9	UNIT III	MACHINE LEARNING FUNDAMENTALS				9
UNIT IVADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL ENGINEERING9Time series analysis and forecasting methods for predicting process behaviour; Anomaly detection techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.9UNIT VAPPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGINEERING9Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.9	regression principal c	, logistic regression, decision trees; Unsupervised learning techniques: c omponent analysis (PCA); Model evaluation and validation techniques	lusterir	ig algor	ithms	
techniques for identifying abnormal process conditions; Feature engineering and selection strategies for improving model performance; Case studies on applying advanced data analytics techniques to real-world chemical engineering problems.9UNIT VAPPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGINEERING9Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.9	_	ADVANCED TOPICS IN DATA ANALYTICS FOR CHEMICAL	4			9
Predictive modelling for process optimization and control; Quality control and anomaly detection in chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.	techniques improving	s analysis and forecasting methods for predicting process behaviour; Ar for identifying abnormal process conditions; Feature engineering and s model performance; Case studies on applying advanced data analytics t	election	n strateg	gies fo	
chemical manufacturing processes; Integration of data analytics with process monitoring and control systems; Future trends and emerging applications of data analytics in chemical engineering.	UNIT V	APPLICATIONS OF DATA ANALYTICS IN CHEMICAL ENGI	NEER	ING		9
TOTAL: 45 PERIODS	chemical 1	nanufacturing processes; Integration of data analytics with process mon	itoring	and con		
			ТОТА	L: 45 I	PERIO	ODS

OUTO	COM	ES:												
Upon	succe	ssful co	ompleti	on of th	e course	e, the st	udents	should b	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO				mpeten ain of ch				the esse	ential p	rinciple	s of da	ta analyt	ics	2
CO2	<u> </u>						ze cher , and de		U	U	ta sets,	includi	ng	3
COS							hine le olve che					rvised a	nd	3
CO4	<b>1</b> . d		n, and	feature								s, anoma 1 chemio		3
CO		lentify ngineer		valuate	applica	tions o	of data	analytic	es in v	arious	areas o	f chemio	cal	3
ТЕХТ	BOO	OKS:												
2. 3. <b>REFE</b> 1.	Vinin <u>Mont</u> <b>REN</b> Steph Pears	ng, G.G gomery <b>CES:</b> nanopou on Lea	. and K 7 D.C. ( ulos G. rning.	owalski 2019). / (2015)	i, S. (20 Introdu . Chem	10). Sta ction to nical Pr	<u>Statisti</u> rocess (	Method ical Quo Control.	ls for E ulity Co · An In	ngineer ntrol. Jo troduct	s. Ceng ohn Wil	age Lear ey and S Theory c	ons.	
							<i>ıl Engin</i> -Heiner	-	Design:	Princiț	ples, Pr	actice ar	ed Eco	onomics
COUI	RSE A	ARTIC	ULAT	ION M	ATRIX	K								
C O							PO						Р	so
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	3		3	2	1	1	1	2	1	3	3	3
CO2	3	3	3		3	2	1	1	1	2	1	3	3	3
CO3	2	2	2		3	2	1	1	1	2	1	3	3	3
CO4	2	2	2		3	2	1	1	1	2	1	3	3	3
CO5	2	2	2		3	2	1	1	1	2	1	3	3	3

# LIST OF OPEN ELECTIVES

		L	Т	Р	С
OE2230	1 WASTE TO ENERGY	3	0	0	3
COURSE	<b>OBJECTIVES:</b> To impart the knowledge on the waste management and	energy	recover	y throu	ıgh
various pro	cess.				
UNIT I	INTRODUCTION TO WASTE & WASTE PROCESSING				9
Definitions	, sources, types, composition and characterization of various types of solid	wastes	includin	ıg	
biomedical	waste; waste collection and transportation; waste processing-size reduction	n, separa	ation; w	aste	
manageme	nt hierarchy, waste minimization and recycling of MSW; Life Cycle Analys	sis (LC	4)		
UNIT II	WASTE TREATMENT AND DISPOSAL				9
Aerobic co	mposting, incineration, different type of incineration; medical and pharmac	eutical	waste	<b>I</b>	
incineration	ns- land fill classification, types, methods and sitting consideration, layout a	and prel	iminary	desig	n of
landfills: co	omposition, characteristics, generation, movement and control of landfill lea	achate a	ind gase	S	
UNIT III	ENERGY FROM WASTE-THERMO CHEMICAL CONVERSION				9
Sources of	energy generation, incineration, pyrolysis, gasification of waste using gasif	iers, bri	quetting	3,	
utilization	and advantages of briquetting, - environmental and health impacts of incine	ration;	strategie	es for	
reducing er	nvironmental impacts.				
UNIT IV	ENERGY FROM WASTE- BIO-CHEMICAL CONVERSION				9
Anaerobic	digestion of sewage and municipal wastes, direct combustion of MSW-refu	se deriv	ved solid	l fuel,	
industrial v	vaste, agro residues, anaerobic digestion biogas production, land fill gas ger	neration	and uti	lizatio	n,
design of w	vaste to energy plants for cities, small townships and villages				
UNIT V	ENVIRONMENTAL AND HEALTH IMPACTS-CASE STUDIES				9
Environme	ntal and health impacts of waste to energy conversion, case studies of comm	nercial	waste to	) energ	зy
plants, was	te to energy- potentials and constraints in India, eco-technological alternativ	ves for	waste to	energ	şy
conversion	s - Rules related to the handling, treatment and disposal of MSW and BMW	in Ind	ia.		
		ΓΟΤΑ	L: 45 F	'ERI(	DDS

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Apply fundamentals of waste management, material recovery and recycling process.	3
CO2.	Identify the importance of waste treatment and disposal	3
CO3.	Apply the process of incineration, pyrolysis, gasification of waste and strategies for reducing environmental impacts.	3
CO4.	Apply the process of anaerobic digestion for sewage and municipal waste and present status of technologies for conversion of waste into energy.	3
CO5	Analyze the environmental and health impacts during waste to energy conversion	4
TEXT B	OOKS:	
	D. And Angelika S, Biogas from waste and renewable resources, Wiley-Vch Publication, 20 Kanti L., Basics of Solid & Hazardous Waste Management Technology, Prentice Hall, 2000	

### **REFERENCES:**

- Gary C. Young, Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons, John Wiley & Sons, 2010.
- 2. Robert Green, From Waste to Energy, Cherry Lake, 2009.
- 3. G. Evans, Biowaste and Biological Waste Treatment, 2014.

CO						]	PO						PS	PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3				3	3	3	3	3		3	3	3	
CO2	3	3				3	3	3	3	3		3	3	3	
CO3	3	3				3	3	3	3	3		3	3	3	
CO4	3	3				3	3	3	3	3		3	3	3	
CO5	3	3				3	3	3	3	3		3	3	3	

	-	L	Т	Р	C
OE2230	2 INDUSTRIAL SAFETY	3	0	0	3
COURSE	OBJECTIVES:	I			<u> </u>
То	gain knowledge on the safety measures to be practiced in process indust	ries			
UNIT I	INTRODUCTION				9
Safety in in	ndustries; need for development; importance safety consciousness in Ind	ian che	mical in	ndust	ry;
social envi	ronmental setup; tolerance limit of the society; psychological attitude to	wards s	afety		
programme	e, Elements of safety programme, Role of chemical engineer in process i	ndustri	es.		
UNIT II	INDUSTRIAL SAFETY				9
Chemical p	process industries; potential hazards, industrial health hazards – health st	andard	s, and r	ules;	high
pressure; h	igh temperature operation; dangerous and toxic chemicals; highly radioa	active n	naterial	s;	
Industrial l	ighting and ventilation; Occupational diseases and prevention methods.				
UNIT III	SAFETY PERFORMANCE				9
Appraisal,	effective steps to implement safety procedures; periodic inspection and	constar	it maint	enanc	e;
periodic ad	vice and checking to follow safety procedures; proper selection and repl	laceme	nt of ha	ndlin	g
equipment	s; personal protective equipments.				
UNIT IV	ACCIDENTS				9
Industrial a	ccidents - accident costs - identification of accident spots; remedial me	asures;	Case st	tudies	;
pertaining	to chemical industries: Bhopal gas tragedy, causes, affects & lessons lea	rnt, Ris	sk Mana	ageme	ent
and Hazard	l Analysis – Steps in risk management, Risk analysis using HAZOP, FT	A Fire	prevent	ion a	nd
fire protect	ion				
UNIT V	LEGAL ASPECTS				9
Legal fram	ework for safety and environment: The Factories Act, The Environment	al (Pro	tection)	Act,	ESI
Act – Wor	kmen Compensation Act. Role of Government, safety organizations, ma	nagem	ent and	trade	
unions in p	romoting industrial safety.				
		ТОТА	L: 45 F	'ERI(	ODS

