SRI VENKATESWARA COLLEGE OF ENGINEERING

An Autonomous Institution,

Affiliated to Anna University, Chennai

REGULATION 2022

B.E. ELECTRONICS AND COMMUNICATION

ENGINEERING

Choice Based Credit System

Curriculum and Syllabi (I – VIII Semester)

CO

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025)

B.E., Electronics and Communication Engineering

CURRICULUM AND SYLLABUS

REGULATION – 2022

CHOICE BASED CREDIT SYSTEM

			201	· // ·					
		19/10	08.04.2024	Academic	09.05.2024				
Curriculum		Board of Studies	12.09.2023	Council	18.10.2023				
Revision No:	00	recommendation	10.04.2023		21.04.2023				
		date :	07.10.2022	Approved date:	08.10.2022				
			18.03.2022	date:	12.04.2022				
		The courses "Tamil language and Heritage of Ancient Tamil Society"							
	01.	in Semester I and "Science and Technology in Ancient Tamil Society"							
Salient Points	01.	in Semester II are introduced as per the recommendations of Anna							
of the		University/Government of Tamil Nadu.							
		The course "Technical Drawing Laboratory" is introduced in							
revision	02.	semester II replacing	"Engineering D	rawing" of R20	018. This will				
	02.	enable the students to	draw the circuit	t symbols using	g free hand				
		sketches and simulation tools.							

03.	The course "Circuit Theory" is shifted to semester II from semester III
03.	of R2018 and introduced as Theory cum Practical Course.
	The courses of R2018 "Engineering Mathematics III" and "Probability
04.	and Random Processes" are replaced with the new course "Transforms
	and Random Processes" and the same is offered in semester IV.
	The course "Environmental Sciences and Sustainability" is shifted to
05.	IV semester. This will help the Lateral entry students to describe the
	sustainable development for environmental protection.
	The course "Machine Learning" is introduced in semester IV as
06.	Theory cum Practical course. This will enable the students to expose
00.	the various Machine Learning algorithms and implementation of the
	same using Python.
07.	The course "Microcontroller Systems" is introduced as Theory cum
07.	Practical course in semester IV.
08.	The courses "Physical VLSI Design" and "Embedded Systems and IoT
08.	Design" are offered as Industry supported courses.
00	The professional electives are grouped under 6 verticals based on
09.	programme specific domain.

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025) REGULATIONS 2022

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

CHOICE BASED CREDIT SYSTEM

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- I. Create value to organizations as an EMPLOYEE at various levels, by improving the systems and processes using appropriate methods and tools learnt from the programme.
- II. Run an organization successfully with good social responsibility as an ENTREPRENEUR, making use of the knowledge and skills acquired from the programme.
- III. Contribute to the future by fostering research in the chosen area as an ERUDITE SCHOLAR, based on the motivation derived from the programme.

PROGRAM OUTCOMES (POs)

PO GRADUATE ATTRIBUTES

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- 13. An ability to apply the concepts of Electronics, Communications, Signal processing, VLSI, Control systems etc., in the design and implementation of application oriented engineering systems.
- 14. An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical and managerial skills to arrive appropriate solutions, either independently or in team.

POs		PEO	S
	I	II	III
1.	~	1000	
2.	~	12	~
3.	1	1	30
4.	1	121	1
5.	~	_	_
6.		 ✓ 	 ✓
7.		 ✓ 	
8.		 ✓ 	
9.	 ✓ 		 ✓
10.		 ✓ 	
11.		 ✓ 	
12.	 Image: A start of the start of		 ✓
13.	 Image: A start of the start of		 ✓
14.	✓	 ✓ 	

PEO's – PO's & PSO's MAPPING:

SRI VENKATESWARA COLLEGE OF ENGINEERING,

(An Autonomous Institution, Affiliated to Anna University, Chennai – 600025) REGULATIONS 2022

CHOICE BASED CREDIT SYSTEM

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

CURRICULUM & SYLLABI FOR SEMESTERS FROM I TO VIII

SL.	COURSE	COURSE TITLE	CATEGORY [#]	PE	PERIODS PER WEEK				Prereq	Position
NO.	CODE		CHILGORI	L	Т	P	C	Hours	uisite	
1.	IP22151	Induction Programme (Common to all Branches)	COLL	-	/	-	-	-	-	-
Theory	v Subjects	(RA		10	E	1	<u>.</u>			
2.	HS22151	Tamil language and Heritage of Ancient Tamil Society (Common to all branches)	HS	1	0	0		1	Nil	F
3.	HS22152	Communicative English (Common to all Branches)	HS	3	0	0	3	3	Nil	F
4.	MA22151	Applied Mathematics I (Common to all Branches except MR)	BS	3	1	0	4	4	Nil	F
5.	PH22151	Applied Physics (Common to AD, CS, EE, EC, IT)	BS	3	0	0	3	3	Nil	F
6.	CY22151	Applied Chemistry (Common to AD, CS, EE, EC, IT)	BS	3	0	0	3	3	Nil	F
7.	EE22152	Basic Electrical Engineering	ES	3	0	0	3	3	Nil	F
8.	IT22101	Programming for Problem Solving (Common to IT, AD, CS, EE, EC)	ES	3	0	0	3	3	Nil	F
Practic	al Subjects	12		51	21	/				
9.	PH22161	Physics Laboratory (Common to all Branches except BT)	BS	0	0	2	1	2	Nil	F
10.	ME22161	Basic Civil and Mechanical Engineering Laboratory (Common to CE, EE, EC)	ES	0	0	2	1	2	Nil	F
11.	IT22111	Programming for Problem Solving Laboratory (Common to IT, AD, CS, EE, EC)	ES	0	0	3	1.5	3	Nil	F
			Total	19	1	7	23.5	27	-	-

SEMESTER I

			SEMESTEI	R 11						
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY [#]		CRIOI WE	EK		TOTAL Hours	Prerequ isite	Positio
				L	T	P	C	liouis		
Theory	y Subjects									
1.	HS22251	Science and Technology in Ancient Tamil Society (Common to all Branches)	HS	2	0	0	2	2	Nil	F
2.	HS22252	Technical English (Common to all Branches)	HS	3	0	0	3	3	Nil	F
3.	MA22251	Applied Mathematics II (Common to all Branches except MR)	BS	3	1	0	4	4	Nil	F
4.	PH22252	Physics of Materials (Common to EE, EC)	BS	3	0	0	3	3	Nil	F
5.	EC22201	Electron Devices	PC	3	0	0	3	3	Nil	F
6.	EC22202	Circuit Theory	PC	3	0	2	4	5	EE22152	F
Practic	cal Subjects	191		1	-		10	()		
7.	CY22161	Chemistry Laboratory (Common to all Branches except AD, CS, IT)	BS	0	0	2	20	2	Nil	F
8.	EC22211	Technical Drawing Laboratory	ES	0	0	2	15	2	Nil	F
9.	EC22212	Electron Devices and Electrical Machines Laboratory	PC	0	0	3	1.5	3	Nil	F
		141	Total	17	1	9	22.5	27	-	-

		SEN	AESTER III		5- J	1.5	21				
SL. NO.	COURSE CODE	COURSE TITLE	CATEGO RY [#]	PERIODS PER WEEK			R		Prerequi site	Positio	
100.	CODE	COURSE ITTLE	N1	L	T	P	С	nours	site	11	
Theory	Theory Subjects										
1.	MA22358	Transform and Random Processes	BS	3	1	0	4	4	Nil	F	
2.	EC22301	Object Oriented Programming and Data Structures	ES	3	0	0	3	3	Nil	F	
3.	EC22302	Digital System Design	PC	3	0	0	3	3	PH22151	F	
4.	EC22303	Electromagnetic Fields and Waves	PC	3	0	0	3	3	Nil	F	
5.	EC22304	Electronic Circuits	PC	3	0	0	3	3	EC22201, EC22202	F	
6.	EC22305	Signals and Systems	PC	3	0	0	3	3	Nil	F	
Practic	al Subjects										
7.	EC22311	Analog and Digital Circuits Laboratory	PC	0	0	3	1.5	3	Nil	F	
8.	EC22312	Object Oriented Programming and Data Structures Laboratory	ES	0	0	3	1.5	3	Nil	F	
	Total 18 1 6 22 25										

SEMESTER II

			SEMESTER IV	7						
	COURSE		CATEGORY [#]	PE	PERIODS PER WEEK				Prerequi	
NO.	CODE	COURSE TITLE		L	Т	Р	С	Hours	site	n
Theory	V Subjects									
1.	EC22401	Analog Integrated Circuits and its Applications	PC	3	0	0	3	3	EC22304	F
2.	EC22402	Linear Control Systems	PC	3	0	0	3	3	Nil	F
3.	EC22408	Machine Learning: Theory and Practices	ES	3	0	2	4	5	Nil	F
4.	EC22409	Microcontroller Systems: Theory and Practices	PC	3	0	2	4	5	Nil	F
5.	EC22403	Discrete Time Signal Processing	PC	3	0	0	3	3	EC22305	F
б.	GE22451	Environmental Sciences and Sustainability (Common to all branches)	HS	3	0	0	3	3	Nil	F
Practic	al Subjects		1000			1				
7.	EC22411	Analog Integrated Circuits and Simulation Laboratory	PC	0	0	3	1.5	3	Nil	F
8.	EC22412	Discrete Time Signal Processing Laboratory	ES	0	0	3	1.5	3	Nil	F
			Total	18	0	10	23	28	-	-

SEMESTER V

			SEMESTER V				1.177			
	COURSE CODE	COUDCE TITLE	CATEGORY [#]	PE	PERIODS PER WEEK			TOTAL Hours	Prerequi	Positio
NO.	CODE	COURSE TITLE		L T P C		С	Hours	site	n	
Theory	v Subjects	1	/							
1.	EC22501	Communication Systems	PC	3	1	0	4	4	Nil	F
2.	EC22502	Computer Organization and Design	PC	3	0	0	3	3	Nil	F
3.	EC22503	Communication Networks and Security	PC	3	0	0	3	3	Nil	F
4.	EC22504	Physical VLSI Design (Common to EC, EE)	PC	3	0	0	3	3	EC22302	F
5.	EC22505	Transmission Lines and RF Systems	PC	3	0	0	3	3	EC22303	F
6.	******	Professional Elective I	PE	3	0	0	3	3	Nil	М
7.	******	Mandatory Course	MC	2	0	0	0	2	Nil	М
Practic	al Subjects									
8.	EC22511	Communication Systems Laboratory	PC	0	0	3	1.5	3	Nil	F
9.	EC22512	Communication Networks Laboratory	PC	0	0	3	1.5	3	Nil	F
10.	EC22513	VLSI Design Laboratory	PC	0	0	3	1.5	3	Nil	F
			Total	20	1	9	23.5	30	-	-

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY [#]				ER		L Prerequi	
NU.	CODE	COURSE IIILE		L	Т	Р	C	nours	site	n
Theory	y Subjects				-		-			
1.	EC22601	Antenna and Microwave Engineering	PC	3	1	0	4	4	EC22505	F
2.	EC22602	Embedded Systems and IoT Design	PC	3	0	0	3	3	EC22409	F
3.	EC22603	Wireless Communication	PC	3	0	0	3	3	EC22501	F
4.	******	Professional Elective II	PE	3	0	0	3	3	Nil	Μ
5.	******	Professional Elective III	PE	3	0	0	3	3	Nil	Μ
6.	******	Open Elective I	OE	3	0	0	3	3	Nil	Μ
Practic	cal Subjects			/						
7.	EC22611	Antenna and Microwave Engineering Laboratory	C CPC-L	0	0	4	2	4	Nil	F
8.	EC22612	Embedded Systems and IoT Laboratory	PC	0	0	3	1.5	3	Nil	F
9.	HS22511	Interview and Career Skills Laboratory (Common to all branches except CE)	EEC	0	0	3	2	3	Nil	F
10.	EC22613	Industrial Training/Internship	EEC	0	0	0	2	0	Nil	-
	1 1	101	Total	18	1	10	26.5	29	-	_

SEMESTER VII

		1. 20 L	SEMESTER VI	4				-		
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY [#]	PERIODS PER WEEK					Prerequi site	
NO.	CODE	COURSE IIILE		L	Т	Р	C	nours	site	n
Theory	v Subjects		~	1	1	1	20	1		
1.	EC22701	Optical Communication and Networks	PC	3	0	0	3	3	PH22151, PH22252	М
2.	EC22702	Management Principles and Ethical Conduct	МС	3	0	0	3	3	Nil	М
3.	******	Professional Elective IV	PE	3	0	0	3	3	Nil	М
4.	******	Professional Elective V	PE	3	0	0	3	3	Nil	М
5.	******	Professional Elective VI	PE	3	0	0	3	3	Nil	М
6.	******	Open Elective II	OE	3	0	0	3	3	Nil	М
Practic	al Subjects	-						•	•	-
7.	EC22711	Project Work - Phase I	EEC	0	0	4	2	4	Nil	F
			Total	18	0	4	20	22	-	-

SEMESTER VIII

	COURSE	COURSE TITLE	PERIODS PERCATEGORY#WEEK				V [#] WFFK TOTAL				TOTAL Prere Hours site		Positio
NO.	NO. CODE	COORSE IIILE		L	Т	Р	С	nours	site	11			
Practic	Practical Subjects												
1.	EC22811	Project Work - Phase II	EEC	0	0	16	8	16	-	F			
			Total	0	0	16	8	16	-	-			

Total Credits: 169

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Vertical 1 Wireless Systems Engineering	Vertical 2 Antenna and Microwave Technology	Vertical 3 VLSI	Vertical 4 Signal Processing and Data Science	Vertical 5 Embedded System Design and IoT	Vertical 6 Networking and Security
Cognitive Radio	Antenna Theory and Design	Analog IC Design	Audio Signal Processing	Industry 4.0 and IIoT (Common to EC, ME and MN)	Blockchain and Smart Contract
Emerging Wireless Technologies	Antennas for Wireless Communication Systems	ASIC and FPGA Design	Artificial Intelligence for Signal Processing	IoT Based System Design	Cryptography and Network Security
Free Space Optical Communication	Computational Electromagnetics with EM Simulation	CAD for VLSI Circuits	Biomedical Signal Processing	IoT for Real Time Applications	IoT Security
Intelligent Communication Networks	EMI/EMC Pre Compliance Testing	Low Power IC Design	Biometric Systems	IoT Solutions for Smart Cities	SDN and NFV in IoT
Mobile Technologies	RADAR and Microwave Engineering	Mixed Signal IC Design and Testing	Data Science and its Applications	Real Time Operating Systems	SDN and NFV Architectures
Multimedia Communication Systems	MICs and RF System Design	SoC Design	Deep Learning for Computer Vision	Robotics and Automation (Common to EC and EE)	Wireless Broadband Networks
Radio over Fibre Systems	Millimeter Wave Antenna Technology	Testing of VLSI Circuits	Image Analysis and Machine Vision	Vehicle Infotainment and Connected Vehicles	Wireless Networks
Satellite Communication Systems	Smart Antenna Systems and Technology	VLSI for Wireless Communication	Soft Computing Techniques and its Applications	Wearable Devices for Healthcare Applications	Wireless Sensor Networks
Mini Project	Mini Project	Mini Project	Mini Project	Mini Project	Mini Project

PROFESSIONAL ELECTIVE COURSES: VERTICALS VERTICAL 1: WIRELESS SYSTEMS ENGINEERING

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY							
1.	EC22021	Cognitive Radio	PE	3	3	0	0	3
2.	EC22022	Emerging Wireless Technologies	PE	3	3	0	0	3
3.	EC22023	Free Space Optical Communication	PE	3	3	0	0	3
4.	EC22024	Intelligent Communication Networks	PE	3	3	0	0	3
5.	EC22025	Mobile Technologies	PE	3	3	0	0	3
6.	EC22026	Multimedia Communication Systems	PE	3	3	0	0	3
7.	EC22027	Radio over Fibre Systems	PE	3	3	0	0	3
8.	EC22028	Satellite Communication Systems	PE	3	3	0	0	3
PRAC	TICAL							
9.	EC22020	Mini Project	PE	4	0	0	4	2

VERTICAL 2: ANTENNA AND MICROWAVE TECHNOLOGY

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	DRY		8	3/2	1			
1.	EC22031	Antenna Theory and Design	PE	3	3	0	0	3
2.	EC22032	Antennas for Wireless Communication Systems	PE	3	3	0	0	3
3.	EC22033	Computational Electromagnetics with EM Simulation	PE	3	3	0	0	3
4.	EC22034	EMI/EMC Pre Compliance Testing	PE	3	3	0	0	3
5.	EC22035	RADAR and Microwave Engineering	PE	3	3	0	0	3
6.	EC22036	MICs and RF System Design	PE	3	3	0	0	3
7.	EC22037	Millimeter Wave Antenna Technology	PE	3	3	0	0	3
8.	EC22038	Smart Antenna Systems and Technology	PE	3	3	0	0	3
PRAC	TICAL							
9.	EC22030	Mini Project	PE	4	0	0	4	2

VERTICAL 3: VLSI

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	
THEORY									
1.	EC22041	Analog IC Design	PE	3	3	0	0	3	
2.	EC22042	ASIC and FPGA Design	PE	3	3	0	0	3	
3.	EC22043	CAD for VLSI Circuits	PE	3	3	0	0	3	
4.	EC22044	Low Power IC Design	PE	3	3	0	0	3	
5.	EC22045	Mixed Signal IC Design and Testing	PE	3	3	0	0	3	
6.	EC22046	SoC Design	PE	3	3	0	0	3	
7.	EC22047	Testing of VLSI Circuits	PE	3	3	0	0	3	
8.	EC22048	VLSI for Wireless Communication	PE	3	3	0	0	3	
PRAC	TICAL								
9.	EC22040	Mini Project	PE	4	0	0	4	2	

VERTICAL 4: SIGNAL PROCESSING AND DATA SCIENCE

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY	Ш 5%		I I	n			
1.	EC22051	Audio Signal Processing	PE	3	3	0	0	3
2.	EC22052	Artificial Intelligence for Signal Processing	PE	3	3	0	0	3
3.	EC22053	Biomedical Signal Processing	PE	3	3	0	0	3
4.	EC22054	Biometric Systems	PE	3	3	0	0	3
5.	EC22055	Data Science and its Applications	PE	3	3	0	0	3
6.	EC22056	Deep Learning for Computer Vision	PE	3	3	0	0	3
7.	EC22057	Image Analysis and Machine Vision	PE	3	3	0	0	3
8.	EC22058 Soft Computing Techniques and its Applications		PE	3	3	0	0	3
PRAC	PRACTICAL							
9. EC22050 Mini Project		PE	4	0	0	4	2	

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEC	DRY							
1.	EC22061	Industry 4.0 and IIoT	PE	3	3	0	0	3
2.	EC22062	IoT Based System Design	PE	3	3	0	0	3
3.	EC22063	IoT for Real Time Applications	PE	3	3	0	0	3
4.	EC22064	IoT Solutions for Smart Cities	PE	3	3	0	0	3
5.	EC22065	Real Time Operating Systems	PE	3	3	0	0	3
6.	EC22066	Robotics and Automation (Common to EC, EE)	PE	3	3	0	0	3
7.	EC22067	Vehicle Infotainment and Connected Vehicles	PE	3	3	0	0	3
8.	EC22068	Wearable Devices for Healthcare Applications	PE	3	3	0	0	3
PRAC	TICAL			-				
9. EC22060 Mini Project		PE	4	0	0	4	2	

VERTICAL 5: EMBEDDED SYSTEM DESIGN AND IOT

VERTICAL 6: NETWORKING AND SECURITY

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	C
THEO	ORY	7		12	7/			
1.	EC22071	Blockchain and Smart Contract	PE	3	3	0	0	3
2.	EC22072	Cryptography and Network Security	PE	3	3	0	0	3
3.	EC22073	IoT Security	PE	3	3	0	0	3
4.	EC22074	SDN and NFV in IoT	PE	3	3	0	0	3
5.	EC22075	SDN and NFV Architectures	PE	3	3	0	0	3
6.	EC22076	Wireless Broadband Networks	PE	3	3	0	0	3
7.	EC22077	Wireless Networks	PE	3	3	0	0	3
8.	EC22078	Wireless Sensor Networks	PE	3	3	0	0	3
PRACTICAL		-						
9.	9. EC22070 Mini Project		PE	4	0	0	4	2

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	SE22001	Financial Statement Analysis (Common to All branches)	PE	3	3	0	0	3
2.	SE22002	Introduction to Securities Market (Common to All branches)	PE	3	3	0	0	3
3.	SE22003	Option Trading Strategies (Common to All branches)	PE	3	3	0	0	3
4.	SE22004	Corporate Finance (Common to All branches)	PE	3	3	0	0	3
5.	SE22005	Managerial Economics (Common to All branches)	PE	3	3	0	0	3
6.	SE22006	Project Management (Common to All branches)	PE	3	3	0	0	3
7.	SE22007	Mathematics for AI & ML (Common to All branches)	PE	3	3	0	0	3

SPECIAL ELECTIVE COURSES*

OPEN ELECTIVE COURSES

Sl. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	5 L	Т	Р	С
1.	OE22701	Autotronics	OE	3	3	0	0	3
2.	OE22702	Biometric System and its Application	OE	3	3	0	0	3
3.	OE22703	Computer Vision and its Application	OE	3	3	0	0	3
4.	OE22704	Consumer Electronics	OE	3	3	0	0	3
5.	OE22705	Embedded Systems and its Application	OE	3	3	0	0	3
6.	OE22706	Fundamentals of Analog and Digital ICs	OE	3	3	0	0	3
7.	OE22707	IoT and Sensing	OE	3	3	0	0	3
8.	OE22708	Fundamentals of Wireless Communication	OE	3	3	0	0	3
9.	OE22709	Introduction to Smart City	OE	3	3	0	0	3
10.	OE22710	Medical Imaging System	OE	3	3	0	0	3
11.	OE22711	Neural Networks and its Application	OE	3	3	0	0	3
12.	OE22712	Robotic Systems	OE	3	3	0	0	3
13.	OE22713	System Design using Microcontrollers	OE	3	3	0	0	3

Sl. No.	COURSE CODE	COURSE TITLE	CREDIT
1.	VD22701	5G and 6G Antenna Theory and Design	2
2.	VD22702	Artificial Neural Networks	2
3.	VD22703	Deep Learning using Python	2
4.	VD22704	Embedded System Simulation	2
5.	VD22705	Hardware Modeling and Analysis using EDA tool	2
6.	VD22706	MIMO Technologies	2
7.	VD22707	Mixed Signal IC Design	2
8.	VD22708	PCB Design using EDA Tool	2
9.	VD22709	RF Circuit Design – Theory and Simulation using EM Simulation tools	2
10.	VD22710	Simulation of Communication Networks	2
11.	VD22711	Smart IoT Applications	2
12.	VC22001	Basics of Entrepreneurship Development (Common to all branches)	2
13.	VC22002	Advances in Entrepreneurship Development (Common to all branches)	2
14.	VC22003	Communicative German (Common to all branches)	2
15.	VC22004	Communicative Hindi (Common to all branches)	2
16.	VC22005	Communicative Japanese (Common to all branches)	2
17.	VC22006	Design Thinking and Prototyping laboratory (Common to all branches)	2
		MANDATORY COURSES*	

VALUE ADDED COURSES

Sl. No.	COURSE CODE	COURSE TITLE
1.	MC22001	Indian Constitution (Common to all branches)
2.	MC22002	Essence of Indian Traditional Knowledge (Common to all branches)
3.	MC22003	Gender Sensitization (Common to all branches)

GENERAL ELECTIVE COURSES*

 51. No.	COURSE CODE	COURSE TITLE
1.	GN22001	Introduction to NCC for Engineers (Common to all branches)
2.	GN22002	Yoga and physical culture (Common to all branches)
3.	GN22003	Introduction to Fine arts (Common to all branches)

*Refer to General Curriculum and Syllabus in the college website

Summary:

			Cree	lit as	per Sen	iester			Total	
Subject Area	Ι	II	III	IV	V	VI	VII	VIII	Credit	Percentage
Humanities and Social Sciences (HS), courses include Technical English, Engineering Ethics and Human Values, Communication Skills, Environmental Science and Engineering.	4	5		3					12	7.1%
Management Courses (MC) such as Principles of management, Total Quality Management and Organizational Behaviour etc.		_					3		3	1.78%
Basic Sciences (BS) courses include Mathematics, Physics, Chemistry, Biology, etc.	NR	8	4		-0	E	2		23	13.6%
Professional Core (PC) courses include the core courses relevant to the chosen specialisation/branch.	1	8.5	13.5	16	20.5	13.5	3	Z	75	44.38%
Engineering Sciences (ES) courses include Engineering Practices, Engineering Graphics, Basics of Electrical / Electronics / Mechanical / Computer Engineering / Instrumentation, etc.	8.5		4.5	4	5)	Đ,		INEER	18	10.65%
Professional Elective (PE) courses include the elective courses relevant to the chosen specialisation/branch.	1		-	Ĺ	3	6	9	-	18	10.65%
Open Elective (OE) courses include the courses from other branches	2	वहा	7 τ	হা	50	3	3		6	3.55%
Employability Enhancement Courses (EEC) include Project Work and/or Internship, Seminar, Professional Practices, Case Study and Industrial/Practical Training.						4	2	8	14	8.28%
Total Credits	23.5	22.5	22	23	23.5	26.5	20	8	169	100%

SEMESTER I

110001 21	தமிழ் மொழியும் தமிழர் மரபும்	L	Т	Р	C
HS22151	TAMIL LANGUAGE AND HERITAGE OF TAMILS	1	0	0	1
	(Common to all branches)	-	v	v	
	ள் நோக்கங்கள்:				<u> </u>
	ரழியின் தோற்றம் பற்றியும், திணை கருத்துக்கள் வாயிலாக வாழ்வியல் மு	ന്നെ	களை	т பற்ற	றியுப்
கற்றுக் கொல உலக்கிய வ	ளவாரகள. தசிய சுதந்திர இயக்கத்தில் தமிழர்களின் பங்களிப்பு மற்றும் தமிழர்சு	ഹിക്		൜൱ൎൽ	TOU
	தசிய சுதந்திர் இயக்கத்தில் தமிழர்களில் பங்களிப்பு மற்றும் தமிழர்க பற்றியும் கற்றுக் கொள்வார்கள்.	56111601	ωШ	6011600)160)L
Course Obje	ectives :				
1. They will	learn about the origin of the Tamil language and the ways of life through fi	ve ty	pes o	of land	ls.
2. They will	also learn about the contribution of Tamils in the Indian National Freedom	n Mov	veme	ent an	d the
management	methods of Tamils.				
	N UULLER				
அலகு 1	தமிழுக்கும் தொழில்நுட்பக் கல்விக்கும் உள்ள தொடர்பு				
மொழி மற்ற	றம் பாரம்பரியம் : இந்தியாவில் உள்ள மொழிக் குடும்பங்கள் – திராவிட பெ	பாழிக	கள் –	தமிழ்	ୁ ଜୁ(
	– தமிழில் செம்மொழி இலக்கியம் - உ.வே சாமிநாதய்யர். ஆறுமுகநால	வலர்	ຈາຍ	∋ுபா	ாரின்
			- Sp		-
பங்களிப்பு –	தொழில் நட்பக் கல்வியில் தமிழ் மொழியின் முக்கியத்துவம்.		- Sp		
பங்களிப்பு –	தொழில் நட்பக் கல்வியில் தமிழ் மொழியின் முக்கியத்துவம்.	,	990		
	12/01	,	- 29		
UNIT -1 L	ANGUAGE AND HERITAGE				
UNIT -1 L Language fa	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar	ngua	ge –	Clas	sica
UNIT -1 L Language fa Literature ir	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In	ngua	ge –	Clas	sica
UNIT -1 L Language fa Literature ir	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar	ngua	ge –	Clas	sica
UNIT -1 L Language fa Literature ir language in	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education.	ngua	ge –	Clas	sica ami
UNIT -1 L Language fa Literature in language in அலகு 2	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. தணை கருத்துக்கள்	nguaș npor	ge – tance	Clas e of T	sica ami
UNIT -1 L Language fa Literature ir language in அலகு 2 திணை கருத	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. திணை கருத்துக்கள் த்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன	nguaؤ npor	ge – tance	Clas e of T 	sica 'ami
UNIT -1 L Language fa Literature in language in அலகு 2 திணை கருத நடனம், உண	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. தனை கருத்துக்கள் த்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன வு முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப்	nguag npor க மு	ge – tanco	Clas e of T கள், இ றும்	sica 'ami വിത്രം ചിത്രം
UNIT -1 L Language fa Literature ir language in அலகு 2 திணை கருத நடனம், உண இலக்கியங்க	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. திணை கருத்துக்கள் த்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன ாவு முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப் எளில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வி	nguaរ npor றக மு பியட பியட	ge – tanco றைக ம் மற் றும் எ	Clas e of T கள், இ றும் ாழுத்த	sica ami ami
UNIT -1 L Language fa Literature in language in அலகு 2 திணை கருத நடனம், உண இலக்கியங்க சங்க காலம்	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. திணை கருத்துக்கள் த்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன ாவு முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப் எளில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வீ – சங்ககாலத்தின் பண்டைய நகரங்கள் மற்றும் துறைமுகங்கள் – சங்க	nguaរ npor றக மு பியட பியட	ge – tanco றைக ம் மற் றும் எ	Clas e of T கள், இ றும் ாழுத்த	sica ami ami തെഴ ചെല്ലും കന്നിം
UNIT -1 L Language fa Literature in language in அலகு 2 திணை கருத நடனம், உண இலக்கியங்க சங்க காலம்	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. திணை கருத்துக்கள் த்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன ாவு முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப் எளில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வி	nguaរ npor றக மு பியட பியட	ge – tanco றைக ம் மற் றும் எ	Clas e of T கள், இ றும் ாழுத்த	sica 'ami)ലെ കല്പം കന്നില്
UNIT -1 L Language fa Literature in language in அலகு 2 அலகு 2 திணை கருத நடனம், உண இலக்கியங்க சங்க காலம் மற்றும் இறக்	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. திணை கருத்துக்கள் த்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன ததுக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன ததுக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன வ முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப் களில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வ – சங்ககாலத்தின் பண்டைய நகரங்கள் மற்றும் துறைமுகங்கள் – சங்க கைமதி – சோழர்களின் வெளிநாட்டு வெற்றி.	nguaរ npor றக மு பியட பியட	ge – tanco றைக ம் மற் றும் எ	Clas e of T கள், இ றும் ாழுத்த	sica 'ami)ലെ കല്പം കന്നില്
UNIT -1 L Language fa Literature in language in அலகு 2 திணை கருத நடனம், உண இலக்கியங்க சங்க காலம் மற்றும் இறக் UNIT -2 TH	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. திணை கருத்துக்கள் திற்ண கருத்துக்கள் த்துக்கள்: -ஐந்து வகை நிலங்கள், விலங்குகள், கடவுள்கள், தொழில், வாழ்க்ன வு முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப் எவு முறை, தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காப் ளில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வ – சங்ககாலத்தின் பண்டைய நகரங்கள் மற்றும் துறைமுகங்கள் – சங்க ககுமதி – சோழர்களின் வெளிநாட்டு வெற்றி.	nguaរ npor க மு பியட காலத	ge – tanco நைக நட நட த்தில்	Clas e of T கள், இ றும் ாழுத்த ரைற்ற	ssica 'ami)சை சங் தறி தறி தறி
UNIT -1 L Language fa Literature ir language in அலகு 2 இணை கருத நடனம், உண இலக்கியங்க சங்க காலம் மற்றும் இறக் UNIT -2 TH Five types of	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar a Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education.	nguai npor கை மு பபியட காலத Floar	ge — tance ஹைக ம் மர் றும் எ த்தில் a anc	Clas e of T கள், இ றைம் எழுத்த ஏற்து I Fau	ssica ami ami தறிசைங்க தறிதை றமத்த na o
UNIT -1 L Language fa Literature in language in அலகு 2 திணை கருத நடனம், உண இலக்கியங்க சங்க காலம் மற்றும் இறக் UNIT -2 TH Five types of Tamils - Aga	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. நணை கருத்துக்கள் நனணை கருத்துக்கள் நனணை கருத்துக்கள் நனண கருத்துக்கள் நனண கருத்துக்கள் நனண் கருத்துக்கள் நன் மற்றும் தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காட் வில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வ – சங்ககாலத்தின் பண்டைய நகரங்கள் மற்றும் துறைமுகங்கள் – சங்க குமதி – சோழர்களின் வெளிநாட்டு வெற்றி. HINAI CONCEPTS f lands, animals, Gods, occupation, life styles, music, dance , food style, I am and puram concept from Tholkappiyam and Sangam Literature – Aram	nguag npor கை மு பியட காலத Floar	ge — tanco நைக ந் மற் நும் எ த்தில் a and cept o	Clas e of T கள், இ றைம் ாழுத்த ரம்பி Faun of Ta	sica 'ami 'ami ' வசை சங்க தறிதை தறிதை கை க க க க க க க க க க க க க க க க க
UNIT -1 L Language fa Literature ir language in அலகு 2 இணை கருத நடனம், உண இலக்கியங்க சங்க காலம் மற்றும் இறக் UNIT -2 TH Five types of Tamils - Aga Education an	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar in Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education.	nguag npor கை மு பியட காலத Floar	ge — tanco நைக ந் மற் நும் எ த்தில் a and cept o	Clas e of T கள், இ றைம் ாழுத்த ரம்பி Faun of Ta	sica 'ami 'ami ' வசை சங்க தறிதை தறிதை கை க க க க க க க க க க க க க க க க க
UNIT -1 L Language fa Literature ir language in அலகு 2 இணை கருத நடனம், உண இலக்கியங்க சங்க காலம் மற்றும் இறக் UNIT -2 TH Five types of Tamils - Aga Education an	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar n Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education. நணை கருத்துக்கள் நனணை கருத்துக்கள் நனணை கருத்துக்கள் நனண கருத்துக்கள் நனண கருத்துக்கள் நனண் கருத்துக்கள் நன் மற்றும் தமிழர்களின் தாவரங்கள் மற்றும் விலங்கினங்கள் – தொல்காட் வில் இருந்து அகம் மற்றும் புரம் கருத்து – தமிழ் பற்றிய அறம் கருத்து – கல்வ – சங்ககாலத்தின் பண்டைய நகரங்கள் மற்றும் துறைமுகங்கள் – சங்க கேமதி – சோழர்களின் வெளிநாட்டு வெற்றி. HINAI CONCEPTS f lands, animals, Gods, occupation, life styles, music, dance , food style, I am and puram concept from Tholkappiyam and Sangam Literature – Aram	nguag npor கை மு பியட காலத Floar	ge — tanco நைக ந் மற் நும் எ த்தில் a and cept o	Clas e of T கள், இ றைம் ாழுத்த ரம்பி Faun of Ta	sica 'ami 'ami ' வசை சங்க தறிதை தறிதை கை க ப ப ப ப ப ப ப ப ப ப ப ப ப ப ப ப ப
UNIT -1 L Language fa Literature ir language in அலகு 2 இணை கருத நடனம், உண இலக்கியங்க சங்க காலம் மற்றும் இறக் UNIT -2 TH Five types of Tamils - Aga Education an	ANGUAGE AND HERITAGE amilies in India – Dravidan Languages – Tamil as a Classical lar in Tamil – Contribution of U. Ve. Saminathaiyar. Arumuka Navalar – In technical education.	nguag npor கை மு பியட காலத Floar	ge — tanco நைக ந் மற் நும் எ த்தில் a and cept o	Clas e of T கள், இ றைம் ாழுத்த ரம்பி Faun of Ta	sica 'ami 'ami ' ' இசை சங்ச தறில தறில தறில தறில த க ப க ப க ப க ப க ப க ப க ப க ப க ப க

இந்திய தேசிய சுதந்திர இயக்கய மற்றும் இந்திய கலாசசாரத்திற்கு தமழர்களின் பங்களிப்பு:-சுப்ரமணிய பாரதி, வாஞ்சிநாதன், சுப்பிரமணிய சிவா, வீரபாண்டிய கட்ட பொம்மன், வா..ஊ சிதம்பரம் பிள்ளை, தீரன் சின்னமலை, மருது பாண்டிய சகோதரர்கள், பூலி தேவர், திருப்பூர் குமரன், வீரமங்கை வேலு நாச்சியார் - ,தமிழர் இலக்கியங்களில் மேலாண்மை கருத்துக்கள் (கி. மு. 500 முதல் கி. பி 200 வரை) – அகநானூறு, புறநானூறு, திருக்குறள் ஆகியவற்றில் மேலாண்மைக் கருத்துகள்..

UNIT -3 HERITAGE OF TAMILS

Contribution of Tamils to Indian National Freedom Movement and Indian Culture : Contributions of Subramanya Bharathi, Vanchinathan, Subramaniya Siva, Veerapandiya Kattabomman, V O

Chidambaram Pillai, Dheeran Chinnamalai, The Maruthu Pandiyar, Puli Thevar, Tiruppur Kumaran, Veera Mangai Velunachiyar.

பாடநூல்கள்:

- 1. **பொன். முத்துகுமாரன்** (2002), "தமிழ் மரபு", காந்தளகம், 68, அண்ணா சாலை, சென்னை 600 002
- பி. டிறீனிவாச ஐயங்கார் (தமிழக்கமும் திறனாய்வும்) புலவர் கா. கோவிந்தன் (1988), "தமிழர் வரலாறு (முதல் பகுதி)", திருநெல்வேலி தென்னிந்திய சைவ சித்தாந்த நூற்பதிப்பு கழகம் ,154, TTK சாலை, சென்னை 18.
- 3. **டாக்டர். கே. கே. பிள்ளை** (2009), "தமிழக வரலாறு மக்களும் பண்பாடும்", உலக தமிழாராய்ச்சி நிறுவனம், தரமணி , சென்னை 600113
- முனைவர். ச. இராஜேந்திரன் (2004), "தமிழில் சொல்லாக்கம்", தஞ்சாவூர் தமிழ் பல்கலைக் கழகம் வெளியீடு

பாடநெறி முடிவுகள் : படிப்பை வெற்றிகரமாக முடித்தவுடன் , மாணவர்கள் பின்வருவனவற்றைச் செய்ய முடியும்.

COURSE OUTCOMES : On completion of the course, the student will be able to

மாணவர்கள் தமிழ் மொழித் தோற்றம் பற்றித் தெரிந்து கொள்வார்கள். Students will learn about the origin of the Tamil language தமிழர்களின் வாழ்வியல் முறைகளைத் தெரிந்து கொள்வார்கள்.	1
சமிலர்சளின் வால்வியல் முறைசனைச் செரிந்து சொன்வார்சன்	
They will know the ways of life of Tamils.	2
தமிழர்களின் சுதந்திர போராட்ட வீரர்களை பற்றியும், மேலாண்மைகளை பற்றியும் தெரிந்து கொள்வார்கள். They will know about the freedom fighters of Tamils and the management of Tamils	2
த ப Tl	மிழர்களின் சுதந்திர போராட்ட வீரர்களை பற்றியும், மேலாண்மைகளை ற்றியும் தெரிந்து கொள்வார்கள்.

ीतिकई एस 136

HS22152	COMMUNICATIVE ENGLISH	L 3	Т 0	P 0	C 3
COURSE OF	(Common to all Branches)	3	U	U	3
	e learners to interact fluently on everyday social contexts.				
	learners to engage in conversations in an academic/scholarly setting.				
	confidence in learners to overcome public speaking barriers.		1 • 1 1		
	op learners' ability to take notes and in the process, improve their list	-		lS	
	ce learners' reading skill through reading text passages for comprehe	nsion	and		
	nplation.				
-	ve learners' skills to write on topics of general interest and drafting co	orresp	oonde	ences	for
genera	l purposes.				
					•
UNIT 1					9
	nort video clips - conversational scenes form movies, celebrities' sp				
	veral ways of introducing oneself at several situations, introducin				
	iting people for several occasions, describing people and their plac				
	n passages - making inferences, critical analysis. Writing - comple				
	eveloping hints from the given information. Grammar - Wh-Questi				
	arts of speech. Vocabulary development - prefixes - suffixes - ar	ticles	S - C	ounta	ble /
uncountable n	ouns.	-			
	121-1 0010 10	£			•
UNIT II		1.		. 1	9
-	stomer care voice files, short narratives - identifying problems and d			-	
	eaking - speaking over skype/ whatsapp, making business calls, m		-		
	deos, inquiring about a concept/activity, describing a concept/activity				
	on news magazines - slogans and taglines from advertisements. Wri				
	dlines, slogans and taglines individual inspirations. Grammar- co				oms,
phrases, quote	s. Vocabulary development - guessing the meanings of words in diffe	erent	conte	exts.	
	121 + 2121				0
UNIT III		1			9
	ourtroom scenes from movies, debates and talks from news chan				
	anguage and tone for arguments, discussion, deliberation, contem				
-	ting to different situations in an alien country. Reading - language				
	ousehold appliances, cookery and other basic instructions. Writing				
	exts - use of reference words, discourse markers- coherence, rearr	-	-	•	
	rammar - adjectives - degrees of comparison, framing direct and	11101	rect	quest	ions.
vocabulary de	evelopment - concise approach, single word substitution.				
					9
UNIT IV		c	- 1 - 1		-
0 1	orts commentaries, advertisements with users' criticisms; Speaking -				-
	oncept, negotiating and bargaining; Reading - review of a product, mo				
	ng - writing for advertisements, selling a product; Grammar – Tenses -				
	ontinuous - Past, Present and Future; Vocabulary Development - synor	iyms	, and	JIIYIII	s and
phrasal verbs.					
UNIT V					9
					7

Listening - video lectures, video demonstration of a concept; Speaking – presenting papers/concepts, delivering short speeches, discourses on health, suggesting natural home remedies, cleanliness, civic sense and responsibilities; Reading - columns and articles on home science; Writing - correspondences of requests, basic enquiry/observation and basic complaints; Grammar - modal verbs, perfect tenses - Vocabulary development - collocations.

REFERENCES:

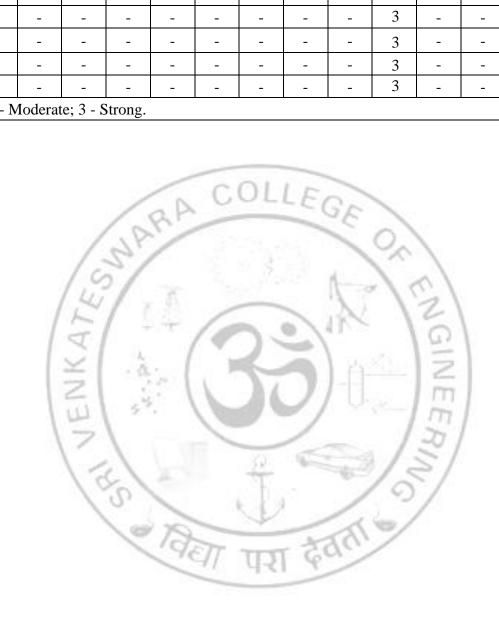
- 1. Department of English, Anna University, Mindscapes : English for Technologists and Engineers. Orient Black Swan, Chennai, 2017.
- 2. Downes and Colm, "Cambridge English for Job-hunting", Cambridge University Press, New Delhi, 2008.

TOTAL: 45 PERIODS

- 3. Murphy and Raymond, "Intermediate English Grammar with Answers", Cambridge University Press, 2000.
- 4. Thomson, A.J., "Practical English Grammar" Oxford, 1986.

Websites

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com3
- 3. https://owl.english.purdue.edu/owl/
- 4. www.learnenglishfeelgood.com/esl-printables-worksheets.html


Software

- 1. Face 2 Face Advance Cambridge University Press, 2014.
- 2. English Advance Vocabulary- Cambridge University Press.
- 3. IELTS test preparation Cambridge University Press 2017.
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition.
- 5. Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.

	e Outcomes:	RBT*
Upon c	ompletion of the course, students will be able to:	Level
CO1	Acquire adequate vocabulary for effective communication	3
CO2	Listen to formal and informal communication and read articles and infer meanings from specific contexts from magazines and news papers.	3
CO3	Participate effectively in informal/casual conversations; introduce themselves and their friends and express opinions in English.	4
CO4	Comprehend conversations and short talks delivered in English.	6
CO5	Write short write-ups and personal letters and emails in English	6
*Bloon	n's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evalu	ate-5;
Create-	6	

COURSE ARTICULATION MATRIX

COs						Р	Os						PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	-	-	I	-	-	I	I	-	-	3	I	I	-	I
2.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
3.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
4.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
5.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
1- Weal	k; 2 - N	Ioderat	te; 3 - S	Strong.										

N# A 22151	APPLIED MATHEMATICS I	L	Т	Р	С
MA22151	(Common to all Branches except MR)	3	1	0	4
COURSE OF	BJECTIVES:				
The Student s	hould be made to:				
Comp	ute eigen values and eigen vectors and use in diagonalization and	in cla	ssify	ing re	eal
quadra	tic forms.				
_	differential calculus and its applications to relevant Engi	neer	ing r	orob	lems.
-	ute derivatives using the chain rule or total differentials.		01		
-	stand the rotation of two dimensional geometry using definite inte	orals			
	int with the Mathematical tools needed in evaluating multiple into	U		hair	1160.00
		egrais	anu	liieii	0
UNIT 1	MATRICES ind Eigen vectors of a real matrix – Characteristic equation – Prop	oortioo		iaon	(9+3)
	ctors – Statement and Applications of Cayley-Hamilton Theorem				
	luction of a quadratic form into canonical form by orthogonal tra				
quadratic form					
UNIT II	APPLICATION OF DIFFERENTIAL CALCULUS				(9+3)
	radius of Curvature – Centre curvature – Circle of curvature – Evolute	es– En	velop	bes- E	Evolute
as Envelope o	DIFFERENTIAL CALCULUS FOR SEVERAL VARIABL	FS			(9+3)
	ontinuity - Partial derivatives – Total derivatives – Differentiation		olicit	funct	· /
	properties– Taylor's series for functions of two variables – Maxima a				
	s –Lagrange's method of undetermined multipliers.	21			
UNIT IV	APPLICATION OF DEFINTE INTEGRALS	- 1			(9+3)
	Parts-Bernoulli's formula for integration- Definite integrals and its sk Method- Washer Method- Rotation about both x and y axis and S				olids of
UNIT V	MULTIPLE INTEGRALS	11			(9+3)
	Is in Cartesian and polar coordinates - Change of order of integrati			enclo	sed by
plane curves -	Change of variables in double integrals - Triple integrals - Volume				
	TOTAL (L: 45 -	+ T:1:	5): 6) PE.	RIODS
TEXT BOOH			1	г .	
1. Erwin	Kreyszing, Herbert Kreyszing, Edward Norminton, "A	dvanc	ed	Engi	neering
	matics", 10 ^{^m} Edition, John Wiley, (2015)				
	1 .B.S, Grewal .J.S "Higher Engineering Mathematics",4	3^{rd} E	ditio	n, K	Thanna
	ations, Delhi, (2015).				
REFERENC					
	.P and Manish Goyal, "A Text book of Engineering Mathema	tics",	Nine	eth E	dition,
	Publications Pvt. Ltd., (2014).				
-	ames, "Advanced Modern Engineering Mathematics", 4th Editio	n, Pea	irson	Edu	cation,
(2016)					
3. Raman	a B.V, "Higher Engineering Mathematics", Tata McGraw Hill	Publis	shing	Con	npany,
New D	elhi, (2013).				
Web Link:					
1. https://ł	nome.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf				
2. 2. https	://www.sydney.edu.au/content/dam/students/documents/mathema	tics-le	earnii	ıg-	
-	gration-definite-integral.pdf			-	

Course	Outcomes:	RBT*
Upon co	ompletion of the course, students will be able to:	Level
CO1	Solve the Eigen value problems in matrices.	3
CO2	Apply the basic notion of calculus in Engineering problems and to tackle for different geometries.	3
CO3	Perform calculus for more than one variable and its applications in Engineering problems.	3
CO4	Apply definite integrals for design of three dimensional components.	3
CO5	Evaluate multiple integral in Cartesian and polar coordinates.	3
*Bloom Create-6	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluat	e-5;

COURSE ARTICULATION MATRIX: COLLEGE

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO- 1	PSO- 2
CO1	3	3	3	3	/-	- 3	2	2.5	A.,	1	1	3	-	-
CO2	3	3	1	4-1	100	ī "	-	1	3	5-1	2	3	-	-
CO3	3	3	3	3	2.2	1	0	0	140	2	0	3	-	_
CO4	3	3	X	1	100	(-	1	5	$\left(- \right)$	5 × 2.	E	3	-	-
CO5	3	3	2	2	15	1-1	-)	6-1	11-	-	m	3	-	-

145 1921

परा देवता - 5

PH22151	APPLIED PHYSICS		T	P	C
	(Common to AD, CS, EE, EC, IT)	3	0	0	3
	BJECTIVES:				
	hance the fundamental knowledge in Physics and its applications	relev	ant t	o vai	100
• Stream	ns of Engineering and Technology.				
UNIT 1	LASERS AND FIBER OPTICS				9
			~ ~ ~ ~ ~		-
1 1	lation of energy levels, Einstein's A and B coefficients derivation				•
	fication (qualitative) – Nd-YAG laser – CO2 Laser – Exceimer La				
	principle, numerical aperture and acceptance angle - types of opti- lex, and mode) – losses associated with optical fibers–Fiber opti				
	nsors: pressure and displacement - Endoscope.		mu	meat	IOII
note optic se					
UNIT 2	QUANTUM PHYSICS				9
	radiation – Planck's theory (derivation)- deduction of Wien's an	nd Pr	vlai	ah Ia	-
-	ton effect: theory and experimental verification – wave particle		•		
	concept of wave function and its physical significance - S				
	ne independent and time dependent wave equations – particle in				
	sional potential box-Fermi distribution function – Effect of ten	npera	lure	on F	erm
Enantian D	angiter of an anary states				
Function – D	ensity of energy states – carrier concentration in metals.	1			
	IFI G ANK 19	1			0
UNIT 3	ensity of energy states – carrier concentration in metals. CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystals	s: uni	it cel	ll, cr	9 ysta
UNIT 3 Single crysta systems, Bray coordination	CRYSTAL PHYSICS	terpla Diam	nar c ond	listar struc	ysta ices cture
UNIT 3 Single crysta systems, Bray coordination (qualitative) -	CRYSTAL PHYSICS lline, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector	terpla Diam	nar c ond	listar struc	ysta nces cture ults.
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4	CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and 1 – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS	terpla Diam ors, sta	nar c ond ackir	listar struc ng fai	ysta ices cture ults. 9
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa	CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystal vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand	terpla Diam ors, sta	nar c ond ackir	listar struc ng far ositic	ysta nces cture ults. 9 on 8
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection,	CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystal vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic	terpla Diam ors, sta ce Su ce Su	nar cond ackir	listar struc ng fau ositic - Fo	ystances cture ults. 9 on &
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, s	CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and I – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Elector	terpla Diam ors, sta ce Su ce Su c mo ectric	nar cond ackin perp tion- al ar	listar struc ng far ositic - Fo nalog	ysta aces cture ults 9 on & orceo
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, 5 oscillations, mechanical	CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystal vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Elepscillations, Quality factor and sharpness of resonance, Elepscillations	terpla Diam ors, sta ce Su ce Su c mo ectric	nar cond ackin perp tion- al ar	listar struc ng far ositic - Fo nalog	ysta aces cture ults 9 on & orceo
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, s	CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystal vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Elepscillations, Quality factor and sharpness of resonance, Elepscillations	terpla Diam ors, sta ce Su ce Su c mo ectric	nar cond ackin perp tion- al ar	listar struc ng far ositic - Fo nalog	ysta aces cture ults. 9 on & orcee y o
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, a oscillations, mechanical o	CRYSTAL PHYSICS Iline, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Eleoscillations, Quality factor and sharpness of resonance, Eleoscillators.	terpla Diam ors, sta ce Su ce Su c mo ectric	nar cond ackin perp tion- al ar	listar struc ng far ositic - Fo nalog	ysta ices ctur ults 9 9 on & orceo y o y o
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, a oscillations, mechanical o UNIT 5	CRYSTAL PHYSICS lline, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Ele oscillations, Quality factor and sharpness of resonance, Ele scillators.	terpla Diam ors, sta ce Su ce Su ce mo ectric ctrica	nar cond ackin perp tion- al ar 1 an	listar struc ng fan ositic - Fo nalog alog	ysta aces cturd ults 9 9 0 n & y o y o 9
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, a oscillations, mechanical o UNIT 5 Maxwell's E	CRYSTAL PHYSICS Illine, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – int number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Elepscillations, Quality factor and sharpness of resonance, Elepscillators. ELECTROMAGNETIC WAVES quations. Vector and Scalar Potentials. Plane waves in Dielectr.	terpla Diam ors, sta ce Su ce Su ce mo ectric ctrica	nar cond ackir perp tion- al ar l an	listar struc ng fan ositic - Fo nalog alog	ysta aces cture ults 9 9 9 y o y o y o y o y o y o
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, 5 oscillations, mechanical o UNIT 5 Maxwell's E Theorem and	CRYSTAL PHYSICS Illine, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – into number and packing factor for SC, BCC, FCC, HCP and L - crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Eleoscillations, Quality factor and sharpness of resonance, Eleoscillators. ELECTROMAGNETIC WAVES quations. Vector and Scalar Potentials. Plane waves in Dielectr 1 Poynting Vector Electromagnetic (EM) Energy Density. Ph	terpla Diam ors, sta ce Su ce Su ce Su ce Trica ctrica ic me nysica	nar cond ackir perp tion- al ar l an dia.	listar struc ng fan ositic - Fo nalog alog Poyr pncep	ystances cture ults 9 9 y o y o 9 nting ot o
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, a oscillations, mechanical o UNIT 5 Maxwell's E Theorem and Electromagne	CRYSTAL PHYSICS Illine, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – into number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Eleoscillations, Quality factor and sharpness of resonance, Eleoscillators. ELECTROMAGNETIC WAVES quations. Vector and Scalar Potentials. Plane waves in Dielectr Poynting Vector Electromagnetic (EM) Energy Density. Pletic Field Energy Density, EM Wave Propagation in Unbounded	terpla Diam ors, sta ce Su ce	nar cond ackin perp tion- al ar l an edia. al Co lia, F	listar struc ng fan ositic - Fo nalog alog Poyr pncep Plane	ysta aces cture ults 9 9 0 n & y o y o 9 nting ot o EM
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, a oscillations, mechanical o UNIT 5 Maxwell's E Theorem and Electromagne waves throug	CRYSTAL PHYSICS Illine, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – into number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Eleoscillations, Quality factor and sharpness of resonance, Eleoscillators. ELECTROMAGNETIC WAVES quations. Vector and Scalar Potentials. Plane waves in Dielectrr. Poynting Vector Electromagnetic (EM) Energy Density. Pletic Field Energy Density, EM Wave Propagation in Unbounded to acuum and isotropic dielectric medium, transverse nature of the vacuum and isotropic dielectric medium, transverse nature of the vacuum and isotropic dielectric medium, transverse nature	terpla Diam ors, sta ce Su ce	nar cond ackin perp tion- al ar l an edia. al Co lia, F	listar struc ng fan ositic - Fo nalog alog Poyr pncep Plane	ysta aces cture ults. 9 9 0n & y o y o 9 nting ot o EM
UNIT 3 Single crysta systems, Bray coordination (qualitative) - UNIT 4 Travelling wa Reflection, a oscillations, mechanical o UNIT 5 Maxwell's E Theorem and Electromagne waves throug	CRYSTAL PHYSICS Illine, polycrystalline and amorphous materials – single crystals vais lattices, directions and planes in a crystal, Miller indices – into number and packing factor for SC, BCC, FCC, HCP and L – crystal imperfections: point defects, line defects – Burger vector WAVES AND OSCILLATIONS aves, Wave equation for string, Energy and momentum, Resonand Standing waves, Harmonic oscillations, Damped harmonic amplitude resonance - Expression for Resonant frequency, Eleoscillations, Quality factor and sharpness of resonance, Eleoscillators. ELECTROMAGNETIC WAVES quations. Vector and Scalar Potentials. Plane waves in Dielectr Poynting Vector Electromagnetic (EM) Energy Density. Pletic Field Energy Density, EM Wave Propagation in Unbounded	terpla Diam ors, sta ce Su ce Su ce mo ectric ctrica ic me nysica I Mec f plan	nar cond ackir perp tion- al ar 1 an edia. al Co lia, F he EM	listar struc ng fau ositic - Fo nalog alog Poyr pncep Plane M wa	ystances ctur ults 9 9 9 9 9 9 0 y 0 y 0 y 0 y 0 y 0 y 0 y 0 y 0 y 0 y

TEXT BOOKS:

- 1. Gaur R.K., Gupta S.L, "Engineering Physics", Dhanput Publications, 2015.
- 2. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson, 2006.
- 3. Rajendran V, "Engineering Physics", Tata McGraw Hill, 2009.
- 4. Arumugam M, "Materials Science", Anuradha Publications, 2015.

REFERENCES:

- 1. David Halliday, Robert Resnick, Jearl Walker, "Principles of Physics", 10th Edition, Wiley, 2015.
- 2. Peter Atkins, Julio De Paula, "Physical Chemistry",10th Edition., Oxford University Press, 2014.
- 3. Arthur Beiser, Shobhit Mahajan, Rai Choudhury S,"Concepts of Modern Physics", 7th Edition, McGraw Hill Education, 2017.
- 4. Raghavan V, "Materials Science and Engineering", PHI Learning Pvt. Ltd., 2010

COUR	SE OUTCOMES:	RBT*
Upon s	uccessful completion of the course, students should be able to:	Level
CO 1	Apply fundamentals law of optics in different types of LASER and Optic fiber communication.	3
CO 2	Apply the principals of Quantum mechanics to study the properties of Electrons.	3
CO 3	Classify and demonstrate the fundamentals of crystals and their defects in solids.	2
CO 4	Demonstrate a strong fundamental knowledge in wave oscillations.	2
CO 5	Apply Electromagnetic equations for various media.	3

5; Create-6

COURSE ARTICULATION MATRIX:

COs			1	9	1	P	Os		/	1 5	/		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	-	3	10	TT	2	. 71	20,	2	-	2	-	-
2.	3	2	-	2	1	-11-	45	-16	/	2	-	2	-	-
3.	3	-	-	-	-	-	-	-	-	2	-	2	-	-
4.	3	2	-	-	-	-	-	-	-	2	-	2	-	-
5.	3	2	-	1	-	-	-	-	-	2	-	2	-	-
1- Wea	ak; 2 -	Modera	ate; 3 -	Strong	•	•			•				•	

CY22151		L T 3 0	P 0	C 3
COURSE OBJ			U	5
	the students conversant with basic electrochemistry and batteries.			
	lop an understanding of the laws of photochemistry and basics.			
	aint the students with the basics of nanomaterials, their properties and	uses.		
-	re the basic knowledge on sensors which are essential for the software		eers f	foi
develop	new devices.			
• To enabl	e the students to understand the types of instruments for material analy	ysis ar	nd the	eiı
working	principle.			
			<u> </u>	
UNIT I	ELECTROCHEMISTRY electrochemical cells – electrode potential, standard electrode potential		9	
electrode. Nerns electrode. Electr	tial and its determination, types of electrodes – calomel, quinhydro st equation - Determination of pH of a solution by using quinhydro rochemical series and its applications. Batteries – Primary (dry cell) an - acid storage battery and Lithium ion battery) and next generation batt	ne and nd sec	d gla	ass
			<u> </u>	
UNIT II	DHATACHEMISTDV		9	
Laws of photoc determination i conversion, int quenching of	PHOTOCHEMISTRY chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App	es - i sensiti	nterr zatio	nal on-
Laws of photoc determination i conversion, int quenching of photochemistry.	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App	es - i sensiti	nterr zatio ons	na on- of
Laws of photoc determination i conversion, int quenching of photochemistry.	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY	es - i sensiti olicatio	nterration ons	nal on- of
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App	es - i sensiti blicatio ion b anoma	nterrazatio ons 9 etwe ateria	nal on- of een uls,
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance).	es - i sensiti blicatio ion b anoma	nterrazatio ons 9 etwe ateria onfin	nal on- of een ils,
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR	es - i sensiti blicatio ion b anoma um co	nterrazatio ons 9 etwe ateria onfin 9	nal on- of of
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charac rochemical sensors – voltammetry, potentiometric sensors, amperometer	es - i sensiti blicatio ion b anoma um co	nterri izatio ons 9 etwe ateria onfin 9 ics at	nal on- of of een als, ied
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charac rochemical sensors – voltammetry, potentiometric sensors, amperome- miques.	es - i sensiti blicatio ion b anoma um co	nterri izatio ons 9 etwe ateria onfin 9 ics at enso	na on- of ors
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech UNIT V	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charac rochemical sensors – voltammetry, potentiometric sensors, amperome- miques.	es - i sensiti olicatio ion b anoma um co cterist etric s	nterri izatio ons 9 etwe ateria onfin 9 ics at enso	nal on- of of een als, iec
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech UNIT V Treatment of an	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charac cochemical sensors – voltammetry, potentiometric sensors, amperome- miques.	es - i sensiti olicatio ion b anoma um co cterist etric s	nterri izatio ons 9 etwe ateria onfin 9 ics at enso 9 and t	nal on- of een ils ied
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech UNIT V Treatment of an types of instru	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charac rochemical sensors – voltammetry, potentiometric sensors, amperome- miques.	es - i sensiti olicatio ion b anoma um co cterist etric s chods a spectro	etwe teria onfin g ics at enso g and t oscop	nal on- of of een als, iec
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech UNIT V Treatment of an types of instru principles, inst	Chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processes ther-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charace rochemical sensors – voltammetry, potentiometric sensors, amperometriques. INSTRUMENTATION TECHNIQUES alytical data, including error analysis. Classification of analytical met mental method - Electromagnetic radiation-UV-visible and IR s	es - i sensiti olicatio ion b anoma um co cterist etric s cterist etric s	nterri izatio ons 9 etwe ateria onfin 9 ics at enso 9 and t oscop	nal on- of of een dls. ied ors.
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech UNIT V Treatment of an types of instru principles, inst chromatography (packing, capill	hemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charac rochemical sensors – voltammetry, potentiometric sensors, amperome miques. INSTRUMENTATION TECHNIQUES alytical data, including error analysis. Classification of analytical met mental method - Electromagnetic radiation-UV-visible and IR s rumentation (Block diagram only) and applications. Separation y: Gas chromatography, liquid chromatography - importance of colum aries), separation based on increasing number of factor (volatility	es - i sensiti olicatio ion b anoma um co cterist etric s cterist etric s	nterrizatio ons 9 etwe ateria onfin 9 ics at enso 9 and t oscop	nalon- of of of of of of of of of of of of of
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech UNIT V Treatment of an types of instru principles, inst chromatography (packing, capill	chemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe ter-system crossing, fluorescence, phosphorescence and photo-s fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charactor ochemical sensors – voltammetry, potentiometric sensors, amperometric miques. INSTRUMENTATION TECHNIQUES alytical data, including error analysis. Classification of analytical met mental method - Electromagnetic radiation-UV-visible and IR s rumentation (Block diagram only) and applications. Separation y: Gas chromatography, liquid chromatography - importance of colum	es - i sensiti olicatio ion b anoma um co cterist etric s cterist etric s	nterrizatio ons 9 etwe ateria onfin 9 ics at enso 9 and t oscop	nal on- of of en dls, ded ors, ed ors, ed ors, egy
Laws of photoc determination i conversion, int quenching of photochemistry. UNIT III Basics and sca molecules, nano fabrication (lith materials (surfac UNIT IV Sensors, sensor elements. Electr polarization tech UNIT V Treatment of an types of instru principles, inst chromatography (packing, capill	hemistry – Grotthuss-Draper law, Stark–Einstein law and Lambert ron by spectrophotometer. Quantum efficiency – Photo processe fluorescence and its kinetics, Stern-Volmer relationship. App NANOCHEMISTRY le of nanotechnology, different classes of nanomaterials, Distinct particles and bulk materials; size-dependent properties. Synthesis of na ography) and its applications – Basics of nanophotonics and quant ce plasmon resonance). CHEMICAL SENSOR science and technology, types of sensors. Chemical Sensors – charac rochemical sensors – voltammetry, potentiometric sensors, amperome miques. INSTRUMENTATION TECHNIQUES alytical data, including error analysis. Classification of analytical met mental method - Electromagnetic radiation-UV-visible and IR s rumentation (Block diagram only) and applications. Separation y: Gas chromatography, liquid chromatography - importance of colum aries), separation based on increasing number of factor (volatility	es - i sensiti olicatio ion b anoma um co cterist etric s cterist etric s cterist etric s	nterri izatio ons 9 etwe iteria onfin 9 ics an enso 9 and t oscop iniqu nolo ubilit	nal on- of of en ils, ied ors, ied ors, ies gy

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010.
- 2. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 3. B.K.Sharma, "Instrumental Methods of Chemical Analysis", 28th Edition, Goel Publishing House, 2012.
- 4. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Ed.

REFERENCES:

- 1. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.
- 2. B.R. Puri, L.R. Sharma, M.S. Pathania., "Principles of Physical Chemistry" Vishal Publishing Company, 2008.
- 3. John Vetelino, Aravind Reghu, Introduction to Sensors, Taylor & Francis Group, CRC Press, 1st edition, 2010.
- 4. Peter Gründler, Chemical Sensors, An Introduction for Scientists and Engineers, Springer-Verlag Berlin Heidelberg 2007.

	SE OUTCOMES: uccessful completion of the course, students should be able to:	RBT* Level
CO1	Identify electrochemical cells, corrosion and fundamental aspects of batteries.	2
CO2	Interpret the photochemical reactions and make use of spectroscopic techniques.	2
CO3	Realize the structures, properties and applications of nanoparticles.	2
CO4	Acquire the basic knowledge on chemical sensors to develop an interdisciplinary	2
CO5	Develop theoretical principles of UV-visible and IR spectroscopy and separation techniques.	3

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO- 1	PSO- 2
CO1	3	3	3	2	-	-	-	-	-	-	-	3	-	-
CO2	3	3	-	-	-	3	3	-	-	-	-	3	-	-
CO3	3	3	3	-	-	3	3	1	-	-	-	3	-	-
CO4	3	3	3	-	1	3	3	-	-	-	-	3	-	-
CO5	3	3	-	2	-	3	3	-	-	-	-	3	-	-
1- W	eak; 2	- Mode	erate; 3	- Stron	g.									

EE22152	BASIC ELECTRICAL ENGINEERING	L T P C 3 0 0 3
COURSE O	BJECTIVES:	
• To in	roduce basics concepts of electric circuits	
	part knowledge in types, construction and working of DC machines and	1
	ormers.	
• To stu	dy the working principles of AC machines.	
	roduce the components of low voltage electrical installations and worki	ing principles
	wer converters.	
	dy the different types of measuring instruments.	
UNIT I	BASIC CIRCUITS ANALYSIS	9
	- Kirchoff's laws – DC and AC Circuits – Resistors in series and par	
	and node voltage method of analysis for D.C and A.C. circuits – Pha	
	r Factor and Energy. Network reduction: Voltage and current division ru	
conversion.		
	S Internet	
UNIT II	DC MACHINES AND TRANSFORMER	9
	ideal and practical transformer, equivalent circuit, losses in transform	ers, regulation
	y. Auto-transformer. Construction, working, torque-speed characteris	
	parately excited dc motor – Applications.	and speed
UNIT III	AC MACHINES	9
	three phase circuits, Generation of rotating magnetic fields, Constructio	
of a three-ph	ase induction motor, Significance of torque-slip Characteristic, Loss co	monents and
	ngle-phase induction motor, Working of synchronous generators.	inponents und
ennerency, si		
UNIT IV	ELECTRICAL INSTALLATIONS AND POWER	9
	CONVERTERS	
Components	of LT switch gear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB. Type	s of Wires and
	hing. Types of Batteries, Important Characteristics for Batteries	
	for energy consumption. DC-DC buck and boost converters, duty	-
	to voltage source inverters.	
UNIT V	MEASURING INSTRUMENTS	9
	truments, Construction and working principles of PMMC and mov	ing iron type
voltmeters, a	mmeters and ohm meter. Measurement of frequency. Single phase	dynamometer
	mmeters and ohm meter. Measurement of frequency. Single phase se of shunts and multipliers (Simple numerical problems on shunts an	•
wattmeter, U	se of shunts and multipliers (Simple numerical problems on shunts an	•
wattmeter, U		d multipliers).
wattmeter, U	se of shunts and multipliers (Simple numerical problems on shunts an gy meters, Smart digital Energy meter and Net meter.	d multipliers).
wattmeter, U Analog Energ	se of shunts and multipliers (Simple numerical problems on shunts an ay meters, Smart digital Energy meter and Net meter. TOTAL (L:45):	d multipliers).
wattmeter, U Analog Energe TEXT BOO 1. D.P.	se of shunts and multipliers (Simple numerical problems on shunts an ty meters, Smart digital Energy meter and Net meter. TOTAL (L:45): KS: Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw	d multipliers). 45 PERIODS
wattmeter, U Analog Energ TEXT BOO 1. D.P. editio	se of shunts and multipliers (Simple numerical problems on shunts an ty meters, Smart digital Energy meter and Net meter. TOTAL (L:45): KS: Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw n 2010.	d multipliers). 45 PERIODS Hill, 3 rd
wattmeter, U Analog Energ TEXT BOO 1. D.P. editio 2. D.C.	se of shunts and multipliers (Simple numerical problems on shunts an ty meters, Smart digital Energy meter and Net meter. TOTAL (L:45): KS: Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw	d multipliers). 45 PERIODS Hill, 3 rd

REFERENCES:

- 1. Vincent Deltoro, "Electrical Engineering Fundamentals", Second Edition, Prentice Hall India, 1989.
- 2. S.K.Bhattacharya, "Basic Electrical and Electronics Engineering", Pearson India, 2011.
- 3. William Hayt and Jack E. Kemmerly, "Engineering circuit analysis", Mc Graw Hill Company, 6th edition, 2016.
- 4. Newnes Electrical Power Engineers handbook, II edition, Elsevier publications, 2005.

COUH	RSE OUTCOMES:	RBT*					
Upon a	Upon successful completion of the course, students should be able to:						
CO1	Analyze DC and AC electrical circuits using Kirchoff's law.	4					
CO2	Explain the working principle of electrical machines	4					
CO3	Choose the appropriate electrical machines for various applications.	4					
CO4	Understand the principles of electrical machines and power converters.	4					
CO5	Explain the types and operating principle of measuring instruments.	4					
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ex	aluate-					
5; Crea	ate-6						

6.7

COURSE ARTICULATION MATRIX:

9

COs		1	ZI	. 1	Os	1			m		PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	1	_	1	-		1	/ - · ·	3	3
2.	3	3	1	<u></u>	-		20	K	-	-/	18	-	3	3
3.	3	3	1-2	1	10	-	+		1	1-5	2./	-	3	3
4.	3	2	1	S	1	- 5	- L .	S -	-/	(-2)	1-	-	3	2
5.	3	2	-)	<u> </u>	2	-	Y		~	6/	-	-	3	2
1- Wea	ak; 2 -	Moder	ate; 3 -	Strong	10	1		1 31	201	/				
-				0.0	1	-//	45	6	/					

PROGRAMMING FOR PROBLEM SOLVING T Р С L IT22101 3 (Common to IT, AD, CS, EE, EC) 0 0 3 **COURSE OBJECTIVES:** • Learn the organization of a digital computer. • Learn to think logically and write algorithms or draw flow charts for problems. • Be exposed to the syntax of C. • Be familiar with programming in C. • Learn to use arrays, strings, functions, pointers, structures and unions in C. UNIT 1 **INTRODUCTION TO PROBLEM SOLVING** 6 Simple model of a Computer – Hardware – Software – Data Representation, Introduction to Computer Networks and Internet, Problem Solving Techniques - Bottom up design and top down design applications, Introduction to Algorithms and Flow Chart Suggested Activities: Casestudy – Understanding the analysis and design of the Student Management System (SMS). **C PROGRAMMING BASICS** UNIT 2 12 Introduction to 'C' programming - structure of a 'C' program - Conversion of simple algorithm to program. Constants, Variables – Data Types – Expressions using operators in 'C' – Managing Input and Output operations - Decision Making and Branching - Looping statements - solving simple scientific and statistical problems. Suggested Activities Casestudy: Dataset creation and Grade calculation in SMS **ARRAYS AND STRINGS** UNIT 3 9 Array: declaration, initialization. Multi dimensional arrays. Strings: Strings vs Character arrays, string operations Suggested Activities - Grade sheet generation in SMS FUNCTIONS AND STRUCTURES UNIT 4 9 Need for Modular programming, Functions: definition, call, arguments, call by value. Call by reference, Recursion. structures and unions: Need, declaration, Accessing Structure elements, Arrays of structures Suggested Activities: Redesigning SMS in terms of modules UNIT 5 POINTERS AND FILE HANDLING IN C 9 Pointers: Introduction, pointers to primitive datatypes, pointers to user defined datatypes: arrays and structures, array of pointers, Dynamic Memory Allocation. Files: Read/Write of binary and text files. Preprocessor directives Suggested Activities: Mange I/O in SMS using Files TOTAL (L:45): 45 PERIODS **TEXT BOOKS:**

- 1. Pradip Dey, Manas Ghosh, "Programming in C", First Edition, Oxford University Press, 2018.
- 2. R G Dromey, "How to Solve it using Computer", Pearson, 2006

REFERENCES:

- 1. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, PearsonEducation, 2015.
- 2. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.
- 3. Byron S Gottfried, "Programming with C", Schaum's Outlines, Third Edition, Tata McGraw Hill, 2010
- 4. Reema Thareja, "Programming in C", 2nd ed., Oxford University Press, 2016

COUR	SE OUTCOMES:	RBT*
	Upon successful completion of the course, students should be able to:	Level
CO1	Identify input and output from the real word problem scenarios.	3
CO2	Represent the design flow using Flow-charts and application logic using pseudo code.	3
CO3	Apply appropriate programming constructs to implement a given design using C.	3
CO4	Debug and customize an existing software developed in C.	5
CO5	Develop a modularised software application In C for the given user requirements	6
*Bloon	n's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-	4;
Evaluat	e-5; Create-6	

11

COURSE ARTICULATION MATRIX:

COs			-	1.5	1.00	1.1	POs	1	1.13		14	-	PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	1	3	141	- 8	5	-	-	2	3	<u>S-</u>	1-17	2	2	2
2.	1	3	17	1-		1	-	2	3	- 0	E I	2	2	2
3.	1	-	3	2	1	-	30	2	3	8-/	1	2	2	2
4.	1	-	3	2	1	-	1	2	3	1-0	~/	2	2	2
5.	1	-	3	2	1	-	6-6	2	3		1	2	3	3
1- Wea	ak; 2 - 1	Moder	ate; 3 -	Strong	2 30		Y		1	0				
					10	SIT	-	× 3	20	1				
					-	91	44	1 4	-					

PH22161	PHYSICS LABORATORY	L	Т	Р	C
PH22101	(Common to all Branches except BT)	0	0	2	1
COURSE OI	BJECTIVES:				
• To int	roduce different experiments to test basic understanding of physics	cond	cepts	appl	ied
in opti	cs, thermal physics and properties of matter.		-		
LIST OF EX	PERIMENTS: (Any EIGHT Experiments)				
1. a) Determi	nation of Wavelength, and particle size using Laser.				
b) Determi	nation of acceptance angle in an optical fiber.				
2. Determinat	ion of velocity of sound and compressibility of liquid – Ultrasonic	Inter	feroi	meter	•
3. Determinat	ion of wavelength of mercury spectrum – spectrometer grating.				
4. Determinat	ion of thermal conductivity of a bad conductor - Lee's Disc method	d.			
5. Determinat	ion of Young's modulus by Non uniform bending method.				
6. Determinat	ion of specific resistance of a given coil of wire – Carey Foster's B	ridge	e.		
7. Determinat	ion of Rigidity modulus of a given wire -Torsional Pendulum	-			
8. Energy ba	and gap of a Semiconductor				
9. Determine	the Hysteresis loss of a given Specimen				
	on of Voltmeter & Ammeter using potentiometer.				
	Total (P:	30): 3	30 P	ERIC	D
REFERENC	E: 4	<u>, </u>			

1. "Physics Laboratory practical manual", 1st Revised Edition by Faculty members, 2018.

COUR	SE OUTCOMES:	RBT*
	Upon successful completion of the course, students should be able to:	Level
CO 1	Apply the physical principle involved in the various instruments; also relate the principle to new application.	3
CO 2	Utilized the principle of optics, mechanics and thermal physics to cater the need of various engineering field.	3
CO 3	Make use of the basic concept of physical science to think innovatively and develop engineering skills	3
*Bloor	n's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4;	
Evalua	te-5; Create-6	

Evaluate-5; Create-6 COURSE ARTICULATION MATRIX

*COs					_	P	Os						P	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	-	-	-	2	3	2	-	3	-	-
2.	3	3	2	3	-	-	-	2	3	2	-	3	-	-
3.	3	3	2	3	-	-	-	2	3	2	-	3	-	-
4.	3	3	2	3	-	-	-	2	3	2	-	3	-	-
5.	3	3	2	3	-	-	-	2	3	2	-	3	-	-
*1- We	eak; 2 -	Moder	rate; 3 -	Strong	. .									

ME22161

BASIC CIVIL AND MECHANICAL ENGINEERING LABORATORY (Common to CE, EE, EC)

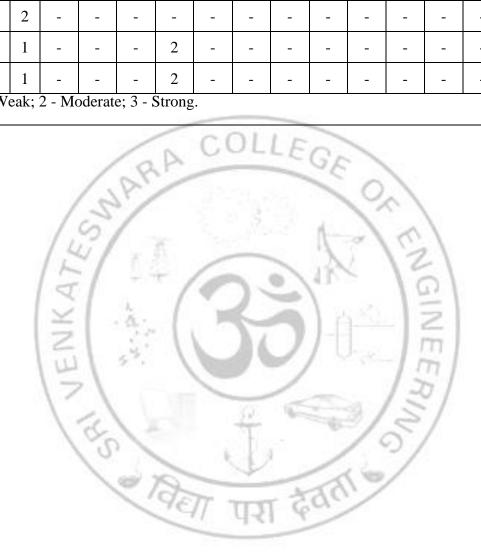
COURSE OBJECTIVES:

• To provide an exposure and hands on experience to the students on various civil and mechanical engineering processes.

LIST OF EXPERIMENTS

- 1- Carpentry Preparation of Cross half lap joint and Tee joint using power tools.
- 2- Plumbing Basic pipe line connection used in houses with PVC pipes, valves, taps, couplings, unions, reducers, elbows.
- 3- Welding Butt joint and lap joint using Electric Arc welding.
- 4- Machining Turning and facing using Centre Lathe.
- 5- Sheet metal work Making of a cylinder using GI sheet and finishing using rivets.
- 6- Fitting Preparation of metal pieces by grinding and filing to maintain flat sides at right angles
- 7- Drilling and Tapping Drilling of holes precisely and making internal threads by Tapping for various sizes.
- 8- Casting Mould preparation using simple solid pattern and casting.
- 9- Automation Basic pneumatic circuit using single and double acting cylinder.
- 10-3D printing –Demonstration of printing of simple solids using Additive Manufacturing/3D printing.

TOTAL: 30 PERIODS

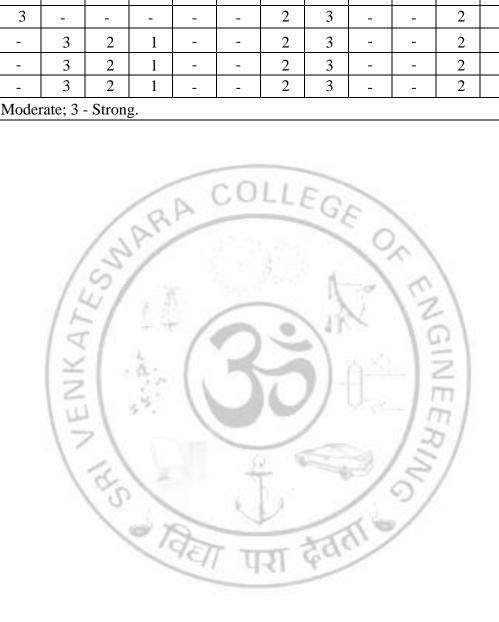

- **TEXT BOOKS:** 1. Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
 - 2. Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Publishing House Pvt.Ltd, 2006.
 - 3. Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
 - 4. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
 - 5. Anthony Esposito, Fluid Power with Applications, Pearson Education, 7th edition, 2009.
 - 6. Civil & Mechanical engineering practices lab manual, SVCE, 2022.

OUTCOMES:

CO	CO statements	RBT* level
CO1	Students will be able to <i>Prepare</i> various joints used for assembling wooden parts.	3
CO2	Students will be able to <i>Make</i> required pipeline connection by selecting the suitable components	3
CO3	Students will be able to <i>Fabricate</i> components by various manufacturing processes.	3
CO4	Students will be able to <i>Understand</i> the principles of low-cost automation using pneumatic circuits.	2
CO5	Students will be able to <i>Understand</i> the principle of additive manufacturing/3D printing	2
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	e-6	

COURSE ARTICULATION MATRIX

			PS	Os										
*COs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	1	-	-	-	2	-	-	-	-	-	-	-	-	-
CO5	1	-	-	-	2	-	-	-	-	-	-	-	-	-
*1- W	eak;	2 - Mo	oderate	e; 3 - 3	Strong	5.				•	•	•	•	•



	PROGRAMMING FOR PROBLEM SOLVING	L	Т	P	С
IT22111	LABORATORY	0	0	3	1.5
COUDSE	(Common to IT, AD, CS, EE, EC) DBJECTIVES:				
	xposed to the syntax of C.				
	amiliar with programming in C.				
	n to use arrays, strings, functions, pointers, structures and unions in C.				
	XERCISES	•			
	ge of Basic Linux commands.				
	ogramming using Simple statements and expressions.				
	ntific problem solving using decision making and looping.				
	ble programming for one dimensional and two dimensional arrays.				
	ing problems using Strings.				
	ogramming using Pointers.				
	ogramming using user defined functions (Pass by value and Pass by re	eferei	nce)		
	ogramming using Recursion.				
	ogramming using structures and union.				
	ogramming using enumerated data types.				
	ogramming using macros and storage classes.				
12. C Pr	ogramming using Files.				
13. Deve	elop modularized application for any one of the following scenarios.				
Scenarios:	X A X X X X X X X X X X X X X X X X X X				
• Stud	ent Management System				
• Stoc	k Management System	1			
• Banl	king Application	-			
	et Reservation System				
	Total (P:4	5): 4	5 PI	ERIC	ODS
Hardware/	Software Requirements (For a batch of 30 students)				
L	vith Windows/Linux OS and C compiler -30 No.s				
TEXT BOO			-		
	Dey, Manas Ghosh, "Programming in C", First Edition, Oxford Univ	/ersit	y Pr	ess,	
2018.	Coutfiel "Decomposition with C" Column's Coutient This 1 Pairs	. т.	60 N /	C	
2. Byron Hill, 20	S Gottfried, "Programming with C", Schaum's Outlines, Third Edition	1, I a	ia M	cGra	ŧW
<u>п</u> ш, 20	/10.				
COUDSEO	UTCOMES:			RB	T *

COUR	SE OUTCOMES:	RBT*					
Upon successful completion of the course, students should be able to:							
CO1	CO1 Apply appropriate programming constructs to solve problems.						
CO2 Design, implement, test and debug programs that use the basic features of C.							
CO3	CO3 Design modularized applications in C to solve real world problems.						
CO4	CO4 Use C pointers and dynamically allocated memory to solve complex problems						
CO5	Apply file operations to develop solutions for real-world problems	3					
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5;							
Create-	6						

COURSE ARTICULATION MATRIX:

*COs		POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.	1	3	-	-	-	-	-	2	3	-	-	2	2	2	1
2.	1	3	-	-	-	-	-	2	3	-	-	2	2	2	1
3.	1	-	3	2	1	-	-	2	3	-	-	2	2	2	1
4.	1	-	3	2	1	-	-	2	3	-	-	2	2	2	1
5.	1	-	3	2	1	-	-	2	3	-	-	2	3	3	1
* 1- Weak; 2 - Moderate; 3 - Strong.															

SEMESTER II

		т	т	р	C
HS22251	அறிவியல் மற்றும் தொழில்நுட்பத்தில் தமிழ் Science and Technology in Ancient Tamil Society (Common to all branches)	L 2	0	P 0	C 2
		 வார்	ாகள்	Г г.	
		·			
Course Objective	about the use of Tamil in science.				
•	impact of Tamil heritage on technology.				
அலகு 1	அறிவியல் தமிழ்				6
கருவி உருவாக்கப்	ப ந் – ஆராய்ச்சி மேம்பாடு – கல்வி வளர்ச்சி – அறிவியல் தமிழ் சொற்கள் உ	ருவா	க்கட	<u>ن</u> .	
UNIT -1 SCIENT Tool Developmen	CIFIC TAMIL at - Research Development - Educational Development - Scientific Tami	l wo	rds (Creat	ion.
	19/2010/01/01				
அலகு 2	தொழில்நுட்பத்தில் தமிழ்				24
பற்றிய அறிவு – தெ விவசாயம் மற்று குமுழி தாம்பு ஆசி வடிவமைக்கப்பட்ட பிடித்தல், முத்து கு தமிழ் கணினி: அ	ல் நட்பம் : கப்பல் கட்டும் கலை, உலோகவியல் ஆய்வுகள், தங்கம், நால்பொருள் சான்றுகள் – சுட்டக் களிமண் மணிகள், சங்கு மணிகள், எல மெவற்றின் முக்கியத்துவம் – கால்நடை பராமரிப்பு, கால்நடைகளின் ம இணறுகள். விவசாயம் மற்றும் வேளாண் செயலாக்கம் – கடல் பற் ளித்தல், சங்கு சேகரித்தல். றி வியல் தமிழ் வளர்ச்சி – தமிழ் கணினி, தமிழ் புத்தகங்களின் டிஜிட்டல்ம தமிழ் மென்பொருள் உருவாக்கம் – தமிழ் மெய் நிகர் அகாடமி – சொற்கு	்ம்பு கள், பயன் றிய மயம	மண சோ எபாட அறி வாக்ச	ரிகள் பூர் க ட்டிற் வு – கல், த	கால காசு மீன்
	மும் தகவல் தொழில்நட்பமும்- உலகமயமாக்கலும் தகவல் தொழில்நுட்ப த்தல் – தமிழ்மொழித் தொழில்நுட்பத்தில் வளங்கள்.	فص	– ភេល	തിതി	ிக்கு
UNIT -2 TAMIL	IN TECHNOLOGY				
other workship pla	truction Technology : Building materials in Sangam age – Great temp aces – Sculptures and Temples of Pallavas (Mamallapuram) – Temples of shi amman temple), Thirumalai Nayakar Mahal, Chetti Nadu Houses.				
-	Cechnology : Art of Ship building, Metallurgical studies, Knowledge abore a studies of the stud	out C	}old,	, Cop	per

Agriculture and Irrigation Technology: Dams, Tank, ponds, sluice, Significance of Kumuzhi Thoompu

of Cholas period- Animal Husbandry, Wells designed for cattle use. Agriculture and Agro processing, - Knowledge about Sea – Fisheries, Pearl, Conche diving.

Tamil Computing: Development of Scientific Tamil – Tamil Computing, Digitization of Tamil books, Tamil Digital Library, Development of Tamil Softwares – Tamil virtual Academy – Sorkuvai project. Future of Tamil and Information Technology- Globalization and Information Technology-Teaching Tamil for Computer-Resources in Tamil Language Technology.

பாடநூல்கள்:

- டாக்டர், வா.செ .குழந்தைசாமி (1985), "அறிவியல் தமிழ்", பாரதி பதிப்பகம், 126/108, உஸ்மான் சாலை, தியாகராய நகர், சென்னை 600017
- 2. சுப. திண்ணப்பன், (1995), "கணினியும் தமிழ் கற்பித்தலும்", புலமை வெளியீடு, 38-B மண்ணத்நதோட்டத் தெரு, ஆழ்வார்பேட், சென்னை 600018
- மு. பொன்னவைக்கோ, (2003), "வளர்தமிழில் அறிவியல் இணையத் தமிழ்", அனைத்திந்திய அறிவியல் தமிழ்க் கழகம், தஞ்சாவூர் 615 005.
- 4. துரை. மணிகண்டன், (2008), "இணையமும் தமிழும்", நல்நிலம் பதிப்பகம், 7-3, சிமேட்லி சாலை, தியாகராய நகர், சென்னை 600 017.

பாடநெறி முடிவுகள் : படிப்பை வெற்றிகரமாக முடித்தவுடன், மாணவர்கள் பின்வருவனவற்றைச் செய்ய முடியும்.

COURSE OUTCOMES : On completion of the course, the student will be able to

பா .வெ . எண் CO No	பாடத்திட்டத்தின்வெளிப்பாடு Course Outcomes	RBT* level
1	அறிவியலில் தமிழ் மொழியின் பயன்பாடு பற்றி தெரிந்து கொள்வார்கள் They will know about the use of Tamil language in science	2
2	பல்வேறு தொழில்நுட்பத்தில் தமிழ்மொழியின் தாக்கம் பற்றி அறிந்து கொள்வார்கள் They will learn about the influence of Tamil language in various technologies	3
1-Weak;	; 2 - Moderate; 3 - Strong.	
	वहा परा देवल.	

HS22252	TECHNICAL ENGLISH	L 3	T F 0 0	P C 3
COURSEO	(Common to all branches) BJECTIVES:	3	0 0	1 3
	e learners to define and understand technical communication and scien	tific u	ritin	a
	se learners to the technicalities of seminar presentation, group discuss			U
speak		1011, a	iu pi	uone
-	op learners' writing skills for scientific and documenting purposes			
	we learners' ability to draft correspondences for business purposes			
-	vate learners' ability to holistically understand the nuances of job	interv	iews	and
	ting process.			unu
UNIT I				9
Listening - A	V files pertaining to manufacturing processes of products, scientific	docun	nenta	uries;
	llable division and word stress, intonation, sharing opinions; Reading			
related to so	cience and technology; Writing - definitions, instruction, recomm	endat	on,	data
	, resume; Grammar -tenses and their aspects, sentence connectors - dise	course	mar	kers,
sequential wo	ords, active and passive voice, subject-verb agreement.	1		
				•
UNIT II			<u> </u>	9
0	V pertaining to marketing strategies, peer reading and pronunciation;	-	0	
	g opinions; conducting and attending a meeting, understanding the nua on among internal audience and external audience; Reading - analyti			
	ocuments; Writing - fliers, brochures, resume - letter of application			
	odal verbs, clauses - types and uses, conditional clauses, articles.	011, C	ICCK	11515,
UNIT III				9
Listening - A	V related to how to use components, scientific description, Speaking	- spe	akin	g for
	nd initiation, speaking at a seminar presentation; Reading - scientific jo			
Writing - Teo	chnical descriptions - process description, purpose and function, Powe	rPoin	t, Go	ogle
forms, user m	anuals; Grammar - phrasal verbs, prepositions, technical and scientific	affixe	es.	
UNIT IV				10
	ientific debates, crisis management; Speaking - handling conflicts, spe			
	its, progress or decline of business, identifying the connotative mean	0		0
	evidences of uses and functions of a product, review of a product, Witters, reports - proposal, project, progress reports, sales reports, report	0		
	ive summary. Grammar - reported speech and tag questions, sente			
	imperative, cause and effect, infinitive of result.		14010	<i>x</i> 10
	F			
UNIT V				8
	V of Group discussions, panel discussions, face to face interviews	for re	cruiti	ment
0	eaking- speaking at group discussions, interviewing a personality, an			
interviews; R	eading - WebPages of top notch engineering companies, Writing - blo	gging	, e-m	1ails,
	plaint, minutes of the meeting; Grammar - one word substitution, coll	ocatio	ns, b	etter
	a substitution (rankrasing the content/improvising ideas)			
word/sentenc	e substitution (rephrasing the content/improvising ideas).			
word/sentenc	TOTAL	45 P	ERI	ODS

REFERENCES:

1. Department of English, Anna University. *Mindscapes: English for Technologists and Engineers*. Orient Blackswan, Chennai. 2012.

2. Downes, Colm, *Cambridge English for Job-hunting*, Cambridge University Press, New Delhi. 2008.

3. Murphy, Raymond, *Intermediate English Grammar with Answers*, Cambridge University Press 2000.

- 4. Thomson, A.J., Practical English Grammar 1 & 2, Oxford, 1986.
- 5. Herbert A J, The Structure of Technical English, Longman, 1965.

Websites

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com3
- 3. https://owl.english.purdue.edu/owl/
- 4. www.learnenglishfeelgood.com/esl-printables-worksheets.html

Software

- 1. Face 2 Face Advance Cambridge University Press, 2014.
- 2. English Advance Vocabulary- Cambridge University Press.
- 3. IELTS test preparation Cambridge University Press 2017.
- 4. Official Guide to the TOEFL Test With CD-ROM, 4th Edition.
- 5. Cambridge Preparation for the TOEFL TEST- Cambridge University Press, 2017.

	SE OUTCOMES:	RBT*
	Upon successful completion of the course, students should be able to:	Level
CO1.	Understand the nuances of technical communication and scientific writing	3
CO2.	Present papers and give seminars	6
CO3.	Discuss in groups and brainstorm	6
CO4.	Draft business correspondences and write for documenting purposes	6
CO5.	Face job interviews with confidence	6
*Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-	4;
Evaluat	e-5; Create-6	

*COs		POs												SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
2.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
3.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
4.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
5.	-	-	-	-	-	-	-	-	-	3	-	-	-	-
*1- We	ak; 2 -	Moder	ate; 3 -	Strong	5.	•	•	-	-	-	•	•	-	

MA22251APPLIED MATHEMATICS II
(Common to all Branches except MR)LTPC3104

COURSE OBJECTIVES:

The Student should be made to:

- Acquire the concepts of vector calculus needed for problems in all engineering disciplines and compute different types of integrals using Green's, Stokes' and Divergence theorems.
- Skilled at the techniques of solving ordinary differential equations that model engineering problems.
- Extend their ability of using Laplace transforms to create a new domain in which it is easier to handle the problem that is being investigated.
- Explain geometry of a complex plane and state properties of analytic functions.
- Understand the standard techniques of complex variable theory so as to apply them with confidence in application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current.

(9+3)

UNIT I VECTOR CALCULUS

Gradient, divergence and curl - Directional derivative - Vector identities – Irrotational and solenoidal vector fields - Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green's theorem in a plane, Gauss divergence theorem and Stokes'theorem (excluding proofs) – Verification and application in evaluating line, surface and volume integrals.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS (9+3)

Differential equations of first order – Equations of the first order and first degree – Linear equations – Higher order linear differential equations with constant coefficients - Method of variation of parameters - Cauchy's and Legendre's linear equations - Simultaneous first order linear equations with constant coefficients – Applications of Linear differential equations – Oscillatory electrical circuit – Deflection of beams.

UNIT III	LAPLACE TRANSFORM	(9+3)							
Conditions for existence - Transform of elementary functions - Transforms of unit step function and									
impulse funct	impulse functions – Basic properties – Shifting theorems - Transforms of derivatives and integrals of								
functions - De	erivatives and integrals of transforms - Initial and final value theorems - Transf	orm of							
periodic function	tions. Inverse Laplace transforms - Convolution theorem - Application to solu	tion of							
linear ODE of	second order with constant coefficients using Laplace transformation technique	s.							
UNIT IV	ANALYTIC FUNCTIONS	(9+3)							
Analytic functions - Necessary and sufficient conditions (Cauchy-Riemann equations) - Properties of									
analytic funct	ion - Harmonic conjugates - Construction of analytic functions - Conformal map	ping –							

analytic function - Harmonic conjugates - Construction of analytic functions - Conformal mapping – Mapping by functions W = Z + C, CZ, 1/Z, Z^2 – Joukowski's transformation-Bilinear transformation.

UNIT V	COMPLEX INTEGRATION	(9+3)

Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's series expansions - Singular points - Residues - Cauchy's Residue theorem – Application of residue theorem for evaluation of real integrals – Use of circular contour and semi-circular contour.

TOTAL (L:45+T:15): 60 PERIODS

TEXT BOOKS:

- 1. Erwin Kreyszing, Herbert Kreyszing, Edward Norminton, "Advanced Engineering Mathematics", 10th Edition, John Wiley, (2015).
- 2. Grewal .B.S, Grewal .J.S "Higher Engineering Mathematics",43rd Edition, Khanna Publications, Delhi, (2015).

REFERENCES:

- 1. Dass, H.K., and Rajnish Verma, "Higher Engineering Mathematics", S.Chand Private Ltd., 2011.
- 2. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2013).
- 3. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", 9th edition, Laxmi Publications(p) Ltd., 2014.

WEB LINK:

- 1. https://nptel.ac.in/courses/111/105/111105134/
- 2. https://nptel.ac.in/courses/111/105/111105121/

	OUTCOMES: Jpon successful completion of the course, students should be able to:	RBT* Level
CO1	Interpret the fundamentals of vector calculus and execute evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems.	3
CO2	Solve first order linear, homogeneous differential equations and use series solution method to solve second order differential equations.	3
CO3	Determine the methods to solve differential equations using Laplace transforms and Inverse Laplace transforms.	3
CO4	Explain Analytic functions and Categorize transformations.	3
CO5	Perform Complex integration to evaluate real definite integralsusing Cauchy integral theorem and Cauchy's residue theorem.	3
*Bloom's '	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-:

Create-6

*COs		POs												SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	2	-	-	-	-	-	-	-	3	-	-
2.	3	3	3	3	-	-	-	-	-	-	-	3	-	-
3.	3	3	3	3	-	-	-	-	-	-	-	3	-	-
4.	3	3	-	-	-	-	-	-	-	-	-	3	-	-
5.	3	3	-	-	-	-	-	-	-	-	-	3	-	-
*1- We	ak; 2 -	Moder	ate; 3 -	Strong	5.									

PH22252	PHYSICS OF MATERIALS (Common to EE, EC)	L T P C 3 0 0 3
COURSE O	BJECTIVES:	
• To un	derstand the physical properties of materials like electrical and thermal	conductivity.
	derstand various types of semiconducting materials, their applications in	•
	eering and understand the concept of Fermi energy.	
-	derstand the different types of dielectric materials and their applications i	in Engineering
fields.		0 0
• To un	derstand the phenomena of superconductor, properties and their application	tions and the
	ent types of magnetic materials.	
	y to understand different types of Transistors and its characteristics an	d to construct
	Logic Gates and simplification of circuits using K-map.	
UNIT I	CONDUCTING MATERIALS	9
Introduction -	- Classification of materials based on the electrical resistivity - Classical	l Free electron
theory - Elec	ctrical and thermal conductivity of metal (derivation) - Wiedemann -	– Franz law –
•	per – Drawbacks of Classical Free electron theory – Quantum Free electron	
	ution function – Effect of temperature of Fermi function – Density of	
	- Carrier concentration in metals – Emission of electrons from metals	
	notoelectric emission – Field emission	
	IN GARTE	
UNIT II		
	SEMICONDUCTING MATERIALS	9
	SEMICONDUCTING MATERIALS – Classification of materials based on band theory (metals, semico	-
Introduction	- Classification of materials based on band theory (metals, semico	onductors and
Introduction insulators) –	 Classification of materials based on band theory (metals, semicor Intrinsic and extrinsic semiconductors – Carrier concentration 	onductors and in intrinsic
Introduction insulators) – semiconducto	 Classification of materials based on band theory (metals, semicories - Intrinsic and extrinsic semiconductors - Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semicoremetation 	onductors and in intrinsic niconductors –
Introduction insulators) – semiconducto Variation of	 Classification of materials based on band theory (metals, semicore- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semi- electrical conductivity in intrinsic semiconductors with temperature 	onductors and in intrinsic niconductors – e - Band gap
Introduction insulators) – semiconducto Variation of determination	 Classification of materials based on band theory (metals, semicories - Intrinsic and extrinsic semiconductors - Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semicoremetation 	onductors and in intrinsic niconductors – e - Band gap
Introduction insulators) – semiconducto Variation of determination	 Classification of materials based on band theory (metals, semicolation) Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semi electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bar 	onductors and in intrinsic niconductors – e - Band gap
Introduction insulators) – semiconducto Variation of determination	 Classification of materials based on band theory (metals, semicolation) Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semi electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bar 	onductors and in intrinsic niconductors – e - Band gap
Introduction insulators) – semiconducto Variation of determination effect (deriva	 Classification of materials based on band theory (metals, semicol- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sem electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Ban tion and experiment). Tunnel diode, Schottky diode. 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t	 Classification of materials based on band theory (metals, semicolation) Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bantion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall <u>9</u> terials - Types
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio	 Classification of materials based on band theory (metals, semicolation) Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials - Dielectric constant - Polarization of dielectric materials - Dielectric constant - Polarization of dielectric materials 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall <u>9</u> terials - Types
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius –	 Classification of materials based on band theory (metals, semicolation) Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials - Dielectric constant - Polarization of dielectric materials - Dielectric constant - Polarization of dielectric materials 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall <u>9</u> terials - Types l) (Derivation) Breakdown -
Introduction insulators) – semiconducto Variation of determinatior effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de	 Classification of materials based on band theory (metals, semicolation in the intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials - Dielectric materials in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall <u>9</u> terials - Types l) (Derivation) Breakdown -
Introduction insulators) – semiconducto Variation of determinatior effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de	 Classification of materials based on band theory (metals, semicol- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sem electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Ban tion and experiment).Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric ma n (Polarisability) - Equation of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall <u>9</u> terials - Types l) (Derivation) Breakdown -
Introduction insulators) – semiconducto Variation of determinatior effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de	 Classification of materials based on band theory (metals, semicol- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sem electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Ban tion and experiment).Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric ma n (Polarisability) - Equation of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall <u>9</u> terials - Types l) (Derivation) Breakdown -
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de material - Fer UNIT IV	 Classification of materials based on band theory (metals, semicol- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sem electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bar tion and experiment).Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric ma n (Polarisability) - Equation of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 terials - Types l) (Derivation) Breakdown - ns of dielectric 10
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de material - Fer UNIT IV Temperature	 Classification of materials based on band theory (metals, semicol- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sem electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Ban tion and experiment).Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric ma n (Polarisability) - Equation of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 tterials - Types l) (Derivation) Breakdown - ns of dielectric 10 ct – Properties
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de material - Fer UNIT IV Temperature of supercondu	 Classification of materials based on band theory (metals, semicolation) Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semiclectrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES dependence of resistivity in superconducting materials - Meissner effect 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 terials - Types 1) (Derivation) Breakdown – ns of dielectric 10 ct – Properties – Low Tc and
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de material - Fer UNIT IV Temperature of supercondu High Tc (allo	 Classification of materials based on band theory (metals, semicolated on the extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semiclectrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES dependence of resistivity in superconducting materials - Meissner effect actors - Type I and Type II superconductors - BCS theory (Qualitative) 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 (Derivation) Breakdown - ns of dielectric 10 ct – Properties – Low Tc and s) - LaBaCuO,
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de material - Fer UNIT IV Temperature of supercondu High Tc (allo	 Classification of materials based on band theory (metals, semicol- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sem electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bar- tion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric ma- n (Polarisability) - Equation of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES dependence of resistivity in superconductors - BCS theory (Qualitative) by) superconductors – Ceramic superconductors (oxide superconductors 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 (Derivation) Breakdown - ns of dielectric 10 ct – Properties – Low Tc and s) - LaBaCuO,
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de material - Fer UNIT IV Temperature of supercondu High Tc (allo YBaCuO, Bi SQUIDS – C	 Classification of materials based on band theory (metals, semicolation in the extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound semiclectrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES dependence of resistivity in superconductors - BCS theory (Qualitative) by) superconductors – Ceramic superconductors (oxide superconductors SrCaCuO - Josephson's effect (AC and DC) – Applications of Superconductors of Superc	ponductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 terials - Types 1) (Derivation) Breakdown - ns of dielectric 10 ct – Properties – Low Tc and s) - LaBaCuO, perconductors-
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction to of Polarizatio - Clausius – Frequency de material - Fer UNIT IV Temperature of supercondu High Tc (allo YBaCuO, Bi SQUIDS – C. Dia, Para and	 Classification of materials based on band theory (metals, semicolation of intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound seme electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES dependence of resistivity in superconductors - BCS theory (Qualitative) y) superconductors – Ceramic superconductors (oxide superconductors SrCaCuO - Josephson's effect (AC and DC) – - Applications of Sup RYOTRON – MAG LEV. 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 terials - Types 1) (Derivation) Breakdown - ns of dielectric 10 ct – Properties – Low Tc and s) - LaBaCuO, perconductors- s - Phenomena
Introduction insulators) – semiconducto Variation of determination effect (deriva UNIT III Introduction t of Polarizatio - Clausius – Frequency de material - Fer UNIT IV Temperature of supercondu High Tc (allo YBaCuO, Bi SQUIDS – C. Dia, Para and	 Classification of materials based on band theory (metals, semicol- Intrinsic and extrinsic semiconductors – Carrier concentration or (derivation) - Effect of temperature on Fermi level - Compound sem electrical conductivity in intrinsic semiconductors with temperature of intrinsic semiconductor (derivation and Experiment to determine Bartion and experiment). Tunnel diode, Schottky diode. DIELECTRIC PROPERTIES OF MATERIALS o dielectric materials - Dielectric constant - Polarization of dielectric materials of intrinsic semiconductor (derivation of internal fields in solid (One- Dimensional Mossotti Relation for elemental dielectric materials - Dielectric pendence of dielectric constant, Dielectric Losses - Important application ro and Piezo electricity (Qualitative). MATERIALS AT LOW TEMPERATURE AND MAGNETIC PROPERTIES dependence of resistivity in superconductors - BCS theory (Qualitative) y) superconductors – Ceramic superconductors (oxide superconductors SrCaCuO - Josephson's effect (AC and DC) – - Applications of Sup RYOTRON – MAG LEV. Ferro magnetic material – Domain theory for Ferro magnetic materials 	onductors and in intrinsic niconductors – e - Band gap nd Gap) – Hall 9 terials - Types 1) (Derivation) Breakdown - ns of dielectric 10 ct – Properties – Low Tc and s) - LaBaCuO, perconductors- s - Phenomena

JFET-Drain and Transfer Characteristics- Electronic Transistor (SET), Spintronics-Electronic devices vs Spintronic Devices-Design of Basic Logic gates using transistor, Karnaugh map SoP and PoS forms.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Arumugam M, "Materials Science", Anuradha Publications, 2015.
- 2. Rajendran V, "Engineering Physics", Tata McGraw Hill, 2015.
- 3. Suresh R, Jayakumar V, "Materials Science", Lakshmi Publications 2003.
- 4. Palanisamy P.K, "Materials Science", SciTech publications, 2015.
- 5. V.K. Mehta, Rohit Mehta, Principles of Electronics", 2020
- 6. M. Morris Mano, "Digital Design", 3rd edition, Pearson Education, 2014.

REFERENCES:

- 1. Gaur R.K, Gupta S.L, "Engineering Physics", Dhanpat Publications, 2015.
- 2. Avadhnaulu M.N, Kshirsagar P.G, "A Textbook of Engineering Physics", S. Chand, 2006.
- 3. Kittel C, "Introduction to Solid State Physics", 7th Edition, Wiley Eastern Ltd, 2004.
- 4. Azaroff L.V, Brophy J.J., "Electronic Processes In Materials", McGraw Hill., 1963.
- 5. A.B. Gupta, Nurul Islam, "Solid State Physics and Electronics", 2017.
- 6. John F. Wakerley, "Digital Design-Principle & practice", 3rd edition, , Pearson, 2008.

COUR	SE OUTCOMES:	RBT*
	Upon successful completion of the course, students should be able to:	Level
CO 1	Comprehend the behavior of electrons in solids.	2
CO 2	Demonstrate an understanding of various properties of Semiconducting materials and their internal structure	3
CO 3	Analyses the properties of dielectric materials and apply them in various fields.	3
CO 4	Summarize basics of magnetism and superconductivity. Explore a few of their technological applications.	2
CO 5	Develop an understanding the Fundamentals of Electronic Science and its applications.	3
*Bloon	n's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	aluate-5;
Create-	6	

COURSE ARTICULATION MATRIX

61.1

*COs						Р	Os						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	-	-	-	-	-	-	-	2	-	2	-	-
2.	3	2	2	2	-	-	-	-	-	2	-	2	-	-
3.	3	2	2	2	-	3	-	-	-	2	-	2	-	-
4.	3	2	3	2	-	3	-	-	-	2	-	2	-	-
5.	3	2	2	2	-	-	-	-	-	2	-	2	-	-
*1- Wea	ak; 2 -	Moder	ate; 3 -	Strong										

EC22201	ELECTRON DEVICES	L 3	Т 0	P 0	C
	OURSE OBJECTIVES:				3
	by the necessary skill to understand the basics of semiconductor diod	do			
-	•	ue.			
-	by bound of the basics of bipolar junction transistors.				
-	ovide the basics of field effect transistors.				
-	ovide comprehensive understanding of special semiconductor diodes.				
• To pro	ovide comprehensive understanding of power and display devices.				
UNIT I	SEMICONDUCTOR DIODE				9
	liode, Current equations, Diffusion and drift current densities, forward a	nd r	ever	se b	ias
	s, Switching Characteristics, Diode as a Rectifier				
	COLLE				
UNIT II	BIPOLAR JUNCTION TRANSISTOR				9
NPN - PNP -	Junctions - Early effect - Current equations - Input and Output charac	teris	tics	of C	CE,
	T as an amplifier, Hybrid - π model - h-parameter model, Ebers Moll M				
Poon-model,	Multi Emitter transistor.				
	19/				
UNIT III	FIELD EFFECT TRANSISTORS				9
	ETs - Drain and Transfer characteristics - Current equations - Pinch off	volt	age	and	its
significance -	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parameter 	nodu	ılati		D-
significance - MOSFET, E- DUAL GATH	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parame E MOSFET. 	nodu	ılati		D- ET,
significance - MOSFET, E- DUAL GATE UNIT IV	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo E MOSFET. SPECIAL SEMICONDUCTOR DEVICES 	nodu eters	ilati , FI	NFE	D- ET,
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parame E MOSFET. 	nodu eters	ilati , FI	NFE	D- ET,
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A ER diode, LDR, PIN Diode, Point Contact Diode, IGBT. 	nodu eters	ilati , FI	NFE	D- ET, 9
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A ER diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES 	modu eters Arse	ılati , FI	NFE 2	D- ET, 9
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A ER diode, LDR, PIN Diode, Point Contact Diode, IGBT. 	modu eters Arse	ılati , FI	NFE 2	D- ET, 9
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A ER diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES 	nodu eters Arse	nide	NFE	D- ET, 9 9
significance - MOSFET, E- DUAL GATE UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD.	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A ER diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: 	nodu eters Arse	nide	NFE	D- ET, 9 9
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD.	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: 	Arse	nide	NFE	D- ET, 9 9
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A ER diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T 	Arse	nide	NFE	D- ET, 9 9
significance - MOSFET, E- DUAL GATE UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal Hill Ir	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A ER diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. 	Arse	nide	NFE	D- ET, 9 1, DS
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOOM 1. Donal Hill In 2. Adel S	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its paramo MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and 	Arse	nide	NFE	D- ET, 9 1, DS
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal Hill Ir 2. Adel S 6 th Ed	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parame MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 	Arse	Ilati , FII nide Golar PER Mc (licat	NFE cel RIO	D- ET, 9 1, DS
significance - MOSFET, E- DUAL GATE UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal Hill Ir 2. Adel S 6 th Ed 3. Rober	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parama MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 t Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theor 	Arse	Ilati , FII nide Golar PER Mc (licat	NFE cel RIO	D- ET, 9 1, DS
significance - MOSFET, E- DUAL GATE UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal Hill Ir 2. Adel S 6 th Ed 3. Rober Prenti	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parama MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 t Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theor ce Hall, 11th edition, 2013. 	Arse	nide nide bolan PER Mc (licat	NFE cel RIO	D- ET, 9 1, DS
significance - MOSFET, E- DUAL GATE UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal Hill Ir 2. Adel S 6 th Ed 3. Rober Prenti 4. Dr. Sa	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parama MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 t Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theor ce Hall, 11th edition, 2013. anjay Sharma, "Basic Electronics", First Edition, S.K. Kataria & Sons, 2 	Arse	nide nide bolan PER Mc (licat	NFE cel RIO	D- ET, 9 1, DS
significance - MOSFET, E- DUAL GATE UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOOD 1. Donal Hill Ir 2. Adel S 6 th Ed 3. Rober Prenti 4. Dr. Sa REFERENC	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parama MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 t Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theor ce Hall, 11th edition, 2013. anjay Sharma, "Basic Electronics", First Edition, S.K. Kataria & Sons, 2 	Arse	nide	NFE cel Grav tions	D- ET, 9 9 1, N s",
significance - MOSFET, E- DUAL GATH UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal Hill Ir 2. Adel S 6 th Ed 3. Rober Prenti 4. Dr. Sa REFERENC 1. Jacob	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parama MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 t Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theor ce Hall, 11th edition, 2013. anjay Sharma, "Basic Electronics", First Edition, S.K. Kataria & Sons, 2 ES: Millman & Christos C. Halkias, "Electronic Devices & Circuits", F 	Arse	nide	NFE cel Grav tions	D- ET, 9 9 1, N s",
significance - MOSFET, E- DUAL GATE UNIT IV Metal-Semico device, LASE UNIT V UJT, SCR, D LCD, CCD. TEXT BOO 1. Donal Hill Ir 2. Adel S 6 th Ed 3. Rober Prenti 4. Dr. Sa REFERENC 1. Jacob McGr	 MOSFET - Characteristics - Threshold voltage - Channel length r MOSFET- Current equation - Equivalent circuit model and its parama MOSFET. SPECIAL SEMICONDUCTOR DEVICES onductor Junction- MESFET - Zener diode - Varactor diode - Gallium A R diode, LDR, PIN Diode, Point Contact Diode, IGBT. POWER DEVICES AND DISPLAY DEVICES iac, Triac, Power BJT, LED, Photo diode, Photo transistor, Opto Coupl TOTAL: KS: d A Neaman, "Semiconductor Physics and Devices", Fourth Edition, T nc., 2012. S. Sedre and Kenneth C. Smith, "Microelectronic Circuits: Theory and ition, Oxford University Press, 2013 t Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theor ce Hall, 11th edition, 2013. anjay Sharma, "Basic Electronics", First Edition, S.K. Kataria & Sons, 2 	Arse	hlati, , FII nide Solar Mc (licat 2.	NFE cel Grav tions son	D- ET, 9 1, N s",

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
CO1	Gain knowledge of PN diodes.	2
CO2	Analyze the characteristics of BJT and use it in designing simple circuits.	4
CO3	Analyze the characteristics of FET and use it in designing simple circuits.	4
CO4	Analyze the working principle of Special diodes and use it in designing simple circuits.	4
CO5	Analyze the working principle of power and display devices and use it in designing simple circuits.	4
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-
5; Crea	ate-6	

COLLEGE

COURSE ARTICULATION MATRIX

Tel Son Fec

COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	10	2	2	1	10	1	1.5	1	1-2	-	3	3	
2.	3	3	4	3	2	- 3	-	3-	1-1	1	5	-	3	3	
3.	3	3	1	3	2	1	1	1	11-	1	5	-	3	3	
4.	3	2	2	1	2	4	1	-		1	11	-	3	3	
5.	3	2	\leq	-1	- 2	J	5	1	14	1	Z	-	3	3	
1- Weal	k; 2 - N	/lodera	te; 3 - S	trong.	: 1	1	34		111		m	1			

Ś

tan or

EC22202	CIRCUIT THEORY	L 3	Т 0	<u>Р</u> 2	<u>C</u>
COURSE OI	BJECTIVES:	3	U	4	4
	alyze electrical network with suitable network theorems.				
	ssify and analyze series and parallel resonance and coupled circuit.				
	termine the transient response of RL, RC and RLC circuits for AC and	DC	innu	ta	
		DC	mpu	15.	
	er the concept two-port networks.				
• To ske	etch the network topology.				
UNIT I	NETWORK THEOREMS FOR DC & AC CIRCUITS				12
	eorem, Norton's Theorem, Superposition Theorem, Reciprocity theor	em.	May	kimi	
	r Theorem - Analysis using Dependent Current sources and Voltage so				
	Theorem That just using Dependent Current sources and Votage se				
UNIT II	RESONANCE AND COUPLED CIRCUITS				g
	eries and parallel resonance – Frequency response – Quality factor a	nd B	Rand	wid	th.
	asic filter design.	nu L	Juna	wita	un
•	cuits: Self and Mutual inductance – Dot rule-Coefficient of court	aling		I in	221
-	- Ideal Transformer - Tuned circuits – Single tuned circuits.	Jing			Ca
	- Idear Transformer - Tuned encurs – Single funce encurts.				
UNIT III	TRANSIENT ANALYSIS				ç
				·	
	RC Circuits, The Source-Free RL Circuit, The Source-Free RC Circuit				-
					• ~
	nsient response of RL, RC and RLC Circuits using Laplace transform	for E	C a	nd A	40
	nsient response of RL, RC and RLC Circuits using Laplace transform	for E	DC a	nd A	40
input.	IN A PIE	for D	C a	nd A	40
	TWO PORT NETWORKS	for D	DC a	nd A	
input. UNIT IV	IN A PIE				6
input. UNIT IV Characterizati	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interest of Z, Y, ABCD and h parameters.				6
input. UNIT IV Characterizati	TWO PORT NETWORKS				6
input. UNIT IV Characterizati	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interest of Z, Y, ABCD and h parameters.				6
input. UNIT IV Characterizati two port netw UNIT V	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interport, Symmetrical properties of T and π networks. NETWORK TOPOLOGY	ercor	nnec	tion	(
input. UNIT IV Characterizati two port netw UNIT V Network term	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interpreters, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir	ercor	inec	tion	
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interpreters, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matrix	ercor	inec	tion	
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H	TWO PORT NETWORKSion of two port networks in terms of Z, Y, ABCD and h parameters. Intervork, Symmetrical properties of T and π networks.NETWORK TOPOLOGYninology - Graph of a network - Trees and Co-Tree - Twigs and LirProperties of Incidence Matrix (A) - Link Current and Tie-set MatriCut-set Matrix (C) - Mesh Analysis and Nodal Analysis.	ercor hks - rix (Inec Inc B) -	tion ider	e of g nce vig
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Integork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matricut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L:	ercor	Inec Inc B) -	tion ider	e of g nce vig
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Intercork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises:	ercor hks - rix (Inec Inc B) -	tion ider	e of g nce vig
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exce 1. Verification	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL.	ercor hks - rix (Inec Inc B) -	tion ider	e of g nce vig
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe 1. Verification 2. Verification	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interpreters, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matrix Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem.	ercor hks - rix (Inec Inc B) -	tion ider	(0) () () () () () () () () ()
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe 1. Verification 2. Verification 3. Verification	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Inter- ork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem.	ercor hks - rix (Inec Inc B) -	tion ider	(0) () () () () () () () () ()
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe 1. Verification 2. Verification 3. Verification 4. Verification	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matrix Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem. n of maximum power transfer Theorem	ercor hks - rix (Inec Inc B) -	tion ider	(0)
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe 1. Verification 2. Verification 3. Verification 5. Determinat	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem. n of maximum power transfer Theorem ion of Resonance Frequency of Series & Parallel RLC Circuits.	ercor hks - rix (Inec Inc B) -	tion ider	(0)
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe 1. Verification 2. Verification 3. Verification 4. Verification 5. Determinat 6. Transient a	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Intervork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem. n of maximum power transfer Theorem ion of Resonance Frequency of Series & Parallel RLC Circuits. nalysis of RL and RC circuits.	ercor hks - rix (Inec Inc B) -	tion ider	(0) () () () () () () () () ()
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe 1. Verification 2. Verification 3. Verification 4. Verification 5. Determinat 6. Transient a	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matricut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem. n of Resonance Frequency of Series & Parallel RLC Circuits. nalysis of RL and RC circuits. ion of Z and Y parameters for the two port network.	ercor nks - rix (1 : 45]	Inco Inco B) -	tion ider Tv	Conce vig
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exe 1. Verification 2. Verification 3. Verification 4. Verification 5. Determinat 6. Transient a	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interpreters, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of superposition Theorem. n of maximum power transfer Theorem ion of Resonance Frequency of Series & Parallel RLC Circuits. nalysis of RL and RC circuits. ion of Z and Y parameters for the two port network.	ercor nks - rix (: 45]	Incc Inc B) - PER	tion ider Tv	
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exce 1. Verification 2. Verification 3. Verification 4. Verification 5. Determinat 6. Transient a 7. Determinat	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Integork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem. n of maximum power transfer Theorem ion of Resonance Frequency of Series & Parallel RLC Circuits. nalysis of RL and RC circuits. ion of Z and Y parameters for the two port network.	ercor nks - rix (: 45]	Incc Inc B) - PER	tion ider Tv	
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exce 1. Verification 2. Verification 3. Verification 4. Verification 5. Determinat 6. Transient a 7. Determinat	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interproperties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matrix Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of superposition Theorem. n of maximum power transfer Theorem ion of Z and Y parameters for the two port network. P: TOTAL PUIPMENT FOR A BATCH OF 30 STUDENTS:	ercor nks - rix (1 : 45] : 45]	Inec Inc B) - PER	tion ider Tv IO	6 of 9 nce vig
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exec 1. Verification 2. Verification 3. Verification 4. Verification 5. Determinat 6. Transient a 7. Determinat	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matric Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem. n of maximum power transfer Theorem ion of Z and Y parameters for the two port network. P: TOTAL PUIPMENT FOR A BATCH OF 30 STUDENTS:	ercor hks - rix (45] 9ER Quan	Incc Incc B) - PER PER RIOI	tion ider Tv 2IO	6 of 9 nce vig
input. UNIT IV Characterizati two port netw UNIT V Network term Matrix (A), H Voltages and Practical Exec 1. Verification 2. Verification 3. Verification 4. Verification 5. Determinat 6. Transient a 7. Determinat	TWO PORT NETWORKS ion of two port networks in terms of Z, Y, ABCD and h parameters. Interork, Symmetrical properties of T and π networks. NETWORK TOPOLOGY ninology - Graph of a network - Trees and Co-Tree - Twigs and Lir Properties of Incidence Matrix (A) - Link Current and Tie-set Matrix Cut-set Matrix (C) - Mesh Analysis and Nodal Analysis. L: ercises: ns of KVL & KCL. ns of Thevenin & Norton's theorem. n of Superposition Theorem. n of Resonance Frequency of Series & Parallel RLC Circuits. nalysis of RL and RC circuits. ion of Z and Y parameters for the two port network. P: TOTAL PUPMENT FOR A BATCH OF 30 STUDENTS: Opacitors, Inductors	ercor nks - rix (1 : 45] : 45]	Inec Inc B) - PER PER RIOI	tion ider Tv 2IO	6 of 9 nce vig

CR	O (30MHz)	5
Fur	ction Generators (3MHz)	5
Mu	ltimeter	5
Dua	al Regulated Power Supplies $(0 - 30)V$	10
Vol	tmeter and Ammeter	Required
TE	XT BOOKS:	
	1. Hayt Jack Kemmerly, Steven Durbin, "Engineering Circuit Ana education, 9 th Edition, 2018.	llysis", Mc Graw Hill
	 Joseph Edminister and Mahmood Nahvi, — Electric Circuits, Schaun McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint 	-
RE	FERENCES:	
	1. David Bell, "Fundamentals of Electric Circuits", Oxford University p	press, 7 th Edition, 2009.
	 John O Mallay, Schaum's Outlines "Basic Circuit Analysis", The Mc 2nd Edition, 2011 	c Graw Hill companies,
	3. Robert.L. Boylestead, "Introductory Circuit Analysis", Pearson Edition, 2014.	Education India, 12 th
	 Sudhakar, A., Shyammohan, S. P. "Circuits and Networks"; Ta Delhi, 2015. 	nta McGraw-Hill New
	191	
	SE OUTCOMES: accessful completion of the course, students should be able to:	RBT* Level
CO1	Apply suitable network theorems and analyze AC and DC circuits.	3
CO2	Infer the phenomenon of series and parallel resonance in electrical circu understand the effect of magnetic coupling between windings.	uits and 2

1.1.1

1

4

5

4

Analyze the transient response for any RC, RL and RLC circuits. **CO3**

Evaluate the two port network parameters. **CO4**

Sketch the various network topologies. **CO5** *Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

COURSE ARTICULATION MATRIX

COs	POs													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	-	3	3	-	-	-	-	-	-	-	3	3
2.	3	3	-	3	3	-	-	-	-	-	-	-	3	3
3.	3	3	-	2	3	-	-	-	-	-	-	-	3	3
4.	3	3	-	2	2	-	-	-	-	-	-	-	3	3
5.	3	3	-	1	-	-	-	-	-	-	-	-	3	3
1- Wea	k; 2 - N	Iodera	te; 3 - S	Strong.	•	•	•	•	•	•	•	•	•	•

294

CY22161	CHEMISTRY LABORATORY (Common to all Branches except AD, CS & IT)	L 0	<u>Т</u> 0	P 2	<u>C</u>
COURSE OB		U	U	4	I
 To acq during To app use. To gain measur To imp 	uaint the students with the basic phenomenon/concepts of chemistry course of their study in the industry and engineering field. reciate the need and importance of water quality parameters for indus a the knowledge on electrochemical instrumention techniques like po- ing used in electrochemistry applications art knowledge on separation of components using paper chromatogra ance the thinking capabilityabout polymer and properties like molecu	trial a otentia phy.	and c	lome l curi	stic
 Determ Determ Determ Estimat thiocya Determ Estimat Estimat Determ Estimat Determ Separat 	PERIMENTS (Minimum 8 Experiments) ination of DO content of water sample by Winkler's method. ination of strength of given hydrochloric acid using pH meter ination of strength of acids in a mixture using conductivity meter ion of iron content of the water sample using spectrophotometer (phe nate method) ination of total, temporary & permanent hardness of water by EDTA tion of iron content of the given solution using potentiometer. ination of alkalinity in water sample. ination of Single electrode potential. ion of components from a mixture of red and blue inks using Paper content ination of molecular weight of polymer by using Ostwald's/Ubbeloh TO	Meth hroma	od. atogr	raphy ieter.	
 Furniss B. organic ch Jeffery G. chemical a 	CS: Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel"s Textboo emistry", LBS Singapore 1994. H., Bassett J., Mendham J.and Denny vogel"s R.C, "Text book of qua analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore M., Sandell E.B. et al. "Quantitative chemical analysis", Mcmillan, N	ok of p antitat , 1996	oract tive a 5.	ical analy	

	RSE OUTCOMES: e successful completion of the course, students will be able to	RBT* Level
CO1	Distinguish hard and soft water, solve the related numerical problems on water, purification and its significance in industry and daily life.	4
CO2	Interpret the knowledge of instruments to measure potential and current related parameters.	2
CO3	Demonstrate the basic principle for separation of components using paper chromatography.	4
CO4	Evaluate the molecular weight of polymer using Ostwald's/Ubbelohde viscometer.	4
* Bloo 6	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-	5; Create-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2	-	-	-	3	3	3	1	-	1	2	-	-
CO2	3	2	1	-	-	3	3	3	-	-	-	-	-	-
CO3	3	-	-	-	-	3	3	-	-	-	-	2	-	-
CO4	3	-	-	1	-	3	3	3	-	-	-	-	-	-
1- W	eak; 2	- Mode	erate; 3	- Stro	ng.									

EC22211	TECHNICAL DRAWING LABORATORY	L	Τ	Р	С
EC22211	IECHNICAL DRAWING LADORATORY	0	0	2	1
COURSE OBJE	CTIVES:				
• To draw	free hand sketches of the schematic diagrams of electronic cit	rcuits	using	g stan	dard
symbols.					
• To prepar	e the drawing from the rough sketches and/or enlarge/reduce the	given	draw	ing to	the
desired sc	ale.				
• To draw t	he cables and connectors using CAD tools.				
• To draw e	xploded views of components & assemblies in preparation of serv	ice dr	awing		
To construct	act and verify the electric circuits using simulation tools.				
LIST OF EXPE	RIMENTS				
1. Drawing	Fundamentals on Electronics				
	lrawing Symbols of all the electronic components.				
	ing of resistive components.				
e	of standard symbols of basic electronic components using Auto				
. ,	ors, Capacitors, Inductors, Potentiometer, Crystal, Switches and Tr				
	Devices - AC and DC sources, PN diode, Zener Diode, Varactor	Diode	e, LEI	D, BJ	Г,
	OSFET, UJT, SCR, DIAC, TRIAC				
· · · · ·	one components – Transmitter, Receiver, Filter, Hybrid Transform	ner			
· · · · ·	Gates – NOT, AND, OR, XOR, NAND, NOR				
	cables and connectors using AutoCAD Electrical				
e	Electric circuits:				
. ,	it diagram of a Wein's bridge oscillator				
• •	it diagram of a Battery eliminator				
	it of Emergency light				
	it diagram of Voltage stabilizers				
	it diagram of Fan regulator				
	of electronic components - 2D and 3D view				
6. Construc	tion and Verification of Electric circuits using simulation tools		20.5		
		DTAL	: 30 P	EKI	JUS
	PMENTS FOR A BATCH OF 30 STUDENTS:	1	0		
Description of It	ems		Qu	antit	y
PC Desktop	4h			10	
Soldering Iron wi	ui accessories			10	

AutoCAD software
TEXT BOOKS:

1. Prof. Sham Tickoo, "AutoCAD Electrical 2020 for Electrical Control Designers", 11th Edition, Tickoo-CADCIM Series, ISBN: 978-1-64057-079-5.

10

2. Gaurav Verma, Matt Weber, "AutoCAD Electrical 2016 Black Book.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
CO1	Perform free-hand sketching of electronic circuits.	3
CO2	Draw the complete circuit with the correct dimensions.	4
CO3	Demonstrate computer-aided drawing for fabricating electronic products.	4
CO4	Project the 2D and 3D views of electronic components.	3
CO5	Construct the electric circuit using SPICE simulator.	4
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluat	te-5;
Create	-6	

COURSE ARTICULATION MATRIX

tant on

IT S BE

COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	1	1-0		-	1	10	92 4 - 1	3	<u>\</u>	1-1	-	2	1	
2.	3	1	4	1	3	- 5	-	3-1	3	-	21	-	2	3	
3.	3	1	1	(- 4	3	1	1	10	3	-	0	-	2	3	
4.	3	1	41	0.	3		1	-	3	1	1	1-	2	3	
5.	3	1	$\leq $	- 6.	- 3	- 2	1	-	3	1	N	-	2	3	
1- Weal	k; 2 - N	Iodera	te; 3 – S	Strong	. 1		14	1			m	1			

Ţ হা

EC22212	ELECTRON DEVICES AND ELECTRICAL MACHINES LABORATORY	L 0	Т 0	P 3	C 1.5
COURSE OB.		v	U	0	1.0
	xposed to the characteristics of basic electronic devices.				
	xposed to study the behavior of various passive and active electronic	oom	nonc	nta	
		com	pone	ms	
	amiliar with the working of diodes, transistors and their applications.				
_	art hands on experience on rudimentary engineering practices in Elec	trical			
Enginee	-				
	erstand the Concepts of Solar PV system				
	liarize with the operation of DC machines, AC machines and Transfe	orme	rs eq	lnıb	
	perimental skills.				
LIST OF EXP					
ELECTRON					
	acteristics of PN Diode and PN Diode as a Rectifier				
	Characteristics of Zener Diode and Zener Diode as a Regulator				
	utput Characteristics of BJT in CE configuration				
	nd Transfer Characteristics of JFET				
	acteristics of LED and Photo Diode/Photo Transistor				
	acteristics of UJT and SCR				
ELECTRICA					
	tial house wiring using switches, fuse, indicator, lamps and energy m	leter			
	st on single-phase transformer				
	st on DC shunt motor				
-	Control of DC shunt motor				
	st on three phase Induction motor				
	st on single phase Induction motor				
7. Study o	f 1kWp Solar PV System with Net meter				
	ТОТА				JDS
LIST OF EQU	JIPMENT FOR A BATCH OF 30 STUDENTS: (ELECTRON DI				
		Q	uan	tity	
	, 2N2646, BFW10		equi		
1N4007, Zener	diodes	R	equi	red	
Bread Boards	1055 mm tal		15		
CRO (30MHz)	41 42 8		5		
Function Gener	cators (3MHz)		5		
Multimeter			5		
Dual Regulated	Power Supplies $(0 - 30)V$		10		
Voltmeter and	Ammeter	R	equi	red	
LIST OF EQU	JIPMENT FOR A BATCH OF 30 STUDENTS: (ELECTRICAL	MA	CHI	NES	5)
			uan		
1. Assorted e	electrical components for house wiring		2 se	ts	
	r PV system		1		
	Motor - 1.5kW, 220V, 9A, 1500RPM,		1		
	Motor with Loading Arrangement- 3.5kW, 220 Volts, 18.6		1		
Amps, 15			_		
5. Single Pha	ase Transformer- 1 KVA, 230/115V, 50Hz		2		

6. Three Phase Induction Motor with Loading Arrangement- 3.7kW, 415V,	1
7.8A, 1430 RPM	
7. Single Phase Induction Motor with Loading Arrangement-1.5kW,	1
230V,9.9A,1440rpm	
8. Single Phase Auto Transformer- 4KVA, 0-270V, 50Hz	2
9. Three Phase Auto Transformer - 12KVA, 0-415V, 50Hz	2
10. MC Voltmeter- (0-300)V	3
11. MC Ammeter- (0-10/20)A	2
12. MC Ammeter - (0-1/2)A	2
13. MI Voltmeter - (0-300/600)V	5
14. MI Voltmeter - (0-75/150)V	2
15. MI Ammeter - (0-10)A	5
16. UPF Wattmeter (300/600V, 5/10A)	4
17. Single Phase Resistive Loading Bank- 5 KW)	2
18. Rheostats - 50Ω , $5A$, 700Ω , $1.5A$, 1000Ω , $1A$)	Each 2
19. Single phase Energy meter	1
20. Net meter	1
21. Fuse various ranges as per the requirement	Required
22. Wires As per the requirement	Required

TEXT BOOKS: (Electronics Part)

- 1. Jacob Millman & amp; Christos C. Halkias, "Electronic Devices & amp; Circuits", Fourth Edition, McGraw Hill, 2015.
- 2. Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and circuits", Third Edition, Tata McGraw Hill, 2012.

TEXT BOOKS: (Electricals Part)

- 1. Arora, B.D, "HOUSE WIRING" R.B.Publishers (1999).
- 2. Uppal, S.L; Laroia, J.M "ELECTRICAL WIRING ESTIMATING AND COSTING "Khanna Publishers (2003).
- 3. Theraja, B.L; Theraja A.K, "A TEXTBOOK OF ELECTRICAL TECHNOLOGY VOLUME II: AC AND DC MACHINES "S.Chand publications,(2015).
- 4. Rai G.D, "Non-conventional Energy Sources", Khanna Publishers (2014).

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
CO1	Learn the characteristics of basic electronic devices.	2
CO2	Construct, analyze and troubleshoot the designed circuits.	4
CO3	Implement the various wiring methods.	4
CO4	Analyze the behavior of DC machines, AC machines and Transformers.	4
CO5	Evaluate the performance of Solar PV system.	4
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-
5; Crea	ate-6	

COs		POs									PS	SOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	-	-	3	-	-	-	3	-	-	-	2	3
2.	3	2	-	-	3	-	-	-	3	-	-	-	2	3
3.	3	3	-	-	3	-	-	-	3	-	-	-	2	3
4.	3	3	-	-	3	-	-	-	3	-	-	-	2	3
5.	3	3	-	-	3	-	-	-	3	-	-	-	2	3
1- Wea	k; 2 - N	Aodera	te; 3 –	Strong		1								

SEMESTER III

MA22358	TRANSFORM AND RANDOM PROCESSES	L T P C 3 1 0 4
COURSE OB	JECTIVES:	
	oduce Fourier series analysis this is central to many applications in en	gineering.
To und	erstand the basic concepts of the Fourier transform and Z-transform	techniques and
	ication in Engineering.	
	roduce the effective mathematical tools for the solutions of part ns that model several physical processes.	ial differential
To prov	vide the required Mathematical suppot in real life problems and develo	p probabilistic
models	. This can be used in several areas of science and engineering. To a	equire skills in
handlin variable	g situations involving more than one random variable and functions.	ons of random
	derstand and characterize phenomena which evolve with respe	ct to time in
	ilistic manner.	
	1 Aline al	
UNIT I	FOURIER SERIES	9+3
Dirichlet's con	ditions - General Fourier series - Odd and even functions - Half rang	e sine series –
Half range cost	ine series –Parseval's identity – Harmonic Analysis	
	141.6 12121	
UNIT II	FOURIER AND Z -TRANSFORMS	9+3
	orm pair - Fourier sine and cosine transforms - Properties (with	
	neorem – Parseval's identity. Z- Transforms – Elementary properties	
	ng partial fraction) – Convolution theorem – Solution of difference equ	lations using Z
- transform.		
	DADTIAL DIFFEDENTIAL FOLIATION	0.2
UNIT III	PARTIAL DIFFERENTIAL EQUATION	9+3
	artial differential equations – Singular integrals - Solutions of standar lifferential equations - Lagrange's linear equation - Linear homog	
	nations of second and higher order with constant coefficients.	eneous partiai
unierentiar equ		
UNIT IV	RANDOM VARIABLE	9+3
	continuous random variables – Moment generating functions. Joint	
	conditional distributions – Covariance – Correlation and Linear regre	
limit theorem.		
UNIT V	RANDOM PROCESS	9+3
Classification	– Stationary process – Poisson process – Gaussian process - Ran	dom telegraph
process - Auto	correlation functions.	
	TOTAL: (L:45 + T:15):	60 PERIODS

TEXT BOOKS:

- 1. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi 2012.
- 2. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt. Ltd. 1998.
- 3. Ibe. O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier, 1st Indian Reprint, 2007.
- 4. Peebles Jr. P.Z., "Probability Random Variables and Random Signal Principles", Tata McGraw-Hill Publishers, Fourth Edition, New Delhi, 2002.

REFERENCES:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", *10* th Edition, Wiley India, 2011.
- 2. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd , 2007
- 3. Veerarajan. T., "Transforms and Partial Differential Equations", Tata MGraw Hill Publishing Company Ltd., New Delhi, 2012
- 4. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.

Links:

- 1. https://nptel.ac.in/courses/111103021
- 2. http://bme.elektro.dtu.dk/31610/notes/RandomProcess_California.pdf
- 3. http://www.ifp.illinois.edu/~hajek/Papers/randomprocJuly14.pdf

COU	RSE OUTCOMES:	RBT *
Upon	successful completion of the course, students should be able to:	Level
CO1	Acquire the skill in examining a signal in another domain rather in the original domain by handling Full and Half Range Fourier Series.	3
CO2	Develops the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms and Z-transform.	3
CO3	Express proficiency in handling higher order Partial differential equations	3
CO4	Reproduce and explain the basic concepts such as probability and random variable and identify the distribution. Acquire skills in handling situations involving more than one random variable	3
CO5	Apply the relationship within and between random processes	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

*Cos		Pos											PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	-	-	-	-	-	-	-	2	-	-
2.	3	3	3	3	-	-	-	-	-	-	-	-	2	2
3.	3	3	3	3	-	-	-	-	-	-	-	2	-	-
4.	3	3	-	-	-	-	-	-	-	-	-	2	2	2
5.	3	3	-	-	-	-	-	-	-	-	-	-	2	2
1- Weal	k; 2 - N	Aodera	te; 3 - S	Strong.										

EC22301

OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES

L	Т	Р	С
3	0	0	3

0

9

9

9

COURSE OBJECTIVES:

- To acquire knowledge on core programming basics of C++ language.
- To possess a fundamental understanding of an Object-Oriented Programming concepts.
- To deepen the empirical knowledge on linear and non-linear data structures.
- To develop logical thinking abilities to relate real world problems with data structure concepts in an object-oriented style.
- To be familiar with different sorting and searching algorithms.