OUTCO	OME	CS:												
Upon su	icces	sful co	ompletio	on of th	e course	e, the st	udents s	should b	be able	to				
CO'S						ST	ATEM	ENT						RBT EVEL
CO1.	Im	part k	nowled	ge on n	eed for	safety p	orogram	and tol	erance	limit of	the soc	iety.		3
CO2.		rceive ocesse		fferent	types o	f poten	tial haz	ards as	sociate	d with	differer	t chemica	ıl	4
CO3.		•		-	onal pro hniques		equipr	nent wi	th the	knowle	dge of	respirator	У	4
CO4.		empli alysis.	•	oncepts	s of HA	ZOP, F	TA and	ETA ar	nalysis	in chem	ical ind	lustries ris	k	4
CO5		-	knowle proces	-		rious I	ndian l	aws an	d roles	s in pro	omoting	g safety i	n	3
Nostrand	luide Rein ndust	for Sa hold ( rial Sa	Compar fety and	ny, New d Laws	√ York. , 1993, 1	by India		^d 1977, ol of La				ists Asso as.	ciatior	n. Var
						]	PO						PS	Λ
CO				4	5	6	7	8	9	10	11			U
CO –	1	2	3	4	3	U	-	-		10	11	12	1	2
CO1	<b>1</b> 2	<b>2</b> 3	<b>3</b> 2	<b>4</b> 2	2	3	3	3	1	2	3	<b>12</b> 3	3	<b>2</b> 3
CO1 CO2			-		-	-	-	3 3	-				3 3	<b>2</b> 3 3
CO1 CO2 CO3	2	3	2	2	2	3	3	_	1	2	3	3	3 3 3	2 3 3 3
CO1 CO2	2 3	33	2 3	2 3	2	3 3	3	_	1	2 2	3 2	3 2	3 3	<b>2</b> 3 3

0.5000		L	Т	Р	С
OE223	)3 COMPOSITE MATERIALS	3	0	0	3
COURSE	OBJECTIVES:				
Тс	understand the various types of composites and its applications.				
UNIT I	INTRODUCTION TO COMPOSITE MATERIALS				9
Definition	, history, constituent materials in composites, characteristics, classificati	ons (lig	ghtweig	ht, hig	jh
strength, o	corrosion resistance), composite material fabrication techniques, advanta	ges and	l limitat	ions,	
industrial	scenario and applications of composite materials.				
UNIT II	PROPERTIES AND STRUCTURAL PARAMETERS OF COMP	OSITE	S		9
Static me	hanical properties, fatigue, impact and creep properties, viscoelastic and	l dynan	nic prop	erties,	
fracture b	chaviour and damage tolerance, fire resistance and flammability. Materia	al and n	nicro sti	uctura	al
parameter	s of composites. Unidirectional-fibre composites: fibre properties, longit	udinal	and trar	sverse	e
strength a	nd modulus, critical and optimal fibre volume fractions and factors influe	encing	compos	ite	
strength.	Moisture and environmental effects. Non-destructive testing and evaluati	on.			
UNIT III	FAILURE MODES OF COMPOSITES				9
Single and	I multiple fractures. Failure mechanism in composites. Short-fibre composites	osites: S	Stress ti	ansfei	ſ,
critical fil	er length. Modulus and strength. Composite Failure in Extreme Condition	ons. Wł	niskers	and	
whisker re	inforced composites.				
UNIT IV	PARTICULATE COMPOSITES				9
Particulat	composites: Large-particle composites and dispersion-strengthened cor	nposite	s. Adva	ntages	8
and disad	vantages of cermet composites. Zirconia toughened ceramics. Interface: 1	Interfac	e chara	cterist	ics
and their	effects on adhesive, frictional and mechanical bonding mechanisms. Cou	pling a	gents ai	nd thei	ir
role on th	e properties of composites. Advanced Interface Modification Techniques	5.			
UNIT V	ADVANCED COMPOSITES				9
	posites, hybrid composites, sandwich composites, in-situ composites, sn	nart cor	nposite	s, self-	-
Nano con					
	mposites, and carbon-carbon composites, future trends in composite ma	terials,	bioinsp	ired	
healing co	mposites, and carbon-carbon composites, future trends in composite mass, metal matrix composites, functionally graded composites	terials,	bioinsp	ired	

Upon s CO'S CO1. CO2.		ssful co	ompletio	on of th										
CO1					e course	e, the st	udents s	should l	be able	0				
		<b>STATEMENT</b> Classify composite materials based on industrials applications.												RBT EVEI
CO2	C	lassify	compo	site mat	erials b	ased on	industr	ials app	olication	IS.				2
		nalyze omposi		valuate	mechai	nical, d	lynamic	, envir	onmenta	al, and	fire pr	operties	of	3
CO3.	A	nalyze	fractur	e mecha	unisms a	and con	nposite	behavic	our in ex	treme c	onditio	ns.		3
CO4.	D	iscern 1	the diff	erent ty	pes of c	omposi	ites and	their in	terface	characte	eristics.			3
CO5	G	ain kno	owledge	e on adv	anced c	compos	ites and	its futu	ire trend	ls.				2
E 2. A	V.V. Ilsevi	Vasilie ier Scie val,B.E	ence Lto	d, 2001. Broutma						-		ials, Secc ites, Thir		
COUR	SE A	ARTIC	ULAT	ION M	ATRIX		<b>D</b> O							
co	1	2	3	4	5	6	PO 7	8	9	10	11	12	<u>Р</u> 1	SO 2
CO1	1	2	<u> </u>	4	3	<b>0</b> 3	/	ð	9	2	11	3	1	<u> </u>
$\frac{\text{CO1}}{\text{CO2}}$	2	3	3	2	3	3				3		3		
CO3	3	3	3	3	3	3				3		3		
CO4	2	2	3	1	1	<u> </u>				2		3		

**CO4** CO5

			L	Т	Р	С				
OE22304		INDUSTRIAL WASTEWATER TREATMENT	3	0	0	3				
COURSE OB	JECTIV	VES:	<u> </u>							
To promote un	nderstan	ding of basic and advanced concepts in Industrial wastewate	r treatn	nent tec	hnolo	gies				
UNIT I		SOURCES AND TYPES OF INDUSTRIAL WASTEW	ATER			9				
	• 1	es of industrial wastewater – Characterization: Physical, Inor allic constituents, Organic constituents, Biological Character	-							
UNIT II		INTRODUCTION TO PROCESS SELECTION				9				
Physical unit operation: Screening, Coarse solid reduction, Mixing and flocculation, Equalization, Grave separation, Grit removal, Sedimentation, Neutralization, Clarification, Flotation. Role of Chemical unit operations in wastewater treatment, Chemical unit Process: Chemical Coagulation, Chemical Precipitation- Heavy metal Removal, Phosphorus removal, Chemical oxidation, Chemical Neutralization										
UNIT III		BIOLOGICAL TREATMENT				9				
biological Nit Activated slud	trificatio lge proc	assification, Bacterial growth, Microbial growth, Aerobi n, Anaerobic fermentation and oxidation, Biological ren ess, Trickling Filters, Rotating Biological Contactors, Com reatment process, Anaerobic sludge blanket process, Attach	noval o bined a	of heav aerobic	y me treatn	tals,				
UNIT IV		ADVANCED WASTEWATER TREATMENT				9				
process, Photo chlorine, Disi	o cataly infection	ace filtration Membrane filtration, Adsorption, Ion exchan- sis, Wet Air Oxidation, Evaporation. Disinfection Proce with chlorine dioxide, Dechlorination, Disinfection w Other chemical Disinfection methods	esses: I	Disinfec	tion y	with				
UNIT V		INDUSTRIAL EFFLUENT TREATMENT PLANTS				9				
Individual and Common Effluent Treatment Plants – Zero effluent discharge systems -Wastewater reus Disposal of effluent on land – Quantification, characteristics and disposal of Sludge. Industrial proc description, wastewater characteristics, source reduction options and waste treatment flow sheet Textiles – Tanneries – Pulp and paper – metal finishing - Pharmaceuticals – Sugar and Distilleries – For Processing –Fertilizers – Industrial Estates, Indian regulations.										
			ТОТА	L: 45 I	PERIC	DDS				

OUTO	CON	IES:												
Upon s	succ	essful c	ompleti	on of th	e cours	e, the st	udents s	should t	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO1	l.	Describ	e the so	ources a	and type	es of Inc	dustrial	Wastew	vater					3
CO2	2.	Apply th	ne princi	iples of	physica	al and cl	hemical	unit op	eration	s in was	stewate	r treatmen	t	3
CO3	3.	Explain	the ind	ustrial b	iologica	al waste	water tr	eatmer	nt techn	iques				2
CO4	1.	Describ	e the ac	dvanced	waste	water tr	eatmen	t techni	ques us	sed in ir	dustrie	s		2
COS	5.	Demon	strate th	e opera	ations o	f variou	s indust	rial efflu	uent tre	atment	plant			3
ТЕХТ	BO	OKS:												
		alf Eddy Reuse",								stewate	er Engir	neering: Ti	eatn	nent
		NCES:												
		enfelder ed State				ter Pollu	ution Co	ontrol", <i>"</i>	1 st Editio	on, McG	Braw Hil	II Internatio	onal	editior
2.	Frar		lard, "In			treatme	nt Hand	dbook",	1 st Editi	on, But	terworth	n Heinema	nn, I	New
COUL	DCE	ARTIC	<b>TIL A T</b>		ATDIN	7								
	NOL	ANII	ULAI				PO						P	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3			2	3	2	3	3	3	3	2	2	3	2
CO2	3	2	2	2	3	2	3	3	3	3	2	2	3	2
CO3	3	2	2	2	3	3	3	2	3	3	2	2	3	2
<b>CO4</b>	3	2	2	2	3	2	3	3	3	3	2	2	3	3
CO5	3	2	2	2	3	3	3	2	3	3	2	2	3	2

			Т	Р	C							
OE2230	)5 FUEL CELL TECHNOLOGY	3	0	0	3							
COURSE	<b>OBJECTIVES:</b> To impart knowledge on concepts and application of fuel	cell tech	nology									
UNIT I	FUEL CELL SYSTEMS				9							
	n to fuel cells as energy converter, Classification of fuel cells, Proton exchang fuel cell power conditioner, automotive applications, portable applications.	e memb	rane (PE	M) fue	el							
UNIT II	FUEL CELL THERMODYNAMICS				9							
	gh temperature fuel cells; Fuel cell thermo dynamics - heat, work potentials, el cell efficiency, thermal and mass balance in fuel cells.	predictio	n of reve	ersible								
-	FUEL CELL REACTION KINETICS				9							
	reaction kinetics - electrode kinetics, Potential and Rate: Butler–Volmer Equation, Simplified activation Tafel equation. Kinetics of different fuel cell reactions, Catalyst– electrode design											
UNIT IV	TRANSPORT PROCESSES AND CHARACTERIZATION IN F	UEL C	ELLS		9							
	harge transport and mass transport, Flow field, transport in electrode and elect ation: In-situ and ex-situ characterization techniques, current-voltage curve.	rolyte. F	uel cell									
UNIT V	FUEL PRODUCTION FOR FUEL CELL OPERATION				9							
	plant, Hydrogen production from renewable sources and storage, Safety issuers of fuel cells.	s, Cost e	expectati	on and	life							
		TOTA	AL:45	PERIO	ODS							
OUTCOM	AES:											
Upon succ	cessful completion of the course, the students should be able to			-								
CO'S	STATEMENT			RI LEV								
CO1.	Explain the fundamentals and classification of fuel cells											
CO2.	Apply the thermodynamic concepts in fuel cells				3							
CO3.	Analyze the reaction kinetics in fuel cells			2	1							
CO4.	Evaluate the transport process and characteristics of fuel cells			4	1							
CO5	Analyze the safety issues and production of fuel for fuel cell operation			4	1							

- 1. Ryan O "Hayre, Suk Won Cha and Whitney Colella, Fuel cell fundamentals, Second edition, John Wiley and Sons, 2016.
- 2. Viswanathan, B and M Aulice Scibioh, "Fuel Cells Principles and Applications", Universities Press, 2006

#### **REFERENCES:**

technology – Handbook, First Edition, CRC Press, 2002.

Gregorhoogers, Fuel cell

2.

3.

1.

Srinivasan, Fuel cells: From fundamental to application, First Edition, Springer, 2010

Basu,S.(Ed) Fuel Cell

Supramaniam

Science and Technology, Springer, N.Y.2007.

CO		РО												
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3	2				1	2	1	2	3	3
CO2	3	3	3	3	2				1	2	1	2	3	3
CO3	3	3	2	3	2				1	2	1	2	3	3
<b>CO4</b>	3	3	3	3	2				1	2	1	2	3	3
CO5	3	3	3	3	2	2	2	2	1	2	1	2	3	3

		L	Т	Р	C				
OE2230	5 INDUSTRIAL POLLUTION PREVENTION	3	0	0	3				
COURSE	<b>OBJECTIVES:</b> To understand the importance of industrial Pollution Preve	ntion w	ith case	studies	and				
understand	he underlying principles of Industrial Pollution Prevention.								
UNIT I					9				
Introduction	to Pollution Abatement.Importance of IPA-Basics of Jurisprudence-Environment	nental l	aw relati	on wit	h				
other discip	ines-Criminal law -Common Law-Relevant sections of the code of civil proce	edure, c	riminal p	procedu	ure				
code, EPA,	Environmental regulatory legislations and standards.								
UNIT II					9				
Evaluation	Evaluation of Pollution prevention options-Fundamental Rights-Directive principles of state policy-Article 48(A)								
51-A (g) Ju	licial enforceability-Constitution and resources management and pollution con	ntrol-In	dian fore	st poli	су				
(1990) –Cas	e Study.Indian Environmental policy (1992) & its case Study								
UNIT III					9				
Regulatory	poards related with Administration-constitution of pollution control Boards Po	owers, f	unctions	, Acco	unts,				
Audit etcF	ormal Justice Delivery Mechanism Higher and Lower of judiciary- Constituti	onal ren	nedies w	rit					
jurisdiction	Article 32,226,136 special reference to mandamus and certiorari for pollution	abatem	ent-Equi	itable					
remedies fo	pollution control.								
UNIT IV					9				
Regulation	inder recent legislations in water pollution control, Water (prevention and cor	trol of j	pollution	)Act 1	974				
as Amendeo	by amendment act 1988 Water(prevention of control and pollution)Rules197	5 Water	r (preven	tion a	nd				
pollution) C	ess Act.1977 as amended by amendment act 1991. Air(prevention and control	l of poll	ution)Ac	rt 1981	as				
amended by	Amendment act 1987 and relevant notifications- Environmental Protection ad	ct 1986.							
UNIT V					9				
Relevant no	tifications in connection with Hazardous Wastes (Management and handling).	Biomed	lical Wa	stes					
(Manageme	nt and Handling), Noise pollution, Eco labeling, and EIA and ESA-Strategic I	Environ	mental A	ssessr	nents				
(SEA).The	lifferent steps of the EIA and SEA.								
		ТОТА	L: 45 I	PERI	ODS				

MES:	
ccessful completion of the course, the students should be able to	
STATEMENT	RBT LEVEL
Illustrating the basic environmental laws and relevant sections of the code of civil procedures.	L4
Discuss the fundamentals Rights-Directive principles of state policy-Article.	L2
Make use of regulations for pollution abatement and waste minimization.	L3
Interpret recent legislation for water and air pollution.	L6
Identifying the skill on the Management and handling of Hazardous and Biomedical wastes.	L3
	Illustrating the basic environmental laws and relevant sections of the code of civil procedures.         Discuss the fundamentals Rights-Directive principles of state policy-Article.         Make use of regulations for pollution abatement and waste minimization.         Interpret recent legislation for water and air pollution.

Tiwari, H.N., Environmental Law, Allahabad Law. Agency 1997.

#### **REFERENCES:**

1. Shyam Divan and Armin Roseneranz "Environmental law and policy in India "Oxford University Press, New Delhi, 2001.

2. Constitution of India Eastern Book Company Lucknow Twelfth Edition.1997.

3. Kesari, U.P.D, Administrative Law, Universal Book Trade, Delhi, 1998.

CO		РО													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	2	2	1	1	1	2		1	1		1	1	1	
CO2	1	1	2	1	1		1			1	1	1	1	1	
CO3		2	2	2	2	1	2	2	2	1		1	1	1	
<b>CO4</b>		2	1	1	1	1	1		1	1		1			
CO5		1	2	1	1	2	2		2		2	1	1	1	