UNIT I	DATA ABSTRACTION & OVERLOADING	9
Overview of C-	++ - Structures - Class Scope and Accessing Class Members - Refer	ence Variables
– Initialization	- Constructors - Destructors - Member Functions and Classes - Frie	end Function -
Dynamic Mem	ory Allocation - Static Class Members - Proxy Classes - Overload	ding: Function
overloading and	l Operator Overloading.	
	N. N. C. L	

UNIT II INHERITANCE & POLYMORPHISM

Base Classes and Derived Classes – Protected Members – Casting Class pointers and Member Functions – Overriding – Public, Protected and Private - Inheritance – Types of Inheritance-Constructors and Destructors in derived Classes – Implicit Derived – Composition Vs. Inheritance – Virtual functions – This Pointer – Abstract Base Classes and Concrete Classes – Virtual Destructors – Dynamic Binding

UNIT III LINEAR DATA STRUCTURES

Abstract Data Types (ADTs) – List ADT – Array based linked list implementation — Singly linked lists – Doubly linked list - Polynomial Manipulation - Stack ADT – Evaluating arithmetic expressions- Queue ADT – Circular Queue implementation.

UNIT IV NON-LINEAR DATA STRUCTURES

Trees – Binary Trees – Binary tree representation and traversals - The Search Tree ADT - Binary Search Trees – Application of trees – Graph and its representations – Graph Traversals – Representation of Graphs – Breadth-first search – Depth-first search – Dijkstra's shortest path algorithm.

UNIT V SORTING AND SEARCHING

Insertion sort - Shell sort - Selection Sort - Bubble sort - Merge sort - Quick sort - Radix Sort - Searching: Linear search – Binary Search.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Deitel and Deitel, "C++, How To Program", Tenth Edition, Pearson Education, 2017.
- 2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 2nd Edition, Pearson Education, 2017.

REFERENCES:

- 1. Bjarne Stroustrup, "The C++ programming language", Fourth Edition, Addison Wesley, 2018.
- 2. Bhushan Trivedi, "Programming with ANSI C++, A Step-By-Step approach", Oxford University Press, 2012.
- 3. Goodrich, Michael T., Roberto Tamassia, David Mount, "Data Structures and Algorithms in C++", Second Edition, Wiley. 2011.
- 4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2009.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Read, Write and Execute simple C++ programs.	2
CO2	Choose appropriate object-oriented programming principles and propose novel solution to solve computational problem.	3
CO3	Understand the core data structures like lists, stack and queue using C++.	2
CO4	Design and implement non-linear data structures using C++ programs.	3
CO5	Discuss different sorting and searching techniques to organizing the large amount of data.	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evate-6	aluate-

			1.1		L.	Os	11			1.1.1	1	PS	SOs
1	2	3	4	5	6	7	8	9	10	11	12	13	14
3	3	P	-		-	-	1	2	3	E.	3	-	3
3	3	2	<u>\-</u>	-	-	-390	1	3	1	5/	3	3	3
3	2	2	10	1	-	T.	-	2	3		3	3	-
3	2	-	0:	1	- 10	00	-	/	1-	/-	3	-	3
3	3	-	10	30	-	1	-	-	3	-	3	2	3
2 - M	Ioderat	te; 3 - S	Strong.	198	11	TES	15 1	an	/	II			
	3 3 3 3 3	3 3 3 3 3 2 3 2 3 2 3 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

EC22302	DIGITAL SYSTEM DESIGN	L	T	P	C
COURSE OB		3	0	0	3
	erstand Boolean algebra and illustrate boolean expression simplificati	on u	ising	5	
	combinational circuits using logic gates.				
	e latches,flip flops,registers and counters.				
	gate and design synchronous and asynchronous sequential circuits.				
	the applications of digital circuits.				
UNIT I	DIGITAL FUNDAMENTALS				7
SOP, POS- Mi	polean algebra and minimization using Boolean postulates-minterms nimization of Boolean expression using Karnaugh's map: 3 variables, n't care combinations-Implementation of Logic Functions using gates	4 va	riab	les a	ind
UNIT II	COMBINATIONAL CIRCUIT DESIGN				9
subtractor-bina encoder, priorit UNIT III Latches and F	erations: Half adder, full adder, ripple carry adder, lookahead adde ry multiplier-Barrel shifter-Selection logic: multiplexer, demultiple ty encoder. SEQUENTIAL CIRCUIT DESIGN lip flops: SR, JK, T, D and Master slave flipflop, excitation tables zation of one flip flop using other flip flops-Counters: Synchronous and	lexer and	r, de		9 ion
	registers-Types, Universal shift registers. FINITE STATE MACHINE: SYNCHRONOUS AND				10
minimization-A	ASYNCHRONOUS achine, Moore machine-state machine analysis, state diagram, state as Asynchronous logic design- Hazards-types and design of hazard free tions- race free assignment.	<u> </u>			
UNIT V	APPLICATIONS OF DIGITAL CIRCUITS				10
Design of sequence digital circuits	APPLICATIONS OF DIGITAL CIRCUITS uence detector, code converters and comparator-design of Serial a using PLA,PAL, ROMs U, MAC and pipelined adder. TOTAL:				
 S. Lee, D. P. I 	S: Mano M and Michael D. Ciletti, Digital Design, Pearson, Fifth Editic "Digital Circuits and Logic Design," 1 st Ed., Prentice Hall India, 200 Leach, A.P. Malvino and G. Saha, "Digital Principles and Applica w Hill Education, 2014.	8.		8 th E	id.,

REFERENCES:

- 1. Charles H. Roth and Larry M. Hanny, Fundamentals of Logic Design, Cengage learning, Sixth Edition, 2013
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, Digital Integrated circuits: A design perspective, Pearson, Second Edition, 2016.
- 3. Kenneth L. Short, VHDL for Engineers, Prentice Hall, 2009.
- 4. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006
- 5. Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Examine different methods used for simplification of Boolean expressions.	2
CO2	Design combinational logic circuits using logic gates.	3
CO3	Design sequential logic circuits using flipflops.	3
CO4	Investigate and design synchronous and asynchronous sequential circuits.	4
CO5	Apply the digital circuits for solving real world problems and implement the logic function using different types of PLD.	4

***Bloom's Taxonomy (RBT) Level:** Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

*COs		1	41	1. 2.1		Р	os	- 1	1.55	() ()	177	1	PS	Os
	1	2	-3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	(**),	1-	- 1	-	100	5	2	-	31	2	2	-
2.	3	2	3	3	2	-	1	2	100	1-5	2-/	2	3	2
3.	3	2	3	3	2	- 1	19	2	-/	10	1-	2	3	2
4.	3	2	3	3	2	-	2	1	1	0/		2	3	2
5.	3	3	3	3	2	1	2	2	Ye.	1-	-	3	3	2
l - Weal	k; 2 - N	Aodera	ite; 3 - 9	Strong.	_	-11	45	14	/					

EC22303	ELECTROMAGNETIC FIELDS AND WAVES	L 3	Т 0	P 0	С 3
COURSE O	BJECTIVES:	5	U	U	5
• To int	principle and their related problems over Static Electric Fields.	the	Th	eore	m,
• To learelated	rn the basic laws in Static Magnetic Field and able to find various parar d problems.				
applic	now how the Electric Field is applied in Dielectrics with various ations and to understand how the Magnetic Field works with Ferromagr alyze how the Time is Varying in both Electric and Magnetic Field	netic	Ma	teria	ls.
deriva					
	ced subjects related to Electromagnetic Field.				
UNIT I	STATIC ELECTRIC FIELD				9
	o-ordinate System-Introduction to line, Surface and Volume Integra m and Divergence theorem.	ls-N	1ear	ing	of
Coulomb's La charges-Elect uniformly on	aw and Electric field Intensity-Principle of Superposition-Electric field ric field due to continuous charge distribution-Electric field due to char an infinite and finite line-Electric Field on the axis of a uniformly ch Field due to an infinite uniformly charged sheet. Electric Flux Density-O	ges narg	dist ed c	ribut ircu	ed lar
its application					
UNIT II	STATIC MAGNETIC FIELD				9
Magnetic field	art Law-Magnetic Field intensity due to a finite and infinite wire carryid intensity on the axis of a circular and rectangular loop carrying a curre Force on a wire carrying a current I placed in a magnetic field–Tor rent I	ent I-	-An	npere	e's
UNIT III	ELECTRIC AND MAGNETIC FIELDS IN MATERIALS				9
Poisson's and Boundary cor Inductance	d Laplace's equation-Capacitance of various geometries using Lapla additions for electric fields-Point form of ohm's law-Continuity equation of loops and solenoids-Energy density in magnetic fields-magn Magnetic boundary conditions.	for	cur	rent.	n-
UNIT IV	TIME VARYING ELECTRIC AND MAGNETIC FIELDS				9
	quation from Ampere's Law, Faraday's Law and Gauss Law in both p and Time Varying Potentials.	oint	t foi	m a	nd
UNIT V	ELECTROMAGNETIC WAVES				9
		1			
Poynting Vec	ctor-Instantaneous Average and Complex Poynting Vector-Wave Equ Maxwell's equation in Phasor form-Plane waves in free space and in a effect.				
Poynting Vec plane waves-	Maxwell's equation in Phasor form-Plane waves in free space and in a	hor	nog	eneo	ous

TEXT BOOKS:

- 1. David K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Delhi, 2004.
- 2. John D Kraus and Daniel A Fleisch, "Electromagnetics with Applications", McGraw Hill Book Co,2005.
- 3. W H.Hayt & J A Buck: "Engineering Electromagnetics" TATA McGraw-Hill, 7th Edition 2007.
- 4. M.N.O.Sadiku and S.V. Kulkarni, Principles of electromagnetics, 6th ed., Oxford(Asian Edition), 2015

REFERENCES:

- 1. E.C. Jordan & K.G.Balmain "Electromagnetic Waves and Radiating Systems." Prentice Hall of India 2nd edition 2003.
- 2. Narayana Rao. N: "Engineering Electromagnetics" 4th edition, Prentice Hall of India, New Delhi, 2006.

ULLEI

3. Electromagnetics Joseph Edminister - Schaum's Outline Series, TMH

~

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
CO1	Apply the fundamentals of different coordinate systems to relate the electromagnetic concepts in Engineering.	3
CO2	Evaluate the physical quantities of electromagnetic fields in different media.	4
CO3	Analyze the boundary conditions for different media and to design the storage devices.	3
CO4	Justify concepts of electromagnetic waves means of transporting energy in dielectric medium.	4
CO5	Analyze the concept of Plane waves in homogeneous medium.	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

*COs			2	S. and	-	P	Os	-	1	1	<u></u>		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	-	10	2	ST I	6	~	2	-	2	3	-
2.	3	3	3	-		2	-			2	-	2	3	-
3.	3	3	3	-	-	2	-	-	-	2	-	2	3	-
4.	3	3	3	-	-	2	-	-	-	2	-	2	3	-
5.	3	3	3	-	-	2	-	-	-	2	-	2	3	-
1- Wea	ak; 2 -	Moder	ate; 3 -	Strong										

EC22304	ELECTRONIC CIRCUITS		T	P	C
COURSE OF	RIECTIVES	3	0	0	3
	rn about biasing of BJT and FET circuits.				
	derstand the design and working principle of BJT and FET.				
	derstand the small signal analysis of BJT and FET.				
	dy about feedback amplifiers.				
	derstand the analysis and design of power amplifier and tuned amplifie	r			
		1			
UNIT I	TRANSISTOR BIASING				9
-	Circuits – Types, Q Point, Bias Stability, Stability factors- Concept of D of operating point. Biasing methods for JFET and MOSFET.	C ai	nd A	C lo	bad
UNIT II	BJT AMPLIFIERS				7
limitations. D	plifying action – small signal analysis of CE amplifier – AC load line – arlington amplifier, Cascaded stages – Cascode amplifier – Frequency adwidth of Single Stage and Multistage Amplifiers.				
UNIT III	JFET and MOSFET Amplifiers				9
	analysis of MOSFET and JFET- Common Source amplifiers-	Volt	age	SW	-
-	ource follower and Common gate amplifiers and BIMOS amplifiers.	VOI		5	mg
UNIT IV	FEEDBACK AMPLIFIERS AND OSCILLATORS				10
Advantages o	t negative teedback - Voltage / Current Series Shunt teedback ampl	ifier	·c_ P	Posit	ive
	f negative feedback – Voltage / Current Series, Shunt feedback ampl onditions for oscillations, Phase shift, Wien bridge, Hartley, Colpite				
feedback – C	onditions for oscillations, Phase shift, Wien bridge, Hartley, Colpita				
feedback – C oscillators. UNIT V Power amplif amplifiers – A		t's a	ind gna er –S me	Crys I tur Stag	stal 10 ned ger
feedback – C oscillators. UNIT V Power amplif amplifiers – A	onditions for oscillations, Phase shift , Wien bridge, Hartley, Colpita POWER AMPLIFIERS AND TUNED AMPLIFIERS iers- Types. Analysis and Types of Class A, Class B, Class AB. Sma analysis of capacitor coupled single tuned amplifier – double tuned amp ers Stability of tuned amplifiers – Neutralization – Hazeltine neutraliza	t's a	ind gna er –S me	Crys I tur Stag	stal 10 ned ger
feedback – C oscillators. UNIT V Power amplifi amplifiers – A tuned amplifier TEXT BOOH 1. David A 2. Robert Tenth e	onditions for oscillations, Phase shift , Wien bridge, Hartley, Colpita POWER AMPLIFIERS AND TUNED AMPLIFIERS iers- Types. Analysis and Types of Class A, Class B, Class AB. Sma analysis of capacitor coupled single tuned amplifier – double tuned amp ers Stability of tuned amplifiers – Neutralization – Hazeltine neutraliza TOTAL:	t's a hll si plific tion 45	ind gna er – S mer PEI	Crys l tur Stag thod RIO	stal 10 ned ger DS

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
CO1	Choose appropriate biasing circuits for BJT and MOSFET discrete amplifiers.	4
CO2	Design and analyze BJT amplifier.	4
CO3	Analyze the modeling of MOSFET amplifiers.	4
CO4	Design feedback amplifiers and analyze stabilization techniques and Oscillators	4
CO5	Analyze Power amplifiers and tuned amplifiers	4
*Bloom 5; Crea	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

COURSE ARTICULATION MATRIX

EN

N IN S AL

*COs	Pos													
-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	1.	3	3	-	1.	-	-	2	1	2	3	3
2.	3	3	3	3	3	-	- Na	0.02	1-	1	1-12	2	3	3
3.	3	3	3	3	3		-	-	3-5	-	2	2	3	3
4.	3	2	15	3	3	1-00	1	10	11	- 1	0	2	3	3
5.	3	2	41	3		1	2	0	- 1		-	2	3	2

परा

.....

tant of the

m

EC22305	SIGNALS AND SYSTEMS	LT	P	С
~ ~ ~ ~ ~ ~ ~ ~ ~		3 0	0	3
	BJECTIVES:			
	derstand the fundamentals of signals & systems			
	alyze continuous time signals in Fourier and Laplace domain			
• To ana	alyze discrete time signals in Fourier and Z domain			
• To stu	dy the characteristics of continuous time systems			
• To stu	dy the characteristics of discrete time systems			
				0
UNIT I	FUNDAMENTALS OF SIGNALS AND SYSTEMS	•	1	9
Signal proper Systems: Con	inuous time and Discrete time - Elementary signals - Basic operations of ties – Periodicity, Deterministic and Stochastic, Energy & Power ntinuous time and Discrete time - System properties – Linearity: Time-invariance, Causality, Stability, Invertibility.	-		nd
	ANALVER OF CONTINUOUS TIME SIGNALS			9
	ANALYSIS OF CONTINUOUS TIME SIGNALS ime Fourier Transform (CTFT) - Periodic and Aperiodic signals - Co			/
Convolution. Laplace Tran Properties: La	perties: Linearity, Symmetry, Time shifting, Time scaling, Parseva sform - Unilateral and Bilateral Laplace Transform - Region of C inearity, Symmetry, Time shifting, Time scaling, Initial and Final va Inverse Laplace Transform.	onverge	ence	-
UNIT III	LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS			9
systems using	quation - Impulse response - Convolution integrals and its properties g Fourier and Laplace transforms: Stability and Causality - Frequer onse and Transfer function of LTI systems.			
UNIT IV	ANALYSIS OF DISCRETE TIME SIGNALS			0
				9
Discrete Tim shifting, Freq Z -Transform	reconstruction of signals: Sampling Theorem, Effects of under sampli e Fourier transform (DTFT) - Properties: Linearity, Periodicity, Syn uency shifting, Time scaling, convolution, – Region of Convergence - Properties: Linearity, Symmetry, Time shifting, Differentiation, Convolution – Inverse Z - transform – Relatio	nmetry, reversal	Tin , Ti	ne me
Discrete Tim shifting, Freq Z -Transform scaling, Time DTFT and Z	reconstruction of signals: Sampling Theorem, Effects of under sampli e Fourier transform (DTFT) - Properties: Linearity, Periodicity, Synuency shifting, Time scaling, convolution, – Region of Convergence - Properties: Linearity, Symmetry, Time r shifting, Differentiation, Convolution – Inverse Z - transform – Relatio ransform	nmetry, reversal	Tin , Ti	me me
Discrete Tim shifting, Freq Z -Transform scaling, Time DTFT and Z t UNIT V	reconstruction of signals: Sampling Theorem, Effects of under sampli e Fourier transform (DTFT) - Properties: Linearity, Periodicity, Synuency shifting, Time scaling, convolution, – Region of Convergence - Properties: Linearity, Symmetry, Time shifting, Differentiation, Convolution – Inverse Z - transform – Relatio ransform	nmetry, reversal nship b	Tin , Tin etwo	me me en
Discrete Tim shifting, Freq Z -Transform scaling, Time DTFT and Z to UNIT V Difference eq Analysis of D	reconstruction of signals: Sampling Theorem, Effects of under sampli e Fourier transform (DTFT) - Properties: Linearity, Periodicity, Synuency shifting, Time scaling, convolution, – Region of Convergence - Properties: Linearity, Symmetry, Time r shifting, Differentiation, Convolution – Inverse Z - transform – Relatio ransform <u>LINEAR SHIFT INVARIANT DISCRETE TIME SYSTEMS</u> juation – Convolution sum and its properties - Interconnection of LSI systems using DTFT and Z transform: Stability and Causality pulse response and Transfer function of LSI systems	nmetry, reversal nship b SI Syst - Freq	Tin , Ti etwe ems uend	<u> </u>
Discrete Tim shifting, Freq Z -Transform scaling, Time DTFT and Z to UNIT V Difference eq Analysis of D	reconstruction of signals: Sampling Theorem, Effects of under sampli e Fourier transform (DTFT) - Properties: Linearity, Periodicity, Synuency shifting, Time scaling, convolution, – Region of Convergence - Properties: Linearity, Symmetry, Time r shifting, Differentiation, Convolution – Inverse Z - transform – Relatio ransform <u>LINEAR SHIFT INVARIANT DISCRETE TIME SYSTEMS</u> uation – Convolution sum and its properties - Interconnection of LS LSI systems using DTFT and Z transform: Stability and Causality	nmetry, reversal nship b SI Syst - Freq	Tin , Ti etwe ems uend	<u> </u>

TEXT BOOKS:

- 1. Alan V Oppenheim, Alan S Wilsky, and S Hamid Nawab, "Signals and Systems", Pearson, 2013.
- 2. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.

REFERENCES:

- 1. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2008
- 2. M.J.Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2012.
- 3. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson, 2014.
- 4. Simon Haykin, Barry Van Veen, "Signals and Systems", Wiley, 2003

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
CO1	Categorize signals and systems based on their properties.	3
CO2	Analyze the characteristics of continuous time signals using Fourier and Laplace transform.	4
CO3	Characterize the Linear Time Invariant systems in time and frequency domain.	3
CO4	Analyze the characteristics of discrete time signals using Fourier transform and Z transform.	4
CO5	Characterize the Linear Shift Invariant systems in time and frequency domain.	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evate-6	aluate-

*COs			1	0,		P	Os		1	5	1		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	3	1	1	30	2	1-	-	1	3	3
2.	3	3	3	3	3	//1	RI	6.	2	-	-	1	3	3
3.	3	3	3	3	3	1	-	-	2	-	-	1	3	3
4.	3	3	3	3	3	1	-	-	2	-	-	1	3	3
5.	3	3	3	3	3	1	-	-	2	-	-	1	3	3
1- Weak	; 2 - M	oderate	e; 3 - St	rong.										

EC22311	ANALOG AND DIGITAL CIRCUITS LABORATORY	L 0	T 0	P 3	C 1.5
COURSE OBJEC	TIVES	U	U	3	1.5
Analog:					
U	frequency response characteristics of PIT and FET amplificate				
-	e frequency response characteristics of BJT and FET amplifiers				
	characteristics of IGBT and its application				
_	ow and high frequency oscillators				
	various analog circuits using SPICE				
Digital:					
•	e fundamentals of combinational and sequential circuits				
 To design, i 	mplement and verify the functionality of various digital circuits				
LIST OF EXPER	IMENTS				
ANALOG CIRCU					
1. Frequency r	esponse of CE and CS amplifier				
2. Frequency r	esponse of series/shunt feedback amplifier				
3. Design of si	ngle tuned amplifier				
4. Design of lo	w and high frequency oscillator				
	pplication using IGBT				
6. Simulation	of frequency response of CE and CS amplifier using SPICE				
DIGITAL CIRCU					
1. Implementa	tion of binary adder and subtractor				
2. Implementa	tion of decimal adder				
3. Implementa	tion of logic design using multiplexer/decoder				
4. Data transfe	r using shift register				
5. Design of co					
6. Design of se	equence detector				
CHALLENGING	EXPERIMENTS (Any one)				
1. Blinking LE	ED using active and passive components				
2. Design of B	uzzer using Counter				
3. Automatic N	Night Light using LDR				
4. Simple Wat	er level indicator using active and passive components				
		DTAL	: 45 F	PERI	ODS
	1 44				
LIST OF EQUIPM	IENTS FOR A BATCH OF 30 STUDENTS:				
Description of Iter	ns		Qu	antit	y
CRO (Min 30MHz)				15	·
	Function Generators (2 MHz)			15	
	ver Supply $(0 - 30V)$			15	
Digital Multimeter				5	
LCR Meter				5	
Standalone desktop	s PC			10	
SPICE Circuit Sim		-+		15	
IC Trainer Kit		-+		15	
Bread Boards		-+		25	
	01 17406 17400 17422 17402 174150 174151 174147 17445 1	-+	25		
ICS /400/ /402 / 74	04 / 7486 / 7408 / 7432 / 7483 / 74150 /74151 / 74147 / 7445 /	<u> </u>	- 25	Each	

7476/7491/ 555 / 7494 / 7447 / 74180 / 7485 / 7473 / 74138 / 7411 / 7474

TEXT BOOKS:

- 1. Robert L Boylestad, Louis Nashelsky, Lab Manual to accompany "Electronic Devices and Circuit Theory", 11th Edition, Pearson Education, 2012
- M. Morris Mano, Michael D. Ciletti, "Digital Design", Global Edition, Pearson Higher Education & Professional Group, 2018

COU	RSE OUTCOMES:	RBT *
Upon	successful completion of the course, students should be able to:	Level
CO1	Design and analyze the frequency response characteristics and bandwidth of various amplifiers using BJT & FET and using simulation tool	4
CO2	Analyze the characteristics of tuned amplifiers and IGBT	4
CO3	Design low and high frequency oscillators	4
CO4	Design, implement and verify the functionality of combinational digital circuits	4
CO5	Design, implement and verify the functionality of sequential digital circuits	4
* Bloo 5; Crea	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

COs	6			POs						/ m				PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	3	3	3	3	1	1	1	-		37	2	3	3		
2.	3	3	3	3	3	1	1	1		1	1	2	3	3		
3.	3	3	3	3	3	1	1	1	1	1-3	21	2	3	3		
4.	3	3	3	3	3	-	1	1	1	140	1-	2	3	3		
5.	3	3	3	3	3	-	Y	1	-	0/	- I	2	3	3		
1- Weak; 2 - Moderate; 3 - Strong.																
					-	41	43	1 4	/							

EC22312	STRUCTURES	•			
	SIRUCIURES	0	0	3	1.5
COURSE OBJECTIVE					
The students should be ma					
	th good programming design methods, particularly in Bott	om- u	p desi	gn.	
	ject-oriented methodology.				
	programs for data structures and its applications.				
• To relate real wor	ld problems with data structures concepts in an object-orie	ented s	style.		
	ferent sorting and searching techniques.				
LIST OF EXPERIMEN					
1. Write C++ Progra	ums for				
	ime number generation				
	actorial with and without recursion				
	ank account using Constructor and destructor.				
	atic data member and member function.				
	iend Function.	ation	orrowle	. din a	~
	rea and of a circle, square, rectangle and triangle using fun perator Overloading	cuon	overic	bading	5
	heritance – Single, Multiple, Multilevel, Hybrid and Hiera	rchics	1		
	irtual Function	.i cilica	11		
2. Array implementat					
3. Linked list implem					
 Doubly Linked list 					
•	t - Polynomial Manipulation				
••	• •				
-	y and linked list implementations.				
7. Application of Sta					
	valuation of Arithmetic Expressions				
	onverting Decimal to Binary				
-	ay and linked list implementations.				
9. Binary Search Tree	e with Tree traversal Techniques – Preorder, Post-order an	d In-o	order.		
10.Graphs - Breadth-f	first search and Depth-first search.				
11.Sorting – Insertion	n, Merge and Quick sort.				
12.Searching – Linear	r and Binary Search.				
	TO)TAL	: 45 P	PERIC	ODS
LIST OF EQUIPMENT	TS FOR A BATCH OF 30 STUDENTS:				
Description of Items			Qu	antit	у
Standalone desktops with	C++ compiler			30	
_					
TEXT BOOKS:					
	"C++, How To Program", Tenth Edition, Pearson Educati	-			
	s, "Data Structures and Algorithm Analysis in C++", 2nd I	ditio	n, Pea	rson	
Education, 2017.					

COUR	RSE OUTCOMES:	RBT				
Upon s	successful completion of the course, students should be able to:	Level				
CO1	Create C++ programs to implement Classes & Objects, friend function, constructors & destructors.	2				
CO2	Design and implement various forms of inheritance and polymorphism	3				
CO3	Deploy various data structure concepts like linked lists, stacks, queues, trees and graphs using C++ program.	3				
CO4	Analyze real world problems and possess novel solutions to it in an object-oriented style	3				
CO5	Use different sorting and searching algorithms.	2				
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6						

COLLEGE

COURSE ARTICULATION MATRIX

12 S a Ke

COs	POs										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	21	-	-	1.0	100	2	3	1-1	3	-	3
2.	3	3	3	1-	- A.	-	-	3 -	3	-	2	3	3	3
3.	3	3	3	(-)	1	1	-	10	2	3	6	3	3	-
4.	3	2	A.	-11	- 1		1	0	-	-	111	2	-	3
5.	2	2	\leq	- 0		(n - 3)	-		白白	3	Z	- 1	2	3
1- Wea	k; 2 - 1	Modera	ate; 3 -	Strong			- 14		1		Im		•	

51

tant or

	SEMESTER IV				
EC22401	ANALOG INTEGRATED CIRCUITS AND ITS	L	Τ	P	С
EC22401	APPLICATIONS	3	0	0	3
COURSE O	BJECTIVES:				
• To int	roduce the basic building blocks of linear integrated circuits				
• To con	nstruct the linear and non-linear applications of operational amplifiers				
• To int	roduce the various data converters and its working principles.				
• To int	roduce the theory and applications of analog multipliers and PLL.				
• To stu	dy various special function ICs				
UNIT I	BASICS OF OPERATIONAL AMPLIFIERS				9
General oper	ational amplifier stages -BJT Differential amplifier analysis-Concer	ot of	CN	/IRF	<u> </u>
methods to in	nprove CMRR- Wilson Current source-IC 741-Ideal Operational Amp	olifie	r - I)C a	ınd
AC performa	nce characteristics, Open and Closed loop configurations of Op-amp-l	Inve	rting	5, No	on-
inverting and	Differential amplifiers-Voltage Follower.				
UNIT II	APPLICATIONS OF OPERATIONAL AMPLIFIERS				9
Linear Circu	uits: Adder and Subtractor, Differentiator, Integrator, Voltage to Cur	rent	con	vert	er,
Instrumentati	on amplifier, Nonlinear Circuits: Sine wave Oscillators, Active filt	ters-l	LPF	, HI	PF,
BPF, Compar	ator, Multivibrators, Schmitt trigger, Precision rectifier, Log and Antil	og a	mpli	fier	s.
	A TA AND AND				
UNIT III	ANALOG TO DIGITAL AND DIGITAL TO ANALOG				9
	CONVERTERS				
-	old circuit, Types of D/A converter-Weighted Resistor, R-2R Current dri	iven	DA	C, A	J/D
converter - Fl	ash, Single slope, Dual slope, Successive approximation.				
UNIT IV	ANALOG MULTIPLIER AND PLL				9
	plier cell - Variable transconductance technique, analog multiplier				
1 1	Voltage Controlled Oscillator, Operation of the basic PLL, Closed lo	-		•	
	thic PLL IC 565, Applications of PLL-Frequency synthesizing, AM	dete	ectio	n, I	٩M
detection and	FSK demodulation.				
					9
UNIT V	SPECIAL FUNCTION ICS	C'1			20
	oltage regulators - linear and switched mode types, Switched capacito				
	S40200, TPS40210 buck and boost converters, Frequency to Voltage				
	n generator, Isolation Amplifiers, Audio Amplifier, Video amplifiers, F	1ber	opt	ICS I	Cs
and Opto cou		15	DFT		ne
	TOTAL:	: 45 .	PER	10	D 2
TEXT BOO	ZS.				
	KS: 7 Choudhry, Shail Jain, "Linear Integrated Circuits", New Age Internat	iona	1 D ₁	+ T (d
•	Fifth Edition.	iona	11 1	ι. <i>L</i> Ι	u.,
,	Franco "Design with Operational Amplifiers and Analog Integrated C	ircu	its"	⊿ th	
	n, Tata McGraw-Hill, 2016.	-n cu		-1	
Luitio	n, ruu 11001uw 1111, 2010.				

REFERENCES:

- 1. B.S.Sonde, "System design using Integrated Circuits", 2nd Edition, New Age Pub, 2001.
- 2. Robert F.Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth Edition, PHI, 2001.
- 3. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 5th Edition, 2009.
- 4. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.
- 5. .Ramakant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2015.
- 6. William D.Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson Education, 4th Edition, 2001.
- S. Salivahanan, V S Kanchana Baskaran, "Linear Integrated Circuits", second edition, McGraw-Hill education India pvt ltd., 2015.

	RSE OUTCOMES:	RBT*		
Upon successful completion of the course, students should be able to:				
CO1	Infer the DC and AC characteristics of operational amplifiers and its effect on output and their compensation techniques.	2		
CO2	Elucidate and analyze the linear and non-linear applications of an opamp.	4		
CO3	Classify and comprehend the working principle of data converters.	4		
CO4	Illustrate the function of application specific ICs such as Analog multiplier, PLL and its application in communication.	2		
CO5	Explain the working of multivibrators using IC 555, the special function ICs such as Voltage regulators, buck-boost converters, A/V amplifiers etc.	3		
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-		
5; Cre	ate-6			

*COs				0,		P	Os	1 m	1	1	1		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3	1	1.0	2	2	-	1	10	1	-	3	3	2
2.	3	2	1	1	2	3	TP.	6	~	s -	-	3	3	2
3.	3	2	1	-	2	2	-		50 <u>-</u>	-	-	3	3	2
4.	3	2	1	-	2	2	-	-	-	-	-	3	3	2
5.	3	3	3	-	2	3	-	-	-	-	-	3	3	2
1- Weak	k; 2 - N	Ioderat	e; 3 - S	trong.										

EC22402	LINEAR CONTROL SYSTEMS	L 3	Т 0	P 0	C 3
COURSE OF	BJECTIVES:				-
To intr	oduce the elements of control system and its representations				
	lyze the time response and stability of systems				
	rn various frequency response plots				
	dy the state variable representation of systems				
• To des	ign various types of compensators	<u> </u>			
UNIT I	SYSTEM COMPONENTS AND THEIR REPRESENTATION				9
Control Syste	m: Terminology and Basic Structure -Feed forward and Feedback c	ontro	ol the	eory	y -
	Electrical and Mechanical Systems: Block diagram models-Signal flow g				
Introduction to	o multivariable control system				
	60115				
UNIT II	TIME RESPONSE AND STABILITY ANALYSIS				11
	e: Transient and Steady state response - Impulse and Step response analy				
	systems - Steady state errors - Concepts of stability-Routh stability crit				
	ot Locus Technique- Guidelines for sketching root locus - P, PI, PD and P	ID C	ontr	olle	rs:
characteristics	and applications	<u> </u>			
UNIT III	FREQUENCY RESPONSE AND STABILITY ANALYSIS	<u> </u>			0
	ponse: Closed loop – Frequency response of second order system - Fre	llien	cy d	om	9 9in
	- Bode plot- Polar plot - Stability analysis -Nyquist stability criterion	1001	cy u	0111	J 111
specifications					
UNIT IV	CONTROL SYSTEM ANALYSIS USING STATE VARIABLE METHODS				8
State variable	representation: state equations - Conversion of state variable models to tra	insfe	r fun	octio	ons
	- Solution of state equations - Concepts of Controllability and Observable				
UNIT V	COMPENSATORS				8
	- Effect of adding poles and zeros - Design of cascade lag, leave	1 an	d la	g-le	ead
compensators	using Bode plot				D <i>G</i>
	TOTAL:	45	PER	10	DS
TEXT BOOK		: 1			
	ath I.J. and Gopal M., "Control Systems Engineering", New Age Internat hers, 2017	onal			
	n S Nise, "Control Systems Engineering", 7 th Edition, Wiley, 2015				
	nin C. Kuo, "Automatic Control systems", Wiley, 2014				
REFERENC					
1. M. Go	pal, "Control Systems, Principles and Design", 4th Edition, Tata McGraw	Hill	, Ne	W	
Delhi,					
	nattacharya, "Control System Engineering", 3 rd Edition, Pearson, 2013. I C. Dorf and Robert H. Bishop, "Modern Control Systems", Prentice Ha	11 20	112		
	ta, "Modern Control Engineering", 5 th edition, PHI, 2012.	11, 20	12.		
-	Control Engineering, 5° edition, FTR, 2012.	"			
J. INI ILL	Comme Courses on Control Engineering and Digital Control Systems	•			

	COURSE OUTCOMES: Upon successful completion of the course, students should be able to:						
CO1	Compute the transfer function of different physical systems	3					
CO2	Compute the time response and analyze the stability using various techniques.	3					
CO3	Illustrate the frequency response characteristics of open loop and closed loop systems.	4					
CO4	Illustrate the state space model of a physical system	4					
CO5	Design compensators to satisfy the desired specifications of control systems	3					
*Bloo Create	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	aluate-5;					

*COs			1	2	0.	P	Os	-	1	~	6.0		PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1.	3	2	2	2	<u>e -</u>	-	0.13	-	-	1		3	3	3	
2.	3	2	2	2	3	-	1.0		1-2	1	1-1	3	3	3	
3.	3	2	2	2	3	->	-	1	2	-	2	3	3	3	
4.	3	2	2	2	120	10	1	0-	$\overline{\mathbf{u}}$	-	0	3	3	3	
5.	3	2	2	2	3	12	1	-	100	25	-	3	3	3	
- Weak	; 2 - N	Ioderat	te; 3 - S	trong.	5	1.2	1		L fil-	1	\leq			L	

EC22408	MACHINE LEARNING: THEORY AND PRACTICES	L	T	P	C
COURSEO	BJECTIVES:	3	0	2	4
	urn the basic concepts of machine learning.				
	and build supervised learning models.				
	arn and build unsupervised learning models.				
	aluate the algorithms based on corresponding metrics identified				
	alyse the machine learning experiments				
UNIT I	INTRODUCTION TO MACHINE LEARNING				8
Review of Lin	near Algebra for machine learning; Introduction and motivation for ma	chir	ne le	arni	ng;
	machine learning applications, Vapnik-Chervonenkis (VC) dimen				
	ly Correct (PAC) learning, Hypothesis spaces, Inductive bias, Gener	raliz	atio	n, B	ias
variance trade	e-off.	T			
					10
UNIT II	SUPERVISED LEARNING ssion Models: Least squares, single & multiple variables, Bayesian lir				10
UNIT III	num margin classifier – Support vector machine, Decision Tree, Rando ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING				9
Combining m	ultiple learners: Model combination schemes, Voting, Ensemble Learn	ning	- ha	ooin	σ
	king, Unsupervised learning: K-means, Instance Based Learning: KNN				5,
	els and Expectation maximization.	., -			
UNIT IV	NEURAL NETWORKS				9
stochastic gra saturation (a	erceptron, activation functions, network training – gradient descent idient descent, error backpropagation, from shallow networks to deep ika the vanishing gradient problem) – ReLU, hyperparameter in, regularization, dropout.	netw	ork	s –U	Init
UNIT V	DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS				9
Guidelines fo	r machine learning experiments, Cross Validation (CV) and resampling	<u>g</u> – ł	K-fo	ld C	V,
11 0	, measuring classifier performance, assessing a single classification alg	-		and	
comparing tw	o classification algorithms - t test, McNemar's test, K-fold CV paired				
	Τ.	15	DFI	RIO	nc
		43	PEI		DS

Practical Exercises:

- 1. Write a python program to import and export data using Pandas library functions and data Visualization Techniques. (3 hours)
- 2. Demonstrate various data pre-processing techniques for a given dataset. (2 hours)
- 3. Implement Simple and Multiple Linear Regression Models(2 hours)
- 4. Develop Decision Tree Classification model for a given dataset and use it to classify a new sample. (2 hours)
- 5. Implement Naïve Bayes Classification in Python. (2 hours)
- 6. Implement Random forest ensemble method on a given dataset. (2 hours)
- 7. Build KNN Classification model for a given dataset. (2 hours)
- 8. Implement classification using SVM. (2 hours)
- 9. Implement classification using Multilayer perceptron(2 hours)
- 10. Implement of ADAM optimiser from scratch (2 hours)
- 11. Evaluating ML algorithm with balanced and unbalanced datasets Comparison of Machine Learning algorithms. (3 hours)
- 12. Performance analysis of specific datasets (mini project) (6 hours)

P: 30 PERIODS TOTAL PERIODS: 75

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

5	Q1	Quantity
1. Processors: Intel Atom [®] processor or Intel [®] Core [™] i3 processor.	-	15 Nos.
Disk space: 1 GB. Operating systems: Windows 7/10	2	
2. Python versions: 3.6.X. with Anaconda 2020.07	m	15 Nos.
	1	

TEXT BOOKS:

- 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.
- 2. Stephen Marsland, "Machine Learning: An Algorithmic Perspective, "Second Edition", CRC Press, 2014

- 1. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
- 2. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 3. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", Second Edition, MIT Press, 2012, 2018.
- 4. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016
- 5. Sebastain Raschka, Vahid Mirjalili, "Python Machine Learning", Packt publishing, 3rd Edition, 2019.

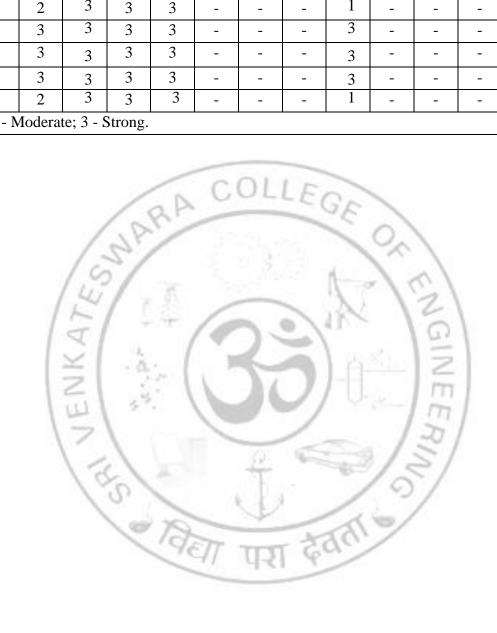
COURSE OUTCOMES:							
Upon successful completion of the course, students should be able to:							
CO1Explain the basic concepts of machine learning.2							
CO2	O2 Construct supervised learning models.						
CO3	D3 Construct unsupervised learning algorithms.						
CO4	Evaluate and compare different models	4					
CO5	Evaluate the machine learning experiments	4					
*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-							
5; Cre	5: Create-6						

*COs		POs											PSOs		
-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	3	3	3	2	UL.	LE(32	1	1	1	3	3	
2.	3	3	3	3	3	2	-	-	P.C.	~	1	1	3	3	
3.	3	3	3	3	3	2		27	1	2	1	1	3	3	
4.	3	3	2	2	2	2		1	d T	-	1	1	3	1	
5.	3	2	2	2	3	2	-	a - 1	1-6	1	1	1	3	3	

1- Weak; 2 - Moderate; 3 - Strong.

EC22409	MICROCONTROLLER SYSTEMS: THEORY AND	L	Т	P	C
	PRACTICES	3	0	2	4
COURSE OI	BJECTIVES:				
	derstand the fundamentals of PIC 16f84A and Atmega microcontrollers				
• To dev	velop Programme using Embedded 'C' and introduced to the 'C' Data t	ype	s.		
• To int	roduce the concepts of timer/counters, Serial ports and interrupts using	PIC	and	SPI,	I ² C,
	and Keyboard using Atmega.				
• To dev	velop Programme codes for interfacing keyboard/display,motor and sen	sor ı	ising	g PIC	and
Atmeg					
	erface sensors, motors, relays, and various input/output devices and pa	rogr	amm	ning	with
PIC16	f84A and Atmega microcontrollers.				
UNIT I	INTRODUCTION TO PIC MICROCONTROLLER				9
	16F84/16F877, Register File Structure, Addressing Modes, Asse	mh	v I	ano	
	-Arithmetic and Logical Instructions, Branch, Call and Time Delay Lo				
Programming		ν°Ρ,	110	10	1 010
8					9
UNIT II	PIC PROGRAMMING IN C				
Data types ar	nd time delays in C-I/O Programming-Logical Operations-Data Seria	liza	tion-	Prog	gram
	on -Data RAM allocation.				
	E ++ Color Iol				
UNIT III	PIC PERIPHERALS AND INTERFACING				9
Timer Progra	amming, Serial Port Programming, Interrupt Programming, LCD	ar	d k	Keyb	oard
Interfacing, A	DC, DAC and Sensor Interfacing, Motor Control.				
UNIT IV	INTRODUCTION TO ATMEL AVR MICROCONTROLLER				9
	cture, Registers and Data Memory, Instruction Set-Branch, Call and T	ime	Del	ay L	oop,
Datatypes and	l directives, Parallel I/O Port, Programming in 'C'				
		1			
UNIT V	AVR PERIPHERAL INTERFACING		1.0		9
	rs, Analog Interface, SPI, I ² C, LCD and Keyboard, PWM Programmir	ig a	nd D	CM	lotor
control.	100 - 200 /	.	5 DI	CRIC	חר
Practical Exe		L. 4	511		503
	cation of Logic Gates (OR, AND & NOT), LED interfacing using PIC	6f8	4A		
	acing PWM to control the brightness of LED using PIC16f84A.	010			
	Interfacing using PIC16f84A.				
	er Motor Interfacing using PIC16f84A.				
11	erature sensor Interfacing using PIC16f84A.				
6. Verifi	ication of Logic Gates (XOR, NAND & NOR), LED interfacing using	ATN	ЛЕG	A.	
7. Interfa	ncing DC motor to control the RPM of Motor using ATMEGA.				
	and Keyboard Interfacing using ATMEGA.				
	Motor Interfacing using ATMEGA.				
	onic sensor Interfacing using ATMEGA.				
11. Applic	cation Development using PIC/ATMEGA.		<u> </u>		
			60 PI	ERIC	JDS
	ΤΟΤΑ				

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:	
	Quantity
PIC Universal Programmer and IC	15 nos
ATMEGA Programmer and IC	15 nos
LCD	10 nos
Ultrasonic Sensor	10 nos
DC motors and DC motor Drivers	10 nos
Stepper motors and drivers	10 nos
Temperature sensor and Interface	10 nos
LED	30 nos
1 K Ω and 10 K Ω	40 nos
Crystal Oscillator16 MHz	40 nos
Capacitor 22pf	40 nos
Matrix Keypad	10 nos


TEXT BOOKS:

- 1. Muhammad Ali Mazidi, Rolin D.Mckinlay, Danny Causey, "PIC Microcontroller and Embedded Systems Using ASM & C for PIC18", Pearson Education International, Edition 2008.
- 2. Muhammad Ali Mazidi,Sepehr Naimi, Sarmad Naimi, "The AVR Microcontroller and Embedded systems Using Assembly and C", Pearson Education International, Edition 2017
- 3. Richard H.Barnett, Sarah Cox, Larry O'Cull, "Embedded C programming and the Atmel AVR", Cengage Learning India Private Limited, January 2007.

- 5. Peatman, J.B., "Design with PIC Micro Controllers "Pearson Education, 3rd Edition, 2004.
- 6. Tim Wilmshurst, "Designing Embedded Systems with PIC Microcontrollers Principles and Applications", Newnes Publication, 2007
- 7. John Iovine, 'PIC Microcontroller Project Book ', McGraw Hill 2000
- 8. Julio Sanchez Maria P. Canton, "Microcontroller Programming: The microchip PIC", CRC Press, Taylor & Francis Group, 2007

COU	RSE OUTCOMES:	RBT*
Upon a	successful completion of the course, students should be able to:	Level
CO1	Identify and understand function of different blocks of PIC and Atmega microcontroller.	3
CO2	Develop programs for data transfer, arithmetic, logical and I/O port operations for PIC16 using "C"	4
CO3	Develop programs for Serial port, Timers, Interrupts and various Interfacing devices with PIC16f84A and Atmega Microcontrollers.	4
CO4	Develop program codes with PIC16f84A and Atmega for specific application.	4
CO5	Measure the performance of A/D and D/A.	3
* Bloo 5; Crea	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evate-6	aluate-

*COs						Р	Os						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	3	3	3	-	-	-	1	-	-	-	3	3
2.	3	3	3	3	3	-	-	-	3	-	-	-	3	3
3.	3	3	3	3	3	-	-	-	3	-	-	-	3	3
4.	3	3	3	3	3	-	-	-	3	-	-	-	3	3
5.	3	2	3	3	3	-	-	-	1	-	-	-	3	3
1- Weak	x; 2 - N	Ioderat	te; 3 - S	Strong.			•	•						

		L	Т	Р	С
EC22403	DISCRETE TIME SIGNAL PROCESSING	3	0	0	3
COURSE O	BJECTIVES:	•	U	v	J
	arn Discrete Fourier Transform, properties of DFT and FFT.				
	now the characteristics and design of FIR filter.				
	esign a IIR filters to filter undesired signals.				
	iderstand Finite word length effects.				
	udy the concept of Digital Signal Processors and various applications of	f Dio	rital	Sign	าลไ
	essing.	2.2	, i cui	2181	Iui
UNIT I	DISCRETE FOURIER TRANSFORM				9
	ages – Introduction to DFT – Properties of DFT – Circular Convolu	tion	- Fi	lteri	ng
	ed on DFT – FFT Algorithms – Decimation-in-Time (DIT), Decimatio				
(DIF).	COLLEN			•	•
	ADDELEGE				
UNIT II	DESIGN OF FIR FILTER				9
Linear phase	FIR filter - Symmetric, Antisymmetric filters - Filter design (Low F	Pass,	Hig	h Pa	ass
	windowing techniques (Rectangular Window, Hamming Window, Han				
Need for choi	ice of window- Realization structures of FIR Filter - Transversal, Poly-p	hase	and	Line	ear
phase structu	res.				
		-			
	IN THE ALL IS				
UNIT III	DESIGN OF IIR FILTER				9
UNIT III Characteristic	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Training filters.				of
UNIT III Characteristic analog filter	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Tra rs into equivalent digital filters using Impulse invariant method	and	d B	iline	of
UNIT III Characteristic analog filter	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Training filters.	and	d B	iline	of
UNIT III Characteristic analog filter transformatic	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Tra cs into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral	and	d B	iline	of ear
UNIT III Characteristic analog filter transformatic UNIT IV	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Trans into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS	and lel fo	d B orms	iline	of ear 9
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Transing interval	and lel fo	d B	iline on a	of ear 9 nd
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Transmitters into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - 'rors - Quantization noise – coefficient quantization error – Product quartice	and lel fo lel fo l run ntizat	d B orms cation	iline on a erro	of ear 9 nd r –
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Transition in the digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - Transition rooms - Quantization noise – coefficient quantization error – Product quartices power - limit cycle oscillations due to product round off and over the product round off and product round product round off and product round product product round product round product product p	and lel fo lel fo l run ntizat	d B orms cation	iline on a erro	of ear 9 nd r –
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Transition in the digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - Transition rooms - Quantization noise – coefficient quantization error – Product quartices power - limit cycle oscillations due to product round off and over the product round off and product round product round off and product round product product round product round product product p	and lel fo lel fo l run ntizat	d B orms cation	iline on a erro	of ear 9 nd r –
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Trans into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization- ' rors - Quantization noise – coefficient quantization error – Product quartices power - limit cycle oscillations due to product round off and over scaling.	and lel fo lel fo l run ntizat	d B orms cation	iline on a erro	of ear 9 nd r s
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Transing into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - Trors - Quantization noise – coefficient quantization error – Product quartices power - limit cycle oscillations due to product round off and oversealing. APPLICATIONS OF DIGITAL SIGNAL PROCESSING	and lel fo	d B orms cation w en	iline on a errors	9 nd r - s - 9
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Traces into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - 'rors - Quantization noise – coefficient quantization error – Product quartices power - limit cycle oscillations due to product round off and over scaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features,	and lel fo	d B orms catio ion w en	iline 5. on a erro rrors tion	of ear 9 nd r - 3 3 5 - 9 to
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa Multirate Sig	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Trates into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - ' cors - Quantization noise – coefficient quantization error – Product quartice power - limit cycle oscillations due to product round off and oversealing. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion	and lel fo	d B orms catio ion w en	iline 5. on a erro rrors tion	of ear 9 nd r - 3 3 - $9to$
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa Multirate Sig	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Transing into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - Tors - Quantization noise – coefficient quantization error – Product quartication power - limit cycle oscillations due to product round off and overscaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing.	and lel fo frund ntizat erflo Intro n by	d B Drms catio ion w er oduc a r	iline	of ear 9 nd r 3 9 to nal
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa Multirate Sig	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Trates into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - ' cors - Quantization noise – coefficient quantization error – Product quartice power - limit cycle oscillations due to product round off and oversealing. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion	and lel fo frund ntizat erflo Intro n by	d B Drms catio ion w er oduc a r	iline	of ear 9 nd r 3 9 to nal
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa Multirate Sig factor, Applio	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Transmitters into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - 'rors - Quantization noise – coefficient quantization error – Product quartication power - limit cycle oscillations due to product round off and overscaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing.	and lel fo frund ntizat erflo Intro n by	d B Drms catio ion w er oduc a r	iline	of ear 9 nd r 3 9 to nal
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa Multirate Sig factor, Applic	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Trass into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - ' cors - Quantization noise – coefficient quantization error – Product quar oise power - limit cycle oscillations due to product round off and over acaing. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion Conversion of DSP to Image and Speech signal processing. TOTAL: KS:	and lel fo Introduction Introduction Introduction	d B prms catio ion w er ducc a r PER	iline	of ear 9 nd r – 3 – 9 to nal
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Round-off no Principle of s UNIT V Digital Signa Multirate Sig factor, Applic TEXT BOO 1. John G.	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Trass into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization- ' rors - Quantization noise – coefficient quantization error – Product quar oise power - limit cycle oscillations due to product round off and over acaing. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing. TOTAL: KS: Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Princi	and lel fo lel fo Trund ntizat erflo Intro n by 45 l	d B prms catio ion w er oduc a r PER	iline	of ear 9 nd r 3 9 to nal
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa Multirate Sig factor, Applic TEXT BOO 1. John G. J Algorithr	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters, Trass into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization-7 rors - Quantization noise – coefficient quantization error – Product quarpoise power - limit cycle oscillations due to product round off and overscaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing. TOTAL: KS: Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Princins & Applications", Fourth Edition, Pearson Education / Prentice Hall,	and lel fo Infrum ntizat erflo Intro n by 45 I ples, 2007	d B prms cation cation w en duc a r PER	iline 	of ear 9 nd r 5 9 to nal DS
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off no Principle of s UNIT V Digital Signa Multirate Sig factor, Applic TEXT BOO 1. John G. 1 Algorithr 2. B. Venka	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters. Trass into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization - 'rors - Quantization noise – coefficient quantization error – Product quar oise power - limit cycle oscillations due to product round off and overscaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing. TOTAL: KS: Proakis & Dimitris G.Manolakis, "Digital Signal Processors – Architecture, ataramani and M. Bhaskar, —Digital Signal Processors – Architecture,	and lel fo lel fo Trund ntizat erflo Intro n by 45 l ples, 2007 Prog	d B <u>prms</u> catio ion w er ducc a r PER	illine on a erro rrors tion ation RIOI	of ear 9 nd r 5 9 to nal DS
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Round-off no Principle of s UNIT V Digital Signa Multirate Sig factor, Applic TEXT BOO 1. John G. 1 Algorithr 2. B. Venka and Appl	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters, Trass into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization-7 rors - Quantization noise – coefficient quantization error – Product quarbise power - limit cycle oscillations due to product round off and overscaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing. TOTAL: KS: Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Princins & Applications", Fourth Edition, Pearson Education / Prentice Hall,	and lel fo lel fo Trunch tizat erflo Intro n by 45 l ples, 2007 Prog elhi, 2	d B prms catio ion w er oduc a r PER 7. 7. 7. 7. 7.	iline 	g
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Round-off no Principle of s UNIT V Digital Signa Multirate Sig factor, Applic TEXT BOO 1. John G. 1 Algorithr 2. B. Venka and Appl	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters, Trass into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization- ' rors - Quantization noise – coefficient quantization error – Product quar oise power - limit cycle oscillations due to product round off and over scaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing. TOTAL: KS: Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Princins & Applications", Fourth Edition, Pearson Education / Prentice Hall, ataramani and M. Bhaskar, —Digital Signal Processors – Architecture, Lications! – Tata McGraw – Hill Publishing Company Limited. New De Gonzalez & Richard E.Woods – Digital Image Processing – Pearson Education – Pareason Education – Parason Education – Paraso	and lel fo lel fo Trunch tizat erflo Intro n by 45 l ples, 2007 Prog elhi, 2	d B prms catio ion w er oduc a r PER 7. 7. 7. 7. 7.	iline 	g
UNIT III Characteristic analog filter transformatic UNIT IV Fixed point Rounding err Round-off nd Principle of s UNIT V Digital Signa Multirate Sig factor, Applid TEXT BOO 1. John G. I Algorithr 2. B. Venka and Appl 3. Rafael C – Reprint	DESIGN OF IIR FILTER cs of Analog filters – Butterworth filters, Chebyshev Type I filters, Trass into equivalent digital filters using Impulse invariant method on method - Realization structures for IIR filters – direct, cascade, paral FINITE WORD LENGTH EFFECTS and floating point number representations – ADC – Quantization- ' rors - Quantization noise – coefficient quantization error – Product quar oise power - limit cycle oscillations due to product round off and over scaling. APPLICATIONS OF DIGITAL SIGNAL PROCESSING al Processors-Fixed and floating point; Basic Architectural features, gnal Processing- Decimation, Interpolation, Sampling rate conversion cations of DSP to Image and Speech signal processing. TOTAL: KS: Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Princins & Applications", Fourth Edition, Pearson Education / Prentice Hall, ataramani and M. Bhaskar, —Digital Signal Processors – Architecture, Lications! – Tata McGraw – Hill Publishing Company Limited. New De Gonzalez & Richard E.Woods – Digital Image Processing – Pearson Education – Pareason Education – Parason Education – Paraso	and lel fo lel fo rrund ntizat erflo Intro n by 45 l Prog elhi, 2 duca	d B <u>prms</u> catio ion w er ducc a r pEF 7. (ram 2003)	iline iline in a erro rrors tion ation ation RIOI	g

REFERENCES:

- 1. Alan V. Oppenheim and Ronald W. Schafer, "Discrete-Time Signal Processing" 3rd edition, 2010, Prentice Hall, Upper Saddle River, NJ.
- 2. Sanjit Mitra, "Digital Signal Processing", 4th edition, 2011, McGraw-Hill, New York, NY.
- 3. DSP Processor and Fundamentals: Architecture and Features. Phil Lapsley, JBier, Amit Sohan, Edward A Lee; Wiley IEEE Press;2009
- 4. Weltch , T.B., Wright, C.H.G. and Morrow, G.M., "Real-Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSPs.", 2nd Ed., CRC Press,2011.
- 5. Rabiner, L.R. and Schafer, R.W., "Digital Processing of Speech Signals", Pearson Education, 2003.

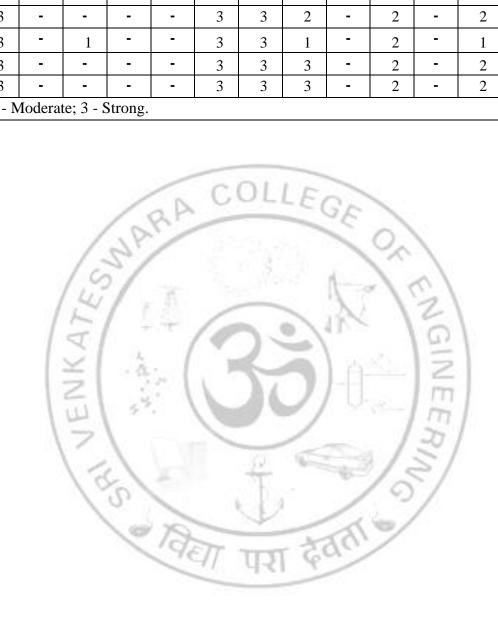
COUI	RSE OUTCOMES:	RBT*
Upon	successful completion of the course, students should be able to:	Level
CO1	Analyze the frequency spectrum of Discrete time signal using Discrete Fourier Transform and Fast Fourier Transform.	4
CO2	Interpret the characteristics of FIR filters and articulate the design of Finite Impulse Response filters for filtering undesired signals.	3
CO3	Observe the IIR filter characteristics and design IIR filters according to the user specifications.	3
CO4	Assess the word length effects in signal processing systems.	4
CO5	Explore the architecture of Digital Signal Processor and inspect the various applications of Digital Signal Processing.	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evate-6	aluate-

*COs		1	7			Р	Os	/		1	71	1	PS	SOs
	1	2	3	4	5	6	7	8	9	10	11/	12	1	2
1.	3	3	3	3	3	2	÷-	1	and and a second se	1-5	21/	1	3	3
2.	3	3	3	3	3	2	t Eus	S -	. 1	(9)	1	1	3	3
3.	3	3	3	3	3	2	Y	\sim	~	5	1	1	3	3
4.	3	3	2	2	2	2	-	3	10,	1	1	1	3	1
5.	3	2	2	2	3	- 2	45	-6	-	- °	1	1	3	3
1- Weak	x; 2 - N	Ioderat	e; 3 - S	trong.										

GE22451	ENVIRONMENTAL SCIENCES AND SUSTAINABILITY	L	Т	Р	С
	(Common to all Branches)	3	0	0	3
 To int the bid To int environ To st applic To fan sustai challe To into 	BJECTIVES : roduce the basic concepts of environment, ecosystems and biodiversity a odiversity of India and its conservation. npart knowledge on the causes, effects and control or prevention onmental pollution. udy and understand the various types of renewable sources of ene- cations. miliarize the concept of sustainable development goals, economic and so nability, recognize and analyze climate changes, and environmental enges. culcate and embrace sustainability practices, develop a broader understa ials and energy cycles, and analyze the role of sustainable urbanization.	n me ergy ocial 1 ma	and asp	res d th ects geme	o ei o en
	A GALLER				
UNIT I	ENVIRONMENT AND BIODIVERSITY cope and importance of environment – need for public awareness. E				9
nation – hot-s of wildlife, h	c, species and ecosystem diversity– values of biodiversity, India as a respots of biodiversity – threats to biodiversity: fragmentation and habitat uman-wildlife conflicts – endangered and endemic species of India –c In-situ and ex-situ.	loss	, po	achi	ng
UNIT II	ENVIRONMENTAL POLLUTION		<u> </u>		
UNIT II Definition, ca thermal pollu and fauna. N (Nuclear haza hazardous an	ENVIRONMENTAL POLLUTION auses, effects and preventive measures of air, water and soil pollution tion - causes, effects and control measures. Light and noise pollution - uclear pollution- Sources, effects and control measures. Disposal of radi ards). Pollution case studies. Role of an individual in the prevention of po- nd E-waste management. Occupational health and safety manage Environmental protection, Environmental protection acts, categoriza	effe ioact ollut eme	ct o tive ion. nt	n flo was Sol systo	nc ora tes id
UNIT II Definition, ca thermal pollu and fauna. N (Nuclear haza hazardous an (OHASMS).	ENVIRONMENTAL POLLUTION auses, effects and preventive measures of air, water and soil pollutio tion - causes, effects and control measures. Light and noise pollution - uclear pollution- Sources, effects and control measures. Disposal of radi ards). Pollution case studies. Role of an individual in the prevention of po- nd E-waste management. Occupational health and safety manage Environmental protection, Environmental protection acts, categoriza IUCN.	effe ioact ollut eme	ct o tive ion. nt	n flo was Sol systo	nc ora tes id en ces
UNIT II Definition, ca thermal pollu and fauna. N (Nuclear haza hazardous an (OHASMS). according to 2 UNIT III Energy reson management establishing hydrogen energy plants of geot	ENVIRONMENTAL POLLUTION auses, effects and preventive measures of air, water and soil pollution tion - causes, effects and control measures. Light and noise pollution - uclear pollution-Sources, effects and control measures. Disposal of radi ards). Pollution case studies. Role of an individual in the prevention of po- nd E-waste management. Occupational health and safety manage Environmental protection, Environmental protection acts, categoriza IUCN. RENEWABLE SOURCES OF ENERGY urces: Growing energy needs, Nonrenewable resources – types, and conservation - New energy sources, Need of new sources - geo renewable energy sources, different types new energy sources. A ergy, ocean energy resources, Tidal energy conversion. Concept, orig thermal energy. Role of an individual in conservation of energy.	effe ioact ollut eme tion use sui ppli	oct o cive ion. nt of s. 1 itabi	n flo was Sol systo spic Ener lity	ora tes id en ces gy of of
UNIT II Definition, ca thermal pollu and fauna. N (Nuclear haza hazardous an (OHASMS). according to T UNIT III Energy reson management establishing hydrogen energi plants of geot UNIT IV	ENVIRONMENTAL POLLUTION auses, effects and preventive measures of air, water and soil pollution tion - causes, effects and control measures. Light and noise pollution - uclear pollution- Sources, effects and control measures. Disposal of radi ards). Pollution case studies. Role of an individual in the prevention of po- nd E-waste management. Occupational health and safety manage Environmental protection, Environmental protection acts, categoriza IUCN. RENEWABLE SOURCES OF ENERGY urces: Growing energy needs, Nonrenewable resources – types, and conservation - New energy sources, Need of new sources - geo renewable energy sources, different types new energy sources. A ergy, ocean energy resources, Tidal energy conversion. Concept, orig thermal energy. Role of an individual in conservation of energy. SUSTAINABILITY AND MANAGEMENT	effe ioact bllut eme ation use o sui ppli gin a	ct o ive ion. of s. 1 itabi	n flo was Sol systo spic Ener lity pow	id id id id id id id id id id id id id i
UNIT II Definition, ca thermal pollu and fauna. N (Nuclear haza hazardous an (OHASMS). according to 1 UNIT III Energy reson management establishing hydrogen energy plants of geof UNIT IV Development sustainability Sustainable I chemistry, Cl case studies -	ENVIRONMENTAL POLLUTION auses, effects and preventive measures of air, water and soil pollution tion - causes, effects and control measures. Light and noise pollution - uclear pollution-Sources, effects and control measures. Disposal of radi ards). Pollution case studies. Role of an individual in the prevention of po- nd E-waste management. Occupational health and safety manage Environmental protection, Environmental protection acts, categoriza IUCN. RENEWABLE SOURCES OF ENERGY urces: Growing energy needs, Nonrenewable resources – types, and conservation - New energy sources, Need of new sources - geo renewable energy sources, different types new energy sources. A ergy, ocean energy resources, Tidal energy conversion. Concept, orig thermal energy. Role of an individual in conservation of energy.	effe ioact bllut eme ation use b sui ppli gin a and and aiple sible	ct o ive ion. of s. 1 itabi catio and asp pro s of s solu	n flo was Sol systo spic Ener lity pow ects tocc gre utio	id id id id id id id id id id id id id i

Zero waste and R concept, circular economy, ISO 18000 series, material life cycle assessment, environmental impact assessment. Wasteland reclamation, Sustainable habitat: green buildings, green materials, energy efficiency and energy audit, sustainable transports. Energy cycles, carbon cycle, emission and sequestration, Green engineering: sustainable urbanization- socio-economical and technological change. Rainwater harvesting, watershed management, environmental ethics: Issues and possible solutions.

TOTAL: 45 PERIODS


TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 7th Edition, New Age International Publishers, 2022.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Pearson. 2011.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, CL Engineering, 2015.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 3rdedition, 2015.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 3rd edition, 2021.

COUF	RSE OUTCOMES:	RBT*
Upon s	successful completion of the course, students should be able to:	Level
CO1	Explain the fundamental role of ecosystems and biodiversity and discuss the importance of their conservation.	2
CO2	Describe the different types of pollution, their effects and strategies to minimize or eliminate pollution.	2
CO3	Identify the need of renewable and non-renewable resources and describe energy management measures to preserve them for future generations.	2
CO4	Explain the various goals of sustainable development applicable for suitable technological advancement and societal development.	2
CO5	Demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.	2
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-
5; Crea	ate-6	

*COs						Р	Os						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	-	-	-	-	3	3	2	-	2	-	1	-	-
2.	3	-	-	-	-	3	3	2	-	2	-	2	-	-
3.	3	-	1	-	-	3	3	1	-	2	-	1	-	-
4.	3	-	-	-	-	3	3	3	-	2	-	2	-	-
5.	3	-	-	-	-	3	3	3	-	2	-	2	-	-
1- Weal	k; 2 - N	Ioderat	te; 3 - S	Strong.										

EC22411	ANALOG INTEGRATED CIRCUITS AND SIMULATION LABORATORY	L 0	<u>Т</u> 0	<u>Р</u> 3	C 1.5
COURSE OBJI		U	U	3	1.5
	e the students to linear and integrated circuits				
-	0				
	stand the basics of linear integrated circuits and available ICs				
	stand characteristics of operational amplifier.				
	operational amplifiers in linear and nonlinear applications.				
_	e the basic knowledge of special function IC.				
6. To use ar	y simulation software for circuit design				
LIST OF EXPE					
	of inverting and non-inverting amplifier using Op-amp.				
	of integrator and differentiator using Op-amp.				
	of instrumentation amplifier using Op-amp.				
	of active low-pass, high-pass and Narrow band-pass filters using Op	o-amp			
	of Astable and Monostable multivibrators using Op-amp.				
	of Schmitt Trigger using Op-amp.				
•	of Wein Bridge and Colpitt's Oscillator Using Op-amp.				
	ions of NE555 Timer.				
	racteristics and its use as Frequency Multiplier.				
-	er supply design using LM317 and LM723.				
11. Simulat	on of experiments 3,4,5,6 using any simulation software.				
	121 1 1 2 2 3 3 5	ΓΟΤΑ	AL: F	PERIO	ODS
		-			
LIST OF EOUI	PMENTS FOR A BATCH OF 30 STUDENTS:				
			0		
Description of I				antit	<i>,</i>
Description of I CRO (Min 30MI	Hz)		15	Nos.	
Description of I CRO (Min 30MI Signal Generator	Hz) /Function Generators (2 MHz)		15 15	i Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V)		15 15 15	Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V)	/	15 15 15 15	Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated D Digital Multimet IC tester	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er		15 15 15 15 15 5	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated 1 Digital Multimet IC tester Standalone deskt	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC		15 15 15 15 15 5	Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatio	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software)		15 15 15 15 15 5 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatio	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC		15 15 15 15 15 5 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatio Components and	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software)	28,	15 15 15 15 15 5 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatio Components and Bread Boards, T	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode	28,	15 15 15 15 15 5 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatic Components and Bread Boards, T Op-Amps uA74	Hz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode ransformers, wires, Power transistors, Potentiometer, LEDs.	28,	15 15 15 15 15 5 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatio Components and Bread Boards, T Op-Amps uA741 7812, 2N3524, 2 TEXT BOOKS	Iz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode ransformers, wires, Power transistors, Potentiometer, LEDs. , LM 301, LM311, LM 324, LM317, LM723, 7805, N3525, 2N3391, AD 633, LM 555, LM 565		15 15 15 15 5 15 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatic Components and Bread Boards, T Op-Amps uA741 7812, 2N3524, 2 TEXT BOOKS 1. D.Roy C	Iz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode ransformers, wires, Power transistors, Potentiometer, LEDs. , LM 301, LM311, LM 324, LM317, LM723, 7805, N3525, 2N3391, AD 633, LM 555, LM 565 noudhry, Shail Jain, "Linear Integrated Circuits", New Age Internat		15 15 15 15 5 15 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated 1 Digital Multimet IC tester Standalone deskt Circuit Simulatic Components and Bread Boards, T Op-Amps uA74 7812, 2N3524, 2 TEXT BOOKS 1. D.Roy C 2018, Fif	Iz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode ransformers, wires, Power transistors, Potentiometer, LEDs. , LM 301, LM311, LM 324, LM317, LM723, 7805, N3525, 2N3391, AD 633, LM 555, LM 565 noudhry, Shail Jain, "Linear Integrated Circuits", New Age Internat th Edition.	tional	15 15 15 15 5 15 15 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated 1 Digital Multimet IC tester Standalone deskt Circuit Simulatic Components and Bread Boards, T Op-Amps uA74 7812, 2N3524, 2 TEXT BOOKS 1. D.Roy C 2018, Fif	Iz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode ransformers, wires, Power transistors, Potentiometer, LEDs. , LM 301, LM311, LM 324, LM317, LM723, 7805, N3525, 2N3391, AD 633, LM 555, LM 565 noudhry, Shail Jain, "Linear Integrated Circuits", New Age Internat	tional	15 15 15 15 5 15 15 15	Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatio Components and Bread Boards, T Op-Amps uA74 7812, 2N3524, 2 TEXT BOOKS 1. D.Roy C 2018, Fif 2. Sergio Fr Tata McC	Iz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode ransformers, wires, Power transistors, Potentiometer, LEDs. , LM 301, LM311, LM 324, LM317, LM723, 7805, N3525, 2N3391, AD 633, LM 555, LM 565 noudhry, Shail Jain, "Linear Integrated Circuits", New Age Internate th Edition. anco, "Design with Operational Amplifiers and Analog Integrated Graw-Hill, 2016.	tional	15 15 15 15 5 15 15 15	Nos. Nos. Nos. Nos. Nos. Nos.	
Description of I CRO (Min 30MI Signal Generator Dual Regulated I Digital Multimet IC tester Standalone deskt Circuit Simulatio Components and Bread Boards, T Op-Amps uA74 7812, 2N3524, 2 TEXT BOOKS 1. D.Roy C 2018, Fif 2. Sergio Fr Tata McC	Iz) /Function Generators (2 MHz) Power Supplies (0 — 30V) er ops PC on Software: (any public domain or commercial software) Accessories: Op-Amps, Resistors, Capacitors, diodes, Zener diode ransformers, wires, Power transistors, Potentiometer, LEDs. , LM 301, LM311, LM 324, LM317, LM723, 7805, N3525, 2N3391, AD 633, LM 555, LM 565 noudhry, Shail Jain, "Linear Integrated Circuits", New Age Internate th Edition. anco, "Design with Operational Amplifiers and Analog Integrated Graw-Hill, 2016. t A. Gayakwad, "OP-AMP and Linear ICs", 4 th Edition, Prentice H	tional	15 15 15 15 5 15 15 15	Nos. Nos. Nos. Nos. Nos. Nos.	