		т	T	D			
OE2230	07 SOLID WASTE MANAGEMENT	L	Т	Р	C		
012230	Solid WASTE MANAGEMENT	3	0	0	3		
COURSE	<b>OBJECTIVES:</b> To provides an understanding of solid waste classification	tion, ch	aracter	istics	and		
its manage	ment, by following regulations and including environment risk assessme	ent					
UNIT I	FUNDAMENTALS				12		
Solid Waste	e - Sources; composition; generation rates; collection of waste; separation	n, trans	fer	I			
and transp	ort of waste; Chemical treatment processes for Solid Waste – combustion	n, stabi	lization	and			
solidificati	on of hazardous wastes); Physicochemical processes for hazardous wast	es – so	il vapou	ır			
extraction,	air stripping, chemical oxidation; Biological Treatment of Solid Waste	– Com	posting	,			
bioreactor	s; anaerobic decomposition of solid waste; Elements of integrated solid w	waste n	nanager	nent.			
UNIT II SOLID & HAZARDOUS WASTE MANAGEMENT							
Characteri	zation of waste; compatibility and flammability of chemicals; handling a	and trar	sport o	f			
chemicals;	health effects. Landfill for solid and hazardous wastes; working of sanita	ry landi	fills – La	undfill	liners		
– Managem	ent of leachate and landfill gas-incineration						
UNIT III	RADIOACTIVE WASTE MANAGEMENT				9		
Sources, n	neasures and health effects; nuclear power plants and fuel production; wa	aste gei	neration	from			
nuclear po	wer plants; disposal options, Atomic energy regulatory board (AERB) ru	ıles.					
UNIT IV	REGULATIONS				9		
Municipal	solid waste (management and handling) rules; hazardous waste (manage	ement a	nd han	dling)			
rules; bion	nedical waste handling rules; fly-ash rules; recycled plastics usage rules;	batteri	es (mar	nagem	ent		
and handli	ng) rules. Requirements and salient features of Solid waste management rules	(2016).					
UNIT V	ENVIRONMENTAL RISK ASSESSMENT				6		
Defining r	isk and environmental risk; methods of risk assessment; steps involved in	n risk a	issessm	ent, ca	ase		
studies.							
	r	ГОТА	L: 45 I	PERI	ODS		

OUTCOMES:									
Upon successful completion of the course, the students should be able to									
STATEMENT	RBT LEVEL								
Examine the various sources of solid waste and its treatment processes.	4								
Apply the knowledge about the solid and hazardous waste management.	3								
Identify the methods of disposal of hazardous & radioactive solid waste.	3								
Acquire knowledge about the regulations involved in solid waste management.	4								
Explain about environmental risk assessment methods and the steps involved.	3								
	Examine the various sources of solid waste and its treatment processes. Apply the knowledge about the solid and hazardous waste management. Identify the methods of disposal of hazardous & radioactive solid waste. Acquire knowledge about the regulations involved in solid waste management.								

1. George Tchobanoglous and Hillarytheisen, Samuel Vigil; Integrated solid waste Management; McGraw Hill, 1993.

2. Michael E Henstock Butterworths, Ann Arbor Science; Disposal and recovery of municipal solid waste; Butterworth-Heinemann Ltd, 1983.

3. William A Worrell, P AarneVesilig; Solid waste management, Cengage Learning, 2010

4. Mackenzie L Davis, David A Cornwell; Environmental Engineering; McGraw Hill 2006

#### **REFERENCES:**

1. John Pichtel; Waste Management Practices; CRC Press, Taylor and Francis Group 2005.

2. LaGrega, M.D.Buckingham, P.L. and Evans, J.C.; Hazardous Waste Management, McGraw Hill International Editions, New York, 1994.

3. Richard J. Watts, Hazardous Wastes - Sources, Pathways, Receptors; John Wiley and Sons, New York, 1997

COUI	COURSE ARTICULATION MATRIX														
00						]	PO						PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	-	-	3	3	3	3	3	2	3	3	3	2	2	
CO2	2	-	-	3	3	3	3	3	2	3	3	3	2	2	
CO3	2	-	-	3	3	3	3	3	2	3	3	3	2	2	
<b>CO4</b>	2	-	-	3	3	3	3	3	2	3	3	3	2	2	
CO5	2	-	-	3	3	3	3	3	2	3	3	3	2	2	

		L	Т	Р	C					
OE223(	08 PLANT UTILITIES	3	0	0	3					
COURSE	<b>OBJECTIVES:</b> To equip the chemical engineering students with know	ledge o	on the v	arious	3					
process ut	lities so as to ensure smooth and proper operation of utilities in the proce	ess plai	nts.							
UNIT I	WATER AS BASIC UTILITY				9					
Introduction: Different utilities. Role of utilities in process plant operations and criteria for selection and estimat										
of suitable utilities. Water as a utility: Sources of water, hard and soft water, Requisites of industrial water and its										
uses, Methods of water softening processes, Boiler Feed water and demineralized water										
UNIT II	STEAM AND STEAM GENERATION				9					
Use of Steam as utilities Properties of Steam, Steam Generator: Classification, comparison, components, Factor										
affecting se	lection of Boiler, Boiler Accessories and mountings, scaling and trouble shooti	ng. Eco	nomy o	f stean	n					
generation with different fuels, Fuels: Types, Calorific value. Proximate and ultimate analysis and its calculations										
UNIT III	<b>REFRIGERATION SYSTEMS AND INSULATION</b>				9					
Refrigeratio	on system and their characteristics, load calculation, refrigerating effects and lic	luefacti	on proce	esses,						
production	of liquid $N_2$ and $O_2$ . Types of insulation, Different types of insulating materials	and the	eir Chara	acteris	tics.					
Selection c	riteria for insulating materials									
UNIT IV	COMPRESSORS AND VACUUM PUMPS				9					
Classificati	on of Compressors and Vacuum Pumps and their performance characteristics, I	Power re	equirem	ent and	b					
performanc	e Calculations, equipments used for humidification, dehumidification and cool	ing tow	ers, basi	c Con	cepts					
of vacuum	and pressure and its measurement, Components of a vacuum system like vacuu	m chan	iber, pui	nps,						
gauges, val	ves, seals, and many other subsidiary components. Inert gas									
UNIT V	PINCH ANALYSIS				9					
Pinch Anal	ysis: Problem representation, temperature enthalpy diagram, simple match math	ix. Hea	t conten	t diagr	am,					
Temperatur	re interval diagram. Heat Exchanger Network Synthesis using Pinch technology	<i>.</i>								
	,	ГОТА	L: 45 I	PERIC	ODS					

Upon suc	cessful completion of the course, the students should be able to							
CO'S	STATEMENT	RBT LEVEL						
CO1.	Understand the importance and selection of utilities	2						
CO2.	Choose suitable type of equipment for pressure and vacuum Equipment required for steam and co-generation Equipment	3						
CO3.	Interpret the concept of refrigeration and their applications in process industries.	4						
CO4.	Outling the different types of compressors for headling air and inert gases and the							
CO5	Ability to do pinch analysis.	4						
	OOKS: Ballaney, "Thermal Engineering", Khanna Publisher New Delhi, 1986. nt Utilities by D.B. Dhone, 2nd Edition, 2012, Nirali Prakashan, Pune							
	ENCES: n M. Smith, "Chemical Process: Design and Integration", John Wiley & Sons Ltd., 2005. esh Rathore, "Thermal Engineering," Tata McGraw Hill India, New Delhi, 2010.							

3. Plant Utilities by Dr. Mujawar, Nirali Prakashan Publication.

4. Chemical Engineer"s Handbook, Robert H. Perry and DON W. Green.Seventh Edition, 2005, McGraw Hill, New York, ISBN: 10: 0071422943

CO						]	PO						PS	50
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	2	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	2	3	3	3	3	3	3	3	3	3	3	3	3	3
<b>CO4</b>	2	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	2	3	3	3

OE2230						C
- いらえるい	9	$GREEN ENERGY \qquad \qquad \frac{L}{3}  \frac{T}{0}  \frac{P}{0}$				
012230			3	0	0	3
COURSE	OBJ	ECTIVES:				
To impart l	know	eledge on available energy sources, rising energy demand for the da	ay-to da	ıy life		
requiremen	nts an	d the need of research on this area to meet the demand.				
UNIT I	INT	RODUCTION				9
Current ene	ergy	requirements, growth in future energy requirements, Review of cor	nventio	nal ener	gy	
resources, (	Coal,	, gas and oil reserves and resources, Tar sands and Oil Shale, Nucle	ear ener	gy Opt	ion.	
UNIT II	SOI	LAR ENERGY				9
Solar radia	tion:	measurements and prediction. Solar thermal collectors- flat plate c	ollecto	rs, conc	entrat	ing
collectors.	Basic	c theory of flat plate collectors, solar heating of buildings, solar stil	l, solar	water h	eaters	5,
solar driers	s; con	nversion of heat energy into mechanical energy, solar thermal powe	er gener	ation sy	ystems	s.
Solar Photo	ovolta	aic: Principle of photovoltaic conversion of solar energy, types of s	solar ce	lls and	fabric	ation
				ino uno		ation
Photovolta	ic ap	plications: battery charger, domestic lighting, street lighting, water				ation
Photovoltai generation		plications: battery charger, domestic lighting, street lighting, water				ution
generation	scher	plications: battery charger, domestic lighting, street lighting, water				9
generation UNIT III	scher	plications: battery charger, domestic lighting, street lighting, water mes	pumpi	ng, pow	ver	
generation UNIT III Atmospher	scher WIN	plications: battery charger, domestic lighting, street lighting, water mes ND ENERGY	pumpin pulence,	ng, pow	ver	
generation UNIT III Atmospher monitoring	scher WIN ric cir g, Bet	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> rculations, classification, factors influencing wind, wind shear, turb	pumpin pulence,	ng, pow	ver	
generation UNIT III Atmospher monitoring potential ar	scher WIN ric cir g, Bet nd ins	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> rculations, classification, factors influencing wind, wind shear, turb z limit, WECS: classification, characteristics, and applications. Nat	pumpin pulence,	ng, pow	ver	
generation UNIT III Atmospher monitoring potential ar UNIT IV	scher WIN ric cir g, Bet nd ins OCI	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> rculations, classification, factors influencing wind, wind shear, turb z limit, WECS: classification, characteristics, and applications. Nat stallation in India - Repowering concept.	pumpin pulence, ture of	ng, pow , wind s wind er	ver	9
generation UNIT III Atmospher monitoring potential ar UNIT IV Ocean ener	scher WIN ric cir g, Bet nd ins OCI	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> rculations, classification, factors influencing wind, wind shear, turb z limit, WECS: classification, characteristics, and applications. Nat stallation in India - Repowering concept. EAN ENERGY	pumpin pulence, ture of	ng, pow	ver peed nergy tems-	9
generation UNIT III Atmospher monitoring potential ar UNIT IV Ocean ener ocean therr	scher WIN ric cir g, Bet nd ins OCI rgy re mal p	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> rculations, classification, factors influencing wind, wind shear, turb z limit, WECS: classification, characteristics, and applications. Nat stallation in India - Repowering concept. <b>EAN ENERGY</b> esources-ocean energy routes - Principles of ocean thermal energy of	pumpin pulence, ture of	ng, pow	ver peed nergy tems-	9
generation UNIT III Atmospher monitoring potential ar UNIT IV Ocean ener ocean therr UNIT V	scher WIN ric cir g, Bet nd ins OCI rgy re mal p HYI	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> rculations, classification, factors influencing wind, wind shear, turb z limit, WECS: classification, characteristics, and applications. Nat stallation in India - Repowering concept. <b>EAN ENERGY</b> esources-ocean energy routes - Principles of ocean thermal energy of ower plants- Principles of ocean wave energy conversion and tidal	pumpin pulence, ture of convers energy	ng, pow , wind s wind er	rer peed hergy tems- rsion.	9 9 9
generation UNIT III Atmospher monitoring potential ar UNIT IV Ocean ener ocean therr UNIT V Hydropowe	scher WIN ric cir g, Bet nd ins OCI rgy re mal p HYI rer, Ba	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> rculations, classification, factors influencing wind, wind shear, turb z limit, WECS: classification, characteristics, and applications. Nat stallation in India - Repowering concept. <b>EAN ENERGY</b> esources-ocean energy routes - Principles of ocean thermal energy of oower plants- Principles of ocean wave energy conversion and tidal <b>DRO AND OTHER SOURCES OF ENERGY</b>	pumpin pulence, ture of convers energy	ng, pow , wind s wind er sion sys conver	rer peed nergy tems- rsion.	9 9 9
generation UNIT III Atmospher monitoring potential ar UNIT IV Ocean ener ocean therr UNIT V Hydropowe energy: Ori	scher WIN ric cir g, Bet nd ins OCI rgy re mal p HYI rer, Ba igin,	plications: battery charger, domestic lighting, street lighting, water mes <b>ND ENERGY</b> reulations, classification, factors influencing wind, wind shear, turb z limit, WECS: classification, characteristics, and applications. Nat stallation in India - Repowering concept. <b>EAN ENERGY</b> esources-ocean energy routes - Principles of ocean thermal energy of ower plants- Principles of ocean wave energy conversion and tidal <b>DRO AND OTHER SOURCES OF ENERGY</b> asic principle of hydroelectric power generation, Nuclear fission an	pumpin pulence, ture of convers energy	ng, pow , wind s wind er sion sys conver	rer peed nergy tems- rsion.	9 9 9 1

OUTO	COM	IES:												
Upon s	succe	essful co	ompleti	on of th	e course	e, the st	udents s	should l	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
COI	l. I	Develop	the know	owledge	e about	the curr	ent scer	nario of	energy	require	ments.		U	
CO2	2.	Apply th	ne solar	energy	-based s	ystems	to meet	the end	ergy de	mand			AP	
CO3	3. ^I	dentify	the win	d energ	y-based	l set-up	s for en	ergy ma	anagem	ent.			AP	
CO4														
CO	CO5 Interpret the various source of energy like nuclear, geo-thermal and hydropower to withstand the present and future energy requirements													
Philad	Gosv elphi dell,	vami, F ia, Seco & T. W	nd Edit	ion, 200			-		-	-	•	nd Fran , 2015.	cis,	
Press, S.P. Su Edition L.L. Fr	Seco ukhat n, 20 reris,	ond Edit tme, So 08. Wind I	ion, 200 lar Ener Energy	09. rgy: prin Conver		of Ther stems, H	mal Col	lection	and Sto		-	ineering Graw Hi		
СО			1	1	1		PO	1	1	1	1	1		50
	<b>1</b> 1	2	3	<b>4</b> 2	5	<b>6</b> 3	<b>7</b> 3	<b>8</b> 2	9	<b>10</b> 3	11	<b>12</b>	1 3	<b>2</b> 2
CO1				2		3	3			3			3	
CO2	1	2				_	_	2				1	-	2
CO3	1	2		2		3	3	2		3		1	3	2
CO4	1	2		2		3	3	2		3		1	3	2
CO5	1	2		2		3	3	2		3		1	3	2

	E22210 ENERGY MANACEMENT									
OE2231	0 ENERGY MANAGEMENT	3	0	0	3					
COURSE	OBJECTIVES:		1		<u>.                                    </u>					
То	give an overview on energy management techniques									
UNIT I	ENERGY MANAGEMENT				9					
Definition	of energy management, Importance of energy management, Overview of	of energ	gy sourc	es and	b					
consumpti	on patterns, Overview of energy policy frameworks, Government initiat	ives an	d incent	ives f	or					
energy ma	nagement, Regulatory challenges and opportunities. Linkages between e	energy	manage	ment	and					
sustainable	development goals									
UNIT II	ENERGY AND ENVIRONMENT				9					
Structural	properties of environment – Biogeochemical cycles – Society and enviro	onment	popula	tion a	nd					
technology	, Various forms of Energy, Energy storage, Overview of nonrenewable	energ	y resour	ces,						
Nuclear Er	ergy, Thermal Energy,									
UNIT III	ENERGY ALTERNATIVES				9					
Overview	of renewable energy sources – Wind and water – Geothermal – Tidal an	d solar	power -	– MH	D,					
fuel cells -	Hydrogen as fuel. Integration of renewable energy into existing energy	systen	18							
UNIT IV	MANAGEMENT OF ENERGY CONSERVATION IN CHEMICAL I	NDUS	TRIES		9					
Analysis o	scope and potential for energy conservation in chemical industries – $C$	lassific	ation of	chem	nical					
industries	Conservation in unit operation such as separation – Cooling tower – $D_{i}$	rying,	Conserv	vation						
applied to	refineries, chemical, cement, pulp and paper, food industries. Conservation	tion us	ing opti	mizati	ion					
techniques										
UNIT V	ENERGY AUDIT				9					
Definition	need and objectives - Types of energy audit - Basic components of energy	rgy auc	lit - Pre	paring	g for					
audit - Ene	rgy audit instruments - Data collection - Safety considerations. Methodo	ologies	of cond	luctin	g					
energy auc	it - Preliminary questionnaire - Review of previous records - Walk through	ugh au	dit - Ene	ergy f	low					
diagram (S	ankey diagram).									
		TOTA	L: 45 I	PERI	ODS					

OUTO	COM	IES:													
Upon	succe	essful co	ompleti	on of th	e cours	e, the st	udents	should	be able	to					
CO'S	5					ST	ATEM	ENT						RBT EVEL	
CO	I.	nterpret	the nee	ed of Er	nergy M	lanagen	nent and	l Sustai	nability	,				3	
CO2	2. ^E	Evaluate	renew	able ene	ergy res	ources	and its I	Environ	mental	Impacts	5			4	
CO3	3. ^I	dentify	renewa	ble ene	rgy resc	ources a	nd its co	onversi	on techi	nology.				4	
CO4	<b>1</b> .	Assessin	ıg adva	ntages c	of energ	y conse	rvation	and ma	nageme	ent tech	niques.			4	
CO	5 ^I	Determine the components involved in energy auditing.													
ТЕХТ	C BO	OKS:											1		
REFE 1. Crat Edit 2. God Edd 3. Gra 4. Ken	ig B ttion, lfrey lition mlay mey,	NCES: . Smith , 2016.	n, Ener "Rene , "Energ Energy (	gy Ma wable gy", Ma Conserv	nageme Energy cmillor vation in	ent Prin : Power n Publis n the Pro	ciples: r for a hing Cc	Applic Sustain	ations, nable F	Benefit Suture",	ts, Sav Oxfore	t Press (1 ings, C d Unive 984).	RC Pro		
СО				1	1		PO	1	1	1	1	1	PS	50	
	1	2	3	4	5	<b>6</b> 3	7	<b>8</b> 3	<b>9</b>	<b>10</b> 3	11	12	1	2	
CO1	2		2	2	0		3		3		3	2	3	3	
CO2	2	3	3	3	0	3	2	3	3	3	0	2	3	3	
CO3	3	3	3	3	3	3	2	0	3	3	0	2	3	3	
	3	3	3	3	3	3	2	3	3	3	3	3	3	3	
CO4															