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level						
CO1	Develop a various linear and nonlinear applications using Operational Amplifier.	4						
CO2	Construct Astable and Monostable Multivibrator using NE555 Timer.	4						
CO3	Examine the Characteristics and applications of PLL.	3						
CO4	Design DC Power supply using LM317 and LM723.	4						
CO5	Simulate and validate the results of various operational amplifier applications using any simulation software.	3						
*Bloo	*Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-							
5; Cre	ate-6							

COs				2	0.	P	Os	-	~	~	50 - C		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	3	3	3	2	<u> </u>	-	0.431	-	-	5		3	3	2
2.	3	3	3	2	-		1.0		1-2	1	5-1	3	3	2
3.	3	3	3	3	<u>.</u>	-	-	-	2	-/	2	3	3	2
4.	3	3	-3	2	1	2	2	0-1	$\overline{\mathbf{u}} >$	-]	0	3	3	2
5.	3	3	3	2	3	1.2	1	-	500	25	-	3	3	3

Б	C22412	DISCRETE TIME SIGNAL PROCESSING	L	Т	P	C
		LABORATORY	0	0	3	1.5
COUI	RSE OBJEC					
•	-	nt DFT and FFT.				
•	1	nt Linear and Circular Convolution.				
•		FIR filter using windowing method.				
•	To design a					
•	To study the	e architecture of DSP processor.				
	OF EXPER					
-	iments using					
1.		of elementary Discrete-Time sequences				
2.		operties of LTI systems using Simulink				
		Circular convolution, Cross correlation of two sequences		、		
		urier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT)		
		Γ algorithms - Decimation in Time / Decimation in Frequency				
6.		mation through DTFT and DFT				
7. °		gital Butterworth and Chebyshev IIR filter	motion			
		IR filter (LPF/HPF/BPF/BSF) and demonstrates the filtering operation listogram plot Image filtering	eration	1		
9.	Processing	of an image : Representation, Histogram plot, Image filtering				
Evenor	imanta uaina	DCD	1			
		s DSP processor	1			
1.		hitecture of Digital Signal Processor ation in LTI systems.				
		of various signals				
	Design of F					
4 . 5.		tion of Up-sampling and Down-sampling	1			
5.	mplementa	tion of op-sampling and Down-sampling	/			
Mini l	Project (Any	one)				
		llation of audio signal				
		ection based on EEG/ECG				
		ge processing Technique				
	1					
)TAL	: 45 I	PERI	ODS
		IENTS FOR A BATCH OF 30 STUDENTS:				
	iption of Iter			Qu	iantit	y
		oating point DSP Processors			15	
	Add-on Card					
		ulink and Signal Processing Tool Box or Equivalent	1	5 Lic	enses	
Softwa	are in desktop	o systems				
ТЕХТ	BOOKS:					

- 1. John G. Proakis& Dimitris G.Manolakis, "Digital Signal Processing Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007.
- 2. B. Venkataramani and M. Bhaskar, —Digital Signal Processors Architecture, Programming and Applications Tata McGraw Hill Publishing Company Limited. New Delhi, 2003.

- 3. Rafael C.Gonzalez & Richard E.Woods Digital Image Processing Pearson Education- 4/e Reprint 2018
- 4. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education India, 2008.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT* Level
		Level
CO1	Simulate standard signals.	3
CO2	Demonstrate the applications of FFT in signal processing	3
CO3	Design digital filters.	3
CO4	Demonstrate their abilities towards DSP processor based implementation of DSP systems	3
CO5	Implement signal processing applications in image and speech signal.	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

COs			1	1.	. 1	Р	Os	-	1 102	10.1	15		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11-	12	13	14
1.	1	3	2	2	3	-	.A(1	/ -U	-	ELL.	1 -	1	1
2.	3	3	4	2	3	2	3/-	-/	2	-	1-17	1 -	3	3
3.	3	3	X	2	3	2	2	-	2	-/	-0	- 1	3	3
4.	3	3	1	2	3	2	1	-	the second	1	5/	-	2	2
5.	2	3	2	2	3	3	2		2	10	1	-	3	3

फिकई हरग

विद्या

20)

SEMESTER V

EC22501	COMMUNICATION SYSTEMS	L 3	T 1	P 0	C 4
COURSE OF	BJECTIVES:	3		U	4
	introduce the concepts of various continuous wave modulations				
	understand some of the essential pulse modulation techniques				
	understand the various Band pass signaling schemes				
	know the fundamentals of channel coding				
	understand the concepts of information theory				
• 10					
UNIT I	CONTINUOUS WAVE MODULATION		9-	+3	
Amplitude	Modulation – DSBFC, DSBSC, SSBSC, VSB- Demodulation –E	nvel	ope	and	d;
-	lyne receivers		•		
Angle modu	ulation – PM and FM – Narrow band, Wideband FM- FM Mc	dula	ators	an	ıd
Demodulator	rs- Foster Seeley Discriminator; Applications. (Qualitative Analysis)				
UNIT II	PULSE MODULATION		9+	-3	
Low Pass Sa	ampling - Aliasing - Signal Reconstruction - Quantization - Types of	Qu	antiz	zatic	n
(Uniform &	Non-uniform) - Line Coding - PCM - TDM - Delta Modulation - A	dapt	ive	Del	ta
Modulation -	- Differential PCM - Adaptive DPCM.				
	A DEL				
UNIT III	PASSBAND DIGITAL TRANSMISSION		9+	-3	
Generation,	detection, PSD & BER of Coherent BPSK, BFSK, QPSK, DPSK -	· Pri	ncip	ole o	of
M-ary Modu	lation - Direct Sequence and Frequency Hop Spread Spectrum Technic	jues	_		
UNIT IV	CHANNEL CAPACITY		9+		
Information	& Entropy - Source Coding Theorem - Huffman & Shannon-Fano Codi	ng -	Di	scre	te
Memoryless	Channel - Mutual Information & its properties - Channel Capacity (Han	tley	-Sha	nnc	n
Law) - Chan	nel Coding theorem	-			
UNIT V	ERROR CONTROL CODING		9-	+3	
Channel codir	g theorem - Linear Block codes - Hamming codes - Cyclic codes - Con	vol	ution	nal	
codes - Viterb	i Decoder				
	TOTAL: (L: 45 + T: 15):	60	PEF	RIO	DS
ГЕХТ ВООЬ					
	Haykin, "Communication Systems", 4th edition, Wiley Publications, 2				
2. Amital	oha Bhattacharya, "Digital Communication", TMH, Ninth Reprint 2017	′			
REFERENC	ES:				
1. B. Skl	ar, "Digital Communication Fundamentals and Applications", 2nd Edi	ition	, Pe	arsc	n
	tion, 2009				
2. B.P.La	thi, "Modern Digital and Analog Communication Systems", 3rd Ed	ition	ı, O	xfoi	d
Univer	rsity Press 2007.				
3. H P H	su, "Schaum Outline Series - Analog and Digital Communications", TM	4H 2	2006).	

		RBT
Jpon su	ccessful completion of the course, students should be able to:	Level
CO1	Acquire the knowledge on different continuous wave modulation techniques.	2
CO2	Explore and appreciate the significance of the different pulse modulation techniques in communication systems	3
	Determine and manipulate the spectral characteristics of band pass signaling schemes and their noise performance of a communication system	3
CO4	Develop error control coding schemes for real time applications.	4
CO5	Develop source coding schemes for real time applications	4
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	aluate-5;
Create-	6 COLLEON	

*COs	POs												PSOs	
Γ	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	3	2	0	2	-	-	1-2	1	1-2	3	3	2
2.	3	3	3	3	0	2	-	1	S	-	6	3	3	2
3.	3	3	<3	3	0	2	1	1			(1)	3	3	2
4.	3	3	3	3	0	2	-		10	S-1	5	3	3	2
5.	3	3	3	3	0	2	1-1	1			Prove a	3	3	2

tant

[^{•1} Moderate, 5 weak, 2 Strong

IN SALE

EC22502

COMPUTER ORGANIZATION AND DESIGN

L	Т	P	C
3	0	0	3

9

9

9

9

9

COURSE OBJECTIVES:

- To understand the basic structure and operation of computers.
- To acquire knowledge about the various arithmetic operations that performed by ALU.
- To expose the students to the concept of Pipelining.
- To introduce the students to the major ideas and concepts in parallel processing.
- To describe hierarchical memory systems including cache memories and virtual memory.

UNIT I OVERVIEW AND INSTRUCTIONS

Historical evolution of computers and their impact on society-Eight ideas in Computer Architecture – Components –Technology – Performance –Power wall – Uniprocessors to multiprocessors; Instructions – operations and Operands – Representing instructions – Logical operations – Control operations – Addressing and addressing modes.

UNIT II ARITHMETIC OPERATIONS

ALU - Addition and subtraction – Multiplication – Division –IEEE 754 Single and Double Precision formats- Floating Point operations-Subword parallelism.

UNIT III PROCESSOR AND CONTROL UNIT

Basic MIPS Implementation -Building datapath – Control Implementation scheme – Instruction Cycle-single and Multicycle -Pipelining – Pipelined datapath and control – Handling Data hazards & Control hazards – Exceptions.

UNIT IV PARALLEL PROCESSORS

Instruction-level-parallelism – Parallel processing challenges –Flynn's classification-Parallel computing principles- Parallelism –Task, Data – Hardware Multithreading – Multicore processors-Shared Vs Distributed Memory systems.

UNIT V MEMORY SYSTEMS

Memory hierarchy - Memory technologies – Cache basics – Measuring and improving cache performance - Virtual memory, Translation Lookaside buffers(TLB's).

TOTAL:45 PERIODS

TEXT BOOKS:

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MIPS Edition Morgan kauffman, Fifth Edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture" Eleventh edition, 2019, Pearson Education.

- 1. Govindarajalu, "Computer Architecture and Organization, Design Principles and Applications", Tata McGraw Hill, Second Edition, 2017.
- 2. Shuangbao Paul Wang,"Computer Architecture and Organization: Fundamentals and Architecture Security by, Springer Verlag, Singapore; 1st ed. 2021 edition (1 December 2021).

- 3. Mano M Morris, "Computer System Architecture, Revised Third Edition 30 June 2017, Pearson Education.
- 4. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 2012.

	SE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Compute the performance of various computer architecture and to interpret the instruction set of MIPS processor	4
CO2	Design and construct various arithmetic circuits for an Arithmetic and Logic units of computing systems	3
CO3	Assessing various pipelining techniques to implement it for better data path construction for Control units of computing systems	3
CO4	Categorize various paralleling process techniques and its challenges and also to distinguish various multithreading techniques	3
CO5	Organize the different Memory technologies and I/O systems to be preferred for computer architectural design	3

S

े तिह

*COs		1	FI	0.00	200	P	Os	1	2	12	1	PS	SOs
	1	2	3	4	5	6	7	8	9	10 1	1 12	13	14
1.	3	3	3	2		1	-	-1	717-30	1 =	3	2	2
2.	3	3	3	2	-	1	5	-	-11-	- 2	3	2	2
3.	3	3	3	2	1	-	86	1-1	U.,	<u>- 1 12</u>	3	2	2
4.	3	3	3	2		-	1	1	-	12	3	2	2
5.	3	3	3	2	-	-	100	2	0	12	3	2	2
*	1 - W	eak, 2	– Mode	erate, 3	- Stron	g	2.8%		10-20	121			

Π

1-0

ा हेवता ७

EC22503

COMMUNICATION NETWORKS AND SECURITY

L T P C 3 0 0 3

9

9

6

9

COURSE OBJECTIVES:

- To learn the network models and functionalities of Data Link layer.
- To understand the routing protocols and various addressing schemes.
- To learn congestion control algorithm and techniques to improve QoS.
- To be familiar with real time applications of networks.
- To describe the principles of symmetric and asymmetric key cryptosystems.

UNIT I NETWORK MODELS AND DATA LINK LAYER 12

Overview of Networks and its Attributes – Network Topology – OSI, TCP/IP, Addressing – Introduction to Data link Layer – Error Detection and Correction – Ethernet (802.3) - Wireless LAN – IEEE 802.11– Flow and Error Control Protocols .

UNIT II NETWORK LAYER

Logical addressing - IPv4 and IPv6 Addresses: Datagram Format - Transition from IPv4 to IPv6– Address Mapping - Network Layer Protocols (IP and ICMP) - Unicast and Multicast Routing protocol.

UNIT III TRANSPORT LAYER

Client/Server Paradigm - Transport Layer Protocols – UDP and TCP - TCP Connection and State Transition Diagram - Congestion Control and Avoidance - QoS

UNIT IV APPLICATION LAYER

Application Layer Paradigms – Client – Server Programming – Domain Name System – World Wide Web, HTTP, Electronic Mail.

UNIT V SYMMETRIC AND ASYMMETRIC KEY CRYPTOSYSTEMS

OSI Security Architecture – Attacks – Security Services and Mechanisms - Classical Encryption techniques – Symmetric Key Cryptography: Advanced Encryption Standard (AES) – Asymmetric Key Cryptography: Rabin Cryptosystem.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Behrouz.A.Forouzan, Data Communication and Networking, Fifth Edition, TMH, 2017.
- 2. William Stallings, Cryptography and Network Security, Seventh Edition, Pearson Education, 2017.
- 3. Behrouz A. Forouzan, "Cryptography and Network Security", 2nd edition Tata McGraw Hill, 2010.

- 1. James.F.Kurose and Keith.W.Ross, Computer Networking A Top Down Approach, Sixth Edition, Pearson, 2017.
- 2. Doughlas .E.Comer, Computer Networks and Internets with Internet Applications, Fourth Edition, Pearson Education, 2008.
- 3. Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dreamtech India Pvt Ltd, 2003.

COUI	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Distinguish the functionalities of OSI, TCP/IP model and examine the error correction/detection techniques of data frame.	2
CO2	Apply the knowledge of addressing scheme and various routing protocols in data.	3
CO3	Categorize the various policies for handling congestion in TCP and define the characteristics of QoS.	4
CO4	Develop different application layer level protocols based on user's request	4
CO5	Implement the symmetric and asymmetric cryptosystems in real time applications.	3
Bloon	a's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

١.

1.

*C			144	57	. 1	Р	Os	1	. Y.	d-1	m		PS	SOs
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	1	ŝ	3	3	1	18	-	3	3
2.	3	3	3	3	3	-	4	3	3	1 <	5-1	-	3	3
3.	3	3	3	3	3	<u> </u>	÷Đ.,	3	3	(1)	1	-	3	3
4.	1	1	3	3	3	1	4	3	3	2)	-	-	3	3
5.	3	3	3	3	3	1	-	3	3	X	-	-	3	3
* 1 – V	Weak, 2	2 - Mo	derate,	3 - Stro	ong	-//	R	6	~	0				

ST)

EC22504	PHYSICAL VLSI DESIGN (Common to EC and EE)	L 3	<u>Т</u> 0	<u>Р</u>	<u>C</u> 3
COURSE OI	BJECTIVES:	-	-		-
	inderstand the fabrication processes of MOS circuits, design rules for lay	yout	s an	d th	e
	tations in scaling.	/			
• To le	earn about realization of MOS circuits for various combinational logic b	lock	ts ar	ıd	
	yze the performance trade-offs with respect to the area, power and delay				
	tudy the various arithmetic building blocks and their timing constraints.				
• To le	earn about the various synchronous and asynchronous sequential design	s and	d an	alyz	ze
	iming constraints.			•	
	earn about the various architectural choices available for FPGA.				
UNIT I	MOS TRANSISTOR PRINCIPLE				9
NMOS, PMC	OS -Enhancement and depletion MOSFET; MOS transistor-Ideal I-V c	chara	acter	risti	cs;
	Process - MOSFET, CMOS- n-well, p-well, Twin tub, SOI; Scaling				
	limits; CMOS inverter characteristics; Stick diagram; Layout diagrams;				
Layer Represe			U		Í
i	1.2 I X I X I				
UNIT II	COMBINATIONAL LOGIC CIRCUITS				9
	Design: Examples of Combinational Logic Design; Complementary C	MOS	S co	ncer	ot
	es; Ratioed Logic -DCVSL logic gate; Pass Transistor Logic				
					of 1
and propertie					
and propertie Complementa	ary PTL and Differential PTL; CMOS transmission gate; Elmore's consta	ant;	Dyn	nami	ic
and propertie Complementa CMOS design		ant;	Dyn	nami	ic
and propertie Complementa	ary PTL and Differential PTL; CMOS transmission gate; Elmore's consta	ant;	Dyn	nami	ic
and propertie Complementa CMOS design Gates.	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant n: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad	ant;	Dyn	nami	ic ic
and propertie Complementa CMOS design Gates. UNIT III	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant n: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS	ant; ling	Dyn Dyn	nami	ic ic 9
and propertie Complementa CMOS design Gates. UNIT III Timing Metr	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabili	ant; ling ity I	Dyn Dyn Princ	nami nami	ic ic 9 e;
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabili Based Latches; Master-Slave based Edge Triggered Register; Non-ideal Circuits; Static Latches (State) (St	ant; ling ity I clocl	Dyn Dyn Princ k sig	ami ami ciple gnal	ic ic 9 e; s;
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascade SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M	ant; ling ity I clocl	Dyn Dyn Princ k sig Reg	ami nami ciple gnals	ic ic 9 e; s; r;
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS Fics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A	ant; ling ity I clocl	Dyn Dyn Princ k sig Reg	ami nami ciple gnals	ic ic 9 e; s; r;
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascade SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M	ant; ling ity I clocl	Dyn Dyn Princ k sig Reg	ami nami ciple gnals	ic ic 9 e; s; r;
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re design. Introd	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory.	ant; ling ity I clocl	Dyn Dyn Princ k sig Reg	ami nami ciple gnals	ic ic 9 e; s; r; 1s
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A luction to Memory.	ant; ling ity I clock OS Asyn	Dyn Dyn Prino k sig Reg chrc	nami nami ciple gnal: giste	ic ic 9 e; s; r; 1s 9
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd UNIT IV Data path circ	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascade SEQUENTIAL LOGIC CIRCUITS Trics for Sequential Circuits; Static Latches and Registers; Bi-stability Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of the ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A function to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders;	ant; ling ity I clock OS Asynt	Dyn Dyn Prind k sig Reg chrc	ciplo ciplo gnal: giste	ic ic 9 e; s; r; is 9 ct
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re design. Introd UNIT IV Data path circ Adder; Carry	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone;	ant; ling ity I clocl OS asyn ; Car Mu	Dyn Dyn Prino k sig Reg chrc rry S	ciplo ciplo gnal: tiste onou Selectiers	ic ic 9 e; s; r; is 9 ct -
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re design. Introd UNIT IV Data path circe Adder; Carry Wallace Tree	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A luction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off	ant; ling ity I clocl OS asyn ; Can Mu	Dyn Dyn Prino k sig Reg chrc rry S	ciplo ciplo gnal: tiste onou Selectiers	ic ic 9 e; s; r; is 9 ct -
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re design. Introd UNIT IV Data path circe Adder; Carry Wallace Tree	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone;	ant; ling ity I clocl OS asyn ; Can Mu	Dyn Dyn Prino k sig Reg chrc rry S	ciplo ciplo gnal: tiste onou Selectiers	ic ic 9 e; s; r; is 9 ct -
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re design. Introd UNIT IV Data path circe Adder; Carry Wallace Tree Arithmetic Bu	Ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A luction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks.	ant; ling ity I clocl OS asyn ; Can Mu	Dyn Dyn Prino k sig Reg chrc rry S	ciplo ciplo gnal: tiste onou Selectiers	ic ic 9 e; s; r; is 9 ct - ze
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	Ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES	ant; ling ity I clocl lOS Asyn , Can Mu for	Dyn Dyn Princ k sig Reg chro rry S ltipl all a	cipla cipla gnal: siste onou Selea iers bboy	ic ic 9 e; s; r; is 9 ct - re 9
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re design. Introd UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA I	ant; ling ity I clocl COS ssynd for for build	Dyn Dyn Prind k sig Reg chrcc rry S Itipl all a	ciple gnali giste onou Selectiers abov	ic ic 9 e; s; r; is 9 ct - ze 9 ck
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd UNIT IV Data path circe Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture -	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA I FPGA interconnect routing procedures; Design for Testability: Ad Hoc	ant; ling ity I clocl COS ssynd for for build	Dyn Dyn Prind k sig Reg chrcc rry S Itipl all a	ciple gnali giste onou Selectiers abov	ic ic 9 e; s; r; is 9 ct - ze 9 ck
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd UNIT IV Data path circe Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture -	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilits ased Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA I FPGA interconnect routing procedures; Design for Testability: Ad Hoc 7. Low power design principles.	ant; ling ity I clocl COS asyn for for builc Tes	Dyn Dyn Prino k sig Reg chrcc rry S ltipl all a ding ting	ciplo gnali giste onou Select iers abov	$\begin{array}{c} ic \\ ic \\ 9 \\ e; \\ s; \\ r; \\ is \\ \hline 9 \\ ct \\ - \\ re \\ \hline 9 \\ ck \\ can \\ \hline \end{array}$
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Late Dual-Edge Re design. Introd UNIT IV Data path circe Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture -	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS rics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA I FPGA interconnect routing procedures; Design for Testability: Ad Hoc	ant; ling ity I clocl COS asyn for for builc Tes	Dyn Dyn Prino k sig Reg chrcc rry S ltipl all a ding ting	ciplo gnali giste onou Select iers abov	ic ic 9 e; s; r; is 9 ct - re 9 ck ck can
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture - Design, BIST	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS ics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA I FPGA interconnect routing procedures; Design for Testability: Ad Hoc St. Low power design principles.	ant; ling ity I clocl COS asyn for for builc Tes	Dyn Dyn Prino k sig Reg chrcc rry S ltipl all a ding ting	ciplo gnali giste onou Select iers abov	$\begin{array}{c} ic \\ ic \\ 9 \\ e; \\ s; \\ r; \\ is \\ \hline 9 \\ ct \\ - \\ re \\ \hline 9 \\ ck \\ can \\ \hline \end{array}$
and propertia Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture - Design, BIST	Ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS Tics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA I FPGA interconnect routing procedures; Design for Testability: Ad Hoc C: Low power design principles. KS:	ant; ling ity I clocl (OS asynd for for build Tes 45 F	Dyn Dyn Prind k sig Reg chrcc rry S ltipl all a ding tting	ciple gnali giste onou Select iers abov	ic ic 9 e; s; r; is 9 ct - re 9 ck ck can
and propertie Complementa CMOS design Gates. UNIT III Timing Metr Multiplexer B Dynamic Lata Dual-Edge Re design. Introd UNIT IV Data path circ Adder; Carry Wallace Tree Arithmetic Bu UNIT V Full custom a architecture - Design, BIST TEXT BOOI 1. Jan M	ary PTL and Differential PTL; CMOS transmission gate; Elmore's constant: Dynamic Logic - Basic Principles; Issues in Dynamic Design; Cascad SEQUENTIAL LOGIC CIRCUITS ics for Sequential Circuits; Static Latches and Registers; Bi-stabilit Based Latches; Master-Slave based Edge Triggered Register; Non-ideal of ches and Registers; Transmission-Gate Edge-triggered Registers; C ² M egisters; Timing issues; Pipelines; Clock Strategies; Synchronous and A fuction to Memory. DESIGNING ARITHMETIC BUILDING BLOCKS cuits: Architectures for Ripple Carry Adders; Carry Look Ahead Adders; Bypass Adder; High speed adders - Brunt Kung adder, Kogge Stone; multiplier, Booth Multiplier; Barrel shifters; Speed and Area Trade-off uilding Blocks. IMPLEMENTATION STRATEGIES and Semi-custom design; Standard cell design and cell libraries; FPGA I FPGA interconnect routing procedures; Design for Testability: Ad Hoc St. Low power design principles.	ant; ling ity I clocl (OS asynd for for build Tes 45 F	Dyn Dyn Prind k sig Reg chrcc rry S ltipl all a ding tting	ciple gnali giste onou Select iers abov	ic ic 9 e; s; r; is 9 ct - re 9 ck ck can

2. M.J. Smit	h. "Application Sr	pecific Integrated	Circuits", Addisson	Wesley, 1997.

REFERENCES:

- N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision 1. Wesley 1993.
- R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and 2. Simulation", Prentice Hall of India 2005.
- 3. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of 3. India, 2007.

COURS	SE OUTCOMES:	RBT
Upon su	ccessful completion of the course, students should be able to:	Level
CO1	Represent the CMOS logic circuit design using Stick Diagrams and Layout Diagrams.	3
CO2	Realize the MOS circuits for various combinational logic blocks.	4
CO3	Choose a suitable MOS logic style for designing Sequential logic blocks.	4
CO4	Select suitable MOS logic style for designing arithmetic logic blocks.	4
CO5	Choose a suitable FPGA implementation strategy.	3
	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-5;
Create-6		aluate-:

COURSE ARTICULATION MATRIX 6

						-	Os				1.11	/	PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	1	2	3	-	2	1	1	1.	5/	2	3	3
2.	3	2	1	3	3	-	2	ž -	1	(9)	1	2	3	3
3.	3	2	J	3	3	-	2	~	1	-	<u> </u>	2	3	3
4.	3	2	1	3	3	77- 1	ICI)	20	10.	-	-	2	3	3
5.	3	2	-	2	3		-	_	- 65	-	-	2	3	1

EC22505	TRANSMISSION LINES AND RF SYSTEMS	L T 3 0		C 3
COURSE O	BJECTIVES:	1-1-		-
• To inc	culcate the various types of transmission lines.			
• To g	ve thorough understanding about high frequency line, power a	nd im	peda	nce
	rements.			
	part technical knowledge in impedance matching using smith chart.			DE
• 10 int netwo	roduce waveguides and high frequency parameters for circuit repres rk.	entatio	n oi	KF
• To de	al with the issues in the design of RF amplifiers and filters.			
UNIT I	TRANSMISSION LINE THEORY			9
Symmetrical	networks- Characteristic impedance and Propagation constant, Ger	neral th	leory	v of
Transmission	lines-Types, General solution, The infinite line, Wavelength, Velocity	of prop	agat	ion,
Waveform di	stortion, the distortion-less line, Line not terminated in Z ₀ , Reflection	on coe	ffici	ent,
Reflection fac	ctor, Reflection Loss, Input and transfer impedance, Open and short cir	cuited	lines	•
UNIT II	HIGH FREQUENCY TRANSMISSION LINES			9
Transmission	line equations at radio frequencies, Line constants of Zero dissipatio	n, Volt	age	and
current on the	dissipation less line, Standing Waves, Standing Wave Ratio, Input im	pedan	e of	the
dissipation-le	ss line - Open and short-circuited lines, Power and Impedance measure	ment		
UNIT III	IMPEDANCE MATCHING IN HIGH FREQUENCY LINES			9
	atching: $\lambda/8$, $\lambda/2$ lines, Quarter wave transformer- Impedance matched double stub matching - Smith chart-Solutions of problems using Smi			
	g using Smith chart.			-0
UNIT IV	TWO PORT NETWORK THEORY AND WAVEGUIDES			9
	cy parameters, Formulation of S parameters, Properties of S paramet	ers. Re	cipro	ocal
	Network, Transmission matrix, Waveguides- Rectangular and Circula			
	angular waveguides. Introduction to resonators.			
UNIT V	RF AMPLIFIERS AND FILTERS			9
RF amplifiers	- design of amplifiers, Filter fundamentals, Design of filters of Constan	t K - Lo	ow P	ass,
	and Pass, Band Elimination, m- derived sections - low pass, high pass.			
	TOTAL:	45 PE	RIO	DS
TEXT BOO	KS:			
	KS: .Ryder, "Networks, Lines and Fields", Prentice Hall of India, 2nd Editi	on, 20)6.	
1. John D		-		
1. John D 2. Reinho	Ryder, "Networks, Lines and Fields", Prentice Hall of India, 2nd Editi	-		
1. John D 2. Reinho Pearson	Ryder, "Networks, Lines and Fields", Prentice Hall of India, 2nd Editi ld Ludwig and Gene Bogdanov, "RF Circuit Design: Theory and Appl	ication		

- 1. Umesh Sinha, "Transmission Lines and Networks: Networks, Filters and Transmission lines" Satya Prakashan, Publication, 2010.
- 2. E.C.Jordan and K.G. Balmain, —Electromagnetic Waves and Radiating System, Prentice Hall of India, 2006.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
C01	Explain line theory and classify transmission lines. Assess distortion less transmissions on lines.	2
CO2	Express transmission lines at high frequency and assess the performance.	2
CO3	Assess performance of lines implementing impedance matching techniques using Smith chart.	3
CO4	Explain the high frequency parameters and waveguides.	2
CO5	Analyze amplifiers at RF amplifier and design filters.	3
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva -6	luate-5;

*COs				11. C		I	POs 🛛	-			-		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	1	1	≥ 2	- 5	2-1	3	1/	1	1-1-1	2	m	1	2	-
2.	1	1	2	5.1	6 - I	3	1	1/	1.20	2	IT	1	2	-
3.	1	1	2	-		3	1	1	-	2	2	1	2	-
4.	1	1	2	1	-	3	1	1	<u>-3</u>	2	51	1	2	-
5.	1	1	2	1-2	-	3	1	1	-0	2	54	1	2	-

0 0 0 3 1 COURSE OBJECTIVES: • To visualize the effects of sampling, multiplexing and digital pulse modulation techniques. • To implement AM & FM modulation and demodulation. • To implement FSK, PSK and M-ary schemes. • To implement Equalization algorithms and Error control coding schemes. • To simulate communication link and CDMA link INT OF EXPERIMENTS IST OF EXPERIMENTS 1. Signal Sampling and reconstruction 2. Time Division Multiplexing 3. AM Modulator and Demodulator 4. FM Modulator and Demodulator 5. Pulse Code Modulation and Demodulation 6. Delta Modulation and Demodulation 7. Observation (simulation) of signal constellations of BPSK, QPSK 8. Line coding schemes 9. ASK, FSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) 13. Coptare outputs of experiments and Simulated outputs mu	EC22511	COMMUNICATION SYSTEMS LABORATORY	L	Т	Р	C
 To visualize the effects of sampling, multiplexing and digital pulse modulation techniques. To implement AM & FM modulation and demodulation. To implement FSK, PSK and M-ary schemes. To implement Equalization algorithms and Error control coding schemes. To simulate communication link and CDMA link IST OF EXPERIMENTS Signal Sampling and reconstruction Time Division Multiplexing AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Observation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.			0	0	3	1.
 To implement AM & FM modulation and demodulation. To implement FSK, PSK and M-ary schemes. To implement Equalization algorithms and Error control coding schemes. To simulate communication link and CDMA link IST OF EXPERIMENTS Signal Sampling and reconstruction Time Division Multiplexing AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Destrvation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) Communication link simulation CDMA- DSSS and FHSS (simulation) Vote: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.						
 To implement FSK, PSK and M-ary schemes. To implement Equalization algorithms and Error control coding schemes. To simulate communication link and CDMA link IST OF EXPERIMENTS Signal Sampling and reconstruction Time Division Multiplexing AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Observation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) Communication link simulation CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.			tion te	chniqu	les.	
 To implement Equalization algorithms and Error control coding schemes. To simulate communication link and CDMA link LIST OF EXPERIMENTS Signal Sampling and reconstruction Time Division Multiplexing AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Observation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) Communication link simulation CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	• To impleme	nt AM & FM modulation and demodulation.				
 To simulate communication link and CDMA link LIST OF EXPERIMENTS 1. Signal Sampling and reconstruction 2. Time Division Multiplexing 3. AM Modulator and Demodulator 4. FM Modulator and Demodulator 5. Pulse Code Modulation and Demodulation 6. Delta Modulation and Demodulation 7. Observation (simulation) of signal constellations of BPSK, QPSK 8. Line coding schemes 9. ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	• To impleme	nt FSK, PSK and M-ary schemes.				
LIST OF EXPERIMENTS 1. Signal Sampling and reconstruction 2. Time Division Multiplexing 3. AM Modulator and Demodulator 4. FM Modulator and Demodulator 5. Pulse Code Modulation and Demodulation 6. Delta Modulation and Demodulation 7. Observation (simulation) of signal constellations of BPSK, QPSK 8. Line coding schemes 9. ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	• To impleme	nt Equalization algorithms and Error control coding schemes.				
 Signal Sampling and reconstruction Time Division Multiplexing AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Delta Modulation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students. 	• To simulate	communication link and CDMA link				
 Signal Sampling and reconstruction Time Division Multiplexing AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Delta Modulation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students. 						
 Time Division Multiplexing AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Observation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) Communication link simulation CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.						
 AM Modulator and Demodulator FM Modulator and Demodulator Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Observation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) Communication link simulation CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.		-				
 4. FM Modulator and Demodulator 5. Pulse Code Modulation and Demodulation 6. Delta Modulation and Demodulation 7. Observation (simulation) of signal constellations of BPSK, QPSK 8. Line coding schemes 9. ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) 	2. Time Divisi	on Multiplexing				
 Pulse Code Modulation and Demodulation Delta Modulation and Demodulation Observation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) Communication link simulation CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students. 	3. AM Modula	tor and Demodulator				
 6. Delta Modulation and Demodulation 7. Observation (simulation) of signal constellations of BPSK, QPSK 8. Line coding schemes 9. ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	4. FM Modula	ator and Demodulator				
 Observation (simulation) of signal constellations of BPSK, QPSK Line coding schemes ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) Error control coding schemes - Linear Block Codes (Simulation) Communication link simulation CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students. 	5. Pulse Code	Modulation and Demodulation				
 8. Line coding schemes 9. ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	6. Delta Modu	lation and Demodulation				
 9. ASK, FSK, PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	7. Observation	n (simulation) of signal constellations of BPSK, QPSK				
 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	8. Line coding	g schemes				
11. Communication link simulation12. CDMA- DSSS and FHSS (simulation)Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	9. ASK, FSK,	PSK, DPSK, BPSK, QPSK and M-ary schemes (Simulation)				
12. CDMA- DSSS and FHSS (simulation) Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	10. Error contro	ol coding schemes - Linear Block Codes (Simulation)				
Note: Observed outputs of experiments and Simulated outputs must be plotted and attached to the ecords written by the students.	11. Communica	tion link simulation				
ecords written by the students.	12. CDMA- DS	SS and FHSS (simulation)				
ecords written by the students.						
	Note: Observed out	puts of experiments and Simulated outputs must be plotted and	attach	ed to	the	
	records written by t					
TOTAL: 45 PERIOI			OTAL	.: 45 F	PERI	OD

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:	
Description of Items	Quantity
Kits for Signal Sampling, TDM, AM, FM, PCM, DM and Line Coding Schemes	2 Nos. each
MATLAB / SCILAB or equivalent software package for simulation experiments	10 Licenses
CRO's	10 Nos
PCs	10 No
Signal Generator /Function Generators (2 MHz)	10 Nos
Components and Accessories: Transistor-BC 107, XR 2206, Resistors, Capacitors,	-
diodes,Bread Boards,wires,IC 565	
TEXT BOOKS:	
1. Simon Haykin, "Communication Systems", 4th edition, Wiley Publications, 2013.	
2. Amitabha Bhattacharya, "Digital Communication", TMH, Ninth Reprint 2017.	

COUR	SE OUTCOMES:	RBT
Upon s	uccessful completion of the course, students should be able to:	Level
CO1	Construct and validate the results of AM, FM modulator and Demodulator, Time Division Multiplexing (TDM), Signal Sampling and Reconstruction, Pulse Code Modulation (PCM), Delta Modulation and Demodulation	3
CO2	Construct and observe the results of Base Band Signaling techniques	3
CO3	Simulation and forecasting of Signal Constellations, Digital Modulation Schemes in MATLAB	4
CO4	Simulate and verify the results of error detection and correction coding techniques in MATLAB.	4
CO5	Simulate and validate the results of AM Communication link(system) using MATLAB.	4
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evalu	ate-5;
Create-	6 CULLED	

-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1. 3 3 3 2 $ -$	*COs		1	11.	1	10	P	Os		100	1	01		PS	Os
2. 3 3 3 2 - - - - 3 3 3 3. 3 3 3 3 2 - - - - 3 3 3 3. 3 3 3 2 - - - - 3 3 3 4. 3 3 3 3 - - - - - 3 3 3 5. 3 3 3 3 - - - - - 3 3 3		1	2	3	4	5	6	7	8	9	10	11	12	13	14
2. 3 3 3 2 - - - - 3 3 3 3. 3 3 3 3 2 - - - - 3 3 3 4. 3 3 3 3 - - - - - 3 3 3 5. 3 3 3 - - - - - 3 3 3	1.	3	3	3	3 -	2	10	1	0	1122	- 1	0	3	3	3
4. 3 3 3 3 - - - - - 3 3 3 5. 3 3 3 3 - - - - - 3 3 3	2.	3	3	3	3	2	×.	1	0		2.1		3	3	3
5. 3 3 3 3 3 3 3	3.	3	3	3	3	2	1-7	1	-	1.6	<u> </u>	\geq	3	3	3
	4.	3	3	-3	3	- \	1-	14	1	1 U.	2- I.	111	3	3	3
1 – Weak, 2 – Moderate, 3 - Strong	5.	3	3	3	3		1	1	-/	<u>-</u>		$\langle T \rangle$	3	3	3
	1 11	car, 2	wiou	ciuc, .	, buo	15		32	1E	19	1	5/			

EC22512	COMMUNICATION NETWORKS LABORATORY	L 0	T 0	P 3	C 1.5
COURSE OBJEC	TIVES:	Ŭ		-	
• To under	stand the working of various network protocols through implem	entati	ion.		
• To have	hands-on experience in configuring and simulating computer ne	twork	s usir	ng netv	work
simulatio	on tools.				
	ine the functionality of networking devices like hub, switch,	route	er, rep	eater,	etc.
	practical implementation.	~ ~ 4			
-	ment and analyze various network topologies through practical	setup			
• To under	stand routing algorithms through practical implementation.				
LIST OF EXPERI					
-	on of Ethernet/Fast Ethernet and TCP protocol				
	on of Stop and Wait, Goback-N and Selective Repeat Protocol				
	f a Client-Server Model including the configuration of Telnet				
	f Echo/Ping/Talk commands on of CSMA / CA protocol and compare with CSMA/CD protoc				
	g Standard Network Topologies: Star, Bus and Ring using LAN		or Vit		
	on of Distance Vector and Link State Routing algorithm	ITam			
	on of Encryption and Decryption Using LAN Trainer Kit				
9. Configuration					
0	of HTTP and DNS Server				
	n of Wireless LAN				
	on of Address Resolution protocol				
	of DHCP protocol				
	TO	TAL	: 45 1	PERI	ODS
LIST OF EQUIPM	IENTS FOR A BATCH OF 30 STUDENTS:				
Description of Iten	ns		Qı	ıantit	у
Desktop Computers	s-8GB RAM/512GB HDD, Processor i3/i5			30	
Cisco Packet Trace	r Software			30	
N-Sim	Cost and the			15	
LAN Trainer Kit				3	
TEXT BOOKS:					
1. William Sta	llings, Cryptography and Network Security, Seventh Edition, Pe	arson	Educ	ation,	
2017.					
2. Behrouz A.	Forouzan, "Cryptography and Network Security", 2 nd edition Ta	ata M	cGraw	v Hill,	

COU	RSE OUTCOMES:	RBT
Upon s	successful completion of the course, students should be able to:	Level
C01	Design & simulate computer networks using network simulation tools and analyze performance.	6
CO2	Examine functionality of networking devices through practical setup.	4
CO3	Design and implement different network topologies.	6
CO4	Implement and analyze various network protocols.	4
CO5	Obtain the comprehensive hands-on experience in configuring, managing and troubleshooting computer networks.	4
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

IN S THE

COs			1:	51		P	Os			N			PS	Os
005	1	2	3	4	5	6	7	8	9	10	(11)	12	13	14
1.	3	3	3	2	3	1	-	-	3.5	3	2	1	3	2
2.	3	2	2	3 -	3	2	mi-	1-0	-11	2	0	1	2	1
3.	3	3	3	2	3	1	1	-		3	1_	1	3	2
4.	3	2	2	3	3	1	5-		1 	2	\leq	1	2	1
5.	3	3	-2	3	3	2	A6		1-11	2	ETT	1	2	1
* 1 – V	Veak, 2	2 - Mo	derate,	3 - Str	ong		31	-/			111	1	•	•

परा इवता भा

EC22513	VLSI DESIGN LABORATORY	L	Т	P	C
		0	0	3	1.
COURSE OBJEC					
	ardware Descriptive Language				
	e fundamental principles of VLSI circuit design in digital and	analog o	loman	1.	
	ize fusing of logical modules on FPGAs				
*	hands on design experience with professional design (EDA)	olatform	S		
To provide	an idea of making an effective report based on experiments.				
LIST OF EXPER					
1. HDL based de	esign and simulation of Combinational circuits				
	le Carry Adder				
(b) Carry Loo					
· / ·	er and Demultiplexer				
(d) Decoder at (e) Code Conv	nd Priority Encoder				
	esign and simulation of Sequential circuits				
	ter (SISO, SIPO, PIPO)	1			
, , , , , , , , , , , , , , , , , , ,	bus and asynchronous Counter design	1			
· · •	Moore model	10			
•	esign, simulation and synthesis of Multiplier and ALU - Perfo	rm Syntl	nesis, I	Place	&
	ace & Route simulation and static timing analysis. Identificati				
-	Static and Dynamic logic using EDA tool.				
4. Simulation of					
		same			
5. Design and sc	hematic simulation of a simple analog circuit and analyze the		Gates		
 Design and sc Layout genera 	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & U	niversal	Gates		
 Design and sc Layout genera 	hematic simulation of a simple analog circuit and analyze the	niversal	Gates		
 Design and sc Layout genera 	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & U	niversal ool.			
 Design and sc Layout genera 	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & U	niversal		PERI	OD
 Design and sc Layout genera Analyze the A 	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to	niversal ool.		PERI	OD
 Design and sc Layout genera Analyze the A 	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to MENTS FOR A BATCH OF 30 STUDENTS:	niversal ool.	2: 45 1		
 Design and sc Layout genera Analyze the A LIST OF EQUIP Description of Item	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to MENTS FOR A BATCH OF 30 STUDENTS: ms	niversal pol. TOTAI	<u>.: 45 I</u> Qu	ıantit	
 Design and sc Layout genera Analyze the A LIST OF EQUIP Description of Ites Xilinx software, 	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to MENTS FOR A BATCH OF 30 STUDENTS: ms Xilinx or Altera FPGA	niversal pol. TOTAI	2: 45 I Qu 15 No	iantit s.	y
 Design and sc Layout genera Analyze the A Analyze the A LIST OF EQUIP Description of Ites I. Xilinx software, 2. Cadence/Tanner	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to MENTS FOR A BATCH OF 30 STUDENTS: ms	niversal pol. TOTAI	2: 45] Qu 15 No 15 Lic	iantit s. enses	y
 Design and sc Layout genera Analyze the A Analyze the A LIST OF EQUIP Description of Iter 1. Xilinx software, 2. Cadence/Tanner 3. PCs	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to MENTS FOR A BATCH OF 30 STUDENTS: ms Xilinx or Altera FPGA	niversal pol. TOTAI	2: 45 I Qu 15 No	iantit s. enses	y
 Design and sc. Layout genera Analyze the A Analyze the A LIST OF EQUIP: Description of Iter Linx software, Cadence/Tanner 3. PCs FEXT BOOKS:	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to MENTS FOR A BATCH OF 30 STUDENTS: ms Xilinx or Altera FPGA	niversal pol. TOTAI	2: 45 1 Qu 15 No 15 Lic 15 No	iantit s. enses s.	y
 Design and sc Layout genera Analyze the A Analyze	hematic simulation of a simple analog circuit and analyze the ation, parasitic extraction and post-simulation of Inverter & Un area, Power and Delay for sequential circuits using the EDA to MENTS FOR A BATCH OF 30 STUDENTS: ms Xilinx or Altera FPGA or equivalent software package	ress, W	Qu 15 No 15 Lic 15 No	iantit s. enses s. 2010	y

- 3. Kang, Leblibici, CMOS Digital Integrated Circuits, 3rd Ed., Tata Mc-Graw Hill, 2001.
- 4. Jan M. Rabaey, Digital Integrated Circuits, 2nd Ed., Pearson Education, 2002.
- 5. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, 2nd Edition, 2010.

COURSE OUTCOMES:								
Upon successful completion of the course, students should be able to:								
CO1	Prepare HDL code for basic as well as advanced digital integrated circuits.	3						
CO2	Use and import the logic modules into FPGA Boards.	4						
CO3	Design, Synthesize, Place and Route the digital ICs.	4						
CO4	Design, Simulate and Extract the layouts of IC Blocks using EDA tools.	4						
CO5	Compute Area, Delay and Power report of digital circuits using EDA tools.	4						
Bloom's	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4;	Evaluate-5;						
Create-6								

THE THE

*CO	POs													PSOs		
s	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	3	1.5	1	100		1	-	1-3		0-1	i -	-	1		
2.	2	2	2	1-1	-24-	1	-	1	N.	-	2	2	-	-		
3.	2	3	3		100	10	1	10	nvs	-	0	<u> </u> -	-	2		
4.	1	2	21	- 1.	- /		1-		100	21-	5	-	-	-		
5.	2	2	51	- 9	24 -	1-2	1			-	5	-	-	-		

परा

tante

SEMESTER VI

		I	Т	Р	С
EC22601	ANTENNAS AND MICROWAVE ENGINEERING	3	1	0	4
COURSE OF	BJECTIVES:	U	-	v	-
 To ena To fan To enl To enl 	able the student to understand the basic concepts in antenna parameters niliarize the students in the area of various antenna designs. hance the student knowledge in the area of antenna arrays. hance the student knowledge in the area of microwave devices. able the student to design the microwave circuits.	s			
			0	2	
UNIT I	INTRODUCTION TO ANTENNAS		<u>9</u> +	-	C
Parameters, Pl	requency bands-Review of low frequency parameters, S-Parameters-F hysical concept of radiation-Near and far field regions-Fields and Pow Intenna Parameters-Antenna Noise Temperature-Friis transmission equ	ver R	adia		
UNIT II	RADIATION MECHANISMS AND DESIGN ASPECTS		9-	3	
	echanisms of Linear wire antenna-Aperture antennas-Reflector anter		-	-	rin
	juency independent antennas-Design considerations-Applications.	mas-	wite	1051	пp
antennas-14ee	dency independent antennas-Design considerations-Applications.				
	ANTENNA ARRAYS AND SMART ANTENNAS		9-	3	
UNIT III					
UNIT III Two-element		wit		-	rm
Two-element	array-Array factor-Pattern multiplication-Uniformly spaced arrays		h u	nifo	
Two-element excitation amp	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart and		h u	nifo	
Two-element	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart and		h u	nifo	
Two-element excitation amp	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant cations.		h u	nifo nter	
Two-element excitation amp for 5G Applic UNIT IV Microwave H	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart and	tenna	h u ls-A 9-1 Micr	nifo nter	na
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant cations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn	tenna	h u ls-A 9-1 Micr	nifo nter	na
Two-element excitation amp for 5G Applic UNIT IV Microwave F Active Device UNIT V	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart and cations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN	tenna tor-N tor-N	h u ls-A 94 Micr 1. 94	nifo nten -3 owa	ve
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a	tenna tor-N tor-N	h u ls-A 94 Micr 1. 94	nifo nten -3 owa	ve
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart and cations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design	tenna tor-N etror	h un as-A 9_{+} Micr h. 9_{+} Micr	-3 owa	ve ve
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a	tenna tor-N etror	h un as-A 9_{+} Micr h. 9_{+} Micr	-3 owa	ve ve
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por Amplifier Des	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15):	tenna tor-N etror	h un as-A 9_{+} Micr h. 9_{+} Micr	-3 owa	ve ve
Two-element excitation amp for 5G Applic UNIT IV Microwave F Active Device UNIT V Amplifier Poy Amplifier Des TEXT BOOH	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant cations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS:	tenna itor-N etron ind N 60 1	h u ls-A 94 Micr 1. 94 Micr	-3 owa -3 owa	ve ve DS
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Poy Amplifier Des TEXT BOOH 1. John I	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Way	tenna itor-N etron ind N 60 1	h u ls-A 94 Micr 1. 94 Micr	-3 owa -3 owa	ve ve DS
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por Amplifier Des TEXT BOOH 1. John I Fourth	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Wav a Edition, Tata McGraw-Hill, 2006.	tenna tor-N etron und N 60 1	h u ls-A 94 Micr 1. 94 Micr	-3 owa -3 owa	ve ve DS
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por Amplifier Des TEXT BOOH 1. John I Fourth	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Way	tenna tor-N etron und N 60 1	h u ls-A 94 Micr 1. 94 Micr	-3 owa -3 owa	ve ve DS
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por Amplifier Des TEXT BOOH 1. John H Fourth 2. David	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant cations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Way a Edition, Tata McGraw-Hill, 2006. M. Pozar, "Microwave Engineering", Fourth Edition, Wiley India, 20	tenna tor-N etron und N 60 1	h u ls-A 94 Micr 1. 94 Micr	-3 owa -3 owa	ve ve DS
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Des Amplifier Des TEXT BOOH 1. John I Fourth 2. David REFERENC	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Way a Edition, Tata McGraw-Hill, 2006. M. Pozar, "Microwave Engineering", Fourth Edition, Wiley India, 20 ES: antine A.Balanis, "Antenna Theory Analysis and Design", Third edition	tenna tor-N to	h u ls-A 94 Micr n. 94 Micr	-3 owa -3 owa -3 owa stion	ve ve DS
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Por Amplifier Des TEXT BOOH 1. John H Fourth 2. David REFERENC 1. Consta India H	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Wave n Edition, Tata McGraw-Hill, 2006. M. Pozar, "Microwave Engineering", Fourth Edition, Wiley India, 20 ES: antine A.Balanis, "Antenna Theory Analysis and Design", Third edition Pvt Ltd., 2005.	tenna ttor-Metron und M 60 1 ve Pr 12.	h u s-A 9+ Micr 1. 9+ Micr 20- 00- 00- 00- 00- 00- 00-	-3 owa -3 owa JIOI gatio	ve ve DS on:
Two-element excitation amp for 5G Applic UNIT IV Microwave F Active Device UNIT V Amplifier Des Amplifier Des TEXT BOOH 1. John I Fourth 2. David REFERENC 1. Consta India I 2. R.E.C.	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Way h Edition, Tata McGraw-Hill, 2006. M. Pozar, "Microwave Engineering", Fourth Edition, Wiley India, 20 ES: antine A.Balanis, "Antenna Theory Analysis and Design", Third editi- Pvt Ltd., 2005. ollin, "Foundations for Microwave Engineering", Second edition, IEEI	tenna tor-N to	h u ls-A 94 Micr 1. 94 Micr PER opag	-3 owa -3 owa -3 owa -3 owa 2002 Will 2000	na ve ve DS on: ey
Two-element excitation amp for 5G Applic UNIT IV Microwave H Active Device UNIT V Amplifier Des Amplifier Des TEXT BOOH 1. John I Fourth 2. David REFERENC 1. Consta India H 2. R.E.C 3. A.R. H	array-Array factor-Pattern multiplication-Uniformly spaced arrays plitudes-Non-uniform excitation amplitudes-Binomial Array-Smart ant eations. PASSIVE AND ACTIVE MICROWAVE DEVICES Passive Devices: Directional Coupler-Isolator-Magic Tee-Attenua es: Gunn Diodes-PIN Diodes- Microwave tubes: Klystron-TWT-Magn MICROWAVE CIRCUIT DESIGN wer relation-Stability considerations-Microwave Filter Design-RF a sign-Low Noise Amplifier Design TOTAL (L:45+T:15): KS: D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Wave n Edition, Tata McGraw-Hill, 2006. M. Pozar, "Microwave Engineering", Fourth Edition, Wiley India, 20 ES: antine A.Balanis, "Antenna Theory Analysis and Design", Third edition Pvt Ltd., 2005.	tenna tor-N to	h u ls-A 94 Micr 1. 94 Micr PER opag	-3 owa -3 owa -3 owa -3 owa 2002 Will 2000	ve ve DS on: ey

COURSE OUTCOMES: Upon successful completion of the course, students should be able to:							
CO1	Apply the basic principles and evaluate antenna parameters	3					
CO2	Design and analyze the performance of reflector antenna and frequency independent antenna	4					
CO3	Design and analyze the performance of Array and smart antennas						
CO4	Understand the basic concepts of active and passive microwave devices						
CO5	5 Design a microwave system given the application specifications						
	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6						

*COs	POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	1	-	2-K	/	-	1		1	3	-	-	3	-
2.	3	2	1-2	21	-	5	3	1	2	2	1	-	3	3
3.	3	2	15	1	1	130		1	2	2	5-1	-	3	3
4.	3	2	F	1-1	1	/		1	2	-	6	- /	3	-
5.	3	2	3	- 7	3	10	7	2	2	3	0	1	3	3
* 1 – W	eak, 2	– Mod	lerate, 3	5 – Stro	ng	110		-	1.200	80.1	15			

परा

m

Emp

tantor

* 1 – Weak, 2 – Moderate, 3 – Strong

EC22602	EMBEDDED SYSTEMS AND IOT DESIGN	L 3	<u>Т</u> 0	P 0	<u>C</u> 3
COURSE O	BJECTIVES:	3	U	U	3
	udy the architecture and programming of ARM processors				
	arn IoT Configurations and arduino programming				
	inderstand different IoT Communication Models and open platforms				
	plore various IoT implementation tools				
	pply the concept of Internet of Things in real world scenario				
- 10 u	pry the concept of internet of rinings in real world sechario				
UNIT I	INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS				9
Complex sys	tems and microprocessors – Embedded system design process – De	sign	n ex	amp	le-
ARM Proces	sor Fundamentals, Instruction Set and Programming using ARM Pro	oces	sor	-	
	A GELGE				
UNIT II	IOT AND ARDUINO PROGRAMMING				9
	to the Concept of IoT Devices - IoT Devices Versus Com				
0	ns - Basic Components - Introduction to Arduino - Types of Ardu				
	Arduino Programming Structure – Sketches – Pins – Input/Output fr				-
Sketches – Ir	troduction to Arduino Shields – Integration of Sensors and Actuators	s wi	th A	rdui	no
	121				
UNIT III	IOT COMMUNICATION AND OPEN PLATFORMS				9
	nication Models and APIs – IoT Communication Protocols – Bluet PS – GSM modules – Open Platform (like Raspberry Pi) – A				
	g = Interfacing - Accessing GPIO Pins - Sending and Receiving				
	Connecting to the Cloud	5151	nais	0.31	115
UNIT IV	IOT IMPLEMENTATION RESOURCES				9
	to Python, Introduction to different IoT tools, developing application	ns th	nrou	gh I	-
	ping sensor-based application through embedded system platform,			<u> </u>	
	with python, Implementation of IoT with Raspberry Pi	1			0
_	00				
UNIT V	APPLICATIONS AND CASE STUDIES				
Design and I	Development of IoT Applications – Home Automation – Smart Agric	ultu	ıre –	Sm	art
-	thcare– Logistics				
	TOTAL:	45]	PEF	RIO	DS
TEXT BOO	KS:				
1. Cem	Unsalan, Huseyin Deniz Gurhan, Mehmet Erkin Yucel, "Embedded S	Syst	em 1	Desi	gn
with	ARM Cortex-M Microcontrollers: Applications with C, C++ and I	Mic	roPy	tho	n",
-	ger, 2022.				
•	e Wolf, "Computers as Components: Principles of Embedded Cor	npu	ter S	Syste	em
-	n", Elsevier, 2006.				
	leep Bahga, Vijay Madisetti, "Internet of Things – A hands-	on a	appı	oac	h",
Unive	ersities Press, 2015.				

 Ryan Turner, Arduino Programming: 3 Books in 1 - The Ultimate Beginners, Intermediate and Expert Guide to Master Arduino Programming, Nelly B.L.

International Consulting Limited, 2020.

REFERENCES:

- 1. Michael J. Pont, "Embedded C", Pearson Education, 2007.
- 2. Andrew N Sloss, D. Symes, C. Wright, "Arm System Developer's Guide", Morgan Kauffman/ Elsevier, 2006.
- 3. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things: David Hanes, Gonzalo Salgueiro, Patrick Grossetete ,Robert Barton, Jerome Henry, Cisco Press,2017
- 4. Constandinos X. Mavromoustakis, George Mastorakis, Jordi Mongay Batalla, "Internet of Things (IoT) in 5G Mobile Technologies" Springer International Publishing Switzerland 2016.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Design and develop ARM processor based embedded systems	3
CO2	Integrate Sensors and Actuators with Arduino.	3
CO3	Compare the communication models in IOT and build a small low-cost embedded and IoT system using open platform.	4
CO4	Analyze different tools for IoT implementation.	4
CO5	Build Domain specific applications of IoT	4
Bloon Create	i's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;

*COs	POs													
	1	2	3	4	5	6	7	8	9	10	<u>11</u>	12	1	2
1.	3	2	2	61	1	2	-	- 2	-	0	1	2	3	2
2.	3	1	3	3	2	- ^{- 68}	1	-	2	2	2	3	3	2
3.	3	2	3	2	19		-	1	2	2	3	3	3	2
4.	3	3	2	2	2	11	1	16	2	2	2	3	3	2
5.	2	3	3	2	2	1	1	1	2	2	2	3	3	2
* 1 – We	eak, 2	- Mod	erate, 3	- Stro	ng									•

	WIRELESS COMMUNICATION	L	Τ	P	С
EC22603		3	0	0	3
	BJECTIVES:				
	ow the characteristics of the wireless channel				
	rn the various cellular architectures		1		
	derstand the concepts behind various digital signaling schemes for fadin	ng c	han	nels	
	familiar with various multipath mitigation techniques				
• To acc	uire knowledge of a few cellular standards				
UNIT I	WIRELESS CHANNELS				9
		. T.	inle]	Dud	
1	rge scale path loss – Path loss models: Free Space and Two-Ray models				-
	Il scale fading - Parameters of mobile multipath channels – Time dispers				
	bandwidth – Doppler spread & Coherence time, Fading due to Multip				
-	ading – frequency selective fading – Fading due to Doppler spread – fas	t rac	nng	- SI	ow
fading.	a Contraction	1			
UNIT II	CELLULAR ARCHITECTURE				9
	ess techniques - FDMA, TDMA, CDMA - Capacity calculations - Ce				
	use - channel assignment - hand-off - interference & system capacity - tru	ınki	ng 8	z gra	ıde
of service – C	overage and capacity improvement.	1			
UNIT III	MODULATION TECHNIQUES FOR MOBILE RADIO				9
Minimum Sh	a wireless communication link, Principles of Offset-QPSK, p/4-D ift Keying, Gaussian Minimum Shift Keying, OFDM principle –				
Windowing, l	PAPR	1			
UNIT IV	MULTIPATH MITIGATION TECHNIQUES				9
Algorithms for Diversity and	s of Equalization – Adaptive equalization, Linear and Non-Linear or Adaptive Equalization - Zero Forcing and LMS - Principle of Div Macro Diversity – Space Diversity - Polarization Diversity - Frequen ty - Diversity combining techniques - Selection Diversity - Switch	versi ncy	ty - Dive	Mi ersit	cro y -
	o Combining - Equal Gain Combining - Rake receiver	04		1010	y -
	o Combining - Equal Gain Combining - Rake receiver				y -
Maximal Rati	A TAN				
Maximal Rati UNIT V GSM - Servic of 2.5 G mob	o Combining - Equal Gain Combining - Rake receiver WIRELESS COMMUNICATION STANDARDS es and Features - System Architecture - Radio Subsystem - Channel Ty- ile radio networks - IS-95 - Frequency and Channel Specification - Cl process - key features of IS-95 - 3G WCDMA - UMTS, LTE physical	pes DM	- ev A C	olut han	9 Ion
Maximal Rati UNIT V GSM - Servic of 2.5 G mob Modulation P	WIRELESS COMMUNICATION STANDARDS es and Features - System Architecture - Radio Subsystem - Channel Ty ile radio networks - IS-95 - Frequency and Channel Specification - Cl process - key features of IS-95 - 3G WCDMA - UMTS, LTE physical	pes DM laye	- ev A C er -	olut han UM	9 Ion
Maximal Rati UNIT V GSM - Servic of 2.5 G mob Modulation P	WIRELESS COMMUNICATION STANDARDS es and Features - System Architecture - Radio Subsystem - Channel Ty ile radio networks - IS-95 - Frequency and Channel Specification - C	pes DM laye	- ev A C er - olog	olut han UM	9 ion nel TS
Maximal Rati UNIT V GSM - Servic of 2.5 G mob Modulation P	WIRELESS COMMUNICATION STANDARDS es and Features - System Architecture - Radio Subsystem - Channel Ty ile radio networks - IS-95 - Frequency and Channel Specification - Cl process - key features of IS-95 - 3G WCDMA - UMTS, LTE physical tecture - CDMA 2000 physical layer – Introduction to 5G Wireless Te	pes DM laye	- ev A C er - olog	olut han UM	9 ion nel TS
Maximal Rati UNIT V GSM - Servic of 2.5 G mob Modulation F network archi	WIRELESS COMMUNICATION STANDARDS es and Features - System Architecture - Radio Subsystem - Channel Ty ile radio networks - IS-95 - Frequency and Channel Specification - Cl process - key features of IS-95 - 3G WCDMA - UMTS, LTE physical tecture - CDMA 2000 physical layer – Introduction to 5G Wireless Te TOTAL:	pes DM laye	- ev A C er - olog	olut han UM	9 ion nel TS
Maximal Rati UNIT V GSM - Servic of 2.5 G mob Modulation F network archi TEXT BOO 1. Rappa 2. Hayki	WIRELESS COMMUNICATION STANDARDS es and Features - System Architecture - Radio Subsystem - Channel Ty ile radio networks - IS-95 - Frequency and Channel Specification - Cl process - key features of IS-95 - 3G WCDMA - UMTS, LTE physical tecture - CDMA 2000 physical layer – Introduction to 5G Wireless Te TOTAL:	pes DM layo cchn 45	- events - e	olut han UM y RIO 12.	9 ion nel TS

- 1. Andreas.F. Molisch, "Wireless Communications", John Wiley India, 2006.
- 2. Andreas Goldsmith, "Wireless Communication Cambridge University Press, Aug-2005.
- 3. D. Tse and P. Viswanath, "Fundamentals of Wireless Communications," Cambridge University Press, 2005.

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	To characterize wireless channels and evaluate the various wave propagation models	5
CO2	To analyze various multiple-access techniques adopted in wireless applications and methodologies applied to increase the capacity of cellular system	4
CO3	To examine various digital signalling under fading conditions and calculate its error performance	4
CO4	To investigate various multipath mitigation techniques to retrieve signals under various channel conditions and evaluate their error probability	4
CO5	To be familiar with wireless standards, and generations and analyze their evolutions	4
	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-0	

	1	1	1	- 1	P	POs	-	1 000		PSOs			
1	2	3	4	5	6	7	8	9	10	11	12	13	14
ŝ	2	2	3	1	2	2	2	1	2	3	2	2	2
1	2	2	3	2	3	3	3	CO	2	3	3	2	2
/	3	3	2	1	1	1	1	-	-/	40	1	2	2
1	3	3	3	3	1	2	2	1	1	5/	1	2	1
	2	2	2	1	3	2	3	2	3	3	3	1	1
d	2 Iode	2 erate, 3	2 3 - Stro	1 ng	3	2	3	2		3	3		1

परा

विद्या

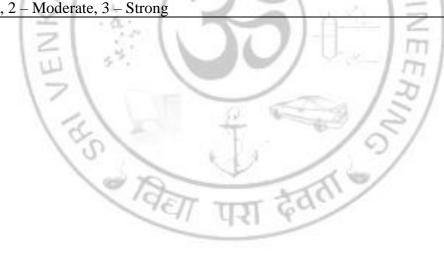
0

tad

EC22611	ANTENNA AND MICROWAVE ENGINEERING LABORATORY	<u>L</u> 0	Т 0	<u>Р</u> 4	C 2
COURSE OBJEC		U	U	4	4
	students with a fundamental understanding of microwave theory	and r	rincir	oles	
*	idents with the ability to design and analyze various microwav	-	-		nd
antennas.	······································		r		
• To familia	ize students with the practical aspects of microwave n	neasu	remer	nts a	nd
characteriza	tion techniques.				
	students' skills in using computational tools and software for mic	rowa	ve cire	cuit a	nd
antenna desi	•				
• To prepare s	tudents for advanced topics and research in the field of microwa	ve en	ginee	ring.	
LIST OF EXPERI	MENTS				
	analysis of Rectangular Waveguide				
	inalysis of a microstrip transmission line with characteristic impe	dana	(70)	50 oh	m
-					111
-	rectangular microstrip patch antenna and analyze its radiation ch				
4. Design and a and gain of t	analysis of 3 element Yagi-Uda antenna and to calculate beam-water he antenna.	10th, 1	Iront/t	Dack I	alio,
-	of E-plane, H-plane and Magic Tee junctions and compare its f	ïeld d	listrib	utions	
	array antenna				
U	analysis of microstrip LPF				
-	of mode characteristics of reflex klystron				
	characteristics of the Gunn diode				
•	racteristics of three port circulator and two port isolator				
•	easurement of indirect frequency and guide wavelength of rectar	noula	r wav	eguid	a
=	easing engene of induced frequency and yinde wavelength of rectain	nguiu	i man	oguiu	0
Measurement of VSV	mulation of a Directional coupler	1 line	techni	me	
Measurement of VSV	mulation of a Directional coupler VR and reflection co-efficient for the given unknown load using slotted				DDS
Measurement of VSV	mulation of a Directional coupler VR and reflection co-efficient for the given unknown load using slotted		technic : 60 P		DDS
	mulation of a Directional coupler VR and reflection co-efficient for the given unknown load using slotted				DDS
LIST OF EQUIPN	mulation of a Directional coupler VR and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS:		: 60 P		
LIST OF EQUIPN Description of Iten Microwave Test ber	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube		: 60 P	PERI	
LIST OF EQUIPN Description of Iten Microwave Test be Microwave Test be	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode		: 60 P	antit 7 4	
LIST OF EQUIPN Description of Iten Microwave Test ber Microwave Test ber Slotted Line Section	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode		: 60 P	antit 7 4 3	
LIST OF EQUIPN Description of Iten Microwave Test ben Microwave Test ben Slotted Line Section Isolator	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode		: 60 P	PERIO	
LIST OF EQUIPM Description of Iten Microwave Test ber Microwave Test ber Slotted Line Section Isolator Matched Termination	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode n		: 60 P	PERIO antit 7 4 3 4 10	
LIST OF EQUIPN Description of Iten Microwave Test ber Microwave Test ber Slotted Line Section Isolator Matched Termination E-Plane Tee, H-Pla	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode n on ne Tee, Magic Tee		: 60 P	eri antit 7 4 3 4 10 2	
LIST OF EQUIPN Description of Iten Microwave Test be Microwave Test be Slotted Line Section Isolator Matched Termination E-Plane Tee, H-Pla Microwave Power I	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode n on ne Tee, Magic Tee Meter		: 60 P	PERIO antit 7 4 3 4 10 2 2	
LIST OF EQUIPM Description of Iten Microwave Test ber Microwave Test ber Slotted Line Section Isolator Matched Termination E-Plane Tee, H-Pla Microwave Power I Direct Frequency M	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: 18 Inches using Klystron tube Inches using Gunn diode Inches using Gunn diode Inches Using Gunn diode Inches Using Gunn diode		: 60 P	PERIO	
LIST OF EQUIPN Description of Iten Microwave Test ber Microwave Test ber Slotted Line Section Isolator Matched Termination E-Plane Tee, H-Pla Microwave Power I Direct Frequency M Directional Coupler	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode n on ne Tee, Magic Tee Meter leter X Band X Band		: 60 P	PERIO	
LIST OF EQUIPM Description of Iten Microwave Test ber Slotted Line Section Isolator Matched Termination E-Plane Tee, H-Pla Microwave Power I Direct Frequency M Directional Coupler Spectrum Analyzer	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode n on ne Tee, Magic Tee Meter leter X Band - Hameg		: 60 P	PERIO	
LIST OF EQUIPM Description of Iten Microwave Test ber Slotted Line Section Isolator Matched Termination E-Plane Tee, H-Plan Microwave Power I Direct Frequency M Directional Coupler Spectrum Analyzer IE3D-SSD-N2-IE3	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: IS inches using Klystron tube inches using Gunn diode in on ine Tee, Magic Tee Meter leter X Band X Band -Hameg D Software		: 60 P	PERIO	
LIST OF EQUIPM Description of Iten Microwave Test ben Microwave Test ben Slotted Line Section Isolator Matched Termination E-Plane Tee, H-Pla Microwave Power I Direct Frequency M Directional Couplen Spectrum Analyzer IE3D-SSD-N2-IE31 Agilent _ADS SOF	mulation of a Directional coupler /R and reflection co-efficient for the given unknown load using slotted TO IENTS FOR A BATCH OF 30 STUDENTS: ns nches using Klystron tube nches using Gunn diode n on ne Tee, Magic Tee Meter leter X Band - Hameg		: 60 P	PERIO	

TEXT BOOKS:

- 1. Microwave Engineering- David M Pozar, John Wtley India Pvt Ltd., 3rd Edn,2008.
- 2. Antennas and Wave Propagation- John D. Krauss, Ronald J Marhefka, Ahmad SKhan, 4th Edition, McGraw Hill Education, 2013
- 3. Microwave Engineering Annapuma Das, Sisir K Das, TMH, Publication, 2nd, 2010.
- 4. Microwave Engineering- Sushrut Das, Oxford Higher Education, 2nd Edn, 2015
- 3. Antennas and Wave Propagation- Harish and Sachidananda: Oxford University Press, 2007


COUI	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Design and analyze microstrip transmission lines, antennas, and filters using appropriate techniques and tools. (RBT Level 4: Analyzing)	4
CO2	Characterize the performance of microwave components and systems, such as waveguides, junctions, circulators, and isolators.	4
CO3	Apply theoretical concepts to practical microwave engineering problems and measurements.	3
CO4	Acquire proficiency in using computational tools and software for microwave circuit and antenna design and analysis.	4
CO5	Equip with the knowledge and skills necessary for further studies or careers in the field of microwave engineering.	4

COs	POs									1	PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	13
1.	3	3	3	3	2	1	2		-	1- 4	0-/	1	3
2.	3	3	3	3	2	1	2	2-	1	22	1	1	3
3.	3	3	3	2	3		1	-	-	1	/ - · ·	1	2
4.	3	2	2	2	3	(A)7	1	11-1	103	1	-	2	2
5.	3	2	2	2	3	2	1	C1	-	÷.	-	2	2
* 1 – V	Veak, 2	2 - Moc	derate, 1	3-Stro	ng		-						•

EC22612	EMBEDDED SYSTEMS AND IOT LABORATORY	L 0	T 0	P 3	C 1.5
COURSE OBJEC	TIVES:	v	v	5	1.0
 To learn the To write pro To learn the To write pro 	working of ARM processor ograms to interface the I/Os, and various peripherals with the pro Raspberry Pi initial setup and web interface ograms for IoT-based applications on Raspberry Pi ograms to interface the I/Os, and various peripherals with the No				
	ISES USING uKeil / IAR WORK BENCH /ARM C COMPI	LER			
1. Study of ARM e	•				
2. Interfacing ADC					
3. Interfacing LED					
4. Interfacing keybo					
_	pper motor and servo motor.				
	gBee protocol with ARM.				
	ISES USING RASPBERRY PI 3				
• •	ry Pi and OS installation				
	face for Raspberry Pi to control the connected LEDs remotely the	rough	the i	nterfa	ice.
-	of client and server applications on Raspberry Pi.				
	perature sensor to build a weather reporting system.				
	ISES USING NODEMCU				
11. Study of NodeM					
12. Interfacing Node	MCU board to a computer via USB for serial communication.	-			
	TC	DTAL	: 45 F	PERI	ODS
	W 57.	1			
	MENTS FOR A BATCH OF 30 STUDENTS:				
Description of Iter		(antit	
	bedded Trainer kits with ARM Boards	14 A) Nos.	
	1 / IAR WORK BENCH, Raspbian OS, Python 3 compiler) Nos.	
	kits suitable for wireless communication) Nos.	
Raspberry pi 3 boar	d with essential components		10) Nos.	
NodeMCU board w	vith essential components		10) Nos.	
Stepper motor, Serv	vo motor and DC motor		Each	n 5 No	os.
Sensors: Temperatu	re, Ultrasonic and soil moisture		3	Nos.	
TEXT BOOKS:					
Elsevier, 200 2. Robert Barto	, "Computers as Components: Principles of Embedded Compute 6. on, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo s: Networking Technologies, Protocols, and Use Cases for the In	o Salg	gueiro	, "Io	Т
CISCO Press				0	
	hga, Vijay Madisetti, "Internet of Things – A hands-on appro	oach",	Univ	ersiti	es
11035, 2013					

	SE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Write programs in ARM for a specific Application.	3
CO2	Interface A/D and D/A convertors, keyboard, display, motor and sensor with ARM system.	4
CO3	Complete the initial setup of Raspberry Pi and web interface	4
CO4	Interface sensors with Raspberry Pi board.	5
CO5	Interface sensors with NodeMCU board.	5
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; I	Evaluate-5;

*COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	13		
1.	3	3	3	3	3	3	3	-	3	3	1-	3	3		
2.	3	3	3	3	3	3	3	21-11	3	3	1-0	3	3		
3.	3	3	3	3	3	3	3	ə - 18	3	3	2-1	3	3		
4.	3	3	3	3	3	3	3	1	3	3	61	3	3		
5.	3	3	3	3	3	3	3	1 - N	3	3	G 1	3	3		

Better leImprove	IECTIVES : onfidence and develop learners' language proficiency. earners' performance in competitive examinations.	0	0	3	2
Build coBetter loImprovo	onfidence and develop learners' language proficiency.				
Better leImprove					
• Improve					
D 1	e learners' employability skills.				
-	entrepreneurship skills.				
• Expose	learners to the use of professional English.				
UNIT I	LISTENING AND SPEAKING SKILLS				12
		0.00	1 :	for	
	Skills – types small talk, face to face and telephonic, formal				
	skills in presenting ideas and collating information during conference				
	tical group / team) – academic and workplace situations – co				
	faculty/guests/officials/employers and employees - group discussion				
	turn taking -presentation skills - seminars and projects using digit				
	uette and dos and don'ts – audio-visual interface for enhancement o	T 118	steni	ng a	and
speaking skills.	IELTS and TOEFL (Listening related exercises)				
	READING / SPEED READING, CRITICAL THINKING AND WRITING SKILLS				12
Reading Comp	rehension – general and scientific texts/articles/case studies from differ	ent	or r	elev	ant
	for analysis and critical thinking; employability skills – writing job				
=	ompanying résumé – types of business letters and email writing and eti				
		-			-
-	nent of purpose – writing articles for publication style and format – cro		-	-	
	les - speed reading of voluminous reports / documents and exact	-			-
information and	d abstract preparation including dissemination. IELTS and TOEFL(R	lead	ing	rela	ted
exercises)					
	111 2 2 2 2				
UNIT III	ENGLISH FOR PROFESSIONAL EXAMINATIONS				12
	graphs and reading comprehension – vocabulary building – general	an	d te	chni	
-					
	xtual meaning – spelling – subject specific words – usage and	us		pec	me
terminology. If	ELTS and TOEFL(Grammar and verbal exercises)				
	4.1				
	ENTREPRENEURSHIP SKILLS				9
	entrepreneurship - fundamentals of entrepreneurial skills - develop	-			-
	eam work;- marketing strategies microcosmic and macrocosmic lev				
	y - sector / industry appraisal and appreciation (review and understa		<u> </u>		
	nomy / environment / sector reports published) interaction and understa		-		
of multilateral #	financial / institutional / industrial agencies such as World Bank, ADB	8, U	ND	P, C	II -
	Business Meetings - Active Listening and responding - Role-play - S				
Influencing in I					
Influencing in I Negotiating/ A	rgumentative and Persuasive Skills - Defend a character/idea or				
Influencing in I Negotiating/ A Networking Sk					
Influencing in I Negotiating/ A	rgumentative and Persuasive Skills - Defend a character/idea or	ma	king	g sn	nall

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD ROM), Times Multimedia, Mumbai.

WEB SOURCES:

http://www.slideshare.net/rohitjsh/presentationon group discussion

http://www.washington.edu/doit/TeamN/present_tips.html

http://www.oxforddictionaries.com/words/writingjobapplications

http://www.kent.ac.uk/careers/cv/coveringletters.html

http://www.mindtools.com/pages/article/newCDV_34.html

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Develop approaches for mastering international English language tests such as IETLS and TOEFL, as well as national-level competitive exams	6
CO2	Make presentations and participate in Group Discussions.	6
CO3	Face interviews with confidence and develop strategies for negotiating job offers.	6
CO4	Build effective resumes, cover letters and professional emails to enhance job application success.	6
CO5	Explore strategies for scaling and growing entrepreneurial ventures.	6

COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	13		
1.	-	-	-	-	-	-	-	-	1	3	-	-	-		
2.	-	-	-	-	-	-	-	-	-	3	-	-	-		
3.	-	-	-	-	-	-	-	-	-	3	-	-	-		
4.	-	-	-	-	-	-	-	-	-	3	-	-	-		
5.	-	-	-	-	-	-	-	-	-	3	-	-	-		

SEMESTER VII

EC22701	OPTICAL COMMUNICATION AND NETWORKS	L 3	Т 0		C 3
COURSE OI	BJECTIVES:			Ŭ	
 To revie optica To relate To learn coupli To explored error construction To Enrice CDMA 	INTRODUCTION TO OPTICAL FIBERS	optic es v anc nd o	cal : vith e w ptic	fiber vith	9
	fiber optic system- Element of an Optical Fiber Transmission link -Nat				
guides -Optio	Meridional rays, Axial rays, Skew Ray-Wave Optics: Mode theory for C cal Fiber Modes and LP mode Configurations –Fiber types: Sing bers-Step and Graded Index fiber Structure, Single index power control	le 1			
	IS I A IZI				
UNIT II	SIGNAL DEGRADATION IN OPTICAL FIBERS				9
Cladding loss Group Delay, Intermodal di	Attenuation units - Absorption losses, Scattering losses, Bending Loss es, Signal Distortion in Optical Wave guides-Information Capacity det Material Dispersion, Wave guide Dispersion, Signal distortion in SM t spersion, Pulse Broadening in GI fibers.	erm	ina		-
UNIT III	FIBER OPTICAL SOURCES, DETECTORS AND COUPLING				9
Modulation o Quantum eff	direct Band gaps - LED structures - Quantum efficiency and LED power f a LED, Lasers Diodes - Modes and Threshold condition - Rate equati ficiency - Temperature effects, Fiber amplifiers, Power Launching ar mes, Fiber -to- Fiber joints, Fiber splicing –Photo Detectors, Signal to Nonse time.	ons 1d c	oup	oling	,
UNIT IV	FIBER OPTIC RECEIVER AND MEASUREMENTS				9
Probability of – Fiber Refrace Numerical App	receiver operation, Pre amplifiers, Error sources – Receiver Configurat FError – Quantum limit. Fiber Attenuation measurements- Dispersion r ctive index profile measurements – Fiber cut- off Wave length Measure perture Measurements – Fiber diameter measurements.	nea	sur		
UNIT V	OPTICAL NETWORKS AND SYSTEM TRANSMISSION				9
Networks – N Rise time bud	ks – SONET / SDH – Broadcast and select WDM Networks –Wavelen Ion-linear effects on Network performance –-Budget Analysis: Link Po Iget, Non-Linear Optics-Schrodinger equation application-Soliton, Nois rmance- EDFA system –.Optical CDMA – Ultra High Capacity Networ TOTAL	wei se E rks.	r bu Effe PE	idget cts o	: - n
		43	,		

TEXT BOOKS:

1. P Chakrabarti, "Optical Fiber Communication", McGraw Hill Education (India) Private Limited.

2. Gred Keiser,"Optical Fiber Communication^{||}, McGraw Hill Education (India) Private Limited. Fifth Edition, Reprint 2013.

3. John M. Senior, "Optical Fiber Communications: Principles and Practice", Third Edition, Pearson Education, 2010.

REFERENCES:

1. Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.

2. J.Gower, "Optical Communication System", Prentice Hall of India, 2001.

3. Govind P. Agrawal, "Fiber optic communication systems", third edition, John Wiley & sons, 2004.

COLLA

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Recognize and classify the structures of Optical fiber and its types.	2
CO2	Investigate the various signal degradation factors associated with optical fiber.	4
CO3	Evaluate the various optical sources and optical detectors and their use in the optical communication systems.	4
CO4	Examine the digital transmission and its associated parameters on system performance with the optical fiber measurements	4
CO5	Enrich one's own knowledge on design of optical fiber networks such as SONET/SDH and optical CDMA system.	4

*COs			0	10	170	Р	Os	_	1	0/			PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	1	1	-11-	45	1	1	1	-	3	3	2
2.	3	3	3	1	-	-	-	-	1	1	-	3	3	2
3.	3	3	3	1	-	-	-	-	1	1	-	3	3	2
4.	3	3	3	1	-	-	-	-	1	1	-	3	3	2
5.	3	3	3	1	-	-	-	-	1	1	-	3	3	2
* 1 – W	eak, 2	- Mod	erate, 3	- Stro	ng									

EC22702	MANAGEMENT PRINCIPLES AND ETHICAL CONDUCT	L T P C 3 0 0 3
COURSE OI	BJECTIVES:	
• To fac	cilitate student understanding of the fundamentals of management con	ncepts and the
history	behind the evolution of management thought, as well as knowledge ab	out culture and
curren	t issues in management.	
• To ena	able students to study the nature of planning, including its tools, techr	niques, and the
decisio	on-making process.	
	phasize the importance of controlling as a management function and y	various control
	ques and procedures adopted to handle productivity problems.	
	alyze key ethical theories including utilitarianism, rights ethics, duty	v ethics, virtue
	and ethical egoism, and apply them to ethical issues in engineering.	
	amine ethical issues related to teamwork, confidentiality, conflic	ts of interest,
profes	sional rights of engineers, employee rights, and whistleblowing.	
UNIT I	INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS	9
Definition of	Management – Why are managers important? Nature of Management-M	Anagement as
	t-Management and Administration-Evolution of Management-Contribution	
	Manager Vs Entrepreneur - Types of Managers - Managerial Rol	
•	Culture and Environment.	
C		
UNIT II	PLANNING	9
Nature and P	urpose of Planning – Steps Involved in Planning Process – Types	of Planning –
Objectives – S	Setting Objectives – Policies – Planning Premises – Strategic Managem	
	Setting Objectives – Policies – Planning Premises – Strategic Managem Chniques-Forecasting – Decision Making Steps and Process.	
Tools and Tec UNIT III System and F	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget	ent – Planning 9 ary and Non -
Tools and Teo UNIT III System and F Budgetary Co	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the	ent – Planning 9 ary and Non - Information –
Tools and Tec UNIT III System and F Budgetary Co Productivity F	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a	ent – Planning 9 ary and Non - Information –
Tools and Teo UNIT III System and F Budgetary Co	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a	ent – Planning 9 ary and Non - Information –
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a porting.	ent – Planning 9 ary and Non - Information – and Preventive
Tools and Teo UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a porting. ENGINEERING ETHICS	ent – Planning 9 ary and Non - Information – and Preventive 9
Tools and Teo UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget pontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a porting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics	ent – Planning 9 ary and Non - Information – and Preventive 9 \$? Why Study
Tools and Teo UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F	chniques-Forecasting – Decision Making Steps and Process. CONTROLLING Process of Controlling – Requirements for Effective Control - Budget pontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a porting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act	ent – Planning 9 cary and Non - Information – and Preventive 9 s? Why Study -Utilitarianism
Tools and Teo UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F versus Rule-	chniques-Forecasting – Decision Making Steps and Process. CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct storting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-H	ent – Planning 9 ary and Non - Information – and Preventive 9 s? Why Study -Utilitarianism Human Rights,
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F versus Rule-V Varieties of R	chniques-Forecasting – Decision Making Steps and Process. CONTROLLING Process of Controlling – Requirements for Effective Control - Budget pontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a porting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-F ights Ethics, Duty Ethics, Prima Facie Duties, Ethical Egoism-Motives	9 ary and Non - Information – and Preventive 9 ? Why Study -Utilitarianism Human Rights, s of Engineers,
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F versus Rule-V Varieties of R	chniques-Forecasting – Decision Making Steps and Process. CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct storting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-H	9 ary and Non - Information – and Preventive 9 ? Why Study -Utilitarianism Human Rights, s of Engineers,
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F versus Rule-F Varieties of R Self-Realizati	 CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a corting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-Hights Ethics, Duty Ethics, Prima Facie Duties, Ethical Egoism-Motives on, Personal Commitments, and Communities, Religious Commitment 	ent – Planning 9 ary and Non - Information – and Preventive 9 ? Why Study -Utilitarianism Human Rights, s of Engineers, s
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F versus Rule-V Varieties of R	chniques-Forecasting – Decision Making Steps and Process. CONTROLLING Process of Controlling – Requirements for Effective Control - Budget pontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a porting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-F ights Ethics, Duty Ethics, Prima Facie Duties, Ethical Egoism-Motives	9 ary and Non - Information – and Preventive 9 ? Why Study -Utilitarianism Human Rights, s of Engineers,
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of En Engineering F versus Rule-I Varieties of R Self-Realizati	 CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a corting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics Overview of Themes, What Is Engineering Ethics Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-Fights Ethics, Duty Ethics, Prima Facie Duties, Ethical Egoism-Motives on, Personal Commitments, and Communities, Religious Commitment WORKPLACE CULTURES, RESPONSIBILITIES AND 	9 ary and Non - Information – and Preventive 9 s? Why Study -Utilitarianism Human Rights, s of Engineers, s 9 9
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F versus Rule-V Varieties of R Self-Realizati UNIT V Teamwork-Ar	 CONTROLLING Process of Controlling – Requirements for Effective Control - Budget ontrol Techniques – Use of Computers and IT in Handling the Problems and Management – Control of Overall Performance – Direct a corting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-Fights Ethics, Duty Ethics, Prima Facie Duties, Ethical Egoism-Motives on, Personal Commitments, and Communities, Religious Commitment WORKPLACE CULTURES, RESPONSIBILITIES AND RIGHTS: 	9 ary and Non - Information – and Preventive 9 3? Why Study -Utilitarianism Human Rights, s of Engineers, s 9 9 und Engineers,
Tools and Tec UNIT III System and F Budgetary Co Productivity F Control – Rep UNIT IV Scope of Eng Engineering F versus Rule-V Varieties of R Self-Realizati UNIT V Teamwork-Ar	CONTROLLING Process of Controlling – Requirements for Effective Control - Budget process of Controlling – Requirements for Effective Control - Budget protect and Management – Control of Overall Performance – Direct a problems and Management – Control of Overall Performance – Direct a porting. ENGINEERING ETHICS gineering Ethics-Overview of Themes, What Is Engineering Ethics Ethics? Utilitarianism-Utilitarianism versus Cost-Benefit Analysis, Act Utilitarianism, Theories of Good, Rights Ethics and Duty Ethics-F ights Ethics, Duty Ethics, Prima Facie Duties, Ethical Egoism-Motives on, Personal Commitments, and Communities, Religious Commitment WORKPLACE CULTURES, RESPONSIBILITIES AND RIGHTS: n Ethical Corporate Climate, Loyalty and Collegiality, Managers a onflict, Confidentiality and Conflicts of Interest-Confidentiality	9 ary and Non - Information – and Preventive 9 3? Why Study -Utilitarianism Human Rights, s of Engineers, s 9 md Engineers, y: Definition,

Conflicts of Interest, Rights of Engineers-Professional Rights, Employee Rights, Whistleblowing-Definition, Two Cases, Moral Guidelines, Protecting Whistleblowers, Commonsense Procedures, Beyond Whistleblowing

TOTAL: 45 PERIODS

TEXT BOOKS:

- 4. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 11th Edition,2012.
- 5. Heinz Weihrich, Mark V Cannice, and Harold Koontz "Management: A Global, Innovative and Entrepreneurial Perspective", 15th Edition, McGrawHill, 2019.
- 6. Qin Zhu, Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Fifth Edition, Tata McGraw Hill, New Delhi, 2022

REFERENCES:

- 1. Harold Kootnz, Heinz Weihrich & Mark V. Cannice, "Essentials of Management", Mc Graw Hill, 11th Edition, 2020.
- 2. Charles B. Fleddermann, "Engineering Ethics", fourth edition, Pearson Prentice Hall, New Jersey, 2012
- 3. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", 12th Edition, Prentice Hall of India, New Delhi, 2011.

	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Apply managerial approaches and practice managerial roles as demanded by the current environment of the organization	3
CO2	Develop planning process and apply strategies, planning tools and techniques to attain organizational objectives	4
CO3	Apply control techniques to monitor the progress of activities and to take corrective measures accordingly	3
CO4	Evaluate ethical dilemmas in engineering using major ethical frameworks and to recommend solutions that uphold professional and ethical standards.	4
CO5	Recommend ethical courses of action in situations involving teamwork, confidentiality, conflicts of interest, rights of engineers, and whistleblowing.	4

COURSE ARTICULATION MATRIX

1411

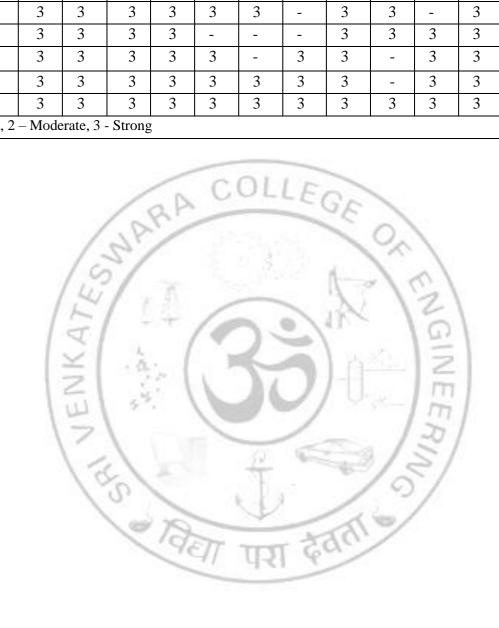
*CO		POs												Os
S	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	1	1	2	1	-	1	1	1	2	2	-	2	-	1
2.	1	2	2	2	2	2	1	1	3	2	-	3	-	2
3.	1	2	2	3	2	2	1	1	3	2	1	3	-	1
4.	-	2	2	1	-	1	2	3	1	1	-	1	-	2
5.	-	-	1	1	-	1	2	3	1	1	1	1	-	2
* 1 – W	Veak, 2	– Mode	erate, 3 ·	- Strong										

С L Т Р EC22711 **PROJECT WORK - PHASE I** 0 0 4 2 **COURSE OBJECTIVES:** To define, formulate and analyze a real-world problem in the field of ECE. To solve the problems independently or as part of a team. • To acquire knowledge in terms of the innovation & product design development process of • the project work. To work independently as well as in teams. • To manage the project from start to finish. **PROJECT WORK MODALITIES** Students can take up small real world problems in the field of electronics and communication engineering as project. Each student or as a team should conceive, design develop and realize an electronic product. The basic elements of product design - the function ergonomics and aesthetics should be considered while conceiving and designing the product. It can be related to solution to an engineering problem, verification and analysis of experimental data available, by conducting suitable experiments on various engineering subjects, characterization, studying a software tool for the solution of an engineering problem etc. The realization of the product should include design and fabrication of PCB. The student should

The realization of the product should include design and fabrication of PCB. The student should submit a soft bound report at the end of the semester. The product should be demonstrated at the time of examination.

TOTAL: 60 PERIODS

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Identify problems and perform survey on the existing methods	3
CO2	Develop a novel idea and analyze the various implementation issues	3
CO3	Implement the design and develop a prototype	4
CO4	Demonstrate the working module.	4
CO5	Prepare a presentation and a report and explain the project work	5
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; ate-6	Evaluate-


*C						Р	Os						PS	SOs
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	3	3	-	3	3	-	3	3	3
2.	3	3	3	3	3	-	-	-	3	3	3	3	3	3
3.	3	3	3	3	3	3	-	3	3	-	3	3	3	3
4.	3	3	3	3	3	3	3	3	3	-	3	3	3	3
5.	3	3	3	3	3	3	3	3	3	3	3	3	3	3
* 1 – V	Weak, 2	2 - Mo	derate,	3 - Stro	ong			•	•					

SEMESTER VIII

EC22811	PROJECT WORK - PHASE II	L	T	P	C
COURSE OI		0	0	16	8
	ve engineering problems relevant to the society	l		a of	4 1 0 0
	er students an opportunity to integrate the knowledge gained in various	suc	ojeci	IS OI	the
0	e course.				
	monstrate their competence in practical courses				1
	ply communication skills, both oral and written, to communicate results	s, co	nce	pts a	nd
ideas.					
	VORK MODALITIES				
	ve of Project Work is to enable the student to take up investigative stu				
	tronics and Communication Engineering, either fully theoretical/practi				
	ical and practical work to be assigned by the Department on an ind				
	udents in a group, under the guidance of a Supervisor from the Depa				
	a Supervisor drawn from R&D laboratory/Industry. This is expected to				
	d training for the student(s) in R&D work and technical leadership. The	le as	ssig	nmer	it to
normally in					
	a depth survey and study of published literature on the assigned topic;				
	eview and finalization of the Approach to the Problem relating to the a			topi	С
	reparing an Action Plan for conducting the investigation, including tear				
	Vorking out a preliminary Approach to the Problem relating to the assig				
	onducting preliminary Analysis/Modelling/Simulation/Experiment/Des				
	etailed Analysis/Modelling/Simulation/Design/Problem Solving/Experi-				
	inal development of product/process, testing, results, conclusions and f				ons;
	reparing a paper for Conference presentation/Publication in Journals, if				
	reparing a Dissertation in the standard format for being evaluated by th	e De	epar	tmer	ıt
9. F	inal Seminar Presentation before a Departmental Committee.				
	TOTAL:	24() PE	ERIC)DS
	and the state				

COUH	RSE OUTCOMES:	RBT
Upon a	successful completion of the course, students should be able to:	Level
CO1	Identify challenging practical problems, solutions to cope up with present scenario in the field of Electronics and Communication Engineering.	4
CO2	Analyze various methodologies and technologies and discuss with team for solving the problem.	4
CO3	Apply technical knowledge and project management skills for solving the problem.	3
CO4	Design and develop specific hardware and/or software for the project	4
CO5	Conclude concepts, results and analysis in written and oral form.	5
* Bloo 5; Crea	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evate-6	aluate-

*C	POs											PSOs		
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	3	3	-	3	3	-	3	3	3
2.	3	3	3	3	3	-	-	-	3	3	3	3	3	3
3.	3	3	3	3	3	3	-	3	3	-	3	3	3	3
4.	3	3	3	3	3	3	3	3	3	-	3	3	3	3
5.	3	3	3	3	3	3	3	3	3	3	3	3	3	3
* 1 – W	Veak, 2	– Mode	erate, 3 -	- Strong	5	•	•	•	•					

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1 WIRELESS SYSTEMS ENGINEERING

	WIRELESS SYSTEMS ENGINEERING	т	т	п	C
EC22021	COGNITIVE RADIO	L 3	<u>Т</u> 0	<u>Р</u> 0	C 3
COURSE O	BJECTIVES:	•	v	U	•
 To en of So To ex Identi To m To pr To en Public 	 able the students to understand the need, characteristics and benefits and ftware Defined Radio and Cognitive Radio technologies. apose the students to gain knowledge on the various methods of Specification function of Cognitive Radio and the associated Trade – offs. ake the students to learn about the Cooperative Communication technique ovide insights of Theoretical Limits of Information in Cognitive radio Nable the students to identify the need and suitability of Cognitive radio constraints. COGNITIVE RADIO TECHNOLOGY Software-Defined Radio, Cognitive Radio – Evolution of Cognitive Radio 	ctrur ues Jetwo techi	n S orks nolc	ensi s. ogy	ing for 9
	ts and Usage- Applications for Spectrum Occupancy Data.	1			
UNIT II	SPECTRUM SENSING AND IDENTIFICATION nal Detection: Energy Detector, Cyclostationary Feature Detector, M				9
Detection, F Measures, G	Sensing, Definition and Implications of Spectrum Opportunity, Spectru undamental Trade-offs: Performance versus Constraint, MAC Layer obal Interference Model, Local Interference Model, Fundamental Trade rsus Sensing Overhead.	Perf	orm	anc	e -
UNIT III	USER COOPERATIVE COMMUNICATION				9
Wireless Rel Cooperative	ation and Cognitive Systems, Relay Channels: General Three-Node F ay Channel, User Cooperation in Wireless Networks: Two-User Cooper Wireless Network, Multihop Relay Channel.				ork,
UNIT IV	CROSS-LAYER OPTIMIZATION FOR MULTIHOP COGNITIVE RADIO NETWORKS				9
Case Study: ' relaxation, L	– Mathematical Models at Multiple Layers: Scheduling and Power Con Throughput Maximization Problem, problem Formulation, Solution Ov ocal search Algorithm, Selection of Partition Variables – Numerical Maximization problem: Simulation Setting, Results and Observation.	ervie	ew,	Lin	ear
UNIT V	PUBLIC SAFETY AND COGNITIVE RADIO				9
the Spectrum C2000; Appl Bandwidth	Requirements, Commercial Wireless Communication Networks, Econo , Benefits of Cognitive Radio; Standards for Public Safety Communications of Cognitive Radio- The Firework Disaster in The Netherlands – Requirements, Spectrum Organization, Propagation Conditions, System Spectral Efficiency, Antijamming. TOTAL:	ation A C Whi	- TI ase te	ETR Stue Spa	RA, dy, ace
TEXT BOO			121		00
1. Alexa and N 2. Josep	nder M. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio C letworks", Elsevier, 2010. h Mitola III, "Software Radio Architecture: Object-Oriented Approach m Engineering", John Wiley & Sons Ltd. 2000.				

- 1. Thomas W.Rondeau, Charles W. Bostain, "Artificial Intelligence in Wireless communication", ARTECH HOUSE, 2009.
- 2. Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Analyze the application of cognitive radio technology to the different wireless communication standards.	3
CO2	Identify a suitable spectrum sensing and identification scheme and carryout a proper trade – off for a given wireless communication scenario to improve the performance.	3
CO3	Apply user cooperative communication techniques and interference avoiding & controlling techniques to improve the performance of cognitive radio networks.	3
CO4	Analyze the challenges and opportunities in the field of multihop cognitive networks.	3
CO5	Identify the requirements of public safety applications and apply cognitive radio technology to meet out the same.	3
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6 / 9 /	

*00			\geq	- 4	5.	P	Os		白音	<u> (11)</u>	Z		PS	SOs
*COs	1	2	_3	4	5	6	7	8	9	10	11	12	13	14
1.	2	3	2	2		1	- ·	1	5	2	11	-	2	3
2.	2	3	3	2		1		-	-	3	2	-	2	3
3.	3	3	3	3	E.	-	12	Ē	1	3	5/	- 1	2	3
4.	3	3	3	3	2	C - /	- 1		-	2	1	-	3	3
5.	3	3	3	3	2	10	1	1	1	3	/-	-	3	3
* 1 – W	eak, 2	– Mod	lerate, 3	- Stroi	ng	_		~	2	7				
					146	11	U21	5	as					

EC22022	EMERGING WIRELESS TECHNOLOGIES	L 3	T	P	C
	BJECTIVES:	3	0	0	3
	To review challenges in cooperative networks.				
•	•				
•	To understand the concept of broadband applications.				
•	To develop the Internet of Things for 5G applications.				
•	To understand the specifications of the transceiver.				
•	To develop applications towards e-Health Care systems.				
UNIT I	TRENDS AND CHALLENGES IN COOPERATIVE NETWORKS				9
Introduction	-Cooperative Mesh Networks: Wireless Mesh Networks-Realizing Vin	tua	M	IMC)_
	in Delay Tolerant Networks: Routing Protocols-Approaches-Incentiv				
1	y-Other Cooperation Schemes-Wireless Multimedia (4G and Beyond)				
UNIT II	WIRELESS COMMUNICATION AND APPLICATIONS				9
	Ad-hoc Networks: Communication Modes-Routing Protocols-Security			-	
	Wireless Technologies: Overview of WiMAX and LTE-Qos Su				
0	Mobility in LTE Networks-Energy Efficient Routing in Wireless Sen				ks:
Energy Cons	sumption-Classification-Delay Sensitive Applications-Delay Tolerant A	ppli	cati	ons.	
UNIT III	FUTURE INTERNET SYSTEMS hings: Enabling Technologies-Connected Object's Communication-SoA				9
Communicat	tion Issues: Standardization Efforts of the IoT Protocol Stack- tion Protocol Stack-Communication within the IoT Ecosystem-Machin tion-Architectures-Security in emerging Networks: Basic Concepts-Eme	ne t	о М	ach	ine
Security.		U	U		
-	12/11 # 12/2/				
UNIT IV	ULTRA WIDEBAND TECHNOLOGY				9
Linearity and Building B	Specifications: Receiver Sensitivity, Noise Figure, Signal to Noise F d Filter requirements-Transmitter requirements-Synthesizer requirement locks: Low Noise Amplifier-Down Converter Mixers-IF/Baseban Building Blocks-Fast Hopping Synthesizer-RF Transceivers for MB-OF	s-R d	F Re Fil	ecei ter-	ver
UNIT V	HUMANBODY AREA NETWORKS				9
	nomic burden of Health care systems-e Health towards proactive and cor	nec	ted	heal	-
Body Area N					
	Networks: An Enabling e-Health Technology-Ambulatory Multiparameter Wireless Communication: UWB Pulse Generator-UWB Analog Received and Storage-Sensors and Actuators-Integration Technology.				
	Networks: An Enabling e-Health Technology-Ambulatory Multiparameter Wireless Communication: UWB Pulse Generator-UWB Analog Receive	er-M	licro	opov	ver
Generation a	Networks: An Enabling e-Health Technology-Ambulatory Multiparameter-Wireless Communication: UWB Pulse Generator-UWB Analog Received and Storage-Sensors and Actuators-Integration Technology.	er-M	licro	opov	ver
Generation a	Networks: An Enabling e-Health Technology-Ambulatory Multiparameter-Wireless Communication: UWB Pulse Generator-UWB Analog Received and Storage-Sensors and Actuators-Integration Technology.	er-M 45	licro PE	pov RIC	DD

REFERENCES:

1. Steve Rackley, "Wireless Networking Technology: From Principles to Successful Implementation", Elsevier, 2007.

COUR	SE OUTCOMES:	RBT
Upon si	accessful completion of the course, students should be able to:	Level
CO1	Implement routing protocol techniques required for wireless applications.	4
CO2	Perform energy efficient routing algorithms for wireless sensor networks.	3
CO3	Understand the Internet systems for IoT Communication Protocols.	2
CO4	Implement transceiver techniques involved in OFDM applications.	4
CO5	Develop applications towards Body area networks.	3
Bloom' Create-	s Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evalu	uate-5;

COURSE ARTICULATION MATRIX

*00-		POs														
*COs	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	2	2	2	3	3	-	1	3	1	2	2	3	3		
2.	3	2	< 2	2	3	2			<u>- 1</u>	1	2	2	3	3		
3.	3	2	≤ 1	2	3	2	4		18	1	T	2	3	2		
4.	3	2	23	2	3	2	11-1	7		1	2	2	3	3		
5.	3	2	1	2	2	3	2	1-1	Ş.	2-1	2	2	3	2		
*1 W/	alt 7	M. 1	arata 2	Church			-	1		- 1		/				

Π

tant of

*1 – Weak, 2 – Moderate, 3 – Strong

ES THE

EC22023	FREE SPACE OPTICAL COMMUNICATION	L 3	Т 0	P 0	C 3
COURSE OB	IECTIVES	3	U	U	3
	n about the various losses and mitigation in channel concepts.				
	bly the concepts of optical transmitter and receiver configuration	in	fre	e sr	nace
	nication.		110	10 0	Juci
	ly the effects of coherent and non-coherent systems with BER in fre	e si	bace	op	ica
	nication.	1		° P	
• To ana	yze the different diversity schemes in link budget analysis performance	e tec	hnic	ques	
	ly different channel coding techniques in free space transmission.			1	
11					
UNIT I	FREE-SPACE OPTICAL CHANNEL MODELS				9
Atmospheric (Channel: Atmospheric, Absorption and Scattering Losses, Free-Space	e L	oss,	Be	am
Divergence Lo	ss - Loss due to Weather Conditions, Pointing Loss -Effect of Atmospher	ric '	Furb	uler	nce
on Gaussian B	eam -Techniques for Turbulence Mitigation-Aperture Averaging -Hybr	id F	RF/F	SO.	
UNIT II	FSO SYSTEM MODULES AND DESIGN ISSUES				9
	nitter: Modulation Schemes - Optical Receiver: Receiver Configurat				
	ne Receiver, Coherent FSK Heterodyne Receiver, Direct Detection				
Receiver for O	OK, Direct Detection (APD) Receiver for OOK, Direct Detection (APD)) fo	or M	-PP	M.
UNIT III	BER PERFORMANCE OF FSO SYSTEM				9
	l-, BER Evaluation: Coherent Subcarrier Modulation Schemes,				
	chemes, On Off Keying, M-ary Pulse-Position Modulation, Different	ial	Am	pliti	ide
Pulse Position	Modulation, Dual header- pulse interval modulation				
UNIT IV	DIVERSITY				9
	bes of Diversity Techniques: Diversity Combining Techniques, Alamo	nti'	с Тr	21101	-
	eme, Two Transmitter and One Receiver Scheme, BER Performance				
	Performance Without Spatial Diversity-Link budget.	C VV	1111	Spa	liai
	Terrorinance (Franca Spatia Diversity Dink budget.				
UNIT V	CODING				9
	g, Channel Capacity, Channel Coding in FSO System, Convolutional,	Lo	w I	Dens	
					2
Parity Check (odes, Adaptive Optics, Relay-Assisted FSO Transmission,				DS
Parity Check (Codes, Adaptive Optics, Relay-Assisted FSO Transmission, TOTAL:	45	PEF	RIO	
		45	PEF	RIO	
•	TOTAL:	45	PEF	RIO	
TEXT BOOK	TOTAL:				
TEXT BOOK 1. Free S _I 2. Free-S	S: bace Optical Communication, Hemani Kaushal, V.K. Jain, Subrat Kar, S pace Optics: Propagation and Communication, Olivier Bouchet,	Spri Hei	ngei rvé	r, 20)17
FEXT BOOK 1. Free Sp 2. Free-S Christi	TOTAL: S: bace Optical Communication, Hemani Kaushal, V.K. Jain, Subrat Kar, S pace Optics: Propagation and Communication, Olivier Bouchet, an Boisrobert, Frédérique de Fornel, Pierre-Noël Favennec, WILEY, 20	Spri Hei	ngei rvé	r, 20)17
TEXT BOOK 1. Free Sp 2. Free-Sp Christic REFERENCI	S: bace Optical Communication, Hemani Kaushal, V.K. Jain, Subrat Kar, S pace Optics: Propagation and Communication, Olivier Bouchet, an Boisrobert, Frédérique de Fornel, Pierre-Noël Favennec, WILEY, 20 CS:	Spri Hei 006,	ngei rvé	r, 20 Siz)17
TEXT BOOK 1. Free Sp 2. Free-S Christia REFERENCI 1. Free-Sp	S: bace Optical Communication, Hemani Kaushal, V.K. Jain, Subrat Kar, S pace Optics: Propagation and Communication, Olivier Bouchet, an Boisrobert, Frédérique de Fornel, Pierre-Noël Favennec, WILEY, 20 CS: bace Optics: Propagation and Communication, Samuel Seely, M.Deeker	Spri Hei 006,	ngei rvé)06,	r, 20 Siz	017 un,
TEXT BOOK 1. Free Sp 2. Free-Sp Christia REFERENCI 1. Free-Sp 2. 2.Free	S: bace Optical Communication, Hemani Kaushal, V.K. Jain, Subrat Kar, S pace Optics: Propagation and Communication, Olivier Bouchet, an Boisrobert, Frédérique de Fornel, Pierre-Noël Favennec, WILEY, 20 CS: bace Optics: Propagation and Communication, Samuel Seely, M.Deeker Space Optical Communication: System Design, Modeling, Charact	Spri Her 006, r, 20	ngei rvé)06,	r, 20 Siz	017 un,
TEXT BOOK 1. Free Sp 2. Free-S Christia REFERENCI 1. Free-Sp 2. 2.Free Dealing	S: bace Optical Communication, Hemani Kaushal, V.K. Jain, Subrat Kar, S pace Optics: Propagation and Communication, Olivier Bouchet, an Boisrobert, Frédérique de Fornel, Pierre-Noël Favennec, WILEY, 20 S: bace Optics: Propagation and Communication, Samuel Seely, M.Deeker Space Optical Communication: System Design, Modeling, Charact g with Turbulence, A. Arockia Bazil Raj, De Gruyter Oldenbourg, 2015	Spri Hei 06, r, 20	nger rvé 006, zatio	c, 20 Siz	017 un,
FEXT BOOK 1. Free Sp 2. Free-S Christia REFERENCI 1. Free-Sp 2. 2.Free Dealing	S: bace Optical Communication, Hemani Kaushal, V.K. Jain, Subrat Kar, S pace Optics: Propagation and Communication, Olivier Bouchet, an Boisrobert, Frédérique de Fornel, Pierre-Noël Favennec, WILEY, 20 CS: bace Optics: Propagation and Communication, Samuel Seely, M.Deeker Space Optical Communication: System Design, Modeling, Charact g with Turbulence, A. Arockia Bazil Raj, De Gruyter Oldenbourg, 2015 pace Laser Communication With Ambient Light Compensation, S	Spri Hei 06, r, 20	nger rvé 006, zatio	c, 20 Siz	017 un,

	SE OUTCOMES: uccessful completion of the course, students should be able to:	RBT Level
CO1	Learn about the channel concepts in free space optical communication.	2
CO2	Relate the concepts in design of free space optical communications modules.	3
CO3	Investigate the effects and influence of BER in free space optical communication.	4
CO4	Examine the different diversity schemes in performance techniques.	4
CO5	Apply concepts of channel coding in free space optical communication transmission.	3
Bloom [*] Create-	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eval 6	uate-5;
OURS	E ARTICULATION MATRIX	

145 0 THE

*COs	POs													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	/1 >	. A.	- 3	-	-	1	1	2	3	3	2
2.	3	3	3	1 –	1	1.11		6	1	1	0	3	3	2
3.	3	3	3	1	- 1		1	-	1	1		3	3	2
4.	3	3	3	14	5 (1.8	-		1	1	- 2	3	3	2
5.	3	3	3	1		1	-16	- /	1	1	- 177	3	3	2

Ţ

tedat of

EC22024	INTELLIGENT COMMUNICATION NETWORKS	L	T	P	C
		3	0	0	3
operation • To prov	ble the student with key insights of carrier networks, challenges of cellu ons, and the requirements for future network moving into cloud. Vide exposure to various wired network virtualization technologies and Y				-
Virtual					
-	vide extensive survey over existing NFV technologies.				
	view various SDN technology and business drivers, high-level SDN				
	cture and principles.		.1		
• 10 invo	olve the students with case studies of NFV in the next generation 5G net	WO	rks		
					-
UNIT I	INTRODUCTION	•		CL	9
	ed 5G: SDN and NFV – Benefits and Challenges, Supporting technology Network Virtualization, Network Functions Virtualization and Soft				
					-
UNIT II	VIRTUALIZATION AND CLOUD COMPUTING uting – Architecture Types of Clouds & Challenges; Host Virtualization		_		9
	NETWORK FUNCTION VIRTUALIZATION itecture, Use Cases, Challenges, Orchestration; NF Modelling – Source	ce c	ode	bas	9 sed
modelling, B	lack Box Modeling & Modeling Applications; VNF Placement.				
UNIT IV	SOFTWARE-DEFINED NETWORKS PRINCIPLES AND APPLICATIONS				9
SDN Overvie	w – Motivations, Architecture & Use Cases; SDN Controller – Controlle	er D	eplo	ym	ent
Choices & A	pps on SDN Controller; SDN data plane; SDN Management; SDN So	ecui	ity	Atta	ıck
Prevention; S	DN Traffic Engineering.				
	Set my tac				
UNIT V	SDN AND NFV IN 5G				9
Optical SFC	 v; Service Function Chaining – OpenFlow based SFC solution, SFC & Verification of Service Function Chaining; Core Network Fas: vEPC; Virtualized Customer Premises Equipment. 				
	TOTAL:	45]	PER	RIO	DS
ГЕХТ ВООК	S:				
1. Ying Z	hang, Network Function Virtualization – Concepts and Applicability in	5G	Net	woi	·ks,
Wiley I	Publications.				

- 1. Rajkumar Buyya, James Broberg and Andrzej M.Goscinski, "Cloud Computing: Principles and Paradigms", Wiley Publications.
- 2. Rajendra Chayapathi, Syed Hassan and Paresh Shah, "Network Functions Virtualization (NFV) with a touch of SDN", Prentice Hall (2016).
- 3. Mathew Portnoy, "Virtualization Essentials", 3rd edition, Wiley Publications (2023).

COUR	SE OUTCOMES:	RBT				
Upon successful completion of the course, students should be able to:						
CO1	Learn the various challenges in the cellular network operations and future networking model.	3				
CO2	Acquire knowledge in wired and wireless virtualization technologies	3				
CO3	Ascertain about the existing NFV technologies	3				
CO4	Understand about high level SDN architecture and technology	2				
CO5	Acquire knowledge on various case studies of NFV in the next generation 5G Networks	3				
Bloom Create-	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evalu 6	iate-5;				

*COs	5			P			Os				111		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	-	1.0	1	(- \	1	-/	20	-	2	3
2.	3	3	2	1		-	12	1	1	1.	5-1	-	2	3
3.	3	3	2	6	-	S - 73	<u></u>		-	0	1	-	2	3
4.	3	3	2	2-2	/	- ¹⁰	0	-	1	1-	/ -	-	2	3
5.	3	3	2	6	19	-		5	1	1	-	-	2	3
* 1 – W	eak, 2	– Mod	erate, 3	– Stro	ng	11	TET	6	2					

COURSE OI					-
COURSE OF	RIFCTIVES:	3	0	0	3
	derstand the fundamental technologies that help in the networking of wa	irola	200		
• To un device	5 1 5	neit	288		
	urn the different types of radio propagation model.				
	ustrating the architecture of 3G mobile technologies.				
	aracterize and analyze the concepts of emerging technologies for 4G sta	ndo	rda		
	aracterize and analyze the concepts of emerging technologies for 40 sta arm 5G techniques e.g. massive MIMO. mmWave.	mua	uus.		
• 10 lea	In 56 techniques e.g. massive winvio. min wave.				
UNIT I	FUNDAMENTALS OF MOBILE TECHNOLOGIES				9
	to Wireless Communication: Mobile Radio Telephony, Examples		w	Virel	-
	on Systems 01 1.2 The Cellular Concept System Design Fundamenta				
	el assignment strategies, Interference and system capacity, Trunking				
	oving Coverage and Capacity in Cellular System and related problems	une	. 01	uuu	01
<u>ser (100, 111)</u>					
UNIT II	MOBILE RADIO PROPAGATION				9
Small scale f	ading: Small-scale multipath propagation, parameters of mobile multipath	path	n ch	anne	els.
	l-scale fading, Rayleigh and Ricean distributions.	L			,
V 1	all conventional multiple access techniques: Frequency Division Mu	ultir	ole .	Acc	ess
	ne Division Multiple Access (TDMA), Space Spectrum Multiple Ac				
	on Multiple Access (SDMA), Orthogonal Frequency Division Mu				
(OFDMA), O	FDM-PAPR				
UNIT III	3G TECHNOLOGIES				9
	ctives, standardization and releases, network architecture, air interface				
	urity procedure, W-CDMA air interface, attributes of WCDMA syste	m,	W-(CDN	ЛA
channels.	1211 # 12/2/				
Cdma2000 ce	Ilular technologies: Forward and Reverse Channels, Handoff and Powe	r Co	ontro	ol.	
UNIT IV	ADVANCED TECHNIQUES FOR 4G DEPLOYMENT				9
	a Techniques: Smart antennas, Multiple input Multiple output system			-	
	tecture, spectrum sensing. Software Defined Radio (SDR): Cor				
	Introduction to 5G network and technologies used in 5G such as smal	I ce		once	pt,
(Massive Min	MO, Beamforming, NOMA, and mm wave).				
UNIT V	5G AND BEYOND				9
		0.00	1		
	gy harvesting: Energy-rate trade-off Simultaneous wireless information PT), time-switching, power splitting Wireless powered communication				
,	bility and throughput.	net	wor	r2	
	ning applications: Channel modeling and estimation Spectrum sensing a	nd	shar	ina	
	cation (NOMA, mmWave massive MIMO).	uiu	Jiial	шg	
	TOTAL: 4	15	PEF		DS
	TOTAL.				20

1. T. L. Singal "wireless communications", Mc Graw Hill Education.

101

- 2. R. Vannithamby and S. Talwar, Towards 5G: Applications, Requirements and Candidate Technologies., John Willey & Sons, West Sussex, 2017.
- 3. Theodore S. Rappaport "wireless communications principles and practice", PEARSON, Second edition.
- 4. Andreas F. Molisch "wireless communications" WILEY INDIA PVT LTD, Second edition.

REFERENCES:

- 1. Upena Dalal "Wireless and Mobile Communications", Oxford university Press
- 2. Vijay K.Garg "Wireless Communications and Networking", Morgan-Kaufmann series in Networking-Elsevier.
- 3. J. H. Reed, Software-Defined Radio, Prentice-Hall, 2002 W. C. Y. Lee, Mobile Communication, Wiley
- 4. David Tse, Pramod Viswanath "Fundamentals of Wireless Communication" published by 001 Cambridge University Press

	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Distinguish and understand the cellular fundamentals and estimate the coverage and capacity of cellular systems.	2
CO2	Classify different types of propagation models and analyse the link budget	3
CO3	Apply the concepts of 3G technologies for UMTS and CDMA 2000.	3
CO4	Discuss the emerging 4G technologies for upcoming mobile communication systems.	4
CO5	Applications of Machine Learning in 5G Wireless Communications.	3
Bloon	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	aluate-5;
Create	-6	

*COs				-	10	1/ P	Os	18	~	0			PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	2	3	1	2	2	2	1	-	3	2	2	2
2.	3	2	2	3	2	3	3	3	-	-	3	3	2	2
3.	2	3	3	2	1	1	1	1	-	-	1	1	2	2
4.	3	3	3	3	3	1	2	2	1	-	1	1	2	1
5.	2	2	2	2	1	3	2	3	2	-	3	3	1	1
* 1 – W	eak, 2	– Mod	erate, 3	8 – Stro	ng									

		L	Т	Р	С
EC22026	MULTIMEDIA COMMUNICATION SYSTEMS	3	0	0	3
COURSE OBJ	ECTIVES:	U	v	v	
	erstand the fundamentals of multimedia communication system	s. D	efin	le t	he
	dia Communication Models				
• To explo	re various text and image compression techniques.				
• To explo	re various audio compression techniques.				
• To analy	ze the video compression standards and its applications.				
• To apply	the different networking aspects with reference to multimedia transn	nissio	on.		
UNIT I	MULTIMEDIA COMMUNICATIONS				9
Introduction,	multimedia information representation, multimedia networks	/	nulti		
	pplication and networking terminology, QoS, Digitization principles,	. Tex	xt, ir	nage	es,
audio and vide	o.				
	ar of	<u> </u>			
UNIT II	TEXT AND IMAGE COMPRESSION re compression, compression principles, text compression- Run Ler				9
UNIT III	AUDIO COMPRESSION				9
	eo compression, audio compression - DPCM-Adaptive PCM -adap				
	predictive coding, Code-Excited LPC, Perceptual coding, MPEG and	Dol	by c	ode	
	VIDEO COMPRESSION				9
MPEG 2, MPE		EG,	MP	EG	l,
UNIT V	MULTIMEDIA COMMUNICATION ACROSS NETWORKS				9
	etworking, applications-streamed stored audio and audio-making				ort
service, schedu	lling and policing Mechanisms-integrated services-differentiated Serv				
	TOTAL:	45 F	PER	IOI)S
FEXT BOOKS					
	sall, "Multimedia Communications", Pearson education, 2001.	• ,			1
	einmetz, Klara Nahrstedt, "Multimedia: Computing, Commu	nicat	ions	a	nd
11	ions", Pearson education, 2002. yood, "Introduction to Data Compression", Margan Kaufmann, 2005				
REFERENCES					
	ao, Zoran S. Bojkovic, Dragorad A. Milovanovic, "Multimedia C	omn	nuni	cati	on
	", Pearson education, 2004.	51111		Jui	511
•	lamil, Louis Molina, "Multimedia : An Introduction", PHI, 2002.				

3. Ranjan Parekh — Principles of Multimedia, Tata Mc Graw Hill, 2006.

COURSE	OUTCOMES:	RBT*					
Ipon successful completion of the course, students should be able to:							
CO1	Comprehend the Principles of Multimedia Communication.	3					
CO2	Apply image and text compression techniques to real world applications.	3					
CO3	Apply audio compression techniques to real world applications.	3					
CO4	Analyze different Video compression tools and evaluate its performance.	4					
CO5	Develop the real-time multimedia network applications.	4					
Bloom's	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	valuate-5;					
Create-6							

*COs		POs														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	1	1-0	2		2	2.8.	1	1	1-	1	-	2	-		
2.	3	1	2	1-	10		5 - 1	-	1-3	1	0-1	-	2	-		
3.	3	1	2	(-)	12	1	-	1	N	-	6	-	2	-		
4.	3	1	< 2	3			7-	-		- 3	6	<u> </u> -	2	1		
5.	3	1	2	3	/	2	4-	-	1.25	S) - 1	5	- 1	2	1		
- Weak	; 2 - N	Aodera	te; 3 - S	Strong.	20	1	17				1797					

JUL

मा मा स्वता क

EC22027	RADIO OVER FIBER SYSTEMS	L	Τ	P	С
		3	0	0	3
	BJECTIVES:				
	derstand the basics of Radio over Fiber.				
	arn about RoF architecture for Broadband systems.				
	rich knowledge about the lasers and amplifiers required for RoF links.				
	alyze different candidate architectures for future broadband networks.				
• To de	velop various deployment scenarios for access networks.				
UNIT I	INTRODUCTION TO RADIO OVER FIBER				9
Introduction -	- The Concept of a Radio over Fiber System - Categories of Radio over F	Fibe	er Sy	sten	ns:
	ransport, Modulation, Subcarrier Multiplexing, mmWave over Fib		-		
	of Radio over Fiber Systems - Applications of Radio over Fiber Techno				
	COLLES				
UNIT II	ROF SYSTEM DESIGN FOR DBWS				9
Distributed B	roadband Wireless Systems (DBWS) Architecture Elements - Physica	1 E	lem	ents	of
the DBWS Ra	adio over Fiber Link Design Issues - Link Architecture - Optical Source	an	d Re	eceiv	ver
Types - Link	Budget Calculations - EVM Measurements - Wireless Range Calculation	ns.			
	12/2010				
UNIT III	LASERS FOR ROF APPLICATIONS				9
					-
Basics of Sem	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser -	Spe	cifi	catic	
		-			ns
of Semicondu	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser -	n I	Band	wid	ns
of Semicondu	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a	n I	Band	wid	ns
of Semicondu	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - a lictor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic	n I	Band	wid	ns
of Semicondu Linearity - Ap UNIT IV Wavelength A	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep	on H Ro ara	Band oF L	wid ink. p- a	ons th, 9 nd
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - a actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I	on H Ro ara Bro	Sand oF L te U adca	wid ink. p- a ist a	ons th, 9 nd
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep	on H Ro ara Bro	Sand oF L te U adca	wid ink. p- a ist a	ons th, 9 nd
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge	on H Ro ara Bro	Sand oF L te U adca	wid ink. p- a ist a	ons th, 9 nd nd
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES	on I Ro ara Bro t ar	Bando FL te U adca alys	wid ink. p- a ist a is.	ns th, 9 nd nd nd 9
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F	hiconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies	ara ara Bro t ar	Sand oF L te U adca alys	p- a ink. p- a ist a is.	ns th, 9 nd nd nd 9 ed
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies Models - Greenfield Deployment - Evolution from Existing Legacy Wir	ara ara Bro t ar	Sand oF L te U adca alys	p- a ink. p- a ist a is.	ns th, 9 nd nd nd 9 ed
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment	hiconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies t Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues.	ara bara Bro t ar - R ele	and bF L te U adca alys coF t ss S	wid ink. p- a st a is. estb	9 nd nd nd 9 ed ms
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies Models - Greenfield Deployment - Evolution from Existing Legacy Wir	ara bara Bro t ar - R ele	and bF L te U adca alys coF t ss S	wid ink. p- a st a is. estb	9 nd nd 9 ed ms
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a	hiconductor Lasers and Reflective SOAs - Distributed Feedback Laser - A actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I etive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies t Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. TOTAL: 4	ara bara Bro t ar - R ele	and bF L te U adca alys coF t ss S	wid ink. p- a st a is. estb	9 nd nd nd 9 ed ms
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI	hiconductor Lasers and Reflective SOAs - Distributed Feedback Laser - a actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies t Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. TOTAL: 4 KS:	ara Bro t ar - R ele	Band DF L te U adca aalys CoF 1 ss S	wid ink. p- a st a is. estb yste	9 nd nd md 9 ed ms DS
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI 1. Nathan	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - inctor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic oplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sepavelengths, Shared Downlink Wavelengths, Single CWDM Channel, Inctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies to Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. KS: J. Gomes, Paulo P. Monteiro, Atilio Gameiro, "Next Generative States of the Service Service States of the Service States of the Service States of the Service States of Service States of the Service States of Service States of Service States of Service States of Service Service States of Service Servic	ara ara Bro t ar - R eele	Band DF L te U adca aalys RoF t Sss S PER	ink. ip- a st a is. eestb yster	9 nd nd ms DS
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI 1. Nathan Commu	hiconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic oplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies t Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. TOTAL: 4 KS: J. Gomes, Paulo P. Monteiro, Atılio Gameiro, "Next Generaturications using Radio Over Fiber," A John Wiley and Sons, Ltd., Publi	ara ara Bro t ar - R rele 5	Band DF L te U adca aalys RoF t Sss S PER	wid ink. ip- a st a is. estb yste RIOI iirele	9 nd nd 9 ed ms DS ess 2.
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflec UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI 1. Nathan Commu 2. Martin	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - inctor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic oplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sepavelengths, Shared Downlink Wavelengths, Single CWDM Channel, Inctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies to Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. KS: J. Gomes, Paulo P. Monteiro, Atilio Gameiro, "Next Generative States of the Service States of Service	ara ara Bro t ar - R rele 5	Band DF L te U adca aalys RoF t Sss S PER	wid ink. ip- a st a is. estb yste RIOI iirele	9 nd nd 9 ed ms DS 2.
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI 1. Nathan Commu	hiconductor Lasers and Reflective SOAs - Distributed Feedback Laser - A actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I etive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies to Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. TOTAL: 4 KS: J. Gomes, Paulo P. Monteiro, Atilio Gameiro, "Next Generation unications using Radio Over Fiber," A John Wiley and Sons, Ltd., Publi Maier, Navid Ghazisaidi, "FiWi Access Networks," Cambridge Uni	ara ara Bro t ar - R rele 5	Band DF L te U adca aalys RoF t Sss S PER	wid ink. ip- a st a is. estb yste RIOI iirele	9 nd nd 9 ed ms DS ess 2.
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI 1. Nathan Comm 2. Martin 2012. REFERENC	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - inctor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ettive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. TOTAL: 4 KS: J. Gomes, Paulo P. Monteiro, Attilio Gameiro, "Next Generat unications using Radio Over Fiber," A John Wiley and Sons, Ltd., Publi Maier, Navid Ghazisaidi, "FiWi Access Networks," Cambridge Uni	on H Rc ara Bro t ar - R ele 5	Band DF L Lte U adca adys RoF 1 ss S PER	wid ink. p- a ist a is. eestb yster RIOI irela 201 Pre	9 nd nd ms 0S 0S css 2. ss,
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI 1. Nathan Commu 2. Martin 2012. REFERENC 1. Willian	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies technologies - Evolution of Services in Advanced Access Technologies to Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. TOTAL: 4 KS: J. Gomes, Paulo P. Monteiro, Attlio Gameiro, "Next Generat unications using Radio Over Fiber," A John Wiley and Sons, Ltd., Publi Maier, Navid Ghazisaidi, "FiWi Access Networks," Cambridge Uni ES: n S.C.Chang, "RF Photonic technology in optical fiber links," Cambridge	on H Rc ara Bro t ar - R ele 5	Band DF L Lte U adca adys RoF 1 ss S PER	wid ink. p- a ist a is. eestb yster RIOI irela 201 Pre	9 nd nd ms 9 ed ms 0S ess 2. ss,
of Semicondu Linearity - Ap UNIT IV Wavelength A Downlink Wa Select, Reflect UNIT V RoF vs. R&F - Deployment - Challenges a TEXT BOOI 1. Nathan Commu 2. Martin 2012. REFERENC 1. Willian press, 2	niconductor Lasers and Reflective SOAs - Distributed Feedback Laser - actor Lasers: Laser Static Characteristics, RIN Measurements, Modulatic pplications of DFB Lasers in RoF Systems - RSOA Characteristics for a ARCHITECTURES FOR FUTURE WIRELESS NETWORKS Allocation Plans - Multiplexing Schemes - Candidate Architectures: Sep avelengths, Shared Downlink Wavelengths, Single CWDM Channel, I ctive RAUs, Comparison of candidate architectures - Power-Loss budge ENABLING TECHNOLOGIES technologies - Evolution of Services in Advanced Access Technologies technologies - Evolution of Services in Advanced Access Technologies to Models - Greenfield Deployment - Evolution from Existing Legacy Wir and open issues. TOTAL: 4 KS: J. Gomes, Paulo P. Monteiro, Attlio Gameiro, "Next Generat unications using Radio Over Fiber," A John Wiley and Sons, Ltd., Publi Maier, Navid Ghazisaidi, "FiWi Access Networks," Cambridge Uni ES: n S.C.Chang, "RF Photonic technology in optical fiber links," Cambridge	ara ara Bro t ar - R ele 5	Band DF L Lte U adca aalys CoF t Sss S PER	ink. ink. ip- a ist a is. eestb yster RIOI Pre vers	9 nd nd ms 9 ed ms 0S 2. ss, ity

	E OUTCOMES: ccessful completion of the course, students should be able to:	RBT Level
CO1	Explain the basic concepts and categories of Radio over Fiber networks.	3
CO2	Analyze the physical design and architecture for DBWS.	3
CO3	Investigate the various types and characteristics of lasers for RoF applications.	3
CO4	Compare the performance of different deployment categories for future wireless networks.	4
CO5	Evaluate the challenges involved for evolving from existing wireless systems.	4
Bloom's Create-6	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;

*COs			1.4			Р	Os	122	1	1	10		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	3	2	2	1	1	1	18	2	2	3	3	3
2.	3	2	<3	2	2	9	~	5		2	60	3	3	3
3.	3	2	3	2	_ 2	- 30	<		14	2	2	3	3	3
4.	3	2	3	2	2	1-	hi	-)	2	2	ETT.	3	3	3
5.	3	2	3	2	2	-		-1	2	2	m	3	3	3
* 1 – W	eak, 2	– Mod	lerate, 3	3 - Stro	ng	1		/		1	DI	1		
			1	1	1		3.5	1	23	1	5/	<u> </u>		
			10	61			T		-00	10	5/			
			1	0.	-		0		/		/			
				0	19			-	1	9/				
					196	11	TDI	57	au	/				
							4.0	-	_					

EC22028	SATELLITE COMMUNICATION SYSTEMS	L T P C 3 0 0 3
COURSE OI	BJECTIVES:	
• To giv	e an insight of communication using satellites.	
-	ve thorough understanding and evaluation of the space segment and gro akes the satellite system.	ound segment
• To ana	alyse the uplink and downlink behavior and work out link budget.	
develo	alyse the access techniques of satellites through FDMA, TDMA and Clop satellite based system design.	
	entify the different areas in which satellite systems are applied and enha ations.	ance the
UNIT I	SATELLITE ORBITS	9
synchronous of	vs, Newton's law, orbital parameters, orbital perturbations, geo statiorbits – Look Angle Determination- Limits of visibility –Eclipse-Substage-Launching Procedures - launch vehicles – Placement of Satellite i	satellite point –
UNIT II	SPACE SEGMENT AND EARTH SEGMENT ubsystems- Primary power, Attitude and Orbit control, communication	9
Earth segme	racking and command, Antenna subsystem, System reliability and d nt - Receive – Only home TV systems – Outdoor unit – Indoor unit for antenna TV system – Community antenna TV system – Transmit – blems	or analog (FM)
UNIT III	SATELLITE LINK DESIGN	9
Free-space tra downlink Ana	unsmission – Transmission losses–Noise– Carrier to- Noise ratio – Sate alysis and Design, Link power budget equation, E/N calculation, Effects abined uplink and downlink C/N ratio – Performance impairments.	llite uplink and
UNIT IV	SATELLITE ACCESS AND SYSTEMS	9
Modulation a	nd Multiplexing: Voice, Data, Video, Analog – digital transmission sy A, TDMA, CDMA, ATM over Satellite, Satellite Links and TC	stem, multiple
UNIT V	SATELLITE APPLICATIONS	9
INTELSAT S MEO, Satellit (DTH), Digit	Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, INMA te Navigational System. Direct Broadcast satellites (DBS)- Direct to h al video Broadcast(DVB), Digital audio broadcast (DAB)- Worlds BTV), GRAMSAT, Specialized services – E –mail, Video conferencin	ARSAT, LEO, ome Broadcast space services, g, Internet.
	TOTAL:	45 PERIODS
ΤΕΥΤ ΒΟΟΙ	28.	
2. Timot India,	s Roddy, "Satellite Communication", 4th Edition, Mc Graw Hill Intern hy Pratt, Charles Bostian and Jeremy Allnutt, "Satellite Communicatio 3rd Edition, 2019. Ha, "Digital Satellite Communication", McGraw Hill, 2 nd Edition, 1990	ns", Wiley

REFERENCES:

- 1. Wilbur L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, 2007.
- 2. N.Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.
- 3. Bruce R. Elbert, "The Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997.
- 4. Emanuel Fthenakis, "Manual of Satellite Communications", Mc Graw Hill Book Co., 1984.
- 5. M.Richharia, "Satellite Communication Systems-Design Principles", Macmillan 2003

COU	RSE OUTCOMES:	RBT					
Upon	successful completion of the course, students should be able to:	Level					
CO1	Explain the various terms and parameters of satellites and develop equations of orbit to locate satellite in space.	2					
CO2	Categorise and recognise the significance of various satellite subsystems and ground segment.	2					
CO3	Identify the various aspects involved in satellite communication link and measure link budget.	3					
CO4	Classify and grade the varied multiple access techniques and develop enhanced satellite based systems.	3					
CO5	Develop various satellite based applications.	3					
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6							

*COs		1	7	POs									PSOs		
	1	2	3	4	5	6	7	8	9	10	11/	12	13	14	
1.	2	2	3	1		-	1		450	2	21	1	3	-	
2.	2	2	3	Sr.	1	- 6	1.1	- 2	1	2	1-	1	3	-	
3.	2	2	3	1.00	2	1	X	ķ	1	2	- N	1	3	-	
4.	2	2	3	1	19	T		- 21	90.	2	-	1	3	-	
5.	2	2	3	-	-	-1-	44	1	/	2	-	1	3	-	
* 1 – W	eak, 2	- Mod	erate, 3	- Stro	ng										

- To define, formulate and analyze a real-world problem in Wireless Communication domain.
- To solve the problems independently or as part of a team.
- To acquire knowledge in terms of the innovation & product design development process of the project work.
- To Work independently as well as in teams.
- To manage the project from start to finish.

PROJECT WORK MODALITIES

Students can take up small real world problems in the field of wireless communication as mini project. Each student or as a team should conceive, design develop and realize an electronic product. The basic elements of product design - the function ergonomics and aesthetics - should be considered while conceiving and designing the product. It can be related to solution to an engineering problem, verification and analysis of experimental data available, by conducting suitable experiments on various engineering subjects, characterization, studying a software tool for the solution of an engineering problem etc. The realization of the product should include design and fabrication/simulation. The student should submit a soft bound report at the end of the semester. The product should be demonstrated at the time of examination.