#### VALUE ADDED COURSES

	22201 CHEMICAL ENCINEERING DI ANT DESIGN							
VD22301	CHEMICAL ENGINEERING PLANT DESIGN	2	0	0	2			
COURSE (	<b>DBJECTIVES:</b> To impart knowledge about process plant design, engineering	ıg draw	ings, an	d	.1			
importance o	f cost, safety and environment in plant design							
UNIT I	FUNDAMENTALS OF ENGINEERING DESIGN				6			
General over	all design considerations, Anatomy of chemical engineering projects, Process	Design	develop	oment	,			
Types of desi	gns, comparison of different processes by technical factors, raw materials, by	-produc	ts, plan	t locat	ion,			
equipment, P	rocess design codes, Standard sources of information, Plant location, Plant lag	yout, Pla	ant oper	ation	and			
control, Impo	rtance of laboratory development to pilot plant, scale up methods.							
UNIT II	ENGINEERING FLOW DIAGRAMS				6			
Introduction	o block, process flow, Logic, Information flow diagrams. Preparation of PID	, trip an	d interlo	ock sy	stems,			
MOC, valve	selection and Types of valves , color code of pipeline, Equipment datasheets,	Layout	enginee	ring (	Plot			
Plan), Equipr	nent layout, Process layout.							
UNIT III	MATERIALS-HANDLING EQUIPMENT & DESIGN				6			
Basic concep	ts-Piping in fluid transports processes- Pumping of fluids-Compression and ex-	xpansio	n of flui	ds-				
Compression	and expansion of fluids- Agitations and mixing of fluids-Flow measurement-	Storage	e tanks a	and its	8			
classification	, Dykes & containment of fluids-Transport of solids-handling of solids.							
UNIT IV	OPTIMUM DESIGN AND DESIGN STRATEGY				6			
Economic asj	bects and optimum design, practical considerations in design and engineering	ethics,	Break-e	ven				
analysis, Opt	mum production rates in plant operation, Economic pipe diameter, Optimum	insulati	on thick	cness,				
network anal	ysis, PERT/CPM, Direct and Indirect cost, Cash flow, Organizations for prese	enting c	apital in	vestm	ent:			
estimates by	compartmentalization, estimation of total product of cost direction, production	n costs,	fixed cl	arges	,			
plant overhea	d costs, financing							
UNIT V	PLANT DESIGN, PROCESS DESIGN CASE STUDIES				6			
Plant design	case studies for any one of the chemical, petrochemical and polymer products	: proces	s synthe	esis,				
development	of process flow diagram, mass and energy balance, P& ID diagram, use of pr	ocess de	esign so	ftware	e``s			
such as COM	SOL, ASPEN HYSYS, PDMS and PMS, Technical project report writing.							
		ТОТА	L:30 F	ERI	ODS			

Upon sue	ccessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	Illustrate the various stages involved in a development of a process plant.	L2
CO2.	Identify various flow diagrams, drawings, standards and codes involved in process design.	L3
CO3.	Impart insights into the design of equipment pertaining to materials handling.	L3
CO4.	Outline the performance of breakeven analysis and optimum design of a process.	L3
CO5	Classify the process design software and its applicability in industries	L2
TEXT B	SOOKS:	

- 1. T.T.Shen, "Industrial Pollution Prevention", Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New Yark, 1998.
- 3. H.M.Freeman, "Industrial Pollution Prevention Hand Book", McGraw-Hill Inc., New Delhi, 1995.
- 4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw-Hill, 2000.

COUI	COURSE ARTICULATION MATRIX													
00			PS	50										
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	2	1	1	2	1	1	1	1	1	1	1
CO2	1	1		2	1	2	2	1	1		2	1	1	1
CO3	2	1	2	2	1	1	1		1	1	1	1	2	3
CO4	1	2	2	1	2	2	1		1	2	1	1	2	2
CO5	2	2	1	2		2	1	1			2	2	1	1

		L	Т	Р	С
VD223(	2 INTRODUCTION TO SUSTAINABILITY	2	0	0	0
	<b>OBJECTIVES:</b> To understand the environmental, social and economic dim inciples evolved through landmark events so as to develop an action mindset for				-
UNIT I	SUSTAINABILITY AND DEVELOPMENT CHALLEGES				7
Developme Mindsets fo Change: Ut Issues of th	of sustainability – Environmental, Economical and Social dimensions of sustain nt Models – Strong and Weak Sustainability – Defining Development Millenn or Sustainability : Earthly, Analytical, Precautionary, Action and Collaborative- ilization Syndromes, Development Syndromes, and Sink Syndromes – Core p e 21 Century - Global, Regional and Local environmental issues – Social insect n – Climate Change – Desertification	ium De – Syndr roblems	velopme omes of and Cro	nt Goa Globa oss Cut	1
UNIT II	PRINCIPLES AND FRAME WORK				9
20– Rio Pri Society, Bu	emergence of the concept of sustainable development - Our Common Future nciples of Sustainable Development – Precautionary Principle-Polluter Pays Principles and Government -Natural Step- PeoplesEarth Charter – Business Chart nt –UN Global Compact – Agenda 21	rinciple	- Role	of Civi	
UNIT III	SUSTAINABILE LIVELI HOOD				5
Millennium sustainabili Education a	World and inequities - Quality of Life - Poverty, Population and Pollution – C Development Goals, Indicators, Targets, Status and intervention areas - Dem ty - Strategies to end Rural and Urban Poverty and Hunger – Sustainable Live and Empowerment of Women, Children, Youth, Indigenous People, Non-Gove porities and Industry forPrevention, Precaution, Preservation and Public partice	ographi lihood l rnmenta	c dynam Framewo	ics of ork- He	
UNIT IV	SUSTAINABLE SOCIO-ECONOMIC SYSTEMS				12
security and integrity –E Transportat	nd Promoting Human Health – Investing in Natural Capital- Agriculture, Fore I nutrition and sustainable agriculture- Water and sanitation -Biodiversity cons cotourism - Urbanization and Sustainable Cities – Sustainable Habitats- Greer ion – Sustainable Consumption and Production – Sustainable Mining - Sustain itigation and Adaptation - Safeguarding Marine Resources - Financial Resource	ervation Buildi able En	n and Ed ings - Su ergy– C	cosyste stainal limate	
UNIT V	ASSESSING PROGRESS AND WAY FORWARD				12
Rio Plus 20 Developmen Assessment	stainable development strategies and current practice- Sustainability in global,regi - Approaches to measuring and analyzing sustainability– limitations of GDP- Eco at Index, Science and Technology for sustainable development – Performanceindic mechanism – Inclusive Green Growth and Green Economy – National Sustainabl Governance - Science andTechnology Sustainability Education	logical cators of	Footprin sustaina	t- Hum bility a	an Ind
		ТОТА	L: 45 I	PERIC	DDS

OUTCO	MES:	
Upon suc	cessful completion of the course, the students should be able to	
CO'S	STATEMENT	RBT LEVEL
CO1.	understand the significance of Environmental, Economical and Social dimensions of sustainability	L2
CO2.	Learn to integrate the Rio principles of Sustainable development in decision making and Contribute towards Green Economy	L2
CO3.	Ability to identify and formulate the level of sustainability globally.	L3
CO4.	Develop a fair understanding of the social, economic and ecological linkage of human production and consumption	L3
CO5	Asses the recent trend in sustainable development strategies and current practice	L3
TEXT BO	OOKS:	
	Dalal Clayton and Stephen Bass, Sustainable Development Strategies- a resource book", Earthsca cations Ltd, London, 2002.	n

2. Karel Mulder, Sustainable Development for Engineers - A Handbook and Resource Guide, Green Leaf Publishing, 2006.

#### **REFERENCES:**

Karel Mulder, Sustainable Development for Engineers - A Handbook and Resource Guide, Green Leaf Publishing, 2006.