TOTAL: 60 PERIODS

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Identify problems and perform survey on the existing methods	4
CO2	Develop a novel idea and analyze the various implementation issues	5
CO3	Implement the design and develop a prototype/simulation module	3
CO4	Demonstrate the working module.	3
CO5	Prepare a presentation and a report and explain the project work	3
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; E ate-6	Evaluate-

*C	POs												PSOs		
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2.	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
3.	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
4.	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
5.	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
* 1 - 1	Weak, 2	2 - Mo	derate,	3 - Stro	ong										

VERTICAL 2 ANTENNA AND MICROWAVE TECHNOLOGY

EC22031	ANTENNA THEORY AND DESIGN	L 3	Т 0	P 0	C 3
COURSE O	BJECTIVES:	U		•	-
	roduce the basic concepts of antenna.				
	cuss the analytical models of microstrip patch antenna.				
	roduce the concepts of smart antennas.				
	derstand and analyse the recent special antennas.				
	cuss the different types of propagation mechanisms and measurement t	echr	nique	s.	
UNIT I	ANTENNA FUNDAMENTALS				9
Radiation Me	chanism of Antenna, Types of Antenna, Antenna terms and paramet	ers,	Rad	iati	on
from Half wa	ve dipole. Monopole antenna and loop antenna.				
UNIT II	ANALYTICAL MODELS OF MICROSTRIP ANTENNAS				9
	n Model- Simple Transmission Line Model, Transmission Line Mode				
	wity Model - Generalized Cavity Model, Multiport Network Model, Ra				
-	mittance, Aperture Conductance, Edge Susceptance, Mutual Admit	tanc	e, M	lutu	ıal
Conductance,	Mutual Susceptance, Comparison of Analytical Models.				
UNIT III	SMART ANTENNAS	L			9
	Need for Smart Antenna, Smart Antenna Configuration-Switched-Be				
	enna Approach, Space Division Multiple Access (SDMA), Architectu				
	em- Receiver and Transmitter, Benefits and Drawbacks, N-element Sting Effects	mart	Ant	enn	1a-
Mutual Coup	ing Effects.				
UNIT IV	SPECIAL ANTENNAS				9
	na, Helical antenna, Log periodic, Yagi antenna-Design, Mode	ern	ante	nne	-
	le antenna, Reflect array antenna, Electronic band gap (EBG) ante				
Antenna	ie antenna, Keneet array antenna, Electronic band gap (EDC) and	Jiiia	.5, 11	11101	10
	dan state				
UNIT V	ANTENNA MEASUREMENTS AND PROPAGATION				9
	asurements- Measurement of Gain and Radiation pattern. Modes of	f pr	opag	atic	on.
	propagation, Tropospheric propagation, Duct propagation, Sky wave	-			
Virtual heigh	t, Critical frequency, Maximum usable frequency, Skip distance, Fadi	ng,	Mult	ti ho	ор
propagation.					
	TOTAL:	45 I	PER	[O]	DS
TEXT BOO					
	Kraus, "Antennas for all Applications", 3rd Edition, Mc Graw Hill, 20				
2. Consta 2016.	antine.A.Balanis, "Antenna Theory Analysis and Design", Wiley St	uder	it Ed	litic	m,
	antine.A.Balanis, Panayiotis I.Ioannides, "Introduction to Smart Anter re on Antennas", 2007.	mas	-Syn	thes	sis
REFERENC					

- 1. W.L.Stutzman and G.A.Thiele, —Antenna Theory and Design, John Wiley & Sons, 22 May 2012 Technology & Engineering.
- 2. S. Drabowitch, "Modern Antennas" Second Edition, Springer Publications, 2007.
- 3. Robert S.Elliott "Antenna Theory and Design" Wiley Student Edition, 2006.
- 4. R.E.Collin,"Antennas and Radio-wave Propagation", McGraw Hill, December 2013.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level						
CO1 Describe the basics of antenna and its parameters.								
CO2	Assess the various analytical models of microstrip patch antennas.							
CO3	Understand the need and applications of Smart antennas.							
CO4	Show the recent special antennas and its analysis.	3						
CO5	CO5 Analyze the different types of propagation mechanisms at different frequencies. 3							
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6								

*COs		POs										PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	1	1	3	1_{α}		2	<1_	1	- 24	2	2	1	2	-
2.	1	1	_3	1	5-1	2	1	1		2	m	1	2	-
3.	1	1	3	1	č - 1	2	1	1	1.20	2	m	1	2	-
4.	1	1	- 3	1	-	2	1	1	-	2	27	1	2	-
5.	1	1	3	1	-	2	1	1	0-3	2	51	1	2	-
* 1 – W	eak, 2	- Mod	lerate, 3	- Stroi	ng		T		- and	10	5/			

0 78

tant

EC22032

ANTENNAS FOR WIRELESS COMMUNICATION

9

9

9

COURSE OBJECTIVES:

- To assess requirements and constraints for a reconfigurable system need and recommend a suitable reconfigurability technique(s) to embed in the system design.
- To demonstrate in-depth learning on various techniques to realize polarization agility in printed antennas through analysis, simulated design, and measurement of results.
- To compare, evaluate and engineer polarization/pattern reconfigurable compact MIMO • antennas aimed at next generation wireless devices
- To attain competence in analyzing key benefits and limitations of local oscillator, intermediate frequency and radio frequency phase shifting for beam control
- To acquire an advanced understanding of underlying concepts, challenges and real-world applications of adaptive antennas through various system level analysis.

UNIT I PRINCIPLES AND TYPES OF RECONFIGURABILITY	
--	--

Principle of Reconfigurability, Electronic Reconfiguration, Mechanical Reconfiguration, Optical Reconfiguration, Material Reconfiguration, Advantages and Disadvantages of Different Reconfiguration Techniques-Frequency Reconfigurable Antennas, Polarization Reconfigurable Antennas, Radiation Pattern Reconfigurable Antennas, Compound Reconfigurable Antennas.

UNIT II	POLARIZATION	RECONFIGURABLE	PASSIVE AND	9
	ACTIVE PLANAR	ANTENNAS	. 1 = 1	

Basis of Polarization, Reconfigurable Microstrip Patch Antenna with Switchable Polarization-Stub Loaded Microstrip Patch Planar Antenna and Corner Truncated Microstrip Patch Planar Antenna, Polarization Reconfigurable Slot Antennas, Polarization Reconfigurable Active Planar Antennas-Active Antenna with a Symmetrically Coupled Passive Radiator and an Asymmetrically Coupled Passive Radiator. 9

UNIT III RECONFIGURABLE MIMO ANTENNAS

Reconfigurable Antennas for MIMO Applications, Isolation Techniques in MIMO Antennas-Decoupling Network, Neutralization Lines, Using Artificial Material, Defected Ground Plane, Pattern Diversity Scheme, Reconfigurable Polarization MIMO Antenna, MIMO Antenna Performance Parameters-Envelope Correlation Coefficient (ECC), Total Active Reflection Coefficient (TARC), Mean Effective Gain (MEG).

UNIT IV 5G SILICON RFICS-BASED PHASED ARRAY ANTENNAS

Silicon Beamformer Technology, LO-Based Phase Shifting, IF- Based Phase Shifting, RF-Based Phase Shifting, Ku-Band Phased Arrays Utilizing Silicon Beamforming Chipsets, Ku-Band Phased Arrays on ROHACELL Utilizing Silicon Beamforming Chipsets, Ku-Band Phased Arrays with Wide Axial Ratios Utilizing Silicon Beamforming Chipsets.

UNIT V **ADAPTIVE ANTENNAS**

Basic Architecture of an Adaptive Array Antenna, Adaptive Beam Forming, Adaptive Antenna Applications-Spatial Filtering for Interference Reduction, Space Division Multiple Access, Multiple-Input Multiple-Output Systems, Optimum Combining-Formulation, Steering Vector for Uniform Linear Array, Steering Vector for Arbitrary Element Positions, Adaptive Antenna Channel Parameters.

TOTAL: 45PERIODS

TEXT BOOKS:

- 1. Shiban Kishen Koul, Rajesh K. Singh, "Reconfigurable Active and Passive Planar Antennas for Wireless Communication", Signals and Communication Technology, Springer 2022
- 2. Satish K. Sharma and Jia-Chi S. Chieh, "Multifunctional Antennas and Arrays for Wireless Communication Systems", John Wiley & Sons, Inc. IEEE Press, 2021
- 3. Simon R. Saunders, & Alejandro Arago N-Zavala, "Antennas And Propagation For Wireless Communication Systems", Second Edition, John Wiley & Sons, Ltd 2007
- 4. Dr.FrankGustrau, Dr.Dirk Manteuffel, "EM Modeling of Antennas and RF Components for Wireless Communication Systems", Springer 2006

REFERENCES:

1. Constantine A. Balanis, "Modern Antenna Handbook", A John Wiley & Sons Inc., Publication 2008.

CULES

2. Thomas A. Milligan, "Modern Antenna Design", IEEE Press, Wiley-Interscience, 2005.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Evaluate and compare different techniques for enabling reconfigurability in electronic, mechanical, optical and material systems.	2
CO2	Ability to analyze, design, and evaluate polarization reconfigurable antennas by applying techniques for achieving reconfigurability in microstrip patch, slot, and integrated active antennas.	3
CO3	Demonstrate and acquire skills to analyze isolation enhancement techniques and characterize performance parameters of reconfigurable MIMO antennas.	3
CO4	Evaluate and compare silicon-based integrated beamforming technologies and formulate techniques for realizing Ku-band and mmWave phased arrays and reflect arrays with wideband performance.	4
CO5	Attain the expertise in architectural design, adaptive signal processing algorithms, and key channel/system parameters for the implementation of optimum beamforming in smart antenna arrays	2

COURSE ARTICULATION MATRIX

0.

*00				10	12	Р	Os	- 50	191	1			PS	SOs
*COs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	1	1	3	1	2	-	-	-	-	-	-	-	2	2
2.	3	2	2	2	2	-	-	-	-	-	1	-	3	3
3.	3	2	3	2	2	-	-	-	-	-	1	-	3	2
4.	3	2	2	3	2	-	-	-	-	-	1	1	3	3
5.	3	2	1	3	2	-	-	-	-	-	1	1	2	2
* 1 – W	eak, 2	– Mod	erate, 3	3 - Stro	ng									

121

EC22033	COMPUTATIONAL ELECTROMAGNETICS WITH EM SIMULATION	L 3	Т 0	P 0	C 3
COURSE OB		-		-	-
	erstand the concepts and mathematical methods to analyze the electr	omag	netic	field	ds
	ve phenomena.	0			
	n the analytical and numerical techniques to solve the electromagnet	ic pro	blem	ns.	
	ome acquainted with important topics in computational electromagne	-			
	ifference, finite element, and finite element methods.	,		U	
• To und	erstand the importance of computational techniques to analyze the fi	eld pi	opag	gation	n in
mediur		-			
To form	nulate and solve practical engineering problems in electromagnetics	using	the		
numeri	cal methods presented.	1			
UNIT I	FINITE DIFFERENCE METHOD (FDM)				9
	cing of Parabolic PDEs, Finite Differencing of Hyperbolic PDEs, F				<u> </u>
	Es, Band Matrix Method, Accuracy and Stability of FD Solutions.				
	FDTD, Yees Finite Difference Algorithm, Practical Applications: G	ruidec	l Stri	ictur	es -
	Lines, Waveguides,				
UNIT II	VARIATIONAL METHODS				9
	Calculus of Variations, Rayleigh-Ritz Method, Method of Weighted F	l Residi	ials (Taler	-
	ional from PDE, Practical Applications.	Contac	iuis (Juiei	KIII
UNIT III	METHOD OF MOMENTS (MOM)				9
Integral Equa	tions, Connection Between Differential and Integral Equations,	Gale	kin	Met	nod
Integral Equa	tion, Integral Equation to Matrix Form, Transformation to	Matr	ix E	Equat	ion
	Evaluation of Matrix Elements, Solution of the Matrix Equation, Po	cklin	gton	Integ	gral
Hallen Integra	Convergence Comparison, Antenna Example	r —			
UNIT IV	FINITE ELEMENT METHOD (FEM)				9
	elements, Solution of Laplaces Equation, FEM from Weighted Resi				
	on, Mapping), Poisson Equation, Time Domain FEM (FETD), T				mai
Elements, Fill	te Element Methods for Exterior Problems, Boundary Element Meth	<u>оц. е</u> Г	xamj	Jies	
UNIT V	FINITE VOLUME METHOD (FVM)				9
	Background, Background Derivation of Eigenvalue Equation, Discr	etizat	ion N	Лаху	
	Calculation: Gudnov, MUSCL, Central Flux, Truly, Upwind Sche				
	netrical Reconstruction, Practical Applications.		5	- 1	
	ΤΟΤΑ	L:4	5 PE	RIO	DS
TEXT BOOK					
	w N.O.Sadiku, "Numerical Techniques in Electromagneticswith MA	TLA	B," (CRC	
,	Third Edition 2009.				
	hiBhat,Shiban K.Koul, "Stripline-Like Transmission Lines for Micro	owave	Inte	grate	ed
	s", New Age International, 2007.		•1 •1•	••	
-	Poljak, "Advanced Modeling in Computational Electromagnetic Co	mpat	ıbılıt	у́′′,	
Wiley,	2007				

4. David B. Davidson, "Computational Electromagnetics for RF and Microwave Engineering", Cambridge, Second Edition, 2010.

REFERENCES:

- 1. Bondeson, A., Rylander, T., Ingelstrm, P. Computational Electromagnetics, Springer, 2005
- 2. Jian-Ming Jin, "Theory and Computation of Electromagnetic Fields", Wiley IEEE Press, Second Edition, 2015.
- 3. Silvester and Ferrari, "Finite Elements for Electrical Engineers", Cambridge, Third Edition, 1996

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Analyze various EM problems using Finite Difference Methods.	4
CO2	Understand and apply different variational methods.	3
CO3	Construct various Moment methods for the analysis of EM equations.	3
CO4	Apply different Finite Element Method for EM problems.	3
CO5	Illustrate different Finite Volume Methods for various EM problems.	3
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;

COURSE ARTICULATION MATRIX

-

*COs			W1	27		P	Os	-	1.20	-	m		PS	Os
-	1	2	-3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	1	3	1	3	3	1	-/ .	12	2	2	1
2.	3	3	2	2	3	-	+		1	1-5	2/	2	2	1
3.	3	2	2	2	3	- 1	1	- S	1	3	1-	2	2	1
4.	3	2	2	1	3	-	K	-	1	0		2	2	1
5.	3	2	2	ľ	3	T	-	14	20,	-	-	2	2	1
* 1 – W	eak, 2	– Mod	erate, 3	- Stro	ng	-11	45	6	/					

EC22034	EMI/EMC PRE COMPLIANCE TESTING	L T P C 3 0 0 3
COURSE O	BJECTIVES:	
electrom	ss the requirements and constraints of electromagnetic interfere agnetic compatibility (EMC) principles.	
	art in-depth learning of various coupling mechanisms and pheno agnetic interference (EMI).	omena related to
electrom	apetence to compare various techniques and components used agnetic interference (EMI) in electronic systems.	
techniqu	vze the various sources of noise and interference in electronic circles for mitigating these effects and optimizing circuit performance.	-
	l on electromagnetic compatibility (EMC) testing methodologies and equipment and facilities used for EMC testing.	standards, along
UNIT I	EMI/EMC CONCEPTS	9
	lefinitions; Sources and Victims of EMI; Conducted and Radiated El y; Case Histories; Radiation Hazards to humans.	MI Emission and
UNIT II	EMI COUPLING PRINCIPLES	9
and ground l cable couplin	radiated and transient coupling; Common ground impedance coupling oop coupling; Differential mode coupling; Near field cable to cable c ng; Power mains and Power supply coupling; Transient EMI, ESD.	coupling; Field to
UNIT III	EMI CONTROL	9
Shielding; E suppression	MI Filters; Grounding; Bonding; Isolation transformer; Transient st Cables.	uppressors; EMI
UNIT IV		
	EMC DESIGN FOR CIRCUITS AND PCBS	9
Noise from F talk control;	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; P	ion line and cross
Noise from F talk control; decoupling;	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi	ion line and cross
Noise from F talk control; decoupling; UNIT V Open area to chamber; Lir	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Po Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite the impedance stabilization networks; EMI Rx and spectrum analyzer; C	ion line and cross ower distribution 9 e lined anechoic
Noise from F talk control; decoupling; UNIT V Open area to chamber; Lir	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Po Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite the impedance stabilization networks; EMI Rx and spectrum analyzer; C C, IEC, EN; Military standards-MIL461E/462.	ion line and cross ower distribution 9 e lined anechoic
Noise from F talk control; decoupling; UNIT V Open area to chamber; Lir	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Po Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite the impedance stabilization networks; EMI Rx and spectrum analyzer; C C, IEC, EN; Military standards-MIL461E/462.	ion line and cross ower distribution 9 e lined anechoic Civilian standards
Noise from F talk control; decoupling; UNIT V Open area to chamber; Lir	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Po Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite he impedance stabilization networks; EMI Rx and spectrum analyzer; C C, IEC, EN; Military standards-MIL461E/462. TOTAL	ion line and cross ower distribution 9 e lined anechoic Civilian standards
Noise from F talk control; decoupling; UNIT V Open area to chamber; Lin - CISPR, FC TEXT BOO 1. V.P.Ko Newyo	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Pc Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite the impedance stabilization networks; EMI Rx and spectrum analyzer; C C, IEC, EN; Military standards-MIL461E/462. TOTAL DKS: Ddali, "Engineering EMC Principles, Measurements and Technologi rk, 2010 (Unit I – V).	ion line and cross ower distribution 9 e lined anechoic Civilian standards 2: 45 PERIODS es", IEEE Press,
Noise from F talk control; decoupling; 2 UNIT V Open area to chamber; Lin - CISPR, FC TEXT BOO 1. V.P.Ko Newyo 2. Henry Publica	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Pc Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite ne impedance stabilization networks; EMI Rx and spectrum analyzer; C C, IEC, EN; Military standards-MIL461E/462. TOTAL OKS: odali, "Engineering EMC Principles, Measurements and Technologi rk, 2010 (Unit I – V). W.Ott., Noise Reduction Techniques in Electronic Systems", A Wi ations, John Wiley and Sons, Newyork, 1988. (Unit – IV).	ion line and cross ower distribution 9 e lined anechoic Civilian standards 2: 45 PERIODS es", IEEE Press,
Noise from F talk control; decoupling; 2 UNIT V Open area to chamber; Lin - CISPR, FC I. V.P.Ko Newyo 2. Henry Publica REFERENC	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Pc Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite ne impedance stabilization networks; EMI Rx and spectrum analyzer; C C, IEC, EN; Military standards-MIL461E/462. MKS: odali, "Engineering EMC Principles, Measurements and Technologi rk, 2010 (Unit I – V). W.Ott., Noise Reduction Techniques in Electronic Systems", A Wi ations, John Wiley and Sons, Newyork, 1988. (Unit – IV). ZES:	ion line and cross ower distribution 9 e lined anechoic Civilian standards 2: 45 PERIODS es", IEEE Press, ley Inter Science
Noise from F talk control; decoupling; 2 UNIT V Open area to chamber; Lin - CISPR, FC TEXT BOO 1. V.P.Ko Newyo 2. Henry Publica REFERENC 1. C.R.Pa 2. Bemha	Relays and Switches; Nonlinearities in Circuits; Cross talk in transmissi Component selection and mounting; PCB trace impedance; Routing; Pc Zoning; Grounding; VIAs; Terminations. EMI MEASUREMENTS AND STANDARDS est site; TEM cell; EMI test shielded chamber and shielded ferrite ne impedance stabilization networks; EMI Rx and spectrum analyzer; C C, IEC, EN; Military standards-MIL461E/462. TOTAL OKS: odali, "Engineering EMC Principles, Measurements and Technologi rk, 2010 (Unit I – V). W.Ott., Noise Reduction Techniques in Electronic Systems", A Wi ations, John Wiley and Sons, Newyork, 1988. (Unit – IV).	ion line and cross ower distribution 9 e lined anechoic Civilian standards .: 45 PERIODS es", IEEE Press, ley Inter Science Sons, Inc, 2005.

COU	RSE OUTCOMES:	RBT
Upon a	successful completion of the course, students should be able to:	Level
CO1	Develop a comprehensive understanding of EMI and EMC principles, enabling them to identify, analyze, and mitigate electromagnetic interference in electronic systems while ensuring compliance with safety regulations and standards related to radiation exposure.	2
CO2	Obtain a thorough understanding of various coupling mechanisms and their effects on electronic systems, enabling them to apply appropriate mitigation techniques to ensure EMC compliance and optimize system performance.	2
CO3	Outline the proficiency in designing and implementing shielding, EMI filtering, grounding, bonding, isolation, transient suppression, and EMI suppression cable solutions to mitigate EMI and ensure electromagnetic compatibility (EMC) in electronic systems.	3
CO4	Demonstrate the proficiency in identifying, analyzing, and mitigating various sources of noise and interference in electronic circuits, optimizing circuit performance and ensuring electromagnetic compatibility (EMC) in electronic designs.	3
CO5	Describe the knowledge and skills necessary to conduct comprehensive EMC testing and compliance assessments for electronic systems and devices.	3
	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

		POs											PS	Os
*COs	1	2	3	4	5	6	7	8	9	10	S1	12	13	14
1.	2	1	Y	5)	1	1	D	-	/	9	/-	-	-	2
2.	2	2	1	0	15	-	×-	2	2	1	-	-	-	2
3.	2	2	2	-	YE	17- 1	पर्श	Śc	5	-	-	-	-	2
4.	3	3	3	-	-	_	-		-	-	-	-	-	2
5.	3	3	3	-	-	-	-	-	-	-	-	-	-	2
* 1 – W	eak, 2	– Mod	erate, 3	3-Stro	ong									

	RADAR AND MICROWAVE ENGINEERING		T	P	<u>C</u>
COUDSEO	 BJECTIVES:	3	0	0	3
To enTo faTo enTo in	able the student to understand the basic concepts radar and radar equ miliarize the students in the area of various types of radar. hance the student knowledge in tracking radar. apart student knowledge in the area of microwave devices. able the student to measure the microwave circuits.	ation.			
UNIT I	INTRODUCTION TO RADAR				9
Frequencies, simple form Noise, Signa Pulses, Rada	of Radar, Radar principles, Basic Block Diagram, Radar classifie Wave form and application, Radar Fundamentals: Detection, Rang of the Radar Equation, Pulsed Radar equation, Detection of Signals in 1-to-Noise Ratio, Probabilities of Detection and False Alarm, Inte r Cross Section of Targets, Transmitter Power, Pulse Repetition Free System losses.	ge, vel n Noise gratio	locit e- Re 1 of	y, T ceiv Rad	he 'er lar
UNIT II	CW, MTI AND PULSE DOPPLER RADAR				9
Radar. UNIT III	nitations to MTI Performance, MTI from a Moving Platform (AMIT TRACKING RADAR				9
Tracking Ac Radar- Targe	th Radar, Monopulse Tracking, Conical Scan, Sequential Lobing curacy, Low-Angle Tracking - Comparison of Trackers, Track wl et prediction, state estimation, Measurement models, alpha – beta	hile So	can	TW	S)
		uacke	er, K	am	
	ended Kalman filtering.		er, K		
UNIT IV			er, K		9
UNIT IV Review of S	ended Kalman filtering.				-
UNIT IV Review of S BARITT Dic	ended Kalman filtering. MICROWAVE DEVICES AND GENERATION parameters, Terminations, Isolator, E and H plane tee, Read Diodes, 7 de, Reflex Klystron, Forward-Wave Crossed-Field Amplifier				le,
UNIT IV Review of S BARITT Dic UNIT V Principle of Network ana	ended Kalman filtering. MICROWAVE DEVICES AND GENERATION parameters, Terminations, Isolator, E and H plane tee, Read Diodes, T de, Reflex Klystron, Forward-Wave Crossed-Field Amplifier MICROWAVE MEASUREMENTS operation and application of VSWR meter and Power meter, Sp lyzer, Measurements- Impedance, Frequency, Power, VSWR, Q- Scattering coefficients.	ΓRAP ΓRAP ectrum factor,	ATT n an Die	dioc	le, 9 er, ric
UNIT IV Review of S BARITT Dic UNIT V Principle of Network ana	ended Kalman filtering. MICROWAVE DEVICES AND GENERATION parameters, Terminations, Isolator, E and H plane tee, Read Diodes, T de, Reflex Klystron, Forward-Wave Crossed-Field Amplifier MICROWAVE MEASUREMENTS operation and application of VSWR meter and Power meter, Sp lyzer, Measurements- Impedance, Frequency, Power, VSWR, Q-	ΓRAP ΓRAP ectrum factor,	ATT n an Die	dioc	le, 9 er, ric
UNIT IV Review of S BARITT Dic UNIT V Principle of Network and constant and	ended Kalman filtering. MICROWAVE DEVICES AND GENERATION parameters, Terminations, Isolator, E and H plane tee, Read Diodes, T de, Reflex Klystron, Forward-Wave Crossed-Field Amplifier MICROWAVE MEASUREMENTS operation and application of VSWR meter and Power meter, Sp lyzer, Measurements- Impedance, Frequency, Power, VSWR, Q-: Scattering coefficients. TOTAI	ΓRAP ΓRAP ectrum factor,	ATT n an Die	dioc	le, 9 er, ric
UNIT IV Review of S BARITT Did UNIT V Principle of Network and constant and TEXT BOO 1. Habit 2. M. R. Princ 3. David REFERENC	ended Kalman filtering. MICROWAVE DEVICES AND GENERATION parameters, Terminations, Isolator, E and H plane tee, Read Diodes, T de, Reflex Klystron, Forward-Wave Crossed-Field Amplifier MICROWAVE MEASUREMENTS operation and application of VSWR meter and Power meter, Sp lyzer, Measurements- Impedance, Frequency, Power, VSWR, Q-Scattering coefficients. TOTAI KS: pur Rahman, Fundamental Principles of Radar, CRC press, Taylor and Richards, J. A. Scheer, W. A. Holm, Editors Principles of Modern R iples, SciTech Publishing, 2012. M. Pozar, Microwave Engineering, Fourth Edition, Wiley India, 20	CRAPA FRAPA ectrum factor, L: 45 d Fran adar, 1 12.	ATT 1 an Die PER	dioc alyze electr 2019 2	9 er, ric

Edition,2007.

- M.I.Skolnik, Introduction to Radar Systems, Tata McGraw Hill 2006.
 Mark A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, 2005.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Identify and understand the radar parameters	3
CO2	Differentiate various radar types	4
CO3	Evaluate different tracking and filtering schemes	4
CO4	Understand the basic concepts of active and passive microwave devices	2
CO5	Measure and analyze the microwave signal parameters	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;

COURSE ARTICULATION MATRIX

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 3 1 - - - - - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 3 - - 3 3 3 - - - 1 2 2 - - 3 3 3 - - 3 3 3 - - - 1 2 2 - - 3 3 - - 3 3 - - 3 3 - - 3 3 - - 3 3 - - 3 3 - - 3 3 -	*CO		1	41	/	10	PO	Os		17	~ /	0.1		PS	SOs
1 3 1 - - - - - 3 3 - - 3 3 2 - - 1 2 2 - - 3 3 3 3 2 - - - - 1 2 2 - - 3 3 4 3 2 - - - - - 2 - - 3 3 5 3 2 3 - 3 - - 2 2 - - 3 3	S	1	2	3	4	5	6	7	8	9	10	11	12	13	14
3 3 2 - - - - 1 2 2 - - 3 3 4 3 2 - - - - - 2 - - 3 3 5 3 2 - - - - - 2 - - 3 3 5 3 2 3 - 3 - - 2 2 3 - 1 3 3	1	3	1	T.	- 77	5		1	0	10	3	0	1-	3	-
4 3 2 - - - - 2 2 - - 3 - 5 3 2 3 - 3 - - 2 2 - - 3 - 5 3 2 3 - 3 - - 2 2 3 - 1 3 3	2	3	2	0-1	5.	-/	12.1	J	1	2	2	-	-	3	3
5 2 3 - 3 - 2 3 - 1 3 3 5 3 2 3 - 3 - - 2 2 3 - 1 3 3	3	3	2	5	<u></u>		(1-2	-	1	2	2	14	<u> </u>	3	3
	4	3	2	5-1	23	- /	-	A.		2	-	11	-	3	-
* 1 – Weak, 2 – Moderate, 3 - Strong	5	3	2	3	-	3	1	-	2	2	3	1 20	1	3	3
	⊧ 1 – V	Weak, 2	– Mod	lerate, 3	- Stron	ng		32	-		3/	3			
						-		1	1	1	-	/			
					12	1di	TT		7 7	20	/				
and the state							11	44	1 4	/					

COURSE OBJECTIVES: • To understand the basics of Microwave integrated circuits. • To understand the concepts of matching networks and passive devices. • To study the characteristics of active RF components and applications. • To get acquaintance with RF system characteristics and design. • To design integrated antenna and analyze its performance using measurement techniques. UNIT I INTRODUCTION TO MICROWAVE INTEGRATED CIRCUITS Overview of Planar transmission lines (Stripline, Microstripline, Slotline, CPW, Finline) - Design Parameters for Strip Line And Microstripline- Active Device Technologies- Design Approaches, Multichip Module Technology- Substrates UNIT II IMPEDANCE MATCHING NETWORKS & PASSIVE DEVICES Matching with lumped Elements, Design of L matching network, Matching by micro strip line. S parameters with Smith chart – Passive IC components, Basic properties of dividers and couplers T Junction Power divider – Wilkinson Power divider – Coupled line Directional Coupler. UNIT III ACTIVE RF COMPONENTS AND APPLICATIONS Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors, matching and biasing networks - impedance matching using discrete components, microstrip line matching networks , amplifier classes of operation and biasing networks. UNIT IV ACTIVE RF SYSTEMS AND APPLICATIONS Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, t	EC22036	MICs AND RF SYSTEM DESIGN	L 3	<u>Т</u> 0	<u>Р</u> 0	$\frac{C}{3}$
To understand the basics of Microwave integrated circuits. To understand the concepts of matching networks and passive devices. To study the characteristics of active RF components and applications. To design integrated antenna and analyze its performance using measurement techniques. UNIT I INTRODUCTION TO MICROWAVE INTEGRATED [INTERCUITS] Overview of Planar transmission lines (Stripline, Microstripline, Slotline, CPW, Finline) - Design Parameters for Strip Line And Microstripline - Active Device Technologies - Design Approaches, Multichip Module Technology Substrates UNIT II IMPEDANCE MATCHING NETWORKS & PASSIVE DEVICES Matching with lumped Elements, Design of L matching network, Matching by micro strip line. S parameters with Smith chart – Passive IC components, Basic properties of dividers and couplers - T Junction Power divider – Wilkinson Power divider Coupled line Directional Coupler. UNIT II ACTIVE RF COMPONENTS AND APPLICATIONS Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors, matching and biasing networks - impedance matching using discrete components, microstrip line matching networks, amplifier classes of operation and biasing networks. UNIT IV ACTIVE RF SYSTEMS AND APPLICATIONS Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micro Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements - Experimental Field Probing Techniques. TOTAL: 45 PERIOD Electhical Antenna - Micro Electronics", Pearson Education Asia, Second Edition, 2002. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and	COURSE O	BIECTIVES	3	U	U	3
CIRCUITS Overview of Planar transmission lines (Stripline, Microstripline, Slotline, CPW, Finline) - Design Parameters for Strip Line And Microstripline - Active Device Technologies- Design Approaches, Multichip Module Technology- Substrates UNIT II IMPEDANCE MATCHING NETWORKS & PASSIVE Devices Matching with lumped Elements, Design of L matching network, Matching by micro strip line. S parameters with Smith chart – Passive IC components, Basic properties of dividers and couplers. T Junction Power divider – Wilkinson Power divider Coupled line Directional Coupler. UNIT III ACTIVE RF COMPONENTS AND APPLICATIONS Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors, matching and biasing networks - impedance matching using discrete components, microstrip line matching networks, amplifier classes of operation and biasing networks. UNIT IV ACTIVE RF SYSTEMS AND APPLICATIONS Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micre Electron Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TOTAL: 45 PE	 To und To und To stud To get To des 	lerstand the basics of Microwave integrated circuits. lerstand the concepts of matching networks and passive devices. dy the characteristics of active RF components and applications. acquaintance with RF system characteristics and design. ign integrated antenna and analyze its performance using measurement				
Overview of Planar transmission lines (Stripline, Microstripline, Slotline, CPW, Finline) - Design Parameters for Strip Line And Microstripline- Active Device Technologies- Design Approaches, Multichip Module Technology- Substrates UNIT II IMPEDANCE MATCHING NETWORKS & PASSIVE DEVICES Matching with lumped Elements, Design of L matching network, Matching by micro strip line. S parameters with Smith chart – Passive IC components, Basic properties of dividers and couplers - T Junction Power divider – Wilkinson Power divider Coupled line Directional Coupler. UNIT III ACTIVE RF COMPONENTS AND APPLICATIONS Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors, matching and biasing networks - impedance matching using discrete components, microstrip line matching networks , amplifier classes of operation and biasing networks. UNIT IV ACTIVE RF SYSTEMS AND APPLICATIONS Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micro Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TEXT BOOKS: 1. 1. Mathew M. Radmanesh, "Radio Frequency &Microwave Electronics", Pearson Education Asia, Second Edition,2002. </td <td>UNIT I</td> <td></td> <td></td> <td></td> <td></td> <td>9</td>	UNIT I					9
DEVICES Matching with lumped Elements, Design of L matching network, Matching by micro strip line. S parameters with Smith chart – Passive IC components, Basic properties of dividers and couplers T Junction Power divider – Wilkinson Power divider Coupled line Directional Coupler. UNIT III ACTIVE RF COMPONENTS AND APPLICATIONS Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors, matching and biasing networks - impedance matching using discrete components, microstrip line matching networks , amplifier classes of operation and biasing networks. UNIT IV ACTIVE RF SYSTEMS AND APPLICATIONS Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micro Electron Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and	Design Parar	Planar transmission lines (Stripline, Microstripline, Slotline, CPW, Inters for Strip Line And Microstripline- Active Device Technologies-			-	
parameters with Smith chart – Passive IC components, Basic properties of dividers and couplers T Junction Power divider – Wilkinson Power divider Coupled line Directional Coupler. UNIT III ACTIVE RF COMPONENTS AND APPLICATIONS Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors, matching and biasing networks - impedance matching using discrete components, microstrip line matching networks, amplifier classes of operation and biasing networks. UNIT IV ACTIVE RF SYSTEMS AND APPLICATIONS Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micre Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TOTAL: 45 PERIODS TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency &Microwave Electronics", Pearson Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and	UNIT II					9
UNIT IV ACTIVE RF SYSTEMS AND APPLICATIONS Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micro Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency &Microwave Electronics", Pearson Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and	UNIT III Active RF co transistors, I impedance n	ACTIVE RF COMPONENTS AND APPLICATIONS omponents: Semiconductor basics in RF, bipolar junction transistors, RF High electron mobility transistors, matching and biasing networks - natching using discrete components, microstrip line matching network	F fie	ld ef	fect	
Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micr Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TOTAL: 45 PERIODS TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and						
Power amplifiers, transducer power gain and stability considerations. UNIT V INTEGRATED ANTENNA DESIGN AND MEASUREMENTS Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micro Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TOTAL: 45 PERIODS TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second Edition, 2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and	UNIT IV	ACTIVE RF SYSTEMS AND APPLICATIONS				9
Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micro Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. Total: 45 PERIOD TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and			llato	ors,		
Integrated Antenna Design- Photonic Band Gap Antennas - Micro Machined Antenna - Micr Electro Mechanical System Antennas - Test Fixture Measurements - Probe Station Measurement Thermal and Cryogenic Measurements- Experimental Field Probing Techniques. TOTAL: 45 PERIOD TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and	UNIT V	INTEGRATED ANTENNA DESIGN AND MEASUREMENTS				9
 TEXT BOOKS: 1. Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and 	Integrated A Electro Mech Thermal and	ntenna Design- Photonic Band Gap Antennas - Micro Machined Ar nanical System Antennas - Test Fixture Measurements - Probe Station I Cryogenic Measurements- Experimental Field Probing	Me	asur	eme	cro nts
 Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second Edition,2002. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and 						
Education Asia, Second Edition,2002. 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and	TEXT BOO	KS:	I			
2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and		1 1	on			
3. Bharathi Bhat, Shiban K. Koul, "Stripline-like Transmission Lines for Microwave	2. Reinh		The	ory	and	l

Integrated Circuits", New Age International Pvt Ltd Publishers, 2007.

REFERENCES:

- 1. Gupta KC and Amarjit Singh, "Microwave Integrated circuits", Wiley Eastern, 1974.
- 2. D. K. Misra, "Radio Frequency and Microwave Communication Circuits- Analysis and Design", John Wiley & Sons, 2004.

ccessful completion of the course, students should be able to:	Level
Understand the various aspects and significance of Microwave integrated circuits.	2
Observe the concept of impedance matching and concepts of passive devices.	4
Analyse and identify appropriate RF active components and design circuits for obtaining the required performance.	3
Design a complete RF transceiver system for wireless communication.	4
Design microwave integrated circuit based antenna and study the performance using measurement techniques.	4
	integrated circuits. Observe the concept of impedance matching and concepts of passive devices. Analyse and identify appropriate RF active components and design circuits for obtaining the required performance. Design a complete RF transceiver system for wireless communication. Design microwave integrated circuit based antenna and study the

Create-6 10

COURSE ARTICULATION MATRIX

*COs		1	41	111	1	P	Os	-1		1	74.4		PS	Os
	1	2	3	4	5	6	7	8	9	10	-11	12	13	14
1.	3	2	23	-20		(<u>-</u> ^ ^ ^	1	1			177	-	2	-
2.	3	2	3	5%	- /	-	1	1	Ų.,	6-s)	i	-	2	-
3.	3	2	3	-	e	1	1	1	-	-/	77/	<u> </u>	2	-
4.	3	2	3	(-)	-	-	1	1		1	~/	-	2	-
5.	3	2	3	1	1.5		- 1	1	10-0	1-5	27	-	2	-
* 1 – We	ak, 2 -	- Modei	rate, 3 -	Strong		- C.S.	1.1.1	÷.	/	5	1			

ीविद्या परा देवता

EC22037	MILLIMETER WAVE ANTENNA TECHNOLOGY	L 1 3 0		C 3
COURSE OI	BJECTIVES:	0		U
	derstand the fundamentals and analyze various channel effects of mi unication.	llimet	er w	vave
	dy and analyze antenna arrays for various applications of mm wav unications.	es in	wire	less
	alyze millimeter wave MIMO systems for wireless communications.			
• To stu	dy on the implementation of millimeter wave technology for 5G applications applied to the millimeter wave technology in wireless access systems.	ations		
• 10 de.	ngh the minimeter wave teenhology in whereas access systems.			
UNIT I	INTRODUCTION			9
wave: Large	ave characteristics and implementation challenges, Radio wave propag scale propagation channel effects, small scale channel effects, Outdo lels, Emerging applications of millimetre wave communications on.	or and	l Ind	loor
UNIT II	MILLIMETER WAVE ANTENNA ARRAYS			9
UNIT III	ons, Characterization of On-Chip Antenna Performance. MILLIMETER WAVE ANTENNAS FOR MIMO SYSTEMS			9
	IO Communications, Potential benefits for mm wave systems, Spatial,	Temp	oral	-
Frequency di	versity, Dynamic spatial, frequency and modulation allocation, Spatia ys, Multiple Antennas, Multiple Transceivers, Noise coupling in MIMC	al div	ersity	
UNIT IV	MILLIMETER WAVE ANTENNAS FOR 5G			9
Arrival, Anter	cterization of Multipath and Beam Combining, Angle Spread and Multi na Polarization, Antenna beamwidth, advanced beam steering and beam consideration, Device to Device communications over 5G systems, Desi	ı form	ing,	mm
UNIT V	APPLICATION OF MILLIMETER WAVE SYSTEMS		1	9
Wireless trait technology-Sa	on at 50 GHz-Wireless LAN Systems-Wireless access systems through m n communication system-Intelligent transport systems (ITS) throug atellite broadcasting systems through mm wave band-Broadb on using high altitude platform (HAP).	gh m		vave
	TOTAL: 4	15 PE	RIC	DDS
TEXT BOO				

- 1. K.C. Huang, Z. Wang, "Millimeter Wave Communication Systems", Wiley-IEEE Press, March 2011.
- 2. Robert W. Heath, Robert C. Daniel, James N. Theodore S. Rappaport, Murdock, "Millimeter Wave Wireless Communication", Prentice Hall, 2014.
- 3. Xiang, W; Zheng, K; Shen, X.S. "5G Mobile Communications": Springer, 2016.
- 4. S-Q. Xiao, M-T. Zhou (Ed), "Millimeter Wave Technology in Wireless PAN, LAN, and MAN" CRC Press, 2008.

REFERENCES:

- 1. Prakash Bhartia, and Inder Bahl, MmWave Engineering and Applications, Wiley Interscience.
- 2. T. Teshirogi, T. Yoneyama (Ed), "Modern Millimeter Wave Technologies", IOS Press, 2000.

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Understand the fundamental concepts and channel effects of millimeter wave communications.	2
CO2	Study and Analyze antenna arrays for various applications of mm waves in wireless communications.	3
CO3	Develop and analyze MIMO antenna systems for mm waves communications.	3
CO4	Identify implementation of millimeter wave technology for 5G applications.	3
CO5	Design and analyze Millimeter Wave Application Systems.	3
Bloon Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva -6	luate-5;

*COs			18	2	1.1	Р	Os		-6	15	21		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	3	×	1	¹⁰	Ś	1	1	-	- /	-	2	-
2.	3	2	3	0	19	-	1	1	5	1	-	-	2	-
3.	3	2	3	-	1	-IF	U D	r G	2	<u> </u>	-	-	2	-
4.	3	2	3	-	-22	-	1	1	- N	-	-	-	2	-
5.	3	2	3	-	-	-	1	1	-	-	-	-	2	-
* 1 – W	eak, 2	- Mod	erate, 3	3 - Stro	ng									

EC22038	SMART ANTENNA SYSTEMS AND TECHNOLOGY	L T P C 3 0 0 3
COURSE O	BJECTIVES:	
	valuate adaptive antenna and spatial processing techniques to desig	n and optimize
	na systems and beamforming networks	
	alyze different multi-user spatial processing techniques and channel mo	dels to optimize
•	n capacity and coverage	• 1, 1 •
	alyze various DOA and localization estimation algorithms to select opt	timal techniques
	ake design tradeoff decisions Fer critique on adaptive array algorithms for mitigating multipath effect	s and improving
	r positioning performance	s and improving
	alyze and select appropriate simulation tools and measurement techn	iques to design,
	ype, and test smart antenna systems.	1 0 /
	COLLE	
UNIT I	INTRODUCTION TO ANTENNAS	9
Processing Re	ssing-Adaptive antennas-Beam forming networks, Switched Beam eccivers, Adaptive Antenna Systems, Transmission Beamforming, Digited software radios.	
UNIT II	MULTI-USER SPATIAL PROCESSING TECHNIQUES	9
	atial processing, Dynamic re-sectoring- Environment and Signal Para	-
Temporal Ch	annel Models for Smart Antenna design, Spatial Channel Measureme annel Models, Geometrically based single bounce elliptical model.	
UNIT III	DOA ESTIMATION	9
	ion-conventional and subspace methods. ML estimation techniques. E	
	urces using Eigen decomposition. DOA Estimation under Coherent Sig	
	ed Approach to DOA Estimation, Direction finding and true ranging yperbolic PL systems. TDOA estimation techniques, Introduction to A	
	yperbolic FL systems. TDOA estimation techniques, introduction to F	
UNIT IV	ADAPTIVE ALGORITHMS FOR MULTITARGET DECISIONS	9
positioning. 1 Directed Algo	nultipath on optimal spatial filtering–adaptive algorithms for C Performance of under loaded and overloaded adaptive arrays, Multit prithm (MT-DD), Least Squares Despread Re-spread Multi target Array s Despread Re-spread Multi target Constant Modulus Algorithm.	arget Decision-
UNIT V	SIMULATION AND MEASUREMENT	9
	to Simulation tools for smart antenna design- ADS, CST Microwa	-
ANSYS. Ar	tenna measurement and instrumentation-Gain, Impedance and	antenna factor
measurement	; Introduction to Vector Network Analyzer, Antenna test range Design	1. : 45 PERIODS
TEXT BOO		
1. T.S.Ra Edition	ppaport, J.C.Liberti, "Smart Antennas for Wireless Communication", 2008.	
	swamy, Radio Wave Propagation and Smart Antennas for Wireless Cer, Second Edition, 2008.	Communication,

REFERENCES:

- 1. Constantine A.Balanis, "Smart Antennas", Third edition, John Wiley India Pvt Ltd., 2005.
- 2. Bronzel, "Smart Antennas", John Wiley and Sons, First Edition, 2004.

COU	RSE OUTCOMES:	RBT
Upon s	successful completion of the course, students should be able to:	Level
CO1	Evaluate different beamforming algorithms for spatial processing in adaptive antenna systems in terms of computational complexity, antenna pattern control, and bit error rate performance and choose the ideal configuration	5
CO2	Analyze and compare different dynamic re-sectoring and spatial multiplexing methods to improve multi-user capacity in a given propagation environment	4
CO3	Compare and contrast conventional, subspace, and ML estimation methods for DOA under both coherent and non-coherent signal conditions.	4
CO4	Analyze the performance of underloaded and overloaded adaptive arrays in multipath environments to identify tradeoffs and limitations	4
CO5	Compare and contrast various antenna measurement setups and instrumentation to recommend an optimal approach for characterizing a given smart antenna design.	4
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

COURSE ARTICULATION MATRIX

*CO					1	PO	Os		1.6	-	\leq		PS	Os
S	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	1	1		1/	20	-	17	1 -	3	-
2.	3	3	P	2	1	1	-	1	-	-/	R	-	3	3
3.	3	3	2	3	1	1	39	1	-	1	\mathbb{S}^{1}	-	3	3
4.	3	3	10	2	1	-	1	-	-	10	-/	-	3	-
5.	3	2	3	3	3	1		1	/	1-1	1	-	3	3
* 1 – V	Weak, 2	2 – Mo	derate,	3 - Stro	ong	-	1	-	2	9/				
					19	eT .	T	57	au	/				

11

3

0

EC22020		L	Т	Р	С
EC22030	MINI PROJECT	0	0	4	2
COURSE O	BJECTIVES:				
	understand the method of applying RF engineering knowledge to solve plems.	spe	cific	;	
• To a	apply Antenna design principles while executing the project.				
• To c	lemonstrate the skills for good presentation and technical report writing	g ski	lls.		
• To v	work independently as well as in teams.				
	dentify and solve complex engineering problems using professionally p dards.	oresc	cribe	ed	
PROJECT V	VORK MODALITIES				
RF and Micro	owave Engineering real-world challenges can be solved by students as	sai	nini	-pro	ject
The literature	review pertaining to their particular problem statement must be con idually or as a team. After learning about the principles of Electron	nduc	ted	by e	each
Transmission	Lines, RF Systems, Antennas and Microwave Engineering, the stude	ents	can	use	the

knowledge to speculate a solution relevant to the goal of their project. Using a variety of numerical simulation tools such as CST and ADS, students can design and simulate antennas and RF components. The validity of simulated results is to be determined using a VNA. At the conclusion of the semester, the student is required to turn the project in a softbound report.

TOTAL: 60 PERIODS

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Conceptualize, design and implement solutions for specific problems in the field of Microwave Engineering.	4
CO2	Formulate research methodology for the problems in the field of RF circuits design.	4
CO3	Apply resource managements skills for projects.	4
CO4	Synthesize self-learning, team work and ethics.	3
CO5	Communicate the solutions through presentations and technical reports.	3
*Bloo	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev ate-6	aluate-

COURSE ARTICULATION MATRIX

L CT. I

*C						Р	Os						PS	SOs
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	1	2	2	3	3	3	3	3	3
2.	3	3	3	3	3	1	2	2	3	3	3	3	3	3
3.	3	3	3	3	3	1	2	2	3	3	3	3	3	3
4.	3	3	3	3	3	1	-	2	3	3	3	3	3	3
5.	3	3	3	3	3	1	-	2	3	3	3	3	3	3
* 1 - 1	Weak, 2	2 - Mo	derate,	3-Str	ong									

VERTICAL 3 VLSI

EC22041 ANALOG IC DESIGN	L	Т	Р	С
	3	0	0	3
COURSE OBJECTIVES:				
• To acquire the basic knowledge on operation and the tradeoffs involved in the	e Mo	OS		
amplifier				
• To determine the frequency and noise performance of amplifiers				
• To analyze the feedback amplifiers and one stage op amps				
• To investigate and design of two stage op amps				
To analyze of reference generators in CMOS technology				
				0
UNIT I SINGLE STAGE AMPLIFIERS			0	9
Basic MOS physics and equivalent circuits-MOS Device models- Common Source- C				
- Source Follower- Cascode and folded cascode configurations, Differenti	lai	amj	p1111	ers
configurations and analysis.				
UNIT II HIGH FREQUENCY AND NOISE CHARACTERISTICS OF				9
AMPLIFIERS				,
Current mirrors- cascode current mirrors-current mirror loads for differential pairs-	-Mi	ller	effe	ct-
association of poles with nodes- frequency response of CS, CG and source followe				
differential pair stages- Noise Spectrum- SNR- noise in single stage amplifiers-noise				
amplifiers.				
UNIT III FEEDBACK AND OPERATIONAL AMPLIFIERS				9
Properties of feedback circuits and types of amplifier - feedback typologies - effect	t of	load	ding	in
feedback networks-operational amplifier performance parameters-One-stage Op Am				
Op Amps-Input range limitations-Gain boosting-Slew rate- Power supply rejection				
Amps.				
UNIT IV STABILITY AND FREQUENCY COMPENSATION				9
General considerations-Multipole systems-Phase Margin-Frequency Compensation-		-	nsati	on
of two stage Op Amps- Slewing in two stage Op Amps- Other compensation techniqu	ues.			
4 42 8				
UNIT V BANDGAP REFERENCES				9
Supply independent biasing-Temperature independent references-Negative TC vol	ltage	e-Ba	andg	ap
reference- PTAT current generation, Constant-Gm biasing-Speed and noise issues.	45 1			20
TOTAL:	<u>45 I</u>	PER)5
TEXT BOOKS:	U :1	1 20	01	
1 Pahzad Pazavi "Design Of Analog Cross Integrated Circuits" Tate Magney	пш	I, 20	<i>J</i> 01.	
1. Behzad Razavi, "Design Of Analog Cmos Integrated Circuits", Tata Mcgraw 2. Wiley M.C. Sansen "Analog Design Essentials", Springer 2006				
 Behzad Razavi, "Design Of Analog Cmos Integrated Circuits", Tata Mcgraw Wiley M.C. Sansen, "Analog Design Essentials", Springer, 2006. 				
2. Wiley M.C. Sansen, "Analog Design Essentials", Springer, 2006.	& S(ons,	Inc.	,
2. Wiley M.C. Sansen, "Analog Design Essentials", Springer, 2006. REFERENCES:	& So	ons,	Inc.	,

Press, 2nd Edition, 2002.

- Recorded Lecture Available at http://www.ee.iitm.ac.in/vlsi/courses/ee5320_2021/start
 Jacob Baker "CMOS: Circuit Design, Layout, And Simulation, Wiley IEEE Press, 3rd Edition, 2010.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Describe the basic operation of amplifiers and configurations	2
CO2	Compute the frequency and noise performance of amplifiers	3
CO3	Examine the performance of feedback amplifiers and operational amplifiers	4
CO4	Analyze stability and frequency compensation of stage op amps	4
CO5	Analyze reference generators in CMOS technology	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	aluate-5;

COURSE ARTICULATION MATRIX

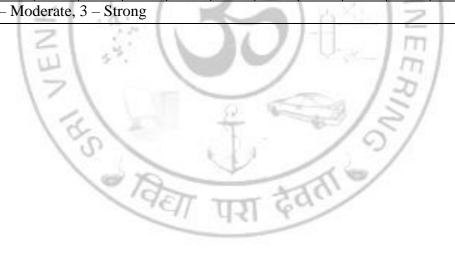
*C		1	F	/ 0	123	Р	os	~	20	1	6		PS	SOs
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	1	-/	1	1-) (100	2	11	-	2	2
2.	3	2	2	1	20-	1-7		-	1		1	-	2	2
3.	3	2	2	1	2	1	10	1	É.	20-	111	-	2	2
4.	3	2	2	1	2	1	- 1	1	-		111		2	2
5.	2	2	1	1	2	-	-	1	2	1	12	-	1	1
* 1 – V	Weak, 2	2 - Mo	derate.	3 - Sti	ong		-28	1	and a	1 .	21			

Tate

रा देवता -

EC22042	ASIC AND FPGA DESIGN	L	Τ	P	С
	BJECTIVES:	3	0	0	3
 To get To acc circuit To ana To lea 	familiar with the different types of programming technologies and log quire knowledge about partitioning, floor planning, placement and rout extraction of ASIC alyze the synthesis, simulation and testing of systems rn the architecture of different types of FPGA derstand the design issues of SOC				g
UNIT I	OVERVIEW OF ASIC AND PLD				9
Types of ASI Antifuse – sta	Cs - Design flow – CAD tools used in ASIC Design – Programming T tic RAM – EPROM and EEPROM technology, Programmable Logic I – PLA –PAL. Gate Arrays – CPLDs and FPGAs				
UNIT II	ASIC PHYSICAL DESIGN				9
System partiti	on -partitioning - partitioning methods – interconnect delay models an orplanning - placement – Routing global routing - detailed routing - space spac				ent
	4				
UNIT III	LOGIC SYNTHESIS, SIMULATION AND TESTING				9
PLA tools -EI	ns - Logic Synthesis - Half gate ASIC -Schematic entry - Low level de DIF- CFI design representation. Verilog and logic synthesis -VHDL and ulation -boundary scan test - fault simulation - automatic test pattern g	logi	c sy	nthe	
Field Program mapping for 1 their speed pe	nmable gate arrays- Logic blocks, routing architecture, Design flov FPGAs, Xilinx XC4000 - ALTERA's FLEX 8000/10000, ACTEL's rformance Case studies: Altera MAX 5000 and 7000 - Altera MAX 90 FPGAs – Apex and Cyclone FPGAs	AC7	[-1,2	2,3 a	$\sqrt{-}$
UNIT V	SOC DESIGN				9
Design Metho Techniques fo	odologies – Processes and Flows - Embedded software development fo or SOC Testing – Configurable SOC – Hardware / Software co-design a, Bluetooth radio / modem, SDRAM and USB				
2 181001 000000	TOTAL:	45	PEF	RIO	DS
1997 2. Wayne	Smith, "Application Specific Integrated Circuits, Addison -Wesley Lo e Wolf, FPGA-Based System Design, Prentice Hall PTR, 2004. han & S. Mourad, Digital Design Using Field Programmable Gate Arr	U			
REFERENC	ES:				

- 1. S.Trimberger, Field Programmable Gate Array Technology, Edr, Kluwer Academic Publications, 1994.
- 2. John V.Oldfield, Richard C Dore, Field Programmable Gate Arrays, Wiley Publications 1995.
- 3. Parag.K.Lala, Digital System Design using Programmable Logic Devices, BSP, 2003.
- 4. S. Brown, R. Francis, J. Rose, Z. Vransic, Field Programmable Gate Array, Kluwer Pubin, 1992.
- 5. J. Old Field, R.Dorf, Field Programmable Gate Arrays, John Wiley & Sons, Newyork, 995.
- 6. Farzad Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practical Approach, Prentice Hall PTR, 2003.
- 7. R. Rajsuman, System-on-a-Chip Design and Test. Santa Clara, CA: Artech House Publishers, 2000.
- 8. F. Nekoogar. Timing Verification of Application-Specific Integrated Circuits (ASICs). Prentice Hall PTR, 1999.


	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Choose appropriate types of programming technologies and logic devices	2
CO2	Apply partitioning, floor planning, placement and routing including circuit extraction of ASIC Designs	3
CO3	Synthesize, simulate and test the designed systems	4
CO4	Choose appropriate architecture of FPGA for an application	2
CO5	Apply design methodologies, processes and flows in an SOC design	3
	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; E	valuate-5;
Create	-6	

*C			1	0.		F	Pos		/	1.2	/		PS	SOs
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	2	1	2	3	2	1		5	90.	/-	-	-	2	2
2.	2	1	2	3	2	1	43	1	/	-	-	-	2	2
3.	2	1	2	3	2	1	-	-	-	-	-	-	2	2
4.	2	1	2	3	2	1	-	-	-	-	-	-	2	2
5.	2	1	2	3	1	1	-	-	-	-	-	-	2	2
* 1 – V	Veak, 2	2 - Mo	derate,	3 - Str	ong									

EC22043	CAD FOR VLSI DESIGN	L	T	P	C
	BJECTIVES:	3	0	0	3
 To be To fai To be To stu 	exposed to the VLSI design methodologies and design methods. niliarize data structures and algorithms required for VLSI design. exposed to algorithms for partitioning and placement. dy algorithms for floorplanning and routing. dy algorithms for modeling, simulation and synthesis.				
UNIT I	INTRODUCTION TO VLSI DESIGN FLOW				9
Basics of VLS	o VLSI Design methodologies, Review of MOS and CMOS Fabrication SI design automation tools, Algorithmic Graph Theory and Computation Intractable problems.				.ty,
UNIT II	LAYOUT, PLACEMENT AND PARTITIONING				9
compaction, l	paction, Design rules, Problem formulation, Algorithms for con Placement and partitioning, Circuit representation, Placement algorithm FLOOR PLANNING AND ROUTING ag concepts, Shape functions and floorplan sizing, Types of local rou	s, P	artit	ioni	ng 9
Area routing,	Channel routing.				
UNIT IV	SIMULATION AND LOGIC SYNTHESIS				9
Simulation, C	ate-level modeling and simulation, Switch-level modeling and simulational Logic Synthesis, Two Level Logic Synthesis, Synthesis of reversible		ic ci	rcui	ts-
UNIT V	HIGH LEVEL SYNTHESIS				9
	odels for high level synthesis, internal representation, allocation, as ligh level transformations.	ssig	nme	nt a	ınd
	TOTAL:	45	PEF	RIO	DS
TEXT BOO					
2017. 2. N.A.S	H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer shers, 2002		•		a,
REFERENC					
	es J. Alpert, Dinesh P. Mehta and Sachin S Sapatnekar, "Handbook of A cal Design Automation, CRC Press, 1st Edition, 2008.	Algo	orith	ms	for

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Determine the VLSI design methodologies for tractable and Intractable problems	2
CO2	Design compact layouts and develop algorithms for circuit placement and partitioning	3
CO3	Identify routing problems and develop floor planning and routing.	3
CO4	Develop hardware models for high level synthesis.	3
CO5	Simulate and synthesize with proper alignment and scheduling.	3
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;

*CO				1	aP	P	os	(AC				PS	PSOs		
S	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	3	3	3	2	2		5	1	5	1-	2	3	3		
2.	3	3	2	2	1	2	2 <u>-</u> 8.	1	1.5	-	1	2	3	3		
3.	3	3	2	2	2	2	-	-	1-2	1	5-1	2	3	3		
4.	3	3	3	2	2	1		1	12	- \	6	2	1	2		
5.	3	3	< 3	2	2	2		1	-	- 1	60	3	2	2		
* 1 – V	Weak, 2	2 – Mo	derate,	3-Str	ong	10		0	18	S	12					

EC22044	LOW POWER IC DESIGN	L 3	Т 0	P 0	C 3
COURSE O	BJECTIVES:	5	U	U	5
• To lea	rn the fundamentals of low power low voltage VLSI design.				
• To ui	iderstand the impact of power on system performances.				
	inderstand the design of different adders.				
	iderstand the design of different multipliers.				
	evelop the low power low voltage memories				
• 10 4	velop the low power low voltage memories				
UNIT I	FUNDAMENTALS OF LOW POWER CIRCUITS				9
	Low Power Circuit Design, Sources of Power Dissipation – Swit	chiı	1g]	Pow	-
	Short Circuit Power Dissipation, Leakage Power Dissipation, Glit		-		
1	Short Channel Effects -Drain Induced Barrier Lowering and Punch Three		<u> </u>		
-	Velocity Saturation, Impact Ionization, Hot Electron Effect.	U	,		
	1 ar OF				
UNIT II	LOW-POWER DESIGN APPROACHES				9
Low-Power	Design through Voltage Scaling: VTCMOS circuits, MTCMOS circuit	s,			
	al Level Approach – Pipelining and Parallel Processing Approaches. Sw				
	Minimization Approaches: System Level Measures, Circuit Level Mea	isur	es, l	Masl	ζ.
level Measu	res.				
UNIT III	LOW-VOLTAGE LOW-POWER ADDERS , Standard Adder Cells, CMOS Adders Architectures – Ripple Carry A				9
	Adders, Carry Select Adders, Carry Save Adders, LowVoltage Low F -Trends of Technology and Power Supply Voltage, LowVoltage Low-				-
UNIT IV	LOW-VOLTAGE LOW-POWER MULTIPLIERS				9
multipliers,	n, Overview of Multiplication, Types of Multiplier Architectures, seria Array Multiplier, Column Bypass multiplier,Braun Multiplier, Ba Booth Multiplier, Introduction to Wallace Tree Multiplier				
UNIT V	LOW-VOLTAGE LOW-POWER MEMORIES				9
Basics of R of SRAM, 1	OM, Low-Power ROM Technology, Future Trend and Development of F Memory Cell, Precharge and Equalization Circuit, LowPower SRAM T RAM, Self-Refres Circuit, Future Trend and Development of DRAM.	Fecł	nnol	ogie	cs s,
	TOTAL:	45	PEI	RIO	DS
TEXT BOO					
Desig	Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits – Analys n, TMH, 2011.				
	Seng Yeo, Kaushik Roy, Low-Voltage, Low-Power VLSI Subsystems, Sesional Engineering, 2004.	I'M.	H		
REFERENC	ES:				

- 1. Ming-BO Lin, "Introduction to VLSI Systems: A Logic, Circuit and System Perspective", CRC Press, 2012.
- Anantha Chandrakasan, "Low Power CMOS Design", IEEE Press, /Wiley International, 1998
- 3. Kaushik Roy, Sharat C. Prasad, "Low Power CMOS VLSI Circuit Design", John Wiley, & Sons, 2000.
- 4. Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002
- Bellamour, M. I. Elamasri, "Low Power CMOS VLSI Circuit Design", A Kluwer Academic Press, 1995.
 Siva G. Narendran, Anatha Chandrakasan, "Leakage in Nanometer CMOS Technologies", Springer, 2005

	SE OUTCOMES: uccessful completion of the course, students should be able to:	RBT Level
CO1	Understand the fundamentals of Low power circuit design.	2
CO2	Attain the knowledge of architectural approaches.	3
CO3	Analyze and design Low-Voltage Low-Power combinational circuits.	4
CO4	Learn the design of Low-Voltage Low-Power Memories	2
CO5	Design and develop Low Power, Low Voltage Circuits	5
Bloom ² Create-	s Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-5;

*COs		i i	Pos									PS	SOs	
	1	2	3	-4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	2		5	-	1) -5	/-	2	2	2
2.	3	2	1	2	3		<u> </u>	5	2	9/	-	1	2	1
3.	3	3	3	2	2	T	TET	3	as	_	-	1	2	2
4.	2	3	3	3	3			-	-	-	-	1	3	3
5.	3	3	3	2	2	-	-	-	-	-	-	2	2	3
* 1 – We	* 1 – Weak, 2 – Moderate, 3 – Strong													

1.20

EC22045	MIXED SIGNAL IC DESIGN AND TESTING	L 3	<u>Т</u> 0	P 0	<u>C</u> 3
COURSE O	BJECTIVES:	5	U	U	5
	ow about mixed-signal devices and the need for testing these devices.				
	dy the various techniques for testing.				
	rn about ADC and DAC based testing.				
	derstand the Clock and Serial Data Communications Channels				
• To stu	dy general purpose measuring devices.	1			
					0
UNIT I	MIXED – SIGNAL TESTING bes of Analog and Mixed- Signal Circuits – Applications of Mixed-Si		1 0'	<u> </u>	9
and Diagnost	roduction Flow - Test and Packing – Characterization versus Productior ic Equipment - Automated Test Equipments – Wafer Probers – Hand used Ion Beam Equipments – Forced – Temperature				
					0
UNIT II	YIELD, MEASUREMENT ACCURACY, AND TEST TIME		1.01	1	9
	rement Terminology - Repeatability, Bias, and Accuracy - Calibration				
	cifications - Reducing Measurement Error with Greater Measure				
	Effects of Measurement Variability on Test Yield - Effects of Repre-	Jau	21011	ity a	ina
Process varia	tion on Yield - Statistical Process Control	<u> </u>			
UNIT III	DAC TESTING				9
	a Converters -Principles of DAC and ADC Conversion, Data Formats,	L Con	nnar	isor	-
	DCs, DAC Failure Mechanisms - Basic DC Tests - Transfer Curve Te				
	Tests for Common DAC Applications	0000	ν.	, mai	me
2110 10505					
UNIT IV	ADC TESTING				9
ADC Testing	Versus DAC Testing - ADC Code Edge Measurements - Edge Code '	Test	ing	Ver	sus
-	Testing, Step Search and Binary Search Methods, Servo Method,		-		
	ethod, Histograms to Code Edge Transfer Curves, Rising Ramps				-
Ramps, Sinus	oidal Histogram Method - DC Tests and Transfer Curve Tests - Dynar	nic	ADO	CΤε	sts
	mmon ADC Applications				
	441				
UNIT V	CLOCK AND SERIAL DATA COMMUNICATIONS				9
	CHANNEL MEASUREMENT				
Synchronous	and Asynchronous Communications - Time-Domain Attributes of a	Clo	ck S	igna	al -
Frequency-D	omain Attributes of a Clock Signal - Communicating Serially Over a	Ch	anne	el -	Bit
Error Rate M	easurement - Methods to Speed Up BER Tests in Production - Dete	rmi	nisti	c Ji	tter
Decompositio	on - Jitter Transmission Tests.				
	TOTAL:4	15	PEF	lO	DS
TEXT BOO	XS:				

- 1. Gordon W.Roberts, Friedrich Taenzler, Mark Burns, "An Introduction to Mixed-signal IC Test and Measurement" Oxford University Press, Inc. 2012.
- 2. M.L.Bushnell and V.D.Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002.

REFERENCES:

- 1. BapirajuVinnakota, "Analog and mixed-signal test", Prentice Hall, 1998.
- 2. Digital and Analogue Instrumentation: Testing and Measurement by NihalKularatna

	E OUTCOMES: ccessful completion of the course, students should be able to:	RBT Level
CO1	Learn the fundamentals of mixed signal circuits.	2
CO2	Define the various measurement terminologies.	3
CO3	Acquire knowledge of Analog to Digital Converters.	3
CO4	Learn testing of Analog to Digital Converters.	2
CO5	Comprehend the attributes of a clock signal.	3
Bloom's 5; Create	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; e-6	Evaluate-

*COs		1.5	21	- 6	1 1	1	Pos	- y	1-1-		100		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	2	2	- N	1	-	- 1	1	2	3	3
2.	3	3	2	2	1	2	12/11	Y	15-2	-/	18	2	3	3
3.	3	3	2	2	2	2	+	1	10	1.5	2-/	2	3	3
4.	3	3	3	2	2	1		-	/	-9	-	2	1	2
5.	3	3	3	2	2	2	Y	2	-	60/	-	3	2	2
* 1 – W	eak, 2	– Mo	derate,	3-Sta	rong	-		1	201	/				
* 1 – W	eak, 2	– Mo	derate,	3-State	rong	77	पर	5	201	/				

EC22046	SOC DESIGN	L 3	<u>Т</u> 0	<u>Р</u> 0	$\frac{C}{3}$
COURSEO	BJECTIVES:	3	U	U	3
	derstand the overall structure and interconnection of its components.				
	niliarize the design concepts of various processors for SoC design.				
	urn the concepts of On-die and Off-Die memory systems.				
	part knowledge on basic interconnect architectures and effectiveness of				
	nization.	~ .	~ .		
• To un	derstand the concept of reconfigurable technologies and case studies of	So) de	sign	•
UNIT I	INTRODUCTION TO THE SYSTEMS APPROACH				9
•	hitecture, Components of the system, Hardware & Software, Processor A				
-	d Addressing. System level interconnection, An approach for SoC De	esigi	1, S <u>y</u>	yste	m
Architecture	e and Complexity.				
UNIT II	PROCESSORS				(
		a a f a		Daa	
	a, Processor Selection for SoC, Basic concepts in Processor Archit Processor MicroArchitecture, Basic elements in Instruction handl				
-	Pipeline Delays, Branches, More Robust Processors, Vector Processor	-			
-	extensions, VLIW Processors, Superscalar Processors.	5 ai	iu v	ecu	л
mstructions	exclusions, verw ricessors, superscalar ricessors.				
UNIT III	MEMORY DESIGN FOR SOC				(
		che	me	nor	-
Overview o	f SOC external memory, Internal Memory, Size, Scratchpads and Ca				<u>у</u> ,
Overview o Basic Notio	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re	epla	cem	ent	y, at
Overview o Basic Notio miss time,	f SOC external memory, Internal Memory, Size, Scratchpads and Cans, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V	epla irtu	cem al to	ent o re	y, at al
Overview o Basic Notio miss time,	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line ra Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim	epla irtu	cem al to	ent o re	y, at al
Overview o Basic Notio miss time, translation,	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line ra Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim	epla irtu	cem al to	ent o re	y, at al
Overview o Basic Notio miss time, translation,	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line ra Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim	epla irtu	cem al to	ent o re	y, at al
Overview o Basic Notio miss time, translation, – memory in UNIT IV	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line ra Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim nteraction.	epla irtu ple	cem al to Proc	ent o re cesso	y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim interaction.	epla irtu ple	cem al to Proc	ent o re cesso node	y, at al or <u>y</u>
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim neteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview,	epla irtu ple	cem al to Proc	ent o re cesso node	y, at al or <u>y</u>
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim neteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview,	epla irtu ple	cem al to Proc	ent o re cesso node	y, at al or <u>y</u>
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim neteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview,	epla irtu ple	cem al to Proc	ent o re cesso node	y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim interaction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES ition Technologies, Mapping design onto Reconfigurable devices, Insta	epla irtu: ple Bu Cu:	cem al to Proc us n stor	ent) re cesso node nizir	y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim neteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable	epla irtu: ple Bu Cu:	cem al to Proc us n stor	ent) re cesso node nizir	y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim neteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable Studies: AES, Image Compression.	epla irtu: ple Bu Cu: nce e Pa	cem al to Proc us n stom	ent) re cesso node nizir ecif	y, at al or y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim neteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable	epla irtu: ple Bu Cu: nce e Pa	cem al to Proc us n stom	ent) re cesso node nizir ecif	y, at al or y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco Application	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim nteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable Studies: AES, Image Compression. TOTAL: 4	epla irtu: ple Bu Cu: nce e Pa	cem al to Proc us n stom	ent) re cesso node nizir ecif	y, at al or y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco Application	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim nteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable Studies: AES, Image Compression. TOTAL: 4 KS:	epla irtu: ple e Bi Cu: nce e Pa	cem al to Proc us n stor - Sp ralle ER	ent o re cesse node nizir ecif elisr	y, at al or y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco Application 1. Micha	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim nteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable Studies: AES, Image Compression. TOTAL: 4 KS: nel J. Flynn and Wayne Luk, "Computer System Design System-on-Chi	epla irtu: ple e Bi Cu: nce e Pa	cem al to Proc us n stor - Sp ralle ER	ent o re cesse node nizir ecif elisr	y, at al or y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco Application 1. Micha	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim nteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable Studies: AES, Image Compression. TOTAL: 4 KS:	epla irtu: ple e Bi Cu: nce e Pa	cem al to Proc us n stor - Sp ralle ER	ent o re cesse node nizir ecif elisr	y, at al or y, at al or
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco Application 1. Micha Wiley	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim nteraction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES tion Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable Studies: AES, Image Compression. TOTAL: 4 KS: nel J. Flynn and Wayne Luk, "Computer System Design System-on-Chi	epla irtu: ple e Bu Cu: nce e Pa s P	cem al to Proc Is n stom - Sp ralle ERI	ent re resso resso recif recif ecif elisr	y, at al or generation of the second
Overview o Basic Notio miss time, translation, – memory in UNIT IV Bus: Basic Effects of B Instruction I UNIT V Reconfigura design, Reco Application 1. Micha Wiley	f SOC external memory, Internal Memory, Size, Scratchpads and Ca ns, Cache Organization, Cache data, Write Policies, Strategies for line re Types of Cache, Split – I, and D – Caches, Multilevel Caches, V SOC Memory System, – board based memory systems – Models of Sim interaction. INTERCONNECT AND SOC CUSTOMIZATION Architectures, SoC Standard Buses, Analytic Bus Models, Using the us transactions and contention time. SoC Customization: An overview, Processor. CONFIGURABILITY AND APPLICATION STUDIES Ition Technologies, Mapping design onto Reconfigurable devices, Insta onfiguration - overhead analysis and trade-off analysis on reconfigurable Studies: AES, Image Compression. TOTAL: 4 KS: nel J. Flynn and Wayne Luk, "Computer System Design System-on-Chi & Sons, 2011.	epla irtu: ple e Bu Cu: nce e Pa s P	cem al to Proc Is n stom - Sp ralle ERI	ent re resso resso recif recif ecif elisr	y, at al or generation of the second

- 1. Ricardo Reis, "Design of System on a Chip: Devices and Components", 1st Edition, 2004, Springer
- 2. Jason Andrews, "Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology)," revised, Elsevier, 2004.
- 3. Prakash Rashinkar, Peter Paterson and Leena Singh L, "System on Chip Verification Methodologies and Techniques", Springer Science & Business Media, 2007.

COUI	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Identify and comprehend the various elements that constitute a system, including both hardware and software components.	2
CO2	Interpret the fundamental elements and processes involved in handling instructions of various processors.	3
CO3	Analyze the memory required for SoC and board-based memory systems.	4
CO4	Identify the effects of contention time on the efficiency of data transfer and recognize the challenges associated with SOC customization.	2
CO5	Analyze the reconfigurable technologies and use cases of SOC design.	4
Bloon Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;

*COs		1	ZI		1 :	1	Pos				m		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	2	-	/	-		77	- /	3	3
2.	3	3	2	3	3	2	275	3	1-2	-/	15	-	3	3
3.	3	3	2	2	3	2	+	-	1	1-5	2-/	-	3	3
4.	3	3	3	2	2	1	1	<u> - S</u>	-/	0	1-	-	3	3
5.	3	3	3	1	-	2	N.		-	-/	<u> </u>	-	3	3
* 1 – W	eak, 2	2 - Mo	derate,	3-Str	ong	er.		- 34	20,	/				
						-11	45	9	/					

EC22047	TESTING OF VLSI CIRCUITS	L 3	Т 0	P 0	C 3
COURSE O	BJECTIVES:		Ŭ	Ŭ	0
• To int	roduce the VLSI testing and fault modeling.				
• To stu	dy the test generation for combinational and sequential circuits				
	derstand the design for testability.				
	rn the logic and fault simulation and testability measures				
	dy the fault diagnosis of logic circuits				
UNIT I	BASICS OF TESTING AND FAULT MODELING				9
	- Faults in digital circuits -Challenges in VLSI Testing - Modeling of f	ault	s - I	Logi	cal
	- Fault detection - Fault location - Fault dominance - Logic Simulat				
simulation - I	Delay models - Gate level Event-driven simulation.			_	
	CULLEGA				
UNIT II	TEST GENERATION FOR COMBINATIONAL AND SEQUENTIAL CIRCUITS				9
	on for combinational logic circuits - Fault Table, Boolean difference, Pat				
	, PODEM - Combinational ATPG Algorithms - Test generation for seq	uent	tial o	circu	iits
- design of te	stable sequential circuits.				
UNIT III	DESIGN FOR TESTABILITY				9
	estability Basics – Testability Analysis - Ad Hoc design for Testability n Architecture – Random Logic BIST – DFT for Other Test Objectives		scar	1 bas	sed
UNIT IV	SELF-TEST AND TEST ALGORITHMS				9
	Test (BIST) - Test pattern generation for BIST - BIST Architectures-LH	FSR	for	patt	ern
	Sype of memory faults-Testable Memory Design -Test algorithms - Test				
	The the second				
UNIT V	FAULT DIAGNOSIS				9
	and Basic Definitions-Logic level diagnosis - Generation of vectors al Logic Diagnosis - Logic BIST diagnosis- system level diagnosis	for	dia	gnos	sis-
	TOTAL:	45]	PEF	VIO	DS
TEXT BOO					
	pramovici, M.A. Breuer and A.D. Friedman, "Digital Systems and Tes	stabl	e D	esig	n",
Jaico	Publishing House, 2002.				
2. P.K. I	Lala, "Digital Circuit Testing and Testability", Academic Press, 2002.				
REFERENC	ES:				
1. Micha	el L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Tes	ting	for		
Digita	l, Memory & Mixed-Signal VLSI Circuits", Kluwer Academic Publish	ers,	201	7.	
2. M.L. I	Bushnell and V.D. Agrawal, "Essentials of Electronic Testing for Digita	al, N	lem	ory	
and M	ixed Signal VLSI Circuits", Kluwer Academic Publishers, 2002.			-	
3. A.L. C	Crouch, "Design Test for Digital IC's and Embedded Core Systems", Pro	entic	e al	1	
mem	ational, 2002.				

4. Laung-Terng Wang, Cheng-Wen Wu and Xiaoqing Wen, "VLSI Test Principles and Architectures", Elsevier, 2017

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level					
CO1							
CO2	Generate tests for combinational and sequential circuits.	2					
CO3	Develop design for testability (DFT) approaches	3					
CO4	Develop self-test methods and test algorithms for memories	4					
CO5	Develop fault diagnosis for combinational circuits and system level circuits	4					
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;					

COURSE ARTICULATION MATRIX

*COs			1.9]	Pos		1	1	10		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	2	1	2	3 -	3	1	1-1	0-0	112	-]	0	-	2	2
2.	2	1	2	2	3	1	1-	0		2-	-	1 -	2	2
3.	2	1	2	2	3	1	-	-	L.F.F		\leq	-	2	2
4.	2	1	-2	3	2	1	J-6.	1	1.1.	-		1 -	2	2
5.	2	1	2	2	1	1	-	-/	- 0	-	11	1 -	2	2
* 1 – W	veak, 2	2 – Mo	derate,	3 – Str	ong	-		1		1	-01			
			10	63	1/100	1	U U	11 12	an an	100	in/			

EC22048	VLSI FOR WIRELESS COMMUNICATION	L	T	P	<u>C</u>
		3	0	0	3
	BJECTIVES : derstand the concepts of basic wireless communication concepts.				
	ady the parameters in receiver and low noise amplifier design.				
	idy the various types of mixers designed for wireless communication.				
	idy and design PLL and VCO.				
	derstand the concepts of transmitters and power amplifiers in wireless				
comm	nunication.				
					-
UNIT I	COMMUNICATION CONCEPTS				9
	– Overview of Wireless systems – Standards – Access Methods – Modul channel – Wireless channel description – Path loss – Multipath fadin				
	ar of				
UNIT II	RECEIVER ARCHITECTURE & LOW NOISE AMPLIFIERS				9
intercept poin	nt end – Filter design – Non-idealities – Design parameters – Noise find t. LNA Introduction – Wideband LNA design – Narrow band LNA design Core amplifier.				
-	MIXERS ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain - omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai				1 –
Balancing Mi Noise - A Co Unbalanced S	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain -	n & olin	k No g M	oise	in
Balancing Mi Noise - A Co Unbalanced S Conversion G	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain - omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M	n & olin	k No g M	oise	ı – in
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase o – Phase noise	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain- omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp	n & oling Aixe ng	z No g M er.	oise Iixe illat	n – in r - 9 ors
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase o – Phase noise	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Des	n & oling Aixe ng	z No g M er.	oise Iixe illat	n – in r - <u>9</u> ors ple
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase of (DECT) – Im UNIT V Transmitter b C with Differ design: Powe	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Desplementation of a Frequency synthesizer with fractional divider. TRANSMITTER ARCHITECTURES AND POWER AMPLIFIERS oack end: General Discussion - Quadrature LO generator: Single ended R rential Stages, Polyphase I/Q Generator, Divider Based Generator - Po er Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/ ass A vs AB/C Amplifiers, Class E Amplifiers.	n & bling <u>Aixe</u> ng v sign sign RC a bwee	2 No g Morent Oscent on Ex- n Ex- ex- n Ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- e	illat LC, plific	n – in r - g ors ple g R- ïen R- ïen
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase of (DECT) – Im UNIT V Transmitter b C with Differ design: Powe	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Des plementation of a Frequency synthesizer with fractional divider. TRANSMITTER ARCHITECTURES AND POWER AMPLIFIERS ack end: General Discussion - Quadrature LO generator: Single ended R rential Stages, Polyphase I/Q Generator, Divider Based Generator - Po or Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/	n & bling <u>Aixe</u> ng v sign sign RC a bwee	2 No g Morent Oscent on Ex- n Ex- ex- n Ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- e	illat LC, plific	n – in r - 9 ors ple 9 R- ïer ers,
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase o – Phase noise (DECT) – Im UNIT V Transmitter b C with Differ design: Powe Choice of Cla	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Des plementation of a Frequency synthesizer with fractional divider. TRANSMITTER ARCHITECTURES AND POWER AMPLIFIERS pack end: General Discussion - Quadrature LO generator: Single ended R rential Stages, Polyphase I/Q Generator, Divider Based Generator - Po er Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/ ass A vs AB/C Amplifiers, Class E Amplifiers. TOTAL: 4	n & bling <u>Aixe</u> ng v sign sign RC a bwee	2 No g Morent Oscent on Ex- n Ex- ex- n Ex- ex- ex- ex- ex- ex- ex- ex- ex- ex- e	illat LC, plific	n – in r - 9 ors ple 9 R- ïer ers,
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase o – Phase noise (DECT) – Im UNIT V Transmitter b C with Differ design: Powe Choice of Cla	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Desplementation of a Frequency synthesizer with fractional divider. TRANSMITTER ARCHITECTURES AND POWER AMPLIFIERS wack end: General Discussion - Quadrature LO generator: Single ended R rential Stages, Polyphase I/Q Generator, Divider Based Generator - Po er Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/ ass A vs AB/C Amplifiers, Class E Amplifiers. KS:	n & oliny <u>Aixo</u> ng ' sign sign C & C &	z Na g M er. Osc: n Ex	illat LC, plific	n – in r - g ors ple g R- ïen R- ïen
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase o – Phase noise (DECT) – Im UNIT V Transmitter b C with Differ design: Powe Choice of Cla TEXT BOOI 1. Bosco	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Desplementation of a Frequency synthesizer with fractional divider. TRANSMITTER ARCHITECTURES AND POWER AMPLIFIERS ack end: General Discussion - Quadrature LO generator: Single ended R rential Stages, Polyphase I/Q Generator, Divider Based Generator - Po or Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/ ass A vs AB/C Amplifiers, Class E Amplifiers. TOTAL: 4 KS: D H Leung "VLSI for Wireless Communication", 2 nd edition, Springer So	n & oliny <u>Aixo</u> ng ' sign sign C & C &	z Na g M er. Osc: n Ex	illat LC, plific	n – ir r – g ors ple g R- ren
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase o – Phase noise (DECT) – Im UNIT V Transmitter b C with Differ design: Powe Choice of Cla 1. Bosco Busine	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer, Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Desplementation of a Frequency synthesizer with fractional divider. TRANSMITTER ARCHITECTURES AND POWER AMPLIFIERS ack end: General Discussion - Quadrature LO generator: Single ended R rential Stages, Polyphase I/Q Generator, Divider Based Generator - Po or Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/ ass A vs AB/C Amplifiers, Class E Amplifiers. TOTAL: • KS: • H Leung "VLSI for Wireless Communication", 2 nd edition, Springer So ess Media, 2011.	n & oliny <u>Aixo</u> ng ' sign sign C & C &	z Na g M er. Osc: n Ex	illat LC, plific	n – ir r – gors ple R- rers
Balancing Mi Noise - A Co Unbalanced S Conversion G UNIT IV PLL – Phase o – Phase noise (DECT) – Im UNIT V Transmitter b C with Differ design: Powe Choice of Cla 1. Bosco Busine	ixer - Qualitative Description of the Gilbert Mixer - Conversion Gain- omplete Active Mixer. Switching Mixer – Distortion, Conversion Gai Switching Mixer - A Practical Unbalanced Switching Mixer. Samp Gain, Distortion, Intrinsic & Extrinsic Noise in Single Ended Sampling M FREQUENCY SYNTHESIZERS detector – Dividers – Voltage Controlled Oscillators – LC oscillators – Ri e – Loop filters & design approaches – A Complete Synthesizer Deplementation of a Frequency synthesizer with fractional divider. TRANSMITTER ARCHITECTURES AND POWER AMPLIFIERS back end: General Discussion - Quadrature LO generator: Single ended R rential Stages, Polyphase I/Q Generator, Divider Based Generator - Po er Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/ ass A vs AB/C Amplifiers, Class E Amplifiers. KS: D H Leung "VLSI for Wireless Communication", 2 nd edition, Springer So ess Media, 2011. zavi ,"RF Microelectronics", Prentice-Hall, 2011.	n & oliny <u>Aixo</u> ng ' sign sign C & C &	z Na g M er. Osc: n Ex	illat LC, plific	n – ir r – gors ple R- rers

- 2. Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI wireless design Circuits & Systems", Kluwer Academic Publishers, 2000.
- 3. J. Crols and M. Steyaert, "CMOS Wireless Transceiver Design," Boston, Springer Science & Business Media, 2013.
- 4. Thomas H.Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press, 2004.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Recollect basic wireless communication concepts.	2
CO2	Apply design parameters and design low noise amplifiers for receivers	3
CO3	Design various types of mixers needed for wireless communication.	4
CO4	Design PLL, VCO and Frequency synthesizer.	4
CO5	Design transmitters and power amplifiers needed for wireless communication.	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva -6	luate-5;

*COs	×			- 6.	Pos					×4	2	PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	1	11	5	3	1		-	N.	25-1	-i-	2	3	3
2.	3	3	3	2	3	-	2	/	-		1	2	3	3
3.	3	3	3	2	3	-	2	R	2	-/	21	2	3	3
4.	3	3	3	2	3	-	2		1	1-5	21	2	3	3
5.	3	3	3	2	3	- 5	2	-	1	<u>_</u>	1-	2	3	3
* 1 – W	eak. 2	2 - Mo	derate.	3 - Str	ong		N.		1	2	/			

0

EC22049	MINI PROJECT	L	Т	Р	C
LC22049	WINT I KOJEC I	0	0	4	2
technoloTo solveTo acqu process	e, formulate and analyze a real-world problem in the ogy. e the problems independently or as part of a team. ire knowledge in terms of the innovation & product of the project work.				;
• To mana	age the project from start to finish.				
and realize a pro function ergonom product. It can be experimental data characterization/ realization of the should submit a	s a mini project. Each student or as a team should of totype of an electronic product. The basic element tics and aesthetics - should be considered while con- e related to solutions to an engineering problem/ ver a available/ conducting suitable experiments on vari- studying a software tool for the solution of an engi- prototype / product should include design and fabric soft bound project report at the end of the semester	ts of proceeding the official coust official coust official coust of the coust of t	roduct g and d ion and gineer g probl of PCB. produ	design esigni analy ing sub em etc The s ct shou	- the ng the vsis of ojects/ c. The
projects are:		trated f	or doin	g VLS	ıld be
	ne time of examination. Few thrust area to be concent	1.6			ıld be
(Adder/M architectu	the time of examination. Few thrust area to be concent d implementation of cutting-edge 8 bit arithmetic ar ultiplier) and compare the synthesized results with c				uld be
architectu2. Design a l Power esti	d implementation of cutting-edge 8 bit arithmetic ar ultiplier) and compare the synthesized results with c res. Digital/ Analog circuit and compare the results in ter	convent	tional Area, E	-	ıld bo I min

- **4.** Design and analysis of VLSI architecture for real time application and hardware implementation using FPGA
- **5.** Design of efficient test pattern for testing of integrated circuits

TOTAL: 60 PERIODS

	SE OUTCOMES: accessful completion of the course, students should be able to:	RBT Level
CO1	Define, formulate and analyze a real-world problem in the field of VLSI technology	4
CO2	Design, analyze and optimize, analog and digital subsystems	4
CO3	Design, analyze and optimize, analog and digital complex systems	4
CO4	Learn to write technical reports and work as a team.	3
CO5	Develop skills to present and defend their work in front of a technically qualified audience.	3

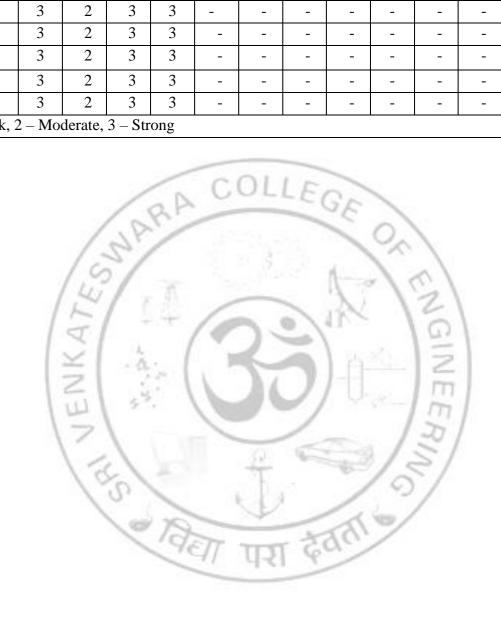
TION MATRIX

COs		Pos												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	3	3	3	1	2	2	3	3	3	3	3	3	
2.	3	3	3	3	3	1	2	2	3	3	3	3	3	3	
3.	3	3	3	3	3	1	2	2	3	3	3	3	3	3	
4.	3	3	3	3	3	1	-	2	3	3	3	3	3	3	
5.	3	3	3	3	3	1	10	2	3	3	3	3	3	3	
1 – We	eak, 2 -	- Mod		- Suc		1	1	2	1	-0	1	EER			

VERTICAL 4 SIGNAL PROCESSING AND DATA SCIENCE

				- ~
EC22051	AUDIO SIGNAL PROCESSING	L 3	_	P C 0 3
COURSE O	BJECTIVES:		-	
	evelop a comprehensive understanding of audio signal processing princ	iples	. cov	vering
	ime and frequency domain techniques, and their relevance to communic			
	quire proficiency in handling digital audio signals, including sampling			
	ompression, with a focus on applications in communication systems.	// 1		,
	equire practical skills in implementing various audio signal processi	ng te	chn	iaues.
	npassing time and frequency domain effects, convolution, filtering,	-		-
	thms, applicable to communication technologies.			
0	pply the design and application of digital filters for audio signal	proc	essi	ng in
	nunication systems, and develop competence in frequency domain analy			
	as Fourier Transform.		C	
	plore and apply advanced audio processing techniques such as pitch s	hiftir	ıg. N	MELP
	processing, and real-time processing, with a concentration on practic			
	nplications in modern communication engineering.	1	1	
	161			
UNIT I	FOUNDATIONS OF AUDIO SIGNALS			9
Overview of	audio signals: Analog vs. digital, continuous vs. Discrete, Character	istics	s of	audio
	litude, frequency, and phase - Sampling and quantization: Basics of di			
	tal representation of audio signals: Pulse Code Modulation (PCM), N			
and its implie		-		
-				
UNIT II	DIGITAL AUDIO FUNDAMENTALS			9
Sampling the	orem and its application in communication systems, Quantization techn	ique	s and	l their
	nal quality, Introduction to digital audio compression: Lossless vs. loss			
	ital audio file formats: WAV, MP3, AAC, Basics of audio codecs ar			
communicati				
	1.0			
UNIT III	TIME DOMAIN PROCESSING			9
Time-domain	representation of signals, Convolution and its application to aud	io p	roce	ssing,
	echniques for signal analysis, Application of time-domain effects: Echo,	-		-
	Introduction to digital filters and their applications in communication s			
		ľ		
UNIT IV	FREQUENCY DOMAIN PROCESSING			9
Fourier Trans	sform and its application to audio signals, Discrete Fourier Transform (DFT) and	d Fast
Fourier Tran	nsform (FFT) in communication systems, Frequency domain effe	ects:	Filt	ering,
	and modulation, Filter design techniques: FIR and IIR filters.			
UNIT V	ADVANCED AUDIO PROCESSING			9
Pitch shiftin	g and time-stretching algorithms in communication applications, I	MEL	P (1	Aixed
Excitation Li	near Prediction) signal processing, Stochastic processes and their appli-	catio	n in	audio
signal proce	ssing, Spatial audio processing: Stereo imaging, surround sound	prir	ıcipl	es in
communicati	on systems, architectures and algorithms for real-time audio processing	5.		
<u> </u>	TOTAL:	45 P	'ER	IODS
	I I I I I I I I I I I I I I I I I I I	101		

TEXT BOOKS:


- 1. Andreas Spanias, Ted Painter, Venkatraman Atti, "Audio Signal Processing and Coding", Wiley-Interscience Publication, 2007.
- 2. Ben Gold, Nelson Morgan, Dan Ellis, "Speech and Audio Signal Processing: Processing and Perception of Speech and Music", 2nd Edition, Wiley, 2011.
- 3. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", 4th Edition, Pearson, 2007.

REFERENCES:

- 1. Udo Zolzer, "Digital Audio Signal Processing", 3rd Edition, Wiley, 2022.
- 2. Sanjit K. Mitra and James F. Kaiser, "Handbook for Digital Signal Processing", 1993.
- 3. Marina Bosi and Richard E. Goldberg, "Introduction to Digital Audio Coding and Standards", Kluwer Academic Publishers, 2002.
- 4. Steven W.Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publisher, 1998.

COU	RSE OUTCOMES:	RBT
Upon s	successful completion of the course, students should be able to:	Level
CO1	Demonstrate a holistic understanding of audio signal processing principles by applying both time and frequency domain techniques to address communication system requirements.	2
CO2	Showcase proficiency in manipulating digital audio signals, including successful application of sampling, quantization, and compression techniques within the context of communication systems.	3
CO3	Exhibit practical expertise in implementing diverse audio signal processing techniques, such as time and frequency domain effects, convolution, filtering, and advanced algorithms, to solve real-world problems in communication technologies.	4
CO4	Showcase mastery in designing and implementing digital filters for audio signal processing in communication systems, and adeptly employ frequency domain analysis tools like Fourier Transform for efficient signal analysis.	4
CO5	Apply advanced audio processing techniques, including pitch shifting, spatial audio processing, and real-time processing, demonstrating an in-depth understanding of their practical applications and relevance in cutting-edge communication engineering scenarios.	3
	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

*C	Pos												PSOs	
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	3	-	-	-	-	-	-	-	3	2
2.	3	3	2	3	3	-	-	-	-	-	-	-	3	2
3.	3	3	2	3	3	-	-	-	-	-	-	-	3	2
4.	3	3	2	3	3	-	-	-	-	-	-	-	3	2
5.	3	3	2	3	3	-	-	-	-	-	-	-	3	2
* 1 – V	Weak, 2	2 - Mo	derate,	3-Str	ong									

	ARTIFICIAL INTELLIGENCE FOR SIGNAL PROCESSING	L 3	T	P	<u>C</u>
COURSEO	BJECTIVES:	3	0	0	3
 To a To a To a To a To a 	characterize different types of AI environments and learn basic Search S apply different searching algorithms in AI earn knowledge representation and associated logic in solving AI proble ntroduce probalistic reasoning, knowledge representation in uncertain d explore the various applications of AI.	ems	-	S	
	INTRODUCTION TO BRODI EM SOL VINC				0
UNIT I	INTRODUCTION TO PROBLEM SOLVING Foundation-Agents and Environment-Structure of Agents-Problem So	1		1 gar	<u>9</u>
Examples-Se	arching for Solutions-Uninformed Search Strategies-Informed (Heu euristic Functions.				
UNIT II	SEARCH TECHNIQUES				9
with Non de	Algorithms and Optimization Problems-Local Search in Continuous Spatterministic Actions-Searching with Partial Observations-Online Search vironments-Defining Constraint Satisfaction Problems.				
UNIT III	LOGICAL REPRESENTATION AND KNOWLEDGE REASONING				9
	etors and Rule based Systems-Representation Revisited-Syntax and Sem Knowledge Engineering in First Order Logic-Propositional Vs First Or				
UNIT IV	PROBALISTIC REASONING				9
Acting under Independence	r Uncertainty-Basic Probability Notation-Inference using Full Joint e-Baye's Rule-Representing Knowledge in an Uncertain Domain-The				-
Dayesiali iyel	works-Clustering algorithms-Speech recognition.		man	uics	
Dayesiali ivel	works-Clustering algorithms-Speech recognition.				
UNIT V	PERCEPTION				of 9
UNIT V Image Form	PERCEPTION ation-Early Image Processing Operations-Object Recognition by ag the 3D World-Object Recognition from Structural Information-Using	g Vi	ppea	aran	of 9 ce-
UNIT V Image Form	PERCEPTION ation-Early Image Processing Operations-Object Recognition by	g Vi	ppea	aran	of 9 ce-
UNIT V Image Form	PERCEPTION ation-Early Image Processing Operations-Object Recognition by ng the 3D World-Object Recognition from Structural Information-Using TOTAL:	g Vi	ppea	aran	of 9 ce-
UNIT V Image Form Reconstruction TEXT BOO 1. Stuar Educa 2. Elain	PERCEPTION Teation-Early Image Processing Operations-Object Recognition by the 3D World-Object Recognition from Structural Information-Using TOTAL: KS: t J.Russell and Peter Norvig, "Artificial Intelligence: A Modern Approation Asia, 2022. e Rich, Kevin Knight, Shivashankar B Nair, "Artificial Intelligence", T	g Vis 45 1	ppea sion PEF	aran RIO	of 9 ce- DS
UNIT V Image Form Reconstruction TEXT BOO 1. Stuar Educa 2. Elain	PERCEPTION ation-Early Image Processing Operations-Object Recognition by ng the 3D World-Object Recognition from Structural Information-Using TOTAL: KS: t J.Russell and Peter Norvig, "Artificial Intelligence: A Modern Approation Asia, 2022. e Rich, Kevin Knight, Shivashankar B Nair, "Artificial Intelligence", Teducation Private Limited, 2016.	g Vis 45 1	ppea sion PEF	aran RIO	of 9 ce- DS

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level				
CO1	Identify a problem and build intelligent agents	2				
CO2	Apply appropriate searching techniques to solve a real world problem	3				
CO3	Analyze the problem and infer new knowledge using suitable knowledge/logic representation schemes	4				
CO4	Apply the basic probability uncertainty techniques needed for AI Applications	3				
CO5	Implement advance techniques in Artificial Intelligence	4				
Bloom Create	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5;					

*COs		Pos											PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	>1/	-	-	0 - \$1	1	1	12	-	2	1	-
2	3	3	2	1	1	- 30	197 1	-	1-3	1	0-1	2	2	-
3	3	3	2	2		-	-	-	N	-	6	2	2	-
4	3	3	<3	3	1	1	1	0.	<u>u-</u>	-	0	2	3	1
5	3	3	3	3	1	1	1-		1	1	-	2	3	1

tantos 12 Ser परा

EC22053	BIOMEDICAL SIGNAL PROCESSING	L	T	P	C
	BJECTIVES:	3	0	0	3
	ntroduce the concept of Biomedical Signals.				
• To u	inderstand the types & Characteristics of Different Noises and Artifact	s in			
	nedical Signals.				
	cquire knowledge of the nonstationary and multicomponent biomedica	al sig	gnals		
	tudy the various biomedical signals and their significance. nalyze the case studies related to ECG, EMG, and PCG signals.				
• 102	haryze the case studies related to ECO, EWO, and I CO signals.				
UNIT I	INTRODUCTION TO BIOMEDICAL SIGNALS				9
Action Poten	tial and Its Generation, Origin and Waveform Characteristics of Ba	isic 1	Bior	nedi	cal
	Electrocardiogram (ECG), Electroencephalogram (EEG), Electromy				
	ram (PCG), Electroneurogram (ENG), Objectives of Biomedical S	igna	l Ar	naly	sis,
Difficulties in	Biomedical Signal Analysis, Computer-Aided Diagnosis.				
UNIT II	REMOVAL OF NOISE AND ARTIFACTS FROM				9
	BIOMEDICAL SIGNAL				
	Structured Noise, Physiological Interference, Stationary and Nonstatio	nary	Pro	cess	ses,
Noises and A	rtifacts Present in ECG, Time and Frequency Domain Filtering.	-			
UNIT III	STUDY OF NONSTATIONARY SIGNALS		- C-		9
	and Murmurs, Characterization of Nonstationary Signals and Dynourier Transform, Considerations in Short-Time Analysis and Adaptive				
Short Time I			,	ituti	011.
UNIT IV	ANALYSIS OF BIOSIGNALS				9
	ction, QRS complex detection-derivative based method, Pan Tomp				
	tching method, Signal averaged ECG, Analysis of heart rate variabili				
	requency domain methods, Synchronized averaging of PCG enveloped	es, ei	nvel	ogra	am,
analysis of PO	CG signal, EMG signal analysis.				
UNIT V	CASE STUDIES				9
	analysis, normal and ectopic ECG beats, analysis of exercise ECG,	26. A	Anal	vsis	
•	pectral analysis of EEG signals, case studies- in ECG and PCG,PC			-	
pulse,ECG ar	d atrial electrogram, Cardio respiratory interaction, EMG and Vibromy	<u> </u>			
	TOTAL	: 45	PEF	RIO	DS
TEXT BOO		2 1	1.4.		
1. Rangar 2015.	aj.M.Rangayyan, "Biomedical signal processing", Wiley-IEEE press,	2nd e	editi	on,	
•	D.C, "Biomedical signal processing: Principles and techniques", Tata elhi, 2nd edition, 2005.	McG	iraw	-Hi	11,
REFERENC					
	. Proakis and DimitrisG.Manolakis, "Digital signal processing, algorith	hms	and		
	tions" PHI of India Ltd., New Delhi, 4th edition, 2007.	nd n	21140	امم	oo1
	o, L. and Laguna, P., 2005. Bioelectrical signal processing in cardiac a tions (Vol. 8). Academic Press.	na ne	<i>zuro</i>	logi	cal
applica	10110 (v 01. 0). Acauchile 1 1538.				

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level				
CO1	Understand the characteristics of various biomedical signals.	2				
CO2	Attain in-depth knowledge about the techniques used for removing noise in biomedical signals.	3				
CO3	Analyze the concept of nonstationary and multicomponent biomedical signals.	3				
CO4	Apply different methods of signal processing techniques in analyzing the various bio-signals, such as Electrocardiogram (ECG), Electromyogram (EMG) and Phonocardiogram (PCG).	4				
CO5	Analyze the various case studies approach in processing the bio-signals.	3				
	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-					
Create						

*COs	Pos						PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	3	1	-	1	2	-	2	1	3	2
2.	3	3	_2	3	3	10	1	1-0	n_{s}	-)	2	1	3	2
3.	3	3	2	3	3	1.2	1-	1.6	1000	25	2	2	3	2
4.	3	3	3	3	3	1-7	1	-		-	1	1	3	2
5.	3	3	-3	3	3	-	146	1	1. U.	1-1	1	1	3	2

teams

* 1 – Weak, 2 – Moderate, 3 – Strong

10000

		L	Т	Р	С
EC22054	BIOMETRIC SYSTEMS	3	0	0	3
COURSE O	BJECTIVES:				
• To	o introduce the basics of biometrics and its functionalities.				
• To	o understannd the technologies of fingerprint recognition.				
• To	o identify the issues in realistic evaluation of Face and hand recognit	ion	bior	netr	ics
sy	stems.				
• To	acquire knowledge in building a multimodal biometric system and it	s pe	erfor	mar	nce
	aluation.				
• To	express knowledge in various computation of authentication methods				
UNIT I	INTRODUCTION TO BIOMETRICS				9
	and background – biometric technologies – passive biometrics – active				
	stems – Enrollment – templates – algorithm – verification – Biometric a				
	racteristics- Authentication technologies –Need for strong authentication		Prot	ecti	ng
privacy and b	iometrics and policy – Biometric applications – biometric characteristic	cs.			
UNIT II	FINGERPRINT RECOGNITION				0
				Facto	9
	gerprint pattern recognition - General description of fingerprints - Fing				
processing te	chniques - fingerprint sensors using RF imaging techniques – fing computer enhancement and modeling of fingerprint images – fingerprin	erpr	IIIL (qual	ity ont
	action – fingerprint classification – fingerprint matching	t en	nan	em	em
- Feature extr	action – migerprint classification – migerprint matching				
UNIT III	FACE RECOGNITION AND HAND GEOMETRY				9
	to face recognition, Neural networks for face recognition – face rec	non	itio	n fre	-
	ce maps – Hand geometry – scanning – Feature Extraction – Adaptiv				
	Feature Extraction and Pattern Classification - feature extraction – type				
– Biometric f					
	101- 101				
UNIT IV	MULTIMODAL BIOMETRICS AND PERFORMANCE				9
	EVALUATION				
	- physiological biometrics -Behavioral Biometrics - Introduction				
	tem - Integration strategies - Architecture - level of fusion - combina				
	adaptability – examples of multimodal biometric systems – Performan				
	easures of Biometrics - FAR - FRR - FTE - EER - Memory red	quir	eme	nt a	ind
allocation.					
					0
UNIT V	BIOMETRIC AUTHENTICATION		D '		9
	- Biometric Authentication Methods - Biometric Authentication System				
	h by fingerprint -Biometric Authentication by Face Recognition.		-		
	n theory - Support Vector Machines. – biometric authentication by hat ic authentication.	and	geo	met	ry-
	TOTAL:	45	PFP		DS
	TOTAL.	тJ I			00
TEXT BOO	KS:				

1.	Anil K. Jain, Arun Ross, and Karthik Nandakumar, "Introduction to Biometrics", Springer,
	2011.
REFE	CRENCES:
1.	Anil K Jain, Patrick Flynn and Arun A Ross, "Handbook of Biometrics", Springer, 2007.
	ISBN: 978-0-387-71040-2.
2.	Nikolaos V Boulgouris, Konstatinos N Plataniotis and Evangelia Micheli Tzanakov,
	"Biometrics Theory, Methods and Applications", IEEE & Wiley, 2009, ISBN: 978-0470-
	24782-2
3.	John D Woodward, Nicholas M Orlans and Peter T Higgin, "Biometrics: The Ultimate
	Reference", Dream Tech, 2009.
4.	Guide to Biometrics, By: Ruud M. Bolle, Sharath Pankanti, Nalini K. Ratha, Andrew W.

Senior, Jonathan H. Connell, Springer 2009.5. https://archive.nptel.ac.in/content/syllabus_pdf/106104119.pdf

	uccessful completion of the course, students should be able to: Demonstrate the knowledge of engineering principles underlying biometric systems.	Level 2
	systems.	2
	Apply the feature extraction, segmentation and synthesis of fingerprint recognition systems.	3
	Apply the feature extraction, segmentation and synthesis of face and hand recognition systems.	3
	Apply data analytics and evaluate the performance metrics of Multimodal biometric systems.	4
CO5	Explain various computation of authentication methods	2

COURSE ARTICULATION MATRIX

Γ

*COs				0,]	Pos	10	1	1	1		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	2	2	-	1	2	X	1	2	3	3
2.	3	3	3	3	2	2	U.R.	6	~~	1	1	2	3	3
3.	3	3	3	3	2	2	_	_	1	1	1	2	3	3
4.	3	3	3	3	2	2	-	-	1	1	1	2	3	3
5.	3	3	3	3	2	2	-	-	1	1	1	2	3	3
* 1 – W	eak, 2	2 - Mo	derate,	3-Str	ong									

10

 To To To To To To 	OBJECTIVES: understand the basics of data science. explain the techniques and processes of data science. describe various processes involved in data visualization. develop machine learning algorithms. apply data science concepts and methods to solve problems in real-world INTRODUCTION TO DATA SCIENCE n to Data Science – Benefits and uses – Facets of data – Data science ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - tra / Data Analysis – Model building	3 0 0 3 contexts. 9
 To To To To To UNIT I Introductio process – E UNIT II The Data Exploratory UNIT III	explain the techniques and processes of data science. describe various processes involved in data visualization. develop machine learning algorithms. apply data science concepts and methods to solve problems in real-world INTRODUCTION TO DATA SCIENCE n to Data Science – Benefits and uses – Facets of data – Data science ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - tra	<u> </u>
 To To To UNIT I Introductio process – E UNIT II The Data Explorator UNIT III	describe various processes involved in data visualization. develop machine learning algorithms. apply data science concepts and methods to solve problems in real-world INTRODUCTION TO DATA SCIENCE n to Data Science – Benefits and uses – Facets of data – Data science ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - training	<u> </u>
 To To To 	develop machine learning algorithms. apply data science concepts and methods to solve problems in real-world INTRODUCTION TO DATA SCIENCE n to Data Science – Benefits and uses – Facets of data – Data science ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - training	<u> </u>
• To UNIT I Introductio process – E UNIT II The Data Explorator UNIT III	apply data science concepts and methods to solve problems in real-world INTRODUCTION TO DATA SCIENCE n to Data Science – Benefits and uses – Facets of data – Data science ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - training data - tr	<u> </u>
UNIT I Introductio process – E UNIT II The Data Explorator UNIT III	INTRODUCTION TO DATA SCIENCE n to Data Science – Benefits and uses – Facets of data – Data science ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - training	<u> </u>
Introductio process – E UNIT II The Data Explorator UNIT III	n to Data Science – Benefits and uses – Facets of data – Data science ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - tra	
process – E UNIT II The Data Explorator UNIT III	ig data ecosystem and data science DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - tra	9
UNIT II The Data Explorator	DATA SCIENCE PROCESS science process – Overview – research goals - retrieving data - tra	9
The Data Explorator	science process - Overview - research goals - retrieving data - tra	9
The Data Explorator UNIT III	science process - Overview - research goals - retrieving data - tra	
Exploratory		nsformation -
UNIT III	i i i i i i i i i i i i i i i i i i i	
	DATA VISUALIZATION	9
Designing	Data Visualizations - The Purpose of Visualization - Selecting Visual Layo	outs - Choosing
	raphical Encodings - Expressive Data Displays.	c c
	ISING AND	
UNIT IV	MACHINE LEARNING ALGORITHMS	9
Algorithms	- Machine learning algorithms - Modeling process - Types - Supervised -	- Unsupervised
-Semi-supe		1
UNIT V	APPLICATIONS OF DATA SCIENCE	9
Healthcare	Analytics Applications, Predictive Analytics Applications-Regression,	Classification
	Dimensionality Reduction Application-PCA. Prescriptive Analytics App	
		45 PERIODS
TEXT BO	OKS:	
1. Dav	y Cielen, Arno D. B. Meysman, Mohamed Ali, "Introducing Data Scienc	e", manning
	lications 2016.	
2. Cat	ny O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From Th	ne Frontline.
O'I	eilly. 2014.	
REFEREN	ICES:	
	er Peng, "The Art of Data Science", lulu.com 2016.	
-	tazaHaider, "Getting Started with Data Science – Making Sense of Data	with
	lytics", IBM press, E-book.	
	y Cielen, Arno D.B. Meysman, Mohamed Ali, "Introducing Data Science	: Big Data.
	thine Learning, and More, Using Python Tools", Dreamtech Press 2016.	6 ,
	alyn Ng, Kenneth Soo, "Numsense! Data Science for the Layman: No M	ath Added".
	7,1st Edition.	,
	Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Da	atasets. v2.1.
	bridge University Press. 2014. (free online)	····,
	in P. Murphy. Machine Learning: A Probabilistic Perspective. ISBN 026	2018020.
201		
	nammed J. Zaki and Wagner Miera Jr. Data Mining and Analysis: Fundar	nental

Concepts and Algorithms. Cambridge University Press. 2014.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level					
CO1	Describe the overview of data science.	3					
CO2	llustrate the concepts of the Data Science process.						
CO3	Apply the various processes used for data visualization.						
CO4	Interpret the machine learning algorithms	3					
CO5	Identify the real world applications of data science.	3					
	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6						

COURSE ARTICULATION MATRIX

ILS THE

	Pos 1 2 3 4 5 6 7 8 9 10 11 12								
12	11	13	14						
1	121	3	1						
2	6	3	2						
2	100	3	2						
2	2	3	2						
2	177	3	2						
	1	2	2 3						

U

tantos

EC22056	DEEP LEARNING FOR COMPUTER VISION	L 3	Т 0	P 0	<u>C</u> 3
COURSE OI	BJECTIVES:	3	U	U	3
	derstand the theoretical foundations of machine learning models.				
	istrate the different working principles of deep learning architectures.				
	alyze on how to reduce the dimensions of high resolution data.				
	aluate the generalizability of the optimized deep networks.				
• To app	ply optimized deep networks for appropriate real-time applications.	1			
UNIT I	FUNDAMENTALS OF MACHINE LEARNING				9
		What		ho11	
	s (SVMs and Perceptron, logistic regression)- Intro to Neural Nets: W putes- Training a network: loss functions, back propagation and stoc				
	al networks as universal function approximates	nasi	ic gi	laur	JIII
UNIT II	DEEP LEARNING ARCHITECTURE				9
	ep Learning- A Probabilistic Theory of Deep Learning Backpropagatic	n ar	nd		
	, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallo			ork	5
	l Networks- Generative Adversarial Networks (GAN), Semisupervised				
	44.8				
TINIT' TTT	DIMENSIONALITY REDUCTION				9
UNIT III	DIVIENSIONALITT REDUCTION				-
		ity re	educ	tion	in
Linear (PCA,	LDA) and manifolds, metric learning - Autoencoders and dimensionali				
Linear (PCA, networks - In	LDA) and manifolds, metric learning - Autoencoders and dimensionalitroduction to Convnet - Architectures – AlexNet, VGG, Inception, Res				
Linear (PCA, networks - In	LDA) and manifolds, metric learning - Autoencoders and dimensionali				
Linear (PCA, networks - In	LDA) and manifolds, metric learning - Autoencoders and dimensionalitroduction to Convnet - Architectures – AlexNet, VGG, Inception, Res				
Linear (PCA, networks - In a Convnet: we UNIT IV	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION	Net	- T	rain	ing 9
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization	sNet	- Tr	chas	ng 9 stic
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network	Net	- Ti Stor	raini chas wor	9 stic ks,
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep networl Generalization in neural networks Spatial Transformer Networks- Recu	Net	- Ti Stor	raini chas wor	9 stic ks,
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu- nrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience	Net	- Ti Stor	raini chas wor	9 stic ks,
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu- urrent Neural Network Language Models- Word-Level RNNs & Deep	Net	- Ti Stor	raini chas wor	9 stic ks,
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu- nrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience	ks- rren Reir	- Tr	chas wor cem	9 stic ks, ent 9
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions	ks- rren Reir	- Ti Stor t net nforc	chas wor cem	9 stic ks, ent 9 n
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep networl Generalization in neural networks Spatial Transformer Networks- Recu urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo	ks- rren Reir	- Ti Stor t net nforc	chas wor cem	ng 9 ttic ks, ent 9
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformatio	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res- eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu- urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL:	ks- rren Reir	- Ti Stor t net nforc	chas wor cem	ng 9 ttic ks, ent 9
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformatio	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL: KS:	ks- rren Reir	- Ti Stor t net nforc	chas wor cem	ng 9 ttic ks, ent 9
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformatio	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res- eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu- urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL:	ks- rren Reir	- Ti Stor t net nforc	chas wor cem	ng 9 ttic ks, ent 9
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformation TEXT BOOI 1. Agga	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL: KS:	ks- rren Reir 45	- Tri Stoo t net nforc	chas wor cem	ng 9 ttic ks, ent 9
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformation TEXT BOOI 1. Agga 2. Bengi	LDA) and manifolds, metric learning - Autoencoders and dimensionalit troduction to Convnet - Architectures – AlexNet, VGG, Inception, Reseights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recurrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jocs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL: KS: rwal, Charu C, Neural networks and deep learning, Springer, 2018	ks- rren Reir int I	- Tri Stoo t net nford Dete PER	chas wor cem ctio	n 9 stic ks, ent 9 n DS
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformation TEXT BOOI 1. Agga 2. Bengi 3. Cosma	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res- eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep networl Generalization in neural networks Spatial Transformer Networks- Recu- merent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL: KS: rwal, Charu C, Neural networks and deep learning, Springer, 2018 o, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning", Na a Rohilla Shalizi, Advanced Data Analysis from an Elementary Point o	ks- rren Reir int I	- Tri Stoo t net nford Dete PER	chas wor cem ctio	n 9 stic ks, ent 9 n DS
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformatic TEXT BOOI 1. Agga 2. Bengi 3. Cosma	LDA) and manifolds, metric learning - Autoencoders and dimensionalit troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res- eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu- urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL: KS: rwal, Charu C, Neural networks and deep learning, Springer, 2018 o, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning", N a Rohilla Shalizi, Advanced Data Analysis from an Elementary Point o ES:	ks- rren Rein 45 1	- Tri Stoo t net nford Dete PER 201 ¹ ew,	chas wor cem ctio RIO	9 ttic ks, ent 9 1 1 1 1 1 1 1 1
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformation TEXT BOOI 1. Agga 2. Bengi 3. Cosma REFERENC 1. Moha	LDA) and manifolds, metric learning - Autoencoders and dimensionali troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep networl Generalization in neural networks Spatial Transformer Networks- Recu urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL: KS: rwal, Charu C, Neural networks and deep learning, Springer, 2018 o, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning", N a Rohilla Shalizi, Advanced Data Analysis from an Elementary Point o ES: mad H. Hassoun, Fundamentals of Artificial Neural Networks, The MI	ks- rren Reir int I 45 J	- Tri Stoo t net nford Dete PER 201' ew,	chas wor cem ctio RIO	n 9 stic ks, ent 9 n DS 5.
Linear (PCA, networks - In a Convnet: we UNIT IV Optimization Optimization LSTM - Recu Learning - Co UNIT V Imagenet- De BioInformatio TEXT BOOI 1. Agga 2. Bengi 3. Cosma REFERENC 1. Moha 2. Micha	LDA) and manifolds, metric learning - Autoencoders and dimensionalit troduction to Convnet - Architectures – AlexNet, VGG, Inception, Res- eights initialization, batch normalization, hyperparameter optimization OPTIMIZATION AND GENERALIZATION in deep learning– Non-convex optimization for deep network Generalization in neural networks Spatial Transformer Networks- Recu- urrent Neural Network Language Models- Word-Level RNNs & Deep omputational & Artificial Neuroscience APPLICATIONS AND CASE STUDY tection-Audio Wave Net-Natural Language Processing Word2Vec - Jo cs- Face Recognition- Scene Understanding Gathering Image Captions TOTAL: KS: rwal, Charu C, Neural networks and deep learning, Springer, 2018 o, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning", N a Rohilla Shalizi, Advanced Data Analysis from an Elementary Point o ES:	ks- rren Rein AIT f Vi	- Tri Stoo t net nford Dete PER 201' ew,	chas wor cem ctio RIO	9 ttic ks, ent 9 1 1 1 1 1 1 1 1

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level						
CO1	Demonstrate the basics of deep learning for a given context.	2						
CO2	Implement various deep learning models for the given problem.	3						
CO3	Realign high dimensional data using reduction techniques for the given problem.	3						
CO4	Analyze optimization and generalization techniques of deep learning for the given problem.	4						
CO5	Evaluate the given deep learning application and enhance by applying latest techniques	5						
Bloom	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5;							
Create	-6							

THE CE

*COs			1	Q,	Pos								PS	SOs
-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	30	3	3	2	-85	1	dit.	1	1	1	3	3
2.	3	3	3	3	3	2	-	3-	15	1	1	1	3	3
3.	3	3	3	3	3	2	-	1	1 PM	- \	5	1	3	3
4.	3	3	2	2	2	2) `	-	-	- 1	1	1	3	1
5.	3	2	2	2	3	2	5	-	-25	S. 19	\mathbb{Z}	1	3	3

परा

tade on

EC22057	IMAGE ANALYSIS AND MACHINE VISION	L 3	T 0	P 0	C 3
COURSE O	BJECTIVES:	5	U	U	
• To d	escribe the essentials of image processing and filtering concepts through pretation.	n ma	ther	natio	cal
	cquire the knowledge of various image enhancement and image restorat lved.	tion t	tech	niqu	ies
	cquire the basics of computer vision and different geometric transform	atio	ns.		
• To e	valuate various motion analysis and tracking techniques for various as essing.			ima	ıge
• To a	nalyze and implement computer vision and image processing algorith	ms f	or v	aric	ous
real-	time applications.				
UNIT I				9	
filtering -co	ustment, histogram equalization, Image Filtering and Restoration-Sponvolution, mean filtering, median filtering, Frequency domain filtering-pass and low-pass filters.				
UNIT II	IMAGE SEGMENTATION AND FEATURE EXTRACTION				9
operators,	g techniques -global, local, adaptive, Edge detection -Sobel, Ca Region-based segmentation, Point-based features -Harris corne n-based features-Histogram of Oriented Gradients – HOG				
UNIT III	INTRODUCTION TO COMPUTER VISION				9
Basics of c	omputer vision and its applications, Camera models and calibratio ons -homography, affine transformation.	n, G	leon	netri	-
UNIT IV	OBJECT DETECTION AND RECOGNITION				9
	ction techniques - Haar cascades, HOG, SVM, Deep learning for object ction models, Object recognition and classification - Basic CNN rning.				
UNIT V	APPLICATIONS OF COMPUTER VISION AND IMAGE PROCESSING				9
	ysis and tracking, Machine Learning applications in Medical Image Se s in healthcare, autonomous vehicles, Face and Facial Expression I	-			
	TOTAL: 4	15 D	FDI		G
	IUIAL; 4	•3 F	ĽK	UU	G

TEXT BOOKS:

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education, Fourth Edition, 2018.
- 2. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, Second edition, ISBN-10: 1848829345, ISBN-13: 978-1848829343, 2022, http://szeliski.org/Book/
- 3. Manas Kamal BhuyanComputer Vision and Image Processing Fundamentals and Applications, CRC Press,2020
- 4. S. Sridhar, "Digital Image Processing", Second Edition, Oxford University, 2016.

REFERENCES:

- 1. Anil K. Jain "Fundamentals of Digital Image Processing", PHI, Learning Private Ltd, 2011.
- 2. <u>https://onlinecourses.nptel.ac.in/noc21_ee23/</u>

101

3. David Marr," Vision: A Computational Investigation into the Human Representation and Processing of Visual Information", The MIT Press, 2010

	RSE OUTCOMES:	RBT
Upon s	successful completion of the course, students should be able to:	Level
CO1	Demonstrate a comprehensive understanding of digital image fundamentals, including pixel representation, color models, and image formats.	3
CO2	Employ segmentation algorithms to partition images and identify distinct objects or areas.Utilize feature extraction methods including point-based (e.g., corner detection) and region-based (e.g., HOG) techniques to identify and describe image features effectively.	3
CO3	Understand camera models, geometric transformations, 3D vision principles, and their application in computer vision systems.	3
CO 4	Implement object detection and recognition algorithms, ranging from traditional methods like Haar cascades to modern deep learning approaches such as CNNs and YOLO.	4
CO5	Apply learned techniques to analyze and solve real-world problems in diverse domains.	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5

*COs						J	Pos						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
2.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
3.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
4.	3	2	2	2	1	-	-	-	-	-	-	1	3	2
5.	3	2	2	2	1	-	-	-	-	-	-	1	3	2
* 1 – W	'eak, 2	2 - Mo	derate,	3-Str	ong									

EC22058	SOFT COMPUTING TECHNIQUES	L	Т	Р	С
	AND ITS APPLICATIONS	3	0	0	3
	BJECTIVES:				
	earn the basic concept of soft computing				
• To l	know the basics of artificial neural networks.				
• To a	apply the concept of fuzzy logic in various systems.				
• To e	explain the idea about genetic algorithm				
• To j	provide adequate knowledge about the applications of Soft Computing.				
UNIT I	INTRODUCTION TO SOFT COMPUTING		4.1	• • •	9
and Evolution	Artificial Intelligence-Artificial Neural Networks-Fuzzy Systems-Generatory Programming-Swarm Intelligent Systems-Classification of ANNs-Model-Learning Rules: Hebbian and Delta- Perceptron Network-Adatwork.	ЛсС	Cullo	ch a	nd
UNIT II	ARTIFICIAL NEURAL NETWORKS				9
Hamming N	ation Neural Networks - Kohonen Neural Network -Learning Vector eural Network - Hopfield Neural Network- Bi-directional Associati sonance Theory Neural Networks- Support Vector Machines - Spike Ne	ve	Mer	nory	/ -
UNIT III	FUZZY SYSTEMS				9
Introduction					
-Membership	Functions -Defuzzification - Fuzzy Arithmetic and Fuzzy Measures -Functions -Defuzzification - Fuzzy Models – Sugeno Fuzzy Models – Tsu	ızzy	Rul	e Ba	ase
-Membership and Approxim	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu	ızzy	Rul	e Ba	ase
-Membership and Approxim Models UNIT IV Basic Conce Operators - Convergence		n -1 e C	Rul noto	e Ba Fuz ritar	ase zzy 9 nce 5 -
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications.	n -1 e C	Rul noto	e Ba Fuz ritar	ase zzy 9 nce s - lan
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING	n -] e C	Rul noto	e Ba Fuz ritar ators es M	ase zzy 9 nce 5 - [an 9
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING orithm Application- Bagley and Adaptive Game-Playing Program- Gre oller-Air Conditioner Controller-Application of Back Propagation Neuro	n -] e C ng g V al N	Rul noto	e Ba Fuz ritar ators es M Fuz ork.	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING prithm Application- Bagley and Adaptive Game-Playing Program- Gre	n -] e C ng g V al N	Rul noto	e Ba Fuz ritar ators es M Fuz ork.	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-Membership and Approxir Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo Cruise Contro	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING orithm Application- Bagley and Adaptive Game-Playing Program- Gre oller-Air Conditioner Controller-Application of Back Propagation Neura TOTAL PERIODS :	n -] e C ng g V al N	Rul noto	e Ba Fuz ritar ators es M Fuz ork.	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo Cruise Contro TEXT BOO	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING orithm Application- Bagley and Adaptive Game-Playing Program- Gre oller-Air Conditioner Controller-Application of Back Propagation Neura TOTAL PERIODS :	IZZYY Ikan n -] e C ing g V al N 45]	Rul noto	Fuz Fuz ritar ators s M Fuz ork. RIO	9 9 nce 5 1 an 9 2 2 2 y DS
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo Cruise Contro TEXT BOO 1. N.P.P	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING orithm Application- Bagley and Adaptive Game-Playing Program- Gree oller-Air Conditioner Controller-Application of Back Propagation Neura TOTAL PERIODS : KS: Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxf	IZZYY Ikan n -] e C ing g V al N 45]	Rul noto	Fuz Fuz ritar ators s M Fuz ork. RIO	9 9 nce 5 1 an 9 2 2 2 y DS
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo Cruise Contro TEXT BOO 1. N.P.P Press, 2. S.N.S	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING orithm Application- Bagley and Adaptive Game-Playing Program- Gree oller-Air Conditioner Controller-Application of Back Propagation Neura TOTAL PERIODS : KS: Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxf , 2015. ivanandam , S.N.Deepa, "Principles of Soft Computing", Wiley India	n -] e C ing g V al N 45]	Rul noto	e Ba Fuz ritar ators s M Fuz ork. RIOI	9 9 10 10 10 10 10 10 10 10 10 10 10 10 10
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo Cruise Contro TEXT BOO 1. N.P.P Press, 2. S.N.S Editio	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING orithm Application- Bagley and Adaptive Game-Playing Program- Gre oller-Air Conditioner Controller-Application of Back Propagation Neura TOTAL PERIODS : KS: Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxf , 2015. ivanandam , S.N.Deepa, "Principles of Soft Computing", Wiley India on, 2011.	n -] e C ing g V al N 45]	Rul noto	e Ba Fuz ritar ators s M Fuz ork. RIOI	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
-Membership and Approxin Models UNIT IV Basic Conce Operators - Convergence Problem, Ind UNIT V Genetic Algo Cruise Contra TEXT BOO 1. N.P.P Press, 2. S.N.S Editio 3. S.Raj	nate Reasoning - Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsu GENETIC ALGORITHMS pts- Working Principles -Encoding- Fitness Function - Reproductio Cross Over - Inversion and Deletion -Mutation Operator - Bitwis of Genetic Algorithm. Applications – Match Word Finding, Travelli iscernibility Relations, Reducts, Rough Approximation applications. APPLICATIONS OF SOFT COMPUTING orithm Application- Bagley and Adaptive Game-Playing Program- Gree oller-Air Conditioner Controller-Application of Back Propagation Neura TOTAL PERIODS : KS: Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxf , 2015. ivanandam , S.N.Deepa, "Principles of Soft Computing", Wiley India	n -] e C ing g V al N 45]	Rul noto	e Ba Fuz ritar ators s M Fuz ork. RIOI	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2002.
- 2. Kwang H.Lee, —First course on Fuzzy Theory and Applications, Springer, 2005.
- 3. George J. Klir and Bo Yuan, —Fuzzy Sets and Fuzzy Logic-Theory and Applications^{II}, Prentice Hall, 1996.
- 4. James A. Freeman and David M. Skapura, —Neural Networks Algorithms, Applications, and Programming Techniquesl, Addison Wesley, 2003.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Understand the key aspects of Soft computing and Neural networks.	2
CO2	Attain in-depth knowledge about the basic concepts of Artificial Neural Networks.	3
CO3	Apply knowledge in developing a Fuzzy expert system	3
CO4	Discover knowledge to develop Genetic Algorithm based Machine learning systems.	4
CO5	Integrate various soft computing techniques for complex problems.	3
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva -6	luate-5;

*CO		1	2	1	. \	P	OS			121	m		PS	SOs
S	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	3	1	-	/	-	-/	7	- 1	3	2
2.	3	3	2	3	3	-	335	1	1	1	51	-	3	2
3.	3	3	2	3	3	-	E.		10	10	57	-	3	2
4.	3	3	3	3	3	- 1		-	/		/-	-	3	2
5.	3	3	3	3	3	-	K	-	2	10	-	-	3	2
* 1 – V	Weak, 2	2 – Mo	derate,	3-Str	ong	TT	11-11	15 1	70.	/				
						- 1	43	1	/					

EC22050	MINI PROJECT	L	Т	Р	С
		0	0	4	2
	BJECTIVES:				
	understand the fundamentals of signal processing.	1		1	
	cquire practical experience in applying signal processing techniques to	ana	yze	and	
	ipulate signals.				
	evelop skills in implementing signal processing algorithms using progr uages such as Python or MATLAB.	amn	nıng	,	
e	č		haa	and	ia
	pply signal processing techniques to solve real-world problems in areas essing, image processing, and biomedical signal analysis.	suc	in as	aud	10
F ===	,				
PROJECT V	VORK MODALITIES				
This mini pro	ject provides students with an opportunity to apply signal processing te	chni	ques	s to r	eal-
world problem	ms. Through hands-on projects and practical exercises, students will	exp	lore	var	ious
-	gnal processing, including filtering, spectral analysis, feature extrac	tion	, an	d sig	gnal
	Applications can be laid to:				
	uction to Signal Processing-Overview of signals and systems, Basics	of d	ligita	al sig	gnal
-	ssing, Introduction to Fourier analysis				
-	Representation and Sampling- Signal representation in time and freque	ency	do1	nain	.S
• Filteri	ng Techniques- FIR and IIR filter design				
• Freque	ency Domain Analysis- Power spectral density estimation, Spectrogram	n ana	ılysi	S	
• Featur	e Extraction- Time-domain features (mean, variance, etc.), Frequency-	don	nain	feat	ures
(spect	ral centroid, bandwidth, etc.)				
• Signal	Classification				
• Introd	uction to machine learning for signal classification				
• Signa	I Processing Applications				
G 1 / 11			1 1	1 1	
	work on a mini project applying signal processing techniques to a real				
	include audio processing, image processing, biomedical signal analy implementation, and presentation and Evaluation of	/\$15,	etc.	PIC	ject
-	present their mini projects to the class, demonstrating their understa	andi	nσc	of sig	onal
	present then him projects to the class, demonstrating then understanding oncepts and techniques. Evaluation is based on project presentation, c		-		-
project docun			1	,	
Prerequisites:					
	anding of signals and systems				
Familiarity w	ith programming (MATLAB or Python preferred)				
	TOTAI	. 60) PF	RIC)DS
	ΤΟΤΑΙ	. UI	, I Ľ		00

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level					
CO1	Identify challenges and carry out surveys on existing approaches.						
CO2	Develop an innovative idea and consider all the possible implementation problems.	3					
CO3	Create a prototype and implement the design into action work.						
CO4	Demonstrate and display the functional module.						
CO5	Prepare a report and a presentation outlining the project's						
* Bloo 5; Crea	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva ate-6	iluate-					

*COs				12	k.		Pos		20	~			PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	2	2	2	1	1	12	1	2	2	2
2.	3	3	3	2	3	2	2	1	2		2	2	2	3
3.	3	3	3	2	3	2	2	1	2	1	3	1	3	3
4.	3	2	3	3	3	1	1	1	2	2	5	1	3	3
5.	3	2	3	3	3	2	1	2	3	3	3	1	3	3

मास्त्र में जिला जिल

VERTICAL 5 EMBEDDED SYSTEM DESIGN AND IOT

		1			
EC22061	INDUSTRY 4.0 AND IIOT	L 3	Т 0	P 0	<u>C</u> 3
COURSE O	BJECTIVES:	_	-	-	
	part basic ideas in Industry 4.0 and IIoT.				
	scover smart business perspectives and impacts of Industry 4.0.				
	asp the core principles of IIoT.				
	derstand and evaluate the primary drivers of IIoT.				
	come well-versed in the many IIoT applications.				
UNIT I	OVERVIEW OF INDUSTRY 4.0 and IioT				9
Introduction,	Industry 4.0- Industrial revolution, Evolution of Industry 4.0, Envir	onm	ental	imp	acts,
	ernet, Applications. IIoT- Prerequisites, Basics of CPS, CPS and IIoT, A			-	,
UNIT II	FUNDAMENTALS OF INDUSTRY 4.0				9
Introduction,	Design Requirements, Drivers of Industry 4.0, Four main characteristi	cs o	f ind	ustry	4.0,
	assessment of industries, Smart Business Perspective, Cybersecurity, I				
	ctories, Benefits of Industry 4.0				2
UNIT III	INTRODUCTION TO HOT				9
	ustrial IoT, Industrial Internet Systems- Design, Impact and Benefits, 1	[ndu	strial	Sen	sing-
	nd contemporary, Industrial Processes - Features of IIoT for industrial p				-
	T, Reference architecture of IioT	6	,		
UNIT IV	ON AND OFF- SITE KEY TECHNOLOGIES				9
Cloud Comp	I uting, Fog Computing, Augmented Reality and Virtual Reality, Artificia	l al Int	ellio	ence	Big
	anced Analysis, Smart Factories, Lean manufacturing system, Edge Co				, Dig
UNIT V	APPLICATIONS IN INDUSTRY	-	_		9
	lanagement and Quality Control, Plant Safety and Security, Case S	Study	/-Au	tomo	otive.
	g and Mining Industries, Healthcare				
	ΤΟΤΑ	L:	45 P	ERI	ODS
	10/				
TEXT BOO	KS:				
	Claude Andre, —Industry 4.0, Wiley- ISTE, July 2019, ISBN: 7817863	30482	27, 2	019.	
	Misra, Chandana Roy, Anandarup Mukherjee, Introduction to Ind				
	s and Industry 4.0, 2021				
3. Alasd	air Gilchrist, Industry 4.0, The Industrial Internet of Things, Apress, 20)17.			
REFERENC	CES:				
1. NPTE	EL :: Computer Science and Engineering - NOC: Introduction to Industry	y 4.0	and	Indu	strial
	et of Things.				
	mo Veneri, Antonio Capasso, Hands-On Industrial Internet of Things:	Crea	ate a	pow	erful
Indus	trial IoT.		~		
· ·			. 1		

3. Ismail Butun, Industrial IoT: Challenges, Design Principles, Applications, and Security, July 2020.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level					
CO1	Understand the basic concepts of Industry 4.0.	2					
CO2	Comprehend on various aspects of Industry 4.0.	2					
CO3	CO3 Interpret the basics of industrial IoT and its architecture.						
CO4	Examine the key enablers of IioT.	4					
CO5	Implement the IIoT to industrial sectors and analyze the case studies.	3					
	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;					
Create	-6						

*COs			1	.0	2.	P	os		-	0			PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1.	1	2	3	21	2	2	9 - 8 .	1	2	1	1	1	1	-
2.	1	2	3	1-	2	-30	60 <u>-</u> -	1	2	1	5-1	1	1	-
3.	1	2	3	/ - 0	2	1	-		2	- /	6	1	1	-
4.	1	2	< 3	-	2	(7		_1	2	- 3	6	1	1	-
5.	1	2	3		2	- 10	d	1	2	st	5	1	1	-
* 1 – W	eak, 2	– Mod	lerate, 3	3 - Stro	ong	1	N				1			

• To • To • To • To • To • To • To • To	understand the fundamentals of IoT acquire knowledge about IoT Access technologies understand the design methodology and different IoT hardware platfo study the basics of IoT Data Analytics and supporting services. study about various IoT case studies and industrial applications. FUNDAMENTALS OF IoT ternet of Things, Enabling Technologies, M2M Communication, Io	3 orms.		0	3
To To	understand the fundamentals of IoT acquire knowledge about IoT Access technologies understand the design methodology and different IoT hardware platfo study the basics of IoT Data Analytics and supporting services. study about various IoT case studies and industrial applications. FUNDAMENTALS OF IoT ternet of Things, Enabling Technologies, M2M Communication, Io	rms.			
To To To To To To UNIT I Evolution of Ir (IoTWF) stand	acquire knowledge about IoT Access technologies understand the design methodology and different IoT hardware platfo study the basics of IoT Data Analytics and supporting services. study about various IoT case studies and industrial applications. FUNDAMENTALS OF IoT Iternet of Things, Enabling Technologies, M2M Communication, Io	orms.			
To To To To To To To In	understand the design methodology and different IoT hardware platfo study the basics of IoT Data Analytics and supporting services. study about various IoT case studies and industrial applications. FUNDAMENTALS OF IoT iternet of Things, Enabling Technologies, M2M Communication, Io	orms.			
To To To UNIT I Evolution of Ir (IoTWF) stand	study the basics of IoT Data Analytics and supporting services. study about various IoT case studies and industrial applications. FUNDAMENTALS OF IoT ternet of Things, Enabling Technologies, M2M Communication, Io		•		
• To UNIT I Evolution of Ir (IoTWF) stand	study about various IoT case studies and industrial applications. FUNDAMENTALS OF IoT Iternet of Things, Enabling Technologies, M2M Communication, Io				
UNIT I Evolution of Ir (IoTWF) stand	FUNDAMENTALS OF IoT ternet of Things, Enabling Technologies, M2M Communication, Io				
Evolution of Ir (IoTWF) stand	ternet of Things, Enabling Technologies, M2M Communication, Io				
Evolution of Ir (IoTWF) stand	ternet of Things, Enabling Technologies, M2M Communication, Io				- 9
(IoTWF) stand		т М	Iorla		-
	and and such the streng Clause life of LeT A web to streng Clause LeT France to				
Edge and Clou	ardized architecture, Simplified IoT Architecture, Core IoT Function				
	d in IoT, Functional blocks of an IoT ecosystem, Sensors, Actuators	s, sn	nart	Obj	ects
and Connecting	Smart Objects.				
	APUTTEGA				
	INT PROTOCOLS				9
	chnologies: Physical and MAC layers, topology and Security of				
802.11ah and L	ora WAN, Network Layer: IP versions, Constrained Nodes and Constrained	aine	d Ne	etwo	rks
6LoWPAN, A	oplication Transport Methods: SCADA, Application Layer Protoc	ols:	Co	AP	and
MQTT.	141				
	IFI A IFI				
UNIT III	DESIGN AND DEVELOPMENT				g
	lology, Embedded computing logic, Microcontroller, System on Ch	nins	ЮТ	' sve	sten
building blocks		p->,	101		
•	overview: Overview of IoT supported Hardware platforms such as	· R	asnh	orry	ni
Arduino Board). IX	uspe	, city	P
Alduno Doald	details				
UNIT IV	DATA ANALYTICS AND SUPPORTING SERVICES				9
			D		-
	Introduction, Structured Versus Unstructured Data, Data in Motion v	versu	is Da	ata a	ıt
	Analytics Challenges, Data Acquiring, Organizing in IoT/M2M,				
	vices: Computing Using a Cloud Platform for IoT/M2M Applications/	/Ser	vice	s,	
Everything as a	service and Cloud Service Models.				
	dan tac				
	CASE STUDIES/REAL TIME APPLICATIONS				Ē
UNIT V					9
		-bas	ed s	servi	-
Smart homes,	Smart vehicles, Weather monitoring & forecasting, Indoor location	-bas	ed s	servi	-
Smart homes,					ces
Smart homes,	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality.				ces
Smart homes, Health monitor	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL				ces
Smart homes, Health monitor TEXT BOOK	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL	: 45	5 PE	RIC	ces
Smart homes, Health monitor TEXT BOOK 1. David I	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL S: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero	: 45 me	5 PE	RIC	ces DDS
Smart homes, Health monitor TEXT BOOK 1. David I Fundar	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL S: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero entals: Networking Technologies, Protocols and Use Cases for Inter	: 45 me	5 PE	RIC	ces DDS
Smart homes, Health monitor TEXT BOOK 1. David I Fundam Cisco P	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL S: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero entals: Networking Technologies, Protocols and Use Cases for Inter ress, 2017.	: 45 ome rnet	Hen of 7	RIC ry " Thin	ces DDS HoT
Smart homes, Health monitor TEXT BOOK 1. David I Fundam Cisco P 2. Arshdee	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL S: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero entals: Networking Technologies, Protocols and Use Cases for Inter ress, 2017. p Bahga, Vijay Madisetti "Internet of Things – A hands-on approac	: 45 ome rnet	Hen of 7	RIC ry " Thin	ces DDS HoT
Smart homes, Health monitor TEXT BOOK 1. David I Fundam Cisco P	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL S: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero entals: Networking Technologies, Protocols and Use Cases for Inter ress, 2017. p Bahga, Vijay Madisetti "Internet of Things – A hands-on approac	: 45 ome rnet	Hen of 7	RIC ry " Thin	ces DDS floT gs"
Smart homes, Health monitor TEXT BOOK 1. David I Fundam Cisco P 2. Arshdee Press, 2	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL S: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero entals: Networking Technologies, Protocols and Use Cases for Inter ress, 2017. pp Bahga, Vijay Madisetti "Internet of Things – A hands-on approac 014.	: 45 ome rnet	Hen of 7	RIC ry " Thin	ces DDS floT gs"
Smart homes, Health monitor TEXT BOOK 1. David I Fundam Cisco P 2. Arshdee Press, 2 REFERENCE	Smart vehicles, Weather monitoring & forecasting, Indoor location ing of machines & structures, Augmented/Virtual reality. TOTAL S: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero entals: Networking Technologies, Protocols and Use Cases for Inter ress, 2017. pp Bahga, Vijay Madisetti "Internet of Things – A hands-on approac 014.	: 45 ome rnet ch",	Hen of T	RIC ury " Thin vers	ces DDS flo] gs"

- 2. Rajkamal "Internet of Things: Architecture and Design Principles", McGraw Hill Higher Education, 2017.
- 3. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand, David Boyle "From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier Ltd., 2014.