CO		РО													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	2		2		2		2	2	2	3	3	
CO2	3	3	3	2	3		2	2		2	2	2	3	3	
CO3	3	3	2	3	3	2	2	2	2		2		3	3	
CO4	3	3	2	2	2		2				2	2	3	3	
CO5	3	3		2		2			3	3	2		3	3	

		L	Т	P	C
VD223	03 MATLAB/ASPEN	2	0	0	0
	<b>OBJECTIVES:</b> To provide basic knowledge on utilizing MATLAB an olving using computers	d ASP	EN soft	ware	for
UNIT I	INTRODUCTION TO MATLAB				6
	n to MATLAB software, Basic Mathematics, Data files and Data types, Operat ix, Plots – visualizing vector and matrix, Programming in MATLAB – Loops, N				
UNIT II	PROBLEM SOLVING USING MATLAB				6
U	equations - Single variable, Multivariable equations. Numerical solution to Solving Ordinary differential equations.				
UNIT III	SIMULATION USING ASPEN – PART I				6
	n to Aspen Plus, Simulation of unit operation blocks – Mixer, Splitter, Decante , Heat Exchanger.	r,			
UNIT IV	SIMULATION USING ASPEN – PART II				6
Simulatio	n of unit process blocks – PFR, CSTR, Batch Reactor.				
UNIT V	SIMULATION USING ASPEN – PART III				6
Simulatio	n of flowsheet; Design an heat exchanger with specification and generate	TEMA	A sheet.		
		TOTA	L:30 1	PERIC	ODS
OUTCOM	MES:				
Upon suce	cessful completion of the course, the students should be able to				
CO'S	STATEMENT			RF LEV	
CO1.	To solve the programming of MATLAB			3	3
CO2.	To solve Chemical Engineering Problems through MATLAB			3	3
СО3.	Apply the simulation software and unit operations blocks			3	3
CO4.	Apply Aspen software and solve unit operation blocks – Mass and Energ	gy bala	nce	3	3
CO5	Design an Heat exchanger using Aspen simulation software			5	5

Fausett L.V. (2007) Applied Numerical Analysis Using MATLAB, Second Edition, Pearson Education.
 Schefflan R. (2011), Teach Yourself the Basics of Aspen Plus, John Wiley and Sons.

- 1. Chapra S.C. and Canale R.P. (2006) Numerical Methods for Engineers, Fifth Edition, McGraw Hill Publishers.
- 2. Finlayson B. A. (2006) Introduction to Chemical Engineering Computing, John Wiley and Sons.

COUI	RSE A	RTIC	CULAT	ION M	ATRIX	K										
00		РО														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	3	3		3	2	2	2	3	3		3	3	3		
CO2	3	3	3		3	2	2	2	3	3		3	3	3		
CO3	3	3	3		3	2	2	2	3	3		3	3	3		
CO4	3	3	3		3	2	2	2	3	3		3	3	3		
CO5	3	3	3		3	2	2	2	3	3		3	3	3		

		L	Т	P	C
VD2230	PACKAGING TECHNOLOGY	2	0	0	0
COURSE	<b>OBJECTIVES:</b> This course provides to learn about packaging materials, tec	chnolog	gies, desi	gn,	
sustainabilit	ty and quality control and students gain the practical skills in packaging design,	, testing	g, and pr	oductio	on
processes, a	as well as a deep understanding of industry regulations and standards.				
UNIT I					7
History and	evolution of packaging. Basics of Packaging: Introduction, Classification of Packag	ging,Fur	nctions &	& roles	of a
packaging, I	Factors influencing design of a package.				
UNIT II					9
Packaging C	Cycle, Product-Package Relationship, Product life cycle curve, Elements of P	ackage	Design,	types of	of
Packaging -	Flexible package, Rigid package & semi-rigid package. Markings onpackage –	Handli	ing mark	as, rout	ing
I uckuging					
	rmation marks				
marks, infor	rmation marks				5
marks, infor UNIT III	rmation marks materials – Functions, properties. Classification – space fillers, resilient cushic	oningma	aterials,	non res	
marks, infor UNIT III Cushioning		oningma	aterials,	non res	
marks, infor UNIT III Cushioning	materials – Functions, properties. Classification – space fillers, resilient cushic	oningma	aterials,		
marks, infor UNIT III Cushioning cushioning I UNIT IV	materials – Functions, properties. Classification – space fillers, resilient cushic				silien 12
marks, infor UNIT III Cushioning cushioning I UNIT IV Carton Prod	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media.	tainers-	- classifi	cation	silier 12 s,
marks, infor UNIT III Cushioning cushioning UNIT IV Carton Prod components	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated con-	tainers- stic cor	- classifi rugated	cation	silier 12 s,
marks, infor UNIT III Cushioning cushioning I UNIT IV Carton Prod components features & a	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated cont s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla	tainers- stic cor packagi	- classifi rugated ng – MA	ication boards AP & C	silier 12 s, s- CAP,
marks, infor UNIT III Cushioning cushioning I UNIT IV Carton Prod components features & a	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated con s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla advantages. Introduction to Innovative Packaging Techniques/ Processes: Gas p ckaging, shrink packaging, stretch wrapping, blister packaging, skin packaging, st	tainers- stic cor packagi	- classifi rugated ng – MA	ication boards AP & C	silier 12 s, s- CAP,
marks, infor UNIT III Cushioning cushioning r UNIT IV Carton Prod components features & a Vacuum pao	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated con s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla advantages. Introduction to Innovative Packaging Techniques/ Processes: Gas p ckaging, shrink packaging, stretch wrapping, blister packaging, skin packaging, st	tainers- stic cor packagi	- classifi rugated ng – MA	ication boards AP & C Aerosol	silier 12 s, s- CAP,
marks, infor UNIT III Cushioning cushioning I UNIT IV Carton Prod components features & a Vacuum pac packaging co UNIT V	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated con s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla advantages. Introduction to Innovative Packaging Techniques/ Processes: Gas p ckaging, shrink packaging, stretch wrapping, blister packaging, skin packaging, st	tainers- stic cor packagi rip pack	- classifi rugated ng – MA caging, A	ication: boards AP & C Aerosol	silier 12 s, CAP, 12
marks, infor UNIT III Cushioning cushioning I UNIT IV Carton Prod components features & a Vacuum pac packaging co UNIT V Miscellaneou	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated cont s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla advantages. Introduction to Innovative Packaging Techniques/ Processes: Gas p ckaging, shrink packaging, stretch wrapping, blister packaging, skin packaging, st ontainer.	tainers- stic cor packagi rip pack	- classifi rugated ng – MA caging, A	ication: boards AP & C Aerosol Methoo	silier 12 s, 
marks, infor UNIT III Cushioning cushioning T UNIT IV Carton Prod components features & a Vacuum pac packaging co UNIT V Miscellaneou construction	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated com s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla advantages. Introduction to Innovative Packaging Techniques/ Processes: Gas p ckaging, shrink packaging, stretch wrapping, blister packaging, skin packaging, st ontainer.	tainers- stic cor packagi rip pack	- classifi rugated ng – MA caging, A faterial, ction, Sc	ication: boards AP & C Aerosol Methoo	silier 12 s, 
marks, infor UNIT III Cushioning cushioning r UNIT IV Carton Prod components features & a Vacuum pac packaging co UNIT V Miscellaneou construction Preparation	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated com s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla advantages. Introduction to Innovative Packaging Techniques/ Processes: Gas p ckaging, shrink packaging, stretch wrapping, blister packaging, skin packaging, st ontainer.	tainers- stic cor packagi rip pack Sacks: M Introduc Dry dis	- classifi rugated ng – MA caging, A faterial, T ction, Sc tillation	ication: boards AP & C Aerosol Method cope, an test,	silier 12 s, 
marks, infor UNIT III Cushioning cushioning r UNIT IV Carton Prod components features & a Vacuum pac packaging co UNIT V Miscellaneou construction Preparation	materials – Functions, properties. Classification – space fillers, resilient cushic materials. Introduction to Packaging Media. luction: Carton styles. Folding cartons – Production steps, types. Corrugated com s in a corrugated board, flutes & stages in preparation in corrugated boards. Pla advantages. Introduction to Innovative Packaging Techniques/ Processes: Gas p ckaging, shrink packaging, stretch wrapping, blister packaging, skin packaging, st ontainer.	tainers- stic cor packagi rip pack Sacks: M Introduc Dry dis	- classifi rugated ng – MA caging, A faterial, T ction, Sc tillation	ication: boards AP & C Aerosol Method cope, an test,	silien 12 s, 

OUTCOM	AES:							
Upon succ	cessful completion of the course, the students should be able to							
CO'S STATEMENT I								
CO1.	Define various raw materials used in packaging industry	L1						
CO2.	Describe the utilization of Product cycle and elements of package design inpackaging industry	L2						
CO3.	Apply principles of engineering and sciences in the field of packaging industry	L3						
CO4.	Examine most inclusive areas where various materials can be used packagingindustry	L4						
CO5	Describe the utilization of various polymers in packaging industry	L2						

1.A text book on "Packaging Technology" Fundamentals, materials and process by Anne Emblem and Henry Emblem 2012