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Infer the state of architecture of IoT	2
CO2	Summarize the various protocols used in IoT	3
CO3	Interpret the design methodology and hardware platforms involved in IoT	3
CO4	Analyze the data and supporting services required for IoT	4
CO5	Examine the various real time applications of IoT	4
Bloon	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ex	valuate-5;
Create	-6	

*COs		- 1	Z1		/	P	os	-1			141		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	1	- 1	1	1		1	-	100	3	3	3
2.	3	3	2	3	3	2	2	1	2	2	3	3	3	3
3.	3	3	3	3	3	2	2	2	2	1	3	3	3	3
4.	3	3	3	3	3	3	3	3	2	-/	2	3	3	3
5.	3	3	3	3	3	3	3	3	2	2	2	3	3	3

@ Tate

परा देवता "

* 1 – Weak, 2 – Moderate, 3 – Strong

EC22063	IOT FOR REAL TIME APPLICATIONS	L	Τ	Р	С
		3	0	0	3
COURSE OI					
	omprehend various applications of IoT in the field of healthcare				
	nderstand the applications of IoT in agriculture				
	et familiarized on IoT based industrial automation				
	et conversant on Intelligent transportation system				
• Iou	nderstand the impact of IoT on society				
UNIT I	IOT IN HEALTHCARE	_			9
	care – Challenges in current healthcare systems – IoT healthcare serv	ices-	Arc	hitec	
	althcare, IoT based health monitoring system using Arduino, Smart co				
	CGM) system and insulin pens, remote patient monitoring - IoT heard				
	oring of physiological parameters - ECG, EEG, Diabetics and BP	. 1410	1110		
UNIT II	IOT FOR SMART AGRICULTURE				9
	sion detection in farms, soil moisture detection and irrigation syste	m. v	vate	au	ality
	est monitoring and control, Livestock monitoring system, IoT ba				
	nonitoring and controlling				
	151 A 121				
UNIT III	IOT BASED INDUSTRIAL AUTOMATION	2			9
	leakage monitoring system, Temperature and liquid level monitorin	g in	boil	ers.	Fire
	em, wireless video surveillance robot, Automatic solar tracker	8	0011	•10,	
	ZISINAI				
UNIT IV	INTELLIGENT TRANSPORTATION SYSTEM	1			9
	- Challenges and opportunities in ITS - Systems engineering in ITS and	1 ITS	arc	hitec	ture
	tions in transportation system management - Connected and auto				
	ian Smart Cities Mission				
					9
UNIT V	IOT FOR DISASTER MANAGEMENT				
	IOT FOR DISASTER MANAGEMENT e management, weather update system with IoT, women security system	stem	, GP	S SI	nart
Medical wast			·	'S Si	nart
Medical wast	e management, weather update system with IoT, women security system	neter	•		
Medical wast	e management, weather update system with IoT, women security system glove to enable sign to speech conversation, IoT based air pollution r	neter	•		
Medical wast sole, wearable TEXT BOOI	e management, weather update system with IoT, women security system glove to enable sign to speech conversation, IoT based air pollution r TOTAL	neter L: 4	5 PF	CRIC	DDS
Medical wast sole, wearable TEXT BOOI 1. S Aw	e management, weather update system with IoT, women security system glove to enable sign to speech conversation, IoT based air pollution r TOTAL KS: asthi, MS Naruka, SP Yadav, "AI and IoT-based Intelligent H	neter L: 4	5 PF	CRIC	DDS
Medical wast sole, wearable TEXT BOOI 1. S Aw Sanita	e management, weather update system with IoT, women security system glove to enable sign to speech conversation, IoT based air pollution r TOTAL XS: asthi, MS Naruka, SP Yadav, "AI and IoT-based Intelligent H ition", VHC De Albuquerque, 2023.	neter	5 PE	CRIC	DDS
Medical wast sole, wearable TEXT BOOI 1. S Aw Sanita 2. AK K	e management, weather update system with IoT, women security system glove to enable sign to speech conversation, IoT based air pollution reaction (IoT based air pollution reaction). TOTAL SECTION AND ADDRESS AN	meter L: 4 ealth	5 PH	CRIC	<u>DDS</u>
Medical wast sole, wearable TEXT BOOI 1. S Aw Sanita 2. AK K 3. David	e management, weather update system with IoT, women security system glove to enable sign to speech conversation, IoT based air pollution r TOTAL XS: asthi, MS Naruka, SP Yadav, "AI and IoT-based Intelligent H tion", VHC De Albuquerque, 2023. aviti, "Internet of Things for Agriculture 4.0: Impact and Challenges", Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jero	meter L: 4 ealth 2022 me H	5 PE 5 Ca 2. Henr	y, C	DDS &
Medical wast sole, wearable TEXT BOOI 1. S Aw Sanita 2. AK K 3. David Press,	e management, weather update system with IoT, women security system glove to enable sign to speech conversation, IoT based air pollution reaction (IoT based air pollution reaction). TOTAL SECTION AND ADDRESS AN	meter L: 4 ealth 2022 me H	5 PE 5 Ca 2. Henr	y, C	DDS &

REFERENCES:

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi and Wiley, "The Internet of Things Key applications and Protocols", 2012
- 2. Jan Ho" ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand.

David Boyle and Elsevier, "From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", 2014.

COUR	RSE OUTCOMES:	RBT
Upon s	successful completion of the course, students should be able to:	Level
CO1	Interpret the applications of IoT in healthcare	3
CO2	Identify the various applications of IoT in agriculture	2
CO3	Discuss the different IoT based industrial automation systems	2
CO4	Describe the role of ITS, its benefits and challenges	3
CO5	Analyze the impact of IoT on disaster management	4
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Ev	aluate-5;
Create	-6 at the second	

COURSE ARTICULATION MATRIX

	-		1 1	1.1					1.0					
*COs			141	1	5	F	POs		14 77	~ \ '	51		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	3	3	3	2	1	3	2	3	3
2.	3	3	3	3	3	3	3	3	2	1	3	2	3	3
3.	3	3	3	3	3	3	3	3	2	1	3	2	3	3
4.	3	3	3	3	3	3	3	3	2	1	3	2	3	3
5.	3	3	3	3	3	3	3	3	2	2	3	2	3	3
* 1 _ W	leak (2 - Mo	derate	3 - Str	ong	_	-	- · · ·	-	1	~			

Π

tadie

* 1 – Weak, 2 – Moderate, 3 – Strong

5

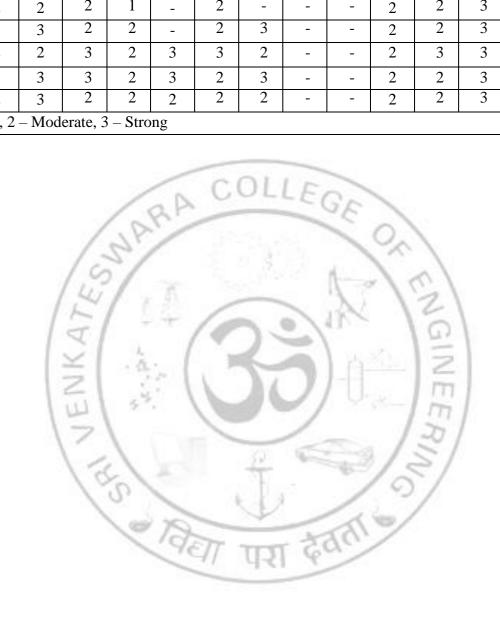
0 79

COURSE OBJECTIVES: • To learn the characteristics and basic architecture of smart cities • To explore the resources required for smart cities to sustain themselves. • To understand the IOT communication technologies and protocols for smart cities • To understand the Security and Privacy Threats in IOT-Enabled Smart Cities • To understand the Security and Privacy Threats in IOT-Enabled Smart Cities • Introduction-Characteristics of Smart Cities, IOT-Based Solutions for Smart Cities, Smart Home, Fransport and Traffic Management, Challenges, Smart City Planning and Management, The "undamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IOT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Scurity Architecture, Smart City Use-Case Examples-Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS 9 Communication Technologies for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Cities, Sensors, Clectric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart	EC22064	IOT SOLUTIONS FOR SMART CITIES	L 3	Т 0	P 0	C 3
To explore the resources required for smart cities to sustain themselves. To understand the IOT communication technologies and protocols for smart cities To learn about the transportation challenges and solutions for smart cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities Smart Cities of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Transport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities -Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer-Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT II COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, mplementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Chargi	COURSE O	BJECTIVES:	5	U	U	5
To explore the resources required for smart cities to sustain themselves. To understand the IOT communication technologies and protocols for smart cities To learn about the transportation challenges and solutions for smart cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities Smart Cities of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Transport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities -Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer-Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT II COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, mplementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Chargi	• To lea	In the characteristics and basic architecture of smart cities				
To understand the IOT communication technologies and protocols for smart cities To learn about the transportation challenges and solutions for smart cities To understand the Security and Privacy Threats in IOT-Enabled Smart Cities INTRODUCTION TO IOT FOR SMART CITIES Introduction-Characteristics of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Fransport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer. Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart Gity Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, mplementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Cites, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. VITY SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability S						
To learn about the transportation challenges and solutions for smart cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities To understand the Security and Privacy Threats in IoT-Enabled Smart Cities UNIT I INTRODUCTION TO IOT FOR SMART CITIES 9 Introduction-Characteristics of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Fransport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer-Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Fransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart City, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chalin Traceability System, Smart building, smart irrigation,			citie	S		
To understand the Security and Privacy Threats in IoT-Enabled Smart Cities INIT I INTRODUCTION TO IOT FOR SMART CITIES 9 introduction-Characteristics of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Transport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities -Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture -Street Layer- City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS FOR INTERNET OF THINGS Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Provacy and Social Values in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart Cities, Information Security and Privacy Threats in IoT-Enabled Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cites, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in Io				5		
UNIT I INTRODUCTION TO IOT FOR SMART CITIES 9 Introduction-Characteristics of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Transport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. 9 UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples-Connected Street Lighting Solution - Smart Parking Use Cases. 9 UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Fihings, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, application in Node-RED. 9 UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Transportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. 9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Introduction-Characteristics of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Fransport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Transportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities.	· To un	defisiting the security and thready threads in 161 Endoted bindit entes				
Introduction-Characteristics of Smart Cities, IoT-Based Solutions for Smart Cities, Smart Home, Fransport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Transportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities.	UNIT I	INTRODUCTION TO IOT FOR SMART CITIES				9
Fransport and Traffic Management, Challenges, Smart City Planning and Management, The Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture -Street Layer - City Layer -Data Center Layer- Services a.ayer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities. Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Cities, Sensors, Detertion in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Fransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, El			Sn	nart	Hor	ne.
Fundamentals of Smart Infrastructure, Smart and Sustainable City, Smart City Areas (Sub-Areas), Examples of Smart Cities, Smart City Benefits. UNIT II SMART AND CONNECTED CITIES An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture -Street Layer - City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples-Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS FOR INTERNET OF THINGS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT Pransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators Ind Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. 9						,
Examples of Smart Cities, Smart City Benefits. 9 An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture - Street Layer - City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples-Connected Street Lighting Solution - Smart Parking Use Cases. 9 VINT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS FOR INTERNET OF THINGS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Fransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. 107-Enabled Smart Cities in FOTAL: 45 PERIODS	-		<u> </u>			
UNIT II SMART AND CONNECTED CITIES 9 An IoT Strategy for Smarter Cities -Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture -Street Layer - City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples-Connected Street Lighting Solution - Smart Parking Use Cases. 9 UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Transportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities.						,,,
An IoT Strategy for Smarter Cities - Vertical IoT Needs for Smarter Cities - Global vs. Siloed Strategies, Smart City IoT Architecture -Street Layer- City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Fhings, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT Pransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS	•	A DOLLEGE				
Strategies, Smart City IoT Architecture -Street Layer- City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. 9 UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Fransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities.	UNIT II	SMART AND CONNECTED CITIES				9
Strategies, Smart City IoT Architecture -Street Layer- City Layer -Data Center Layer- Services Layer - On-Premises vs. Cloud, Smart City Security Architecture, Smart City Use-Case Examples- Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS 9 FOR INTERNET OF THINGS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. 9 UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Fransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities.	An IoT Strat	egy for Smarter Cities -Vertical IoT Needs for Smarter Cities - Glo	bal	vs.	Silo	bed
Connected Street Lighting Solution - Smart Parking Use Cases. UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Phings, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT P 9 Transportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT UNIT V SECURITY AND PRIVACY IN IOT Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities.						
UNIT III COMMUNICATION TECHNOLOGIES AND PROTOCOLS FOR INTERNET OF THINGS 9 Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Fhings, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Transportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. 9 UNIT V SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS	Layer - On-Pr	remises vs. Cloud, Smart City Security Architecture, Smart City Use-C	ase	Exa	.mpl	es-
FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT Paransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS	Connected St	reet Lighting Solution - Smart Parking Use Cases.				
FOR INTERNET OF THINGS Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT Paransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS		IN THE ALL SI				
Communication Technologies for IoT Networks, Recent Protocols for IoT, Overview of Secure IoT Architectures, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Cloud Internet of Things, Study of Communication Technologies: Intelligent Traffic System, Disaster Management, Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. UNIT IV TRANSPORTATION SYSTEM IN IOT 9 Transportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities.	UNIT III					9
Fransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS	Architectures Things, Study Implementati	, IoT-Based Services for Smart Cities, Cellular Mobile Networks, Clo y of Communication Technologies: Intelligent Traffic System, Disaster on and Comparison of MQTT, WebSocket, and HTTP Protocols for Sn	oud Ma	Inte anag	rnet geme	of ent,
Fransportation Challenges, Roadways, Mass Transit, Rail, Challenges for Transportation Operators and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS		12/11 # 12/2/				
and Users, An IoT Architecture for Transportation, Traffic Management for Smart Cities, Sensors, Electric Vehicles in Smart Cities, EV Charging Techniques, Renewable Energy, Smart Distribution Systems, Smart Grid. UNIT V SECURITY AND PRIVACY IN IOT 9 Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS						-
Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS	and Users, An Electric Vehi	n IoT Architecture for Transportation, Traffic Management for Smart C cles in Smart Cities, EV Charging Techniques, Renewable Energy, Sma	litie	s, Š	ensc	ors,
Privacy and Social Values in Smart Cities, Information Security in the Smart City, IoT Security Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS	UNIT V	SECURITY AND PRIVACY IN IOT				9
Challenges, Blockchain Technology for IoT, Case Studies: Smart Homes, Food Supply Chain Traceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS			, Io	T S	ecur	-
Fraceability System, Smart building, smart irrigation, Security and Privacy Threats in IoT-Enabled Smart Cities. TOTAL: 45 PERIODS	•					•
TOTAL: 45 PERIODS	Traceability S		-			
	Smart Cities.	— · -				<u> </u>
		TOTAL:	45	PEF	010	DS
	TEYT DOOL					

- 1. Waleed Ejaz, Alagan Anpalagan, Internet of Things for Smart Cities: Technologies, Big Data and Security, 1st ed. Springer International Publishing, 2019.
- 2. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, Cisco Press, June 2017, ISBN-13: 978-1-58714-456-1.
- 3. Stimmel, Carol L, Building smart cities: analytics, ICT, and design thinking, Taylor & Francis, 2016.
- 4. Joel J. P. C. Rodrigues, Parul Agarwal, Kavita Khann, IoT for Sustainable Smart Cities and Society, 2022.

REFERENCES:

- 1. Vincenzo Piuri, Rabindra Nath Shaw, Ankush Ghosh, Rabiul Islam, AI and IoT for Smart City Applications, Springer, 2022.
- 2. Vincenzo Piuri, Rabindra Nath Shaw, Ankush Ghosh, Rabiul Islam, AI and IoT for Smart City Applications, Springer International Publishing , 2022.
- 3. Al-Turjman, Fadi, Intelligence in IoT-enabled smart cities, CRC Press, 2019.
- 4. Artificial Intelligence, Machine Learning, and Deep Learning, Oswald Campesato, Mercury Learning and Information, 2020.
- 5. Arpan Kumar Kar, M P Gupta, P. Vigneswara Ilavarasan, Yogesh K. Dwivedi, Advances in smart cities: smarter people, governance and solutions CRC Press, 2017.
- 6. Understanding IoT Security: https://iot-analytics.com/understanding-iot-security-part-1-iot-security-architecture/
- 7. Hammi, B., Khatoun, R., Zeadally, S., Fayad, A., & Khoukhi, L. IoT technologies for smart cities, 2018.


List of Open Source Software/ Learning Websites

- 1. https://www.coursera.org/lecture/network-transformation-101/iot-verticals-smart-citiesand-utilities-wN2aQ
- 2. https://www.udemy.com/course/introduction-to-smart-cities-technologies-bim-gis-iot-ai/
- 3. https://www.snap4city.org/drupal/node/577
- 4. https://academy.itu.int/training-courses/full-catalogue/acquiring-5g-iot-services-smart-cities-smart-villages
- 5. https://www.futurelearn.com/info/courses/gettingstartedwiththeiot/0/steps/149743
- 6. https://telecomstechacademy.com/course/smart-cities-101-online-academy/
- 7. Open source software: Node-RED, PubNub, IoT-AWS, PlatformIO, OpenIoT, CityOS etc.

YETT THAT ZA'

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Understand the basic characteristics and architecture of smart cities	2
CO2	Interpret the resources required for smart cities to sustain themselves	3
CO3	Apply the IOT communication technologies and protocols for smart cities	3
CO4	Identify the transportation challenges and solutions for smart cities	3
CO5	Analyze the Security and Privacy Threats in IoT-Enabled Smart Cities and various case studies	3
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

*COs		POs												SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	2	2	2	1	-	2	-	-	-	2	2	3	3	3
2.	3	3	2	2	-	2	3	-	-	2	2	3	3	3
3.	2	2	3	2	3	3	2	-	-	2	3	3	3	3
4.	3	3	3	2	3	2	3	-	-	2	2	3	3	3
5.	2	3	2	2	2	2	2	-	-	2	2	3	3	3
* 1 – W	eak, 2	– Mod	erate, 3	6 – Stro	ng									

EC22065	REAL TIME OPERATING SYSTEMS	L	T	P	<u>C</u>
	BJECTIVES:	3	0	0	3
 To exp To exp To exp feature To ana 	pose the fundamentals of interaction of OS with a computer and User complain the fundamental concepts of process creation and control with OS plore the programming logic behind modeling processes with a variety	of C)S		
UNIT I	REVIEW OF OPERATING SYSTEMS les - Operating System structures – System Calls – Files – Processes				9
	on of processes – Communication between processes – Introduction em – issues in distributed system: states, events, clocks - Distributed sch				
UNIT II	OVERVIEW OF RTOS				9
Message quei problem – De UNIT III	ues– Mail boxes -pipes – Critical section – Semaphores – Classical sy adlocks. REAL TIME MODELS AND LANGUAGES	yncł	nron	izat	on 9
Event Based	 Process Based and Graph-based Models – Real Time Languages – I g - Interrupt processing – Synchronization – Control Blocks – Memory 				s –
UNIT IV	REAL TIME KERNEL				9
-	Design issues – RTOS Porting to a Target – Comparison and Basic st VX works – Linux supportive RTOS – C Executive.	udy	of v	ario	ous
UNIT V	INTRODUCTION TO EMBEDDED OS				9
Discussions of Application -	n Basics of Linux supportive RTOS – uCOS-C Executive for develop -introduction to Android Environment -The Stack – Android Use he File System, the Options Menu and Intents, with one Case study.	er I	nter	face	OS –
	TOTAL:	45]	PER	RIO	DS
2017. 2. Raj Ka	KS: uction to Embedded System- Shibu KV, Mc-Graw Hill Higher Edition amal, "Embedded Systems- Architecture, Programming and Design" T				
3. C.M. 1 4. Herma	006. Krishna, Kang, G.Shin, "Real Time Systems", McGraw Hill, 1997. a K., "Real Time Systems – Design for distributed Embedded Applicationic, 1997.	ons	", K	luw	er

- 1. K. C. Wang, Embedded and Real-Time Operating Systems, Second Edition, Springer Nature, 2023.
- 2. Silberschatz, Galvin, Gagne "Operating System Concepts", 6th ed, John Wiley, 2003.
- 3. Charles Crowley, "Operating Systems-A Design Oriented approach" McGraw Hill, 1997.
- 4. Karim Yaghmour, "Building Embedded Linux System", O'reilly Pub, 2003
- 5. Marko Gargenta, "Learning Android", O'reilly 2011.
- 6. Corbet Rubini, Kroah-Hartman, "Linux Device Drivers", O'reilly, 2016.
- 7. Mukesh Sighal and N G Shi, "Advanced Concepts in Operating System", McGraw Hill, 2000.

	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Understand Real-time scheduling and schedulability analysis, including clock- driven and priority-driven scheduling	2
CO2	Apply Theoretical background (specification/verification) and practical knowledge of real-time operating systems.	3
CO3	Grasp the utilization of multitasking techniques in real-time systems.	3
CO4	Understand the fundamental concepts of real-time operating system	3
CO5	Analyze improved Employability and entrepreneurship capacity due to knowledge up gradation on recent trends in embedded systems design.	4
	A 000 101	
OURS	E ARTICULATION MATRIX	

*COs		10	Z		: 1	Р	Os		1		m		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	2	2	1	1		1	-	- /	2	1	2	1
2.	3	2	2	2	1	-	1	1	1	-/	2	- (2	2
3.	3	3	3	2	2	1	*		10	15	2	-	2	2
4.	3	3	3	3	2	K	- Đ.,	<u>8</u> -	-/	(20)	2	-	2	2
5.	3	2	3	2	2	-	Y	-	-	60 /	2	-	2	1
* 1 – W	eak, 2	- Mod	erate, 3	– Stro	ng	1		- 30	201	/				
				0.0	1	-11	42	6	/					

EC22066	ROBOTICS AND AUTOMATION	L	Τ	P	С
	(Common to EC, EE)	3	0	0	3
	BJECTIVES:				
	quire basic knowledge on robotics and associated automation principles	s alo	ng v	vith	
	isting industrial applications.				
	plore on various types of sensors, robot actuators, end effectors concern	ned	with		
-	ulators.				
	dy about robot motion analysis and control.				
	quire knowledge on vision system for robotic applications.				
	plore on robotics automation and applications in industry.				
UNIT I	FUNDAMENTALS OF ROBOTICS AND AUTOMATION				9
	finition, Origin, Different types, Various generations -Degrees of free				
	Classification of robots - Cartesian, Cylindrical, Spherical, Articul				
	obot movements - Accuracy, Resolution, Repeatability- specification	s – 1	Pitcl	n, ya	ιw,
	otations, Speed of Motion, Pay Load.				
	Basic elements of an automated system - Level of automation; Con	-	-	-	
	trol requirements, Forms of computer process control. Material handlin				
	strial robotics (Brief overview at introduction level): Material transf	ers	– M	lach	ine
loading and u	nloading.				
		T			
UNIT II	SENSORS AND ACTUATORS	Ŀ			9
	sor characteristics, Types of sensors – Tactile sensors, Touch sensors; P				
	ter, Encoder, LVDT, Resolvers; Proximity sensors – Magnetic, Optic				
	pacitive, Eddy current; Speed sensors – Velocity/motion sensors; Forc	:e/P1	essu	ire a	na
torque sensor		Dal	+ 0.00	1 .h	
	Iechanical Actuation System – Cams, Gear trains, Ratchet and Pawl,				
	egs; Electrical Actuation System– Electrical systems, Solid State Switc rs; Introduction to Hydraulic and Pneumatic Systems, Directional Contr				
	s, End Effectors.	UI V	11100	5, 11	Jw
	, End Entectors.				
UNIT III	ROBOT MOTION ANALYSIS AND CONTROL	Т			9
	controller and its types – PI, PD, PID; Manipulator kinemati		D	Posit	
	and orientation – Forward, Reverse and Homogeneous transformation				
	olving Inverse kinematic equations; Overview on Manipulator path c				
-	ated and Straight line motion; Differential motions – Jacobian; Robot dy				
-	bot arm dynamics – Newton-Euler method – Euler - Lagrangian forn				
control – Tasl		iuiu	lion	, 10	
UNIT IV	ROBOTIC VISION AND INDUSTRIAL AUTOMATION				9
	and components of robotic vision systems – Image acquisition and	rent	eser	itati	
	– Image histograms – Spatial operations – Smoothing – Segment	-			
	Object Recognition.			J	
-	utomated Flow Lines: General Terminology and Analysis, Analysis of	Tra	nsfe	r Li	nes
•	ge, Partial Automation, Automated Flow Lines with Storage Buffers.				
UNIT V	AUTOMATION IN INDUSTRIAL APPLICATIONS				9
	ufacturing Systems – Components, Planning and implementation issue	s B	enef	rite s	

Flexible Manufacturing Systems – Components, Planning and implementation issues, Benefits and applications; Automated Storage Retrieval Systems (ASRS) – types, components and operating

features; Automated processing/machining – Transfer lines; Automatic assembly – System configuration, parts delivery, applications; Automatic inspection – types, procedure, accuracy; Material Handling-palletizing and depalletizing.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Mikell P. Groover, Mitchell Weiss, Roger N. Nagel and Nicholas G. Odrey, "Industrial Robotics", Tata Mc Graw Hill, 2010.
- 2. Peter Corke, "Robotics, Vision and control-Fundamental algorithms in MATLAB", Springer International publishing AG, 2017.
- 3. Mittal R K, Nagrath I J, "Robotics and control", Tata McGraw Hill, 2010.
- 4. M.P. Groover, "Industrial Robotics- Technology, Programming, and Applications", Tata Mcgraw Hill Publications, 2012.

REFERENCES:

- 1. Ganesh.S.Hedge,"A textbook of Industrial Robotics", Lakshmi Publications, 2006.
- 2. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987.
- 3. Saeed B. Niku, "An Introduction to Robotics: Analysis, systems and applications", Pearson Education, 2009.
- 4. Richard D Klafter, and Michael Negin, "Robotics Engineering", Prentice Hall, 2009.
- 5. John.J. Craig, "Introduction to Robotics: Mechanics and control", Pearson Education, 2009.
- 6. Mikell P. Groover, "Automation, Production systems and Computer Integrated Manufacturing", Prentice Hall India Pvt. Ltd., 2011.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Categorize robots and automation based on various aspects	2
CO2	Identify appropriate sensors, robot actuators, end effectors for certain applications	3
CO3	Solve the basic manipulator kinematics, robot dynamics and sketch the manipulator path control.	3
CO4	Design appropriate vision system for certain robotic applications.	3
CO5	Acquire knowledge on robotics for certain automation in industry.	3
Bloon Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eval	uate-5;

COURSE ARTICULATION MATRIX

× . 6.

*COs						Р	Os						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	-	-	-	-	-	-	-	-	2	3	3
2.	3	3	3	2	-	2	2	-	-	-	-	2	3	3
3.	3	3	3	-	-	2	2	-	-	-	-	2	3	3
4.	3	3	3	2	-	2	2	-	-	-	-	2	3	3
5.	3	3	3	-	-	2	2	-	-	-	-	2	3	3
* 1 – W	eak, 2	- Mod	erate, 3	S – Stro	ng									

EC22067	VEHICLE INFOTAINMENT AND CONNECTED VEHICLES	L	T	P	C
	BJECTIVES:	3	0	0	3
	derstand the electrical and electronic systems in vehicles.				
	ustrate the working the principles of automotive networking.				
	aracterize and analyze the requirements and types of bus systems				
	mprehend the lighting systems in vehicles				
• To me	odel the auxiliaries and chassis electric systems in automobiles				
UNIT I	ELECTRICAL AND ELECTRONIC SYSTEMS IN THE VEHICLE				9
Overview, Er	ngine management system, Electronic diesel control, Lighting technolo	ogy,	Ele	ctro	nic
	ram, Adaptive cruise control, Infotainment System. Basic principles				
	blogy, Network organization, OSI reference model, Control mechanism				υ
•	A DOLLEGE				
UNIT II	AUTOMOTIVE NETWORKING				9
Cross-system	functions, Requirements for bus systems, Classification of bus systems	s, A	ppli	catio	ons
	, coupling of networks, Examples of networked vehicles system.	, ,			
	1.9/				
UNIT III	BUS SYSTEMS				9
access, LIN transfer, adm	ndardization, characteristics. LIN bus: Overview, Applications, Data protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physical	fea toot	ture h ve	s, d ersio	ata ns,
access, LIN transfer, adm	protocol, network management, example. MOST bus: Introduction,	fea toot	ture h ve	s, d ersio	ata ns,
access, LIN transfer, adm transmission Architecture.	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica	fea toot	ture h ve	s, d ersio	ata ns, ns,
access, LIN transfer, adm transmission Architecture.	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM	fea toot il co	ture h ve onne	s, d ersio ectio	ata ns, ns, 9
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica	fea toot il co Ca	ture h ve onne	s, d ersio ectio	ata ns, ns, 9 les,
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme	fea toot il co Ca	ture h ve onne	s, d ersio ectio	ata ns, ns, 9 es, ing
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES	fea coot ll co Ca ents	ture h ve onne ise s in l	s, d ersio ectio studi	ata ns, ns, 9 es, ing 9
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluer technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems,	fea coot l co Ca Ca Ca	ture h ve onne use s in l se s	s, d ersio ectio studi ight	ata ns, ns, 9 es, ing 9 ies,
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen Diagnosing a	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new developme	fea coot l co Ca Ca Ca	ture h ve onne use s in l se s	s, d ersio ectio studi ight	ata ns, ns, 9 es, ing 9 ies,
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New development AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems.	fea coot il co Ca ents Ca ca evel	ture h ve onne se s in 1 se s opm	s, d ersic ectio studi ight studi	ata ns, ns, 9 es, ing 9 es, in
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen Diagnosing a	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new developme	fea coot il co Ca ents Ca ca evel	ture h ve onne se s in 1 se s opm	s, d ersic ectio studi ight studi	ata ns, ns, 9 es, ing 9 es, in
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen Diagnosing a auxiliary syst	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems. TOTAL:	fea coot il co Ca ents Ca ca evel	ture h ve onne se s in 1 se s opm	s, d ersic ectio studi ight studi	ata ns, ns, 9 es, ing 9 es, in
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen Diagnosing a auxiliary system	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems. TOTAL:	fea acot l co Ca ents Ca evel 45	ture h ve onne se s in 1 se s opm PEH	s, d ersio ectio studi ight studi studi	ata ns, ns, 9 es, ing 9 es, in 5
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen Diagnosing a auxiliary syst TEXT BOO 1. Conne	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems. TOTAL: KS: ected Vehicles: Intelligent Transportation Systems and Smart Technolo	fea acot l co Ca ents Ca evel 45	ture h ve onne se s in 1 se s opm PEH	s, d ersio ectio studi ight studi studi	ata ns, ns, 9 les, ing 9 les, in DS
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen Diagnosing a auxiliary system TEXT BOO 1. Conne Vang	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems. TOTAL: KS: ected Vehicles: Intelligent Transportation Systems and Smart Technolo elis Katsikis, Stamatia Bibi, and Ioannis Kopanakis 2018.	fea coot l co Ca ents Ca exerts Ca exerts	ture h ve onne ise s in 1 se s opm PEH	s, d ersio ectio studi ight studi ight studi ight	ata ns, ns, 9 des, ing 9 des, ing 9 des, ing 9 des, ing 9 des, by
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing l systems UNIT V Windscreen Diagnosing a auxiliary syst TEXT BOO 1. Conno Vang 2. "The	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physica LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems. TOTAL: KS: ected Vehicles: Intelligent Transportation Systems and Smart Technolo elis Katsikis, Stamatia Bibi, and Ioannis Kopanakis 2018. Rise of the Connected Car: A Technology and Business Model Overvie	fea coot l co Ca ents Ca exerts Ca exerts	ture h ve onne ise s in 1 se s opm PEH	s, d ersio ectio studi ight studi ight studi ight	ata ns, ns, 9 des, ing 9 des, ing 9 des, ing 9 des, ing 9 des, by
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing 1 systems UNIT V Windscreen Diagnosing a auxiliary syst TEXT BOO 1. Conny Vang 2. "The S. Ko	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physical LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems. TOTAL: KS: ected Vehicles: Intelligent Transportation Systems and Smart Technolo elis Katsikis, Stamatia Bibi, and Ioannis Kopanakis 2018. Rise of the Connected Car: A Technology and Business Model Overvie plin 2019.	fea coot l co Ca ents Ca evel 45 gies w"	ture h ve onne use s in 1 se s opm PEI	s, d ersio ectio studi ight studi studi ents RIO	ata ns, ns, 9 les, ing 9 les, ing 9 les, in DS
access, LIN transfer, adm transmission Architecture. UNIT IV Lighting fun Diagnosing 1 systems UNIT V Windscreen Diagnosing a auxiliary syst TEXT BOO 1. Conny Vang 2. "The S. Ko	protocol, network management, example. MOST bus: Introduction, inistrative functions, application layer, Overview, applications, Bluet technology, power classes, topology, physical data channel, physical LIGHTING SYSTEM damentals, Lighting circuits, Gas discharge lamp and LED lighting, ighting system faults, Advanced lighting technology, New developme AUXILIARIES IN VEHICLES washers and wipers, signaling circuits, Other auxiliary systems, uxiliary system faults Advanced auxiliary systems technology, new de ems. TOTAL: KS: ected Vehicles: Intelligent Transportation Systems and Smart Technolo elis Katsikis, Stamatia Bibi, and Ioannis Kopanakis 2018. Rise of the Connected Car: A Technology and Business Model Overvie plin 2019. am B. Ribbens, "Understanding Automotive Electronics", 6th Edition, F	fea coot l co Ca ents Ca evel 45 gies w"	ture h ve onne use s in 1 se s opm PEI	s, d ersio ectio studi ight studi studi ents RIO	ata ns, ns, 9 les, ing 9 les, is in DS

- 1. 1. R. Krishnan, "Electric Motor Drives Modeling, Analysis & Control", PHI Learning Private Ltd, 2009.
- 2. P.C.Krause, Oleg Wasynczuk, Scott D.Sudhoff, "Analysis of Electrical Machinery and Drive Systems", 2ndEdition, Wiley(India), 2010.
- 3. Arthur R Bergen and Vijay Vittal, "Power System Analysis", 2nd Edition, Pearson, 2009.
- 4. Chee-MunOng, "Dynamic Simulation of Electric Machinery using Matlab/Simulink", Prentice Hall, 1998

COUI	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
C01	Identify various electrical & electronic systems in vehicles and understand their working.	2
CO2	Discuss the basic principles of networking requirements in an automotive.	3
CO3	Explain requirements and types of bus systems	3
CO4	Comprehend the lighting systems in vehicles	4
CO5	Understand the auxiliaries and chassis electric systems in automobiles	3
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;

*COs				- 2	1	P	Os		1 11-		1		PS	SOs
	1	2	_3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	3	2	1			17	2	3	2
2.	3	3	3	3	3	3	2	1	7	-/	-0	2	3	2
3.	3	3	3	3	3	3	2	1	5	12	S^{1}	2	3	2
4.	3	3	3	3	3	3	2	1	-	0	1	2	3	2
5.	3	3	3	3	3	3	2	1	/	1-5	1	2	3	2
* 1 – W	eak, 2	– Mod	erate, 3	– Stro	ng	_		~	1	1				

TO

EC22068	WEARABLE DEVICES FOR HEALTHCARE APPLICATIONS	L T P C 3 0 0 3
COURSE O	BJECTIVES:	1 I I I
• To un	derstand the importance of developing wearable devices and their impact	on healthcare.
• To ex	plore methods for capturing bio-signals and processing them for integratic	on into human
syster	ns.	
	aluate wearable device designs incorporating energy-efficient approaches.	
	eate and implement wearable systems tailored for specific physiological fu	
	derstand the importance of smart sensor technologies and adherence to sen	nsor interface
standa	ards in healthcare contexts.	
UNIT I	OVERVIEW OF SENSORS	9
	s wearable systems - Sensors for wearable systems-Inertia movement sensor	-
	or, Inductive plethysmography, Impedance plethysmography, pneumogra	
	on force sensor, GSR, Radiant thermal sensor, Wearable motion sensors,	
	Bio compatibility	
UNIT II	SIGNAL PROCESSING	9
Challenges in	n Wearability -physical shape and placement of sensor, Technical prol	blems – sensor
0 0	l acquisition, Constraint on sampling frequency for reduced energy con	sumption, light
weight signal	processing, Rejection of irrelevant information, Data-mining.	T
UNIT III	ENERGY HARVESTING FOR WEARABLE TECHNOLOGIES	9
Energy harv	esting from human body: Temperature gradient, Foot motion - W	vireless energy
Energy harv transmission	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power const	vireless energy
Energy harv	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power const	vireless energy
Energy harv transmission Future consid	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations.	Vireless energy umption issues,
Energy harv transmission	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consulerations. MONITORING PHYSICAL AND PHYSIOLOGICAL	vireless energy
Energy harv transmission Future consid	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS	Vireless energy umption issues, 9
Energy harv transmission Future consid UNIT IV Wearable set	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consulerations. MONITORING PHYSICAL AND PHYSIOLOGICAL	Vireless energy umption issues, 9 Cardiovascular
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS msors for physiological signal measurement - Physical measurement:	Vireless energy umption issues, 9 Cardiovascular vasive assistive
Energy harv transmission Future consid UNIT IV Wearable sen diseases, Ne technologies:	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS msors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv	Vireless energy umption issues, 9 Cardiovascular vasive assistive
Energy harv transmission Future consid UNIT IV Wearable sen diseases, Ne technologies: Sensor signal	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS msors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongue -processing algorithm, Dual-mode tongue drive system	Vireless energy umption issues, 9 Cardiovascular vasive assistive
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS moors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongu- -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V Medical Dia	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS msors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongu- -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V Medical Dia	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS moors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongu- -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9 recording, Gait
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V Medical Dia	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS moors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongu- -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9
Energy harv transmission Future consid UNIT IV Wearable ser diseases, Ne technologies: Sensor signal UNIT V Medical Dia analysis, Spo	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power const lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS msors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongue -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles TOTAL:	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9 recording, Gait
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V Medical Dia analysis, Spo	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power considerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS moors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongu- -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles KS:	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9 recording, Gait 45 PERIODS
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V Medical Dia analysis, Spo 1. Weara	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power considerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS moors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongue -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles TOTAL: KS: able Computing: From Modelling to Implementation of Wearable Systems	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9 recording, Gait 45 PERIODS Based on Body
Energy harv transmission Future consid UNIT IV Wearable ser diseases, Ne technologies: Sensor signal UNIT V Medical Dia analysis, Spo 1. Weara Sensor	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power considerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS moors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongu- -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles KS:	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9 recording, Gait 45 PERIODS Based on Body
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V Medical Dia analysis, Spo TEXT BOO 1. Weara Sensor 2018.	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power consu- lerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS nsors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongu- -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles KS: able Computing: From Modelling to Implementation of Wearable Systems r Networks, Giancarlo Fortino, Raffaele Gravina, Stefano Galzarano, Wile	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9 recording, Gait 45 PERIODS Based on Body ey, IEEE Press,
Energy harv transmission Future consid UNIT IV Wearable set diseases, Ne technologies: Sensor signal UNIT V Medical Dia analysis, Spo TEXT BOO 1. Wears Sensor 2018. 2. Wears	esting from human body: Temperature gradient, Foot motion - W - Energy harvesting from light and RF energy - Energy and power considerations. MONITORING PHYSICAL AND PHYSIOLOGICAL PARAMETERS moors for physiological signal measurement - Physical measurement: urological diseases, Gastrointestinal diseases - Wearable and non-inv Assistive devices for individuals with severe paralysis, Wearable tongue -processing algorithm, Dual-mode tongue drive system APPLICATIONS OF WEARABLE IN HEALTHCARE gnostics, Medical Monitoring, Multi parameter monitoring, Neural r rts Medicine, Smart Fabrics, E-textiles TOTAL: KS: able Computing: From Modelling to Implementation of Wearable Systems	Vireless energy umption issues, 9 Cardiovascular vasive assistive e drive system, 9 recording, Gait 45 PERIODS Based on Body ey, IEEE Press,

- 1. Seamless Healthcare Monitoring Toshiyo Tamura and Wenxi Chen, Springer 2018.
- 2. Wearable Technologies for Healthier Pregnancies", Nilanjan Dey, Amira S. Ashour, and Chintan Bhatt 2020.
- 3. Wearable Technologies: Concepts, Methodologies, Tools, and Applications", Victor C.M. Leung, Faisal Karim Shaikh, and Haider Abbas 2019.

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Demonstrate comprehension and appreciation of the necessity for advancing wearable technology and its implications across various disciplines.	2
CO2	Recognize and apply signal processing techniques alongside methods for acquiring bio- signals.	3
CO3	Assess the implementation of energy-efficient strategies in wearable device technology.	4
CO4	Critically evaluate the design and creation of wearable physiological activity monitors and bio-electrodes suitable for integration within healthcare settings.	4
CO5	Elucidate the applications of wearable technology in health care	3
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

*COs		POs							Pre		PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	3	2	1	-	-	1	2	3	2
2.	3	3	3	3	3	3	2	1	(- U-	20-	1	2	3	2
3.	3	3	3	3	3	3	2	1	-	-	1	2	3	2
4.	3	3	3	3	3	3	2	1	-	-/	$\langle T \rangle$	2	3	2
5.	3	3	3	3	3	3	2	1	100	1- 5	21/	2	3	2

* 1 – Weak, 2 – Moderate, 3 – Strong

EC22060	MINI PROJECT	L	Τ	Р	C							
EC22000	WIINI PROJECT	0	0	4	2							
COURSE OBJECTIVES:												
• T	• To define, formulate, and analyze a real-world problem in the domain of IoT.											

- To solve the problems independently or as part of a team.
- To learn the architecture and design flow of IoT & and build an IoT-based system.
- To work independently as well as in teams.
- To manage the project from start to finish.

PROJECT WORK MODALITIES

Students can take up small real-world problems in the domain of the Internet of Things as miniprojects. Each student or as a team should conceive, design, develop, and realize an IoT-based system for any application. The basic elements of system design should be considered while designing the system. It can be related to a solution to an engineering problem, verification, and analysis of experimental data available, by conducting suitable experiments on various courses on IoT implementation, characterization, studying a software tool for the solution of an engineering problem, etc. The realization of the product should include the design and fabrication of the PCB. The student should submit a soft-bound report at the end of the semester. The IoT-based system should be demonstrated at the time of examination.

TOTAL: 60 PERIODS

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
C01	Identify problems and perform a survey on the existing methods.	2
CO2	Develop a novel idea and analyze the various implementation issues.	3
CO3	Implement the design and develop a prototype model.	4
CO4	Demonstrate the working module.	5
CO5	Prepare a presentation and a report and explain the project work.	6
* Bloo 5; Cre	m's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4 ate-6	; Evaluate-

*COs	Pos												PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	2	2	3	3	3	3	3	3	3
2.	3	3	3	3	3	2	2	3	3	3	3	3	3	3
3.	3	3	3	3	3	2	2	3	3	3	3	3	3	3
4.	3	3	3	3	3	2	2	3	3	3	3	3	3	3
5.	3	3	3	3	3	2	2	3	3	3	3	3	3	3
* 1 – Wea	ak, 2 –	Moder	ate, 3 –	Strong	3									

VERTICAL 6 NETWORKING AND SECURITY

EC22071 BLOCKCHAIN AND SMART CONTRACT L T P C 3 0 0 3 0 0 3 COURSE OBJECTIVES: • To understand the fundamentals Blockchain • To knowledge on Bitcoin Consensus •			-		D	
COURSE OBJECTIVES: • To understand the fundamentals Blockchain • To learn the concept of Bitcoin and Cryptocurrency • To knowledge on Bitcoin Consensus • To study hyperledger Fabric and Ethereum platform • To study various smart contracts mechanisms • UNIT I INTRODUCTION TO BLOCKCHAIN 9 Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH - the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW , monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHERUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidiy. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Con	EC22071	BLOCKCHAIN AND SMART CONTRACT				
 To learn the concept of Bitcoin and Cryptocurrency To knowledge on Bitcoin Consensus To study hyperledger Fabric and Ethereum platform To study various smart contracts mechanisms UNIT I INTRODUCTION TO BLOCKCHAIN 9 Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT II BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW ,monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain codes Ethereum: Ethereum network, EVM, Transaction fee, Mist Browset, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts, in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Bank	COURSE OI	BJECTIVES:				
 To learn the concept of Bitcoin and Cryptocurrency To knowledge on Bitcoin Consensus To study hyperledger Fabric and Ethereum platform To study various smart contracts mechanisms UNIT I INTRODUCTION TO BLOCKCHAIN 9 Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT II BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW ,monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain codes Ethereum: Ethereum network, EVM, Transaction fee, Mist Browset, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts, in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Bank	• To un	derstand the fundamentals Blockchain				
 To knowledge on Bitcoin Consensus To study hyperledger Fabric and Ethereum platform To study various smart contracts mechanisms UNIT I INTRODUCTION TO BLOCKCHAIN 9 Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 99 A basic crypto currency, Creation of coins, Payments and double spending, FORTH - the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT II BITCOIN CONSENSUS 99 Bitcoin Consensus, Proof of Work (PoW) - Hashcash PoW , Bitcoin PoW, Attacks on PoW monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 99 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 99 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, In Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TOTAL: 45 PERIODS TAMERA Antonopoulos, "Mastering Blockchain frameworks, 2017. Andreas Antonopoulos, "Mastering Blockchain frameworks, 2017. Andreas Antonopoulos, "Mastering Blockchain frameworks, 2017. Andreas Antonopoulos, Wastering Bitcoin: Unlocking						
To study hyperledger Fabric and Ethereum platform To study various smart contracts mechanisms UNIT I INTRODUCTION TO BLOCKCHAIN 9 Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. 1 UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT II BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW) Hashcash PoW , Bitcoin PoW, Attacks on PoW , monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Rielly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and						
To study various smart contracts mechanisms UNIT I INTRODUCTION TO BLOCKCHAIN 9 Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT II BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW , monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and		0				
UNIT I INTRODUCTION TO BLOCKCHAIN 9 Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. 9 UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW , monopoly problem-Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHEREUM Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 Introduction, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristies of a Smart Contract, Influence and Banking, Insurance, etc- Case Study. 9 TEXT BOOKS: 1 1 1 Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular						
Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH - the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. 9 UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1 Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 20	• 10 stu		Т			
Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH - the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. 9 UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2	UNIT I	INTRODUCTION TO BLOCKCHAIN	+			9
The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree. UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristics, Smart Cittes, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and			Tr	anca	ctio	-
Function, Properties of a hash function-Hash pointer and Merkle tree. 9 UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. 9 UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1 Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilas						
UNIT II BITCOIN AND CRYPTOCURRENCY 9 A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. 9 UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW , monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. 10 TEXT BOOKS: 1 1 Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2 Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3 Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and 1			gra	me	-110	1311
A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW ,monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Inference, Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and	1 unetion, 110	peries of a hash function frash pointer and werkle tree.	Т			
A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW ,monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and		RITCOIN AND CRVPTOCURRENCY				0
for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay. UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW ,monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bliccoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and			L th	a nro	our	-
Mining, Block propagation and block relay. 9 UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristies of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. 9 TEXT BOOKS: 1 Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2 Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3 Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and						
UNIT III BITCOIN CONSENSUS 9 Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW , monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. 9 UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and			Netw	ork,	DIC	CK
Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and	Mining, Bloc	k propagation and block relay.	Т			
Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and		DITCOIN CONCENCIC				
,monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases. UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contract, Characteristics of a Smart Contract in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and					D	
UNIT IV HYPERLEDGER FABRIC & ETHEREUM 9 Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. 9 UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and	,monopoly pre	oblem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin				
Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and	Difficulty, M	ining Pool-Permissioned model and use cases.	Т			
Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and						
Transaction fee, Mist Browser, Ether, Gas, Solidity. UNIT V SMART CONTRACTS 9 Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. 9 TEXT BOOKS: TOTAL: 45 PERIODS 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and			<u> </u>			
Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and			etwo	ork,	ΕV	М,
Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and						
of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and	UNIT V	SMART CONTRACTS				9
of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and	Introduction,	Smart Contract, Characteristics of a Smart Contract, Types of Smart C	ontra	acts,	Ty	bes
 Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study. TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and 						
Study. TOTAL: 45 PERIODS TEXT BOOKS: I. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and						
TOTAL: 45 PERIODS TEXT BOOKS: 1. Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. 2. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. 3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and						
 TEXT BOOKS: Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and 	2	TOTAL:	45	PER	RIO	DS
 Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and 			Τ			
 Bashir and Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks, 2017. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and 	TEXT BOOI	KS:	4			
 cryptography, Bitcoin, and popular Blockchain frameworks, 2017. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and 			on.			
 Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly, 2014. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and 			9			
O'Reilly, 2014.Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and	• 1		cies	"		
3. Blockchain Technology By Chandramouli Subramanian, Asha George, Abhilash K A and				,		
			lash	ΚA	an	đ
					- 411	

REFERENCES:

- 1. Daniel Drescher, "Blockchain Basics", First Edition, Apress, 2017.
- 2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016.
- 3. Melanie Swan, "Blockchain: Blueprint for a New Economy", O'Reilly, 2015
- 4. Ritesh Modi, "Solidity Programming Essentials: A Beginner's Guide to Build Smart Contracts for Ethereum and Blockchain", Packt Publishing
- 5. Handbook of Research on Blockchain Technology, published by Elsevier Inc. ISBN: 9780128198162, 2020.

COURSE OUTCOMES: Upon successful completion of the course, students should be able to:						
CO1	Understand emerging abstract models for Blockchain Technology	2				
CO2	Identify major research challenges and technical gaps existing between theory and practice in the crypto currency domain.	2				
CO3	Conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, Consensus are achieved with new applications.	3				
CO4	Apply hyperledger Fabric and Ethereum platform to implement the Block chain Application.	3				
CO5	Apply the smart contract technology in real-world scenarios	3				
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6						

*C	Pos												PSOs	
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	1	1	10		13	1	\geq /	3	3	2
2.	3	3	3	3	1	1	- 10	-2 -	- /	9	-	3	3	2
3.	3	3	3	3		1	1	- 2	1	2-7	-	3	3	2
4.	3	3	3	3	A.	1	_	-2	100	1	-	3	3	2
5.	3	3	3	3	170	11	पर	-6	-	° -	-	3	3	2
* 1 – V	Weak, 2	2 - Mo	derate,	3-Str	ong			_		·				

EC22072	CRYPTOGRAPHY AND NETWORK SECURITY	L 2	T	P	$\frac{C}{2}$
	BJECTIVES:	3	0	0	3
	derstand various symmetric and asymmetric key cryptographic algorith	me			
	quire fundamental knowledge on the concept of authentication and hash		octio	na	
	scribe the principles of Electronic Mail Security and authentication serv			115.	
	ve an insight on various system level security concepts.	ices			
	pose the concepts of Lightweight and quantum cryptography.				
• 10 CA	pose the concepts of Eightweight and quantum eryptography.				
UNIT I	SYMMETRIC AND ASYMMETRIC KEY CRYPTOGRAPHY				9
	of Symmetric and Asymmetric key Cryptography: Overview - Symmetric key Cryptography: Overview -	vmn	netri	c K	ev
	ck Cipher Operation, RC4 - Asymmetric key Ciphers: Diffie-Hellman				
-	nal cryptosystem, Elliptic curve cryptography.				·- د
,					
UNIT II	AUTHENTICATION AND HASH FUNCTION				9
	n requirements - Authentication functions - Message Authentication	Coo	les -	· Ha	ish
	Security of Hash Functions and MACs - Secure Hash Algorithm – H				
	Authentication Protocols - Digital Signature Standard.			8-	
8					
UNIT III	NETWORK SECURITY				9
					-
Δ uthenticatio	n Applications: Kerberos - X 509 Authentication Service - Electronic N	Mail	Sec	mrit	V -
	n Applications: Kerberos - X.509 Authentication Service - Electronic N				
PGP-S/MIMI	E - IP Security: Architecture, Authentication Header - Web Security: T				
PGP-S/MIMI					
PGP-S/MIMI Electronic Tr	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET).				ire
PGP-S/MIMI Electronic Tr UNIT IV	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY	Threa	ats,	Secu	ire 9
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY Section - Password Management - Viruses and related Threats - Virus Content 	Threa	ats,	Secu	ire 9
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY	Threa	ats,	Secu	ire 9
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. 	Threa	ats,	Secu	ire 9 res
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY 	Threa	ats, r me	secu	11re 9 res 9
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptography 	Threa	ats, r me	Secu	11re 9 res 9
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY extion - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograph Concepts, Algorithms. 	Threa unte	r me	secu asu:	9 res 9 um
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptography 	Threa unte	r me	secu asu:	9 res 9 um
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. TOTAL:	Threa unte	r me	secu asu:	9 res 9 um
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. TOTAL: KS:	Thread of the second se	r me Qu	secu asu:	9 res 9 1m
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOO 1. Behro	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograph Concepts, Algorithms. TOTAL: MS: puz A. Forouzan Cryptography and Network security, McGraw- Hill, 20	Thread of the second se	r me	antu antu	9 res 9 1m
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOO 1. Behro 2. Willia	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptography Concepts, Algorithms. TOTAL: KS: buz A. Forouzan Cryptography and Network security, McGraw- Hill, 20 um Stallings, "Cryptography and Network security: principles and practices.	Thread of the second se	r me	antu antu	9 res 9 1m
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOO 1. Behro 2. Willia Editio	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptography Concepts, Algorithms. TOTAL: KS: puz A. Forouzan Cryptography and Network security, McGraw- Hill, 20 am Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002.	Thread of the second se	r me Qu PER	antu RIO	9 res 9 1m
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOOI 1. Behroo 2. Willia Editio 3. Parag	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. TOTAL: KS: buz A. Forouzan Cryptography and Network security, McGraw- Hill, 20 um Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002. K Lala, "Quantum Computing A Beginner's Introduction", McGraw- H	Thread of the second se	r me Qu PER	antu RIO	9 res 9 1m
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOO 1. Behro 2. Willia Editio 3. Parag REFERENC	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptography Concepts, Algorithms. TOTAL: KS: Muz A. Forouzan Cryptography and Network security, McGraw- Hill, 20 am Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002. K Lala, "Quantum Computing A Beginner's Introduction", McGraw- HES:	Thread unite ohy: 45] 0111. ice", Hill,	r me Qu PER	antu antu 210) 1 9.	9 res 9 um DS
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOOI 1. Behro 2. Willia Editio 3. Parag REFERENC 1. Charli	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY extion - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. TOTAL: KS: buz A. Forouzan Cryptography and Network security, McGraw- Hill, 20 am Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002. K Lala, "Quantum Computing A Beginner's Introduction", McGraw- H ES: ie Kaufman and Radia Perlman, Mike Speciner, "Network Security,	Thread unite ohy: 45] 0111. ice", Hill,	r me Qu PER	antu antu 210) 1 9.	9 res 9 um DS
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOO 1. Behro 2. Willia Editio 3. Parag REFERENC 1. Charli Privat	E - IP Security: Architecture, Authentication Header - Web Security: T ansaction (SET). SYSTEM SECURITY extion - Password Management - Viruses and related Threats - Virus Con- sign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. TOTAL: KS: muz A. Forouzan Cryptography and Network security, McGraw- Hill, 20 um Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002. K Lala, "Quantum Computing A Beginner's Introduction", McGraw- H ES: ie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Security, Security One 2002.	Thread International Content of the second s	r me Qu PER 201	antu antu 210) 1 9.	9 res 9 um DS
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOO 1. Behro 2. Willia Editio 3. Parag REFERENC 1. Charli Privat 2. Bruce	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY extion - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. TOTAL: KS: nuz A. Forouzan Cryptography and Network security, McGraw- Hill, 24 um Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002. K Lala, "Quantum Computing A Beginner's Introduction", McGraw- HERE ES: ie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Security, Security Computing A Beginner's Introduction", First Edition, Schneier and Neils Ferguson, "Practical Cryptography", First Edition, 	Thread International Content of the second s	r me Qu PER 201	antu antu 210) 1 9.	9 res 9 um DS
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOOI 1. Behro 2. Willia Editio 3. Parag REFERENC 1. Charli Privat 2. Bruce Drean	E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY ection - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. KS: Muz A. Forouzan Cryptography and Network security, McGraw- Hill, 20 m Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002. K Lala, "Quantum Computing A Beginner's Introduction", McGraw- H EES: Mus Kaufman and Radia Perlman, Mike Speciner, "Network Security, Security, Security Schneier and Neils Ferguson, "Practical Cryptography", First Edition, netch India Pvt Ltd, 2003.	Thread of the second se	r me Qu Qu 201 l Edi	antu antu 210) 1 9.	9 res 9 um DS
PGP-S/MIMI Electronic Tr UNIT IV Intrusion dete - Firewall De UNIT V Lightweight Computing, C TEXT BOO 1. Behro 2. Willia Editio 3. Parag REFERENC 1. Charli Privat 2. Bruce Drean 3. Man Y	 E - IP Security: Architecture, Authentication Header - Web Security: Tansaction (SET). SYSTEM SECURITY extion - Password Management - Viruses and related Threats - Virus Consign Principles – Trusted Systems. LIGHTWEIGHT AND POST-QUANTUM CRYPTOGRAPHY Cryptography: Concepts, Algorithm – Post-Quantum Cryptograp Concepts, Algorithms. TOTAL: KS: nuz A. Forouzan Cryptography and Network security, McGraw- Hill, 24 um Stallings, "Cryptography and Network security: principles and praction, Prentice Hall of India, New Delhi, 2002. K Lala, "Quantum Computing A Beginner's Introduction", McGraw- HERE ES: ie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Security, Security Computing A Beginner's Introduction", First Edition, Schneier and Neils Ferguson, "Practical Cryptography", First Edition, 	Thread of the second se	r me Qu Qu 201 l Edi	antu antu 210) 1 9.	9 res 9 um

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Compare and implement symmetric and asymmetric key algorithms for real time applications.	2
CO2	Realize the authentication and hash function concepts.	3
CO3	Analyse network security issues and propose suitable solution	4
CO4	Categorize various system level security issues and identify suitable solution	4
CO5	Apply Lightweight Cryptographic algorithm over smart environment.	3
Bloon	i's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	
OURS	E ARTICULATION MATRIX	
*00	PO ₂	DCOa

IN SHI

*CO		POs									PS	PSOs		
s	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	1	1.5	1	3	1.1	1990		1-3	1	0-1	2	3	3
2.	3	3	3	2	3	-	2	1	20	-/	2	2	3	3
3.	3	3	3	2 -	3	10	2	1-0	100	-	0	2	3	3
4.	3	3	3	2	3	1.2.	2	1	1.00	25	-	2	3	3
5.	3	3	3	2	3	1-2	2	- 11	1	_	\leq	2	3	3
* 1 – V	Veak, 2	2 – Mo	derate,	3-Str	ong		16		/ U	12.1	100			

पर

tantos

EC22073	IOT SECURITY	L 3	<u>Т</u> 0	P 0	$\frac{\mathbf{C}}{3}$
COURSE O	BJECTIVES:	3	0	0	3
	derstand the fundamentals of IoT security				
	arn the concept of cryptography and access management				
	quire knowledge on IoT security architecture				
	arn the process of network layer security				
• 10 stu	dy various cloud security mechanisms				
UNIT I	IOT ATTACKS				9
Fundamentals	s of IoT - Security and Privacy Issues in IoT - IoT Security Requirements	s - Io	oT P	riva	.cv
	Issues - Vulnerabilities - IoT Attacks: Types, Cyber-physical attacks, Sec				
	ication protocol attacks		- 7 F-		
	COLLE				
UNIT II	CRYPTOGRAPHY AND ACCESS MANAGEMENT				9
	tography in IoT - Cryptographic module principles - Cryptographic Key	ma	nao	eme	-
	nic control for IoT protocols - Access management for IoT - IAM infrast				
	and Access control	40			
1 Iulion Lucion					
UNIT III	IOT SECURITY ARCHITECTURE				9
	Security Architecture - IoT Perception layer: Security mechan	iam	S	2011	-
Layered 101					
requirement,	Security Threats, Methods of Protection for IoT devices - Security Prot				
requirement,					
requirement, stream data a	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data				p-
requirement, stream data as UNIT IV	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY	ecti	on f	or U	ſр- 9
requirement, stream data a UNIT IV Security threa	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architec	ecti	on f	or U	p- 9
requirement, stream data a UNIT IV Security threa	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY	ecti	on f	or U	9
requirement, stream data a UNIT IV Security threa IPSec - SSL -	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN	ecti	on f	or U	9 -
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architec - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT	ecti cture N, 5	on f e mo G	or U	¹ p- 9 - 9
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson	ecti cture N, 5	on f e mo G oT t	or U	9 - 9
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architec - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co	ecti cture N, 5	on f e mo G oT t	or U	9 - 9
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architec - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud	ecti cture N, 5	on f e ma G oT ti outin	or U odel hrea g -	9 - 9 ts
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architec - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co	ecti cture N, 5	on f e ma G oT ti outin	or U odel hrea g -	9 - 9 ts
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud TOTAL: 4	ecti cture N, 5	on f e ma G oT ti outin	or U odel hrea g -	9 - 9 ts
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud KS:	ecti cture N, 5 n - Ie comp 45 1	e mo G DDT th Dutin	or U odel hrea g -	fp- 9 - 9 ts
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut TEXT BOO 1. Chuar	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud control ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea	ecti cture N, 5 n - Ie comp 45 1	e mo G DDT th Dutin	or U odel hrea g -	fp- 9 - 9 ts
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut TEXT BOO 1. Chuar Spring	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea ger Nature Singapore - 2021	ecti cture N, 5 - Ie comp - Ie - Ie comp - Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie I	on f e mo G oT th putin PER	or U odel hrea g -	fp- 9 - 9 ts DS
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut TEXT BOO 1. Chuar Spring 2. Brian	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud control ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea	ecti cture N, 5 - Ie comp - Ie - Ie comp - Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie I	on f e mo G oT th putin PER	or U odel hrea g -	fp- 9 - 9 ts DS
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut TEXT BOO 1. Chuar Spring 2. Brian 2016	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architec Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea ger Nature Singapore - 2021 Russell, Drew Van Duren, "Practical Internet of Things Security", Pack	ecti cture N, 5 - Ie comp - Ie - Ie comp - Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie Ie I	on f e mo G oT th putin PER	or U odel hrea g -	fp- 9 - ts DS
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut TEXT BOO 1. Chuar Spring 2. Brian 2016 REFERENC	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea ger Nature Singapore - 2021 Russell, Drew Van Duren, "Practical Internet of Things Security", Pack	ecti cture N, 5 - Ie comp 45 1 - asur asur	on f e mo G oT th outin PER ees",	or U odel hrea g - XIOI	9 9 ts 0S
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud per New distribut TEXT BOO 1. Chuar Spring 2. Brian 2016 REFERENC 1. Ali Is	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea ger Nature Singapore - 2021 Russell, Drew Van Duren, "Practical Internet of Things Security", Pack ES: smail Awad, Jemal Abawajy, "Security and Privacy in the Internet	ecti cture N, 5 - Ie comp 45 1 - asur asur	on f e mo G oT th outin PER ees",	or U odel hrea g - XIOI	9 9 ts 0S
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut TEXT BOOD 1. Chuar Spring 2. Brian 2016 REFERENC 1. Ali Is Archit	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea ger Nature Singapore - 2021 Russell, Drew Van Duren, "Practical Internet of Things Security", Pack CES: smail Awad, Jemal Abawajy, "Security and Privacy in the Internet tectures, Techniques, and Applications", Wiley, 2021.	ecti cture N, 5 - Ie comp 45 1 - asur asur	on f e mo G oT th outin PER ees",	or U odel hrea g - XIOI	9 9 ts 0S
requirement, stream data a UNIT IV Security threa IPSec - SSL - UNIT V Cloud service from cloud pe New distribut TEXT BOO 1. Chuar Spring 2. Brian 2016 REFERENC 1. Ali Is Archir 2. Alasd	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea ger Nature Singapore - 2021 Russell, Drew Van Duren, "Practical Internet of Things Security", Pack CES: smail Awad, Jemal Abawajy, "Security and Privacy in the Internet tectures, Techniques, and Applications", Wiley, 2021. air Gilchrist, "IoT Security Issues", De Gruyter, 2017.	ecti cture N, 5 - Ie comp - Io - Ie comp - Ie - Ie - Ie - Ie - Ie - Ie - Ie - Ie	on f e mo G oT th outin PER es", ublis	or U odel hrea g - XIOI	9 9 ts 0 5 9 ts
requirement, stream data a UNIT IV Security threat IPSec - SSL - UNIT V Cloud service from cloud per New distribut TEXT BOO 1. Chuar Spring 2. Brian 2016 REFERENC 1. Ali Is Archit 2. Alasd 3. Ali Is	Security Threats, Methods of Protection for IoT devices - Security Prot nd Down-stream data IOT NETWORK LAYER SECURITY ats in IoT network layer - Network security protocols - Network architect - Security techniques in mobile communication networks: LTE, LPWAN CLOUD SECURITY FOR IOT es providers for IoT: AWS IoT, Microsoft Azure IoT suite, IBM Watson erspective - Cloud IoT security control - Security mechanism in cloud co ted trust models for cloud TOTAL: 4 KS: n-Kun Wu, "Internet of Things Security: Architectures and Security Mea ger Nature Singapore - 2021 Russell, Drew Van Duren, "Practical Internet of Things Security", Pack CES: smail Awad, Jemal Abawajy, "Security and Privacy in the Internet tectures, Techniques, and Applications", Wiley, 2021.	ecti cture N, 5 - Ie comp - Io - Ie comp - Ie - Ie - Ie - Ie - Ie - Ie - Ie - Ie	on f e mo G oT th outin PER es", ublis	or U odel hrea g - XIOI	9 9 ts 0S gs:

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Express the security and privacy issues of the IoT.	2
CO2	Recognize the cryptographic techniques for IoT	2
CO3	Acquaint knowledge on security architecture and threats	2
CO4	Analyse the security techniques of the IoT network layer.	4
CO5	Apply the security models in the cloud environment.	3
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;

E

N 145 State

*C	POs												PSOs	
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	1	1	- 3	-	-	30	1	3	3	2
2.	3	3	3	3	1	1	/	-	1-	1	1-2	3	3	2
3.	3	3	3	3	1	1	-	-	3.5	-	2	3	3	2
4.	3	3	3	3 -	1	1		0-/	41	-	0	3	3	2
5.	3	3	3	3	1	1	1	-	-	27	-	3	3	2
* 1 – 1	Weak, 2	2 - Mo	derate,	3 - Str	ong	10.8	1		1 6	20 C	\leq			

परा

tantes

EC22074	SDN AND NFV IN IOT	L	Т	Р	С
LC22074		3	0	0	3
COURSE O	BJECTIVES:				
• To ap	ply SDN techniques for converging cloud services.				
• To ca	tegorise the IoT components in architecture framework.				
• To pr	epare quality of service (QoS) and quality of experience (QoE) of cus	tomer	nee	ds a	nd
desig	n responses.				
• To an	alyze the security issues of threats and attacks emerged with the evolu	ution of	of SI	DN	
and N	FV				
• To di	fferentiate security issues and data protection merging from Cloud and	d IoT	serv	ces	•
UNIT I	MODERN NETWORK ARCHITECTURES				9
Cloud Servic	es: Software as a Service, Platform as a Service, Infrastructure as	a Serv	vice,	Oth	ner
Cloud Servic	ces, XaaS - Cloud Deployment Models: Public Cloud, Private Cloud	oud, C	Com	nun	ity
	d Cloud - Cloud Architecture: NIST Cloud Computing Reference Arc	hitect	ure,	ITU	- T
Cloud Comp	uting Reference Architecture				
	121				
UNIT II	IOT ARCHITECTURE				9
	Internet of Things - Components of IoT-Enabled Things: Sensors, Ac				
	lers, Transceivers, RFID - IoT Architecture: ITU-T IoT Reference Me	odel, I	oT V	Nor	ld
Forum Refer	ence Model - IoT Implementation: IoTivity	6			
		_			
UNIT III	QOE : USE CASES				-
Need for Qo	E: Online Video Content - Service Failures Due to Inadequate QoE				.s -
Need for Qol Experience -	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q				.s -
Need for Qol Experience -	E: Online Video Content - Service Failures Due to Inadequate QoE				.s -
Need for Qol Experience - Practice: The	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model.				in
Need for Qol Experience - Practice: The UNIT IV	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY		rate	gies	.s -
Need for Qol Experience - Practice: The UNIT IV Security Req	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Security		rate	gies	s - in
Need for Qol Experience - Practice: The UNIT IV Security Req	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY		rate	gies	s - in
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective		rate	gies	s - in 9
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY	oE St	Attac	gies k	s - in
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte	ity - A	Attac	gies k	s - in 9
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur CSI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva	ity - A	Attac	gies k	s - in 9
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva S Defined by ITU-T - An IoT Security Framework	ity - A	Attac	gies k	s - in 9
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur CSI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva	ity - A	Attac	gies k	s in
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti Requirement	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva s Defined by ITU-T - An IoT Security Framework TOTAL	ity - A	Attac	gies k	s - in 9
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti Requirement TEXT BOO	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva s Defined by ITU-T - An IoT Security Framework TOTAL	ity - A	Attac PER