2.A text book on "Packaging Technology" by Ganesan.P Published in the year 2022

#### **REFERENCES:**

1.Packaging Design: Successful Product Branding from Concept to Shelf 1st Editionby Marianne R. Klimchuk and Sandra A. Krasovec 2008

CO						]	РО				PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	1	3	2	-						3	3
CO2	3	3	3	1	3	2							1	3
CO3	3	3	2	1	3	2							3	3
CO4	3	3	2	1	2	2	2						3	3
CO5	3	3	2	1	3	2	-						3	3

VD2230	SUSTAINABLE AGRICULTURAL LAND											
VD2250	MANAGEMENT	2	0	0	2							
Toempow	<b>OBJECTIVES:</b> erthestudentswithaneconomicallyviable, socially supportive, and ecological eagriculture.	llysoun	deduca	tion o	n							
UNIT I	INTRODUCTION TO SUSTAINABLE AGRICULTURE				6							
conceptthe Variousalt	pt of sustainability and sustainabledevelopment-emergingissues-Sustaination mes-differencesbetweenconventional,sustainable,andalternateagriculture ernateagriculturalsystems-Conventional,sustainable,andalternateagriculture mitations-Modernizationofagriculture anditsrelationtosustainability	e-	iculture	-								
UNIT II       GOOD AGRICULTURAL PRACTICES       6												
soilandpla conservati pastures ir	control -water conservation measures for sustainability- water harvesting nts-Irrigatedagriculturevs.Rainfedagriculture,dryfarminganddrylandfarm on vs. water conservation - agronomic measures- mechanical measures-I soil conservations	ing-de	finition.	Soil								
UNIT III	CROPPINGPATTERN				6							
	on-importance of system approach in crop production, different cropping lefinition-Croppingpattern-Multiplecroppingandvariousforms-advantage	-		ages-								
Intercropp	ing-ecologicalbasisofintercroppingsystems-types-sequentialcroppingand on-Mixed farming.			-								
Intercropp	ing-ecologicalbasisofintercroppingsystems-types-sequentialcroppingand			-								
Intercropp crop rotati UNIT IV Organicag	ing-ecologicalbasisofintercroppingsystems-types-sequentialcroppingand on-Mixed farming.	crop rot	otation-	plann	ed							
Intercropp crop rotati UNIT IV Organicag	ing-ecologicalbasisofintercroppingsystems-types-sequentialcroppingand on-Mixed farming. ORGANICFARMING riculture-history-concepts-philosophy-objectives,opportunities,andpriori	crop rot	otation-	plann	ed							
Intercropp crop rotati UNIT IV Organicag Organicfat UNIT V Introductic structures	ing-ecologicalbasisofintercroppingsystems-types-sequentialcroppingand on-Mixed farming. ORGANICFARMING riculture-history-concepts-philosophy-objectives,opportunities,andpriori mingandfoodsecurity-Principlesoforganicfarming.Toolsandpracticesofor	tiesCri rganic	ticisms- farming	plann	ed 6							

OUTCON	OUTCOMES:									
Upon succ	cessful completion of the course, the students should be able to									
CO'S	STATEMENT	RBT LEVEL								
CO1.	Elucidate the concept of sustainability and sustainable development.									
CO2.	List out good agricultural practices and its benefits.									
СО3.	Compare and analyze various cropping patterns.									
CO4.	Acquaint with the fundamentals of organic farming									
CO5	Outline various Horticulture practices.									

- 1) Veeresh, G.K., Shivashankar, K. and Singlachar, M.A. 1997. Organic Farming and Sustainable Agriculture, Association for Promotion of Organic Farming, Bangalore.
- 2) Palaniappan, S. Pand Anandurai, K. 1999. Organic Farming-Theoryand Practice, Scientific Pub., Jodhpur..
- 3) GurmelSingh, C. Venkataraman, G., Sastry, B. and Joshi, P.1990. Manual of Soil and Water Conservation Practices. Oxford and IBH Publishing Co., New Delhi.
- 4) Roy.A.Larson., 1992. Introduction of Floriculture. International Book Distributing Co., Lucknow.

COUR	RSE A	RTIC	ULAT	ION M	ATRIX	X								
<b>CO</b>			PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2					3	3	2			2	3	3	3
CO2	2					3	3	2			2	3	3	3
CO3	2					3	3	2			2	3	3	3
<b>CO4</b>	2					3	3	2			2	3	3	3
CO5	2					3	3	2			2	3	3	3

		L	Т	Р	C
VD22306	WASTE UTILIZATION	2	0	0	2
COURSE O	BJECTIVES: To impart the students with knowledge and state-of	-the-art	in wa	ste	I
recovery and	l utilizationpertaining to process industries.				
UNIT I	VASTE REDUCTION STRATEGIES AND POLICIES				6
Definition, c	lassification and characterization of waste, Environmental, health impa	act and	econor	nical	of
waste, Waste	e collection, storage and handling, Waste reduction: Material substituti	on, De	materia	lizatio	on,
Process subs	titution, Zero waste and Zero landfill programs and policy, Waste min	imizati	on: Inte	grate	d
planning, pro	ocess intensification, recycle and reuse.				
UNIT II S	YNTHETIC ORGANIC WASTES TO ENERGY				6
Principle and	l operation of equipments and processes for energy production from sy	nthetic	organi	c was	te
through inci	neration, gasification, pyrolysis, plasma arc waste destruction- Case st	udy: In	cinerati	ion of	non-
biodegradab	e municipal waste, plastic waste to energy using plasma gasification a	nd plas	ma pyr	olysis	5.
UNIT III F	BIOLOGICAL ORGANIC WASTE TO ENERGY				6
Principle and	l operation of equipments and processes for energy production from bi	ologica	ıl organ	icwas	ste
through Ana	erobic digestion, Fermentation, Transesterification, Biomass gasificati	on and	pyrolys	sis – C	Case
study: Treati	nent and utilization of wastewater, Energy production from algal biom	ass and	l bagas	se.	
UNIT IV F	ENERGY AND MATERIALS FROM GASEOUS POLLUTANTS				6
Principle and	l operation of equipments and processes for recovery and reuse of gase	eous po	llutants	(CO ₂	2,
$SO_2$ , $NH_3$ ) as	nd heat from flue gas. Case study: Energy using CO ₂ Fuel cells, Plastic	es from	CO ₂ , g	ypsur	n
from flue ga	s desulfurization. Alternate Fuel Resource (AFR) – production and use	in Cer	nent pla	ants,	
Thermal pov	ver plants and Industrial boilers.				
UNIT V	CASE STUDIES OF WASTE TO ENERGY				6
Success/failu	res of waste to energy; Global Best Practices in Waste to energy produ	uction o	listribu	tion a	nd
use. Indian S	cenario on Waste to Energy production distribution and use in India. S	Success	and Fa	ilures	of
Indian Waste	e to Energy plants. Role of the Government in promoting 'Waste to En	ergy'.			
		ΓΟΤΑΙ	L: 30 I	PERIC	ODS

OUT	COM	ES:												
Upon	succe	ssful co	ompleti	on of th	e course	e, the st	udents s	should	be able	to				
CO'S	5					ST	ATEM	ENT						RBT EVEL
CO	<b>1.</b> 0	utline	the min	imizatio	on and r	nanagei	nent of	wastag	e strate	gies in p	process	industrie	s.	2
CO	<b>2.</b> U	ndersta	and var	ious me	thods fo	or gener	ation of	fenergy	from in	ndustria	l organi	ic waste.		2
CO.	3. U	ndersta	and pro	cesses f	or gene	ration o	f energy	y from l	biologic	al orga	nic was	tes.		2
CO	<b>4.</b> ^{III}	lustrate	e the co	ncepts o	on recov	very and	l repurp	osing o	f gaseo	us pollu	tants.			2
CO	5 ^D	Dutline the significance of waste to Energy practices.												
ТЕХТ	Г <b>ВО</b> (	OKS:												
And <b>REFE</b> 1) Plan 2) Trea 3) Arda 2018	rew P CREN Lisa l ts", Sj Lawro ttment a Işild 3.	ublishi CES: Branch pringer ence 1 in the ar, Me	ng; 2 nd ini, "W Interna K. Wa Process tal Rec	edition, aste-to- ational I ng, Yu s Indust	2011. Energy Publishi Ing-Tse ries", C rom Ele	: Advar ng, 201 Hung, RC Pre ectronic	nced Cy 5. , Howa ss, 2005	vcles an ard H.	d New Lo a	Design nd Cor	Concep	lementa ots for E e Yapij Leachin	fficien akis,	t Powe
						]	PO						P	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2					3	3	2			2	3	3	3
CO2	2					3	3	2			2	3	3	3
	2					3	3	2			2	3	3	3
CO3														
CO3 CO4	2					3	3	2 2			2	3	3	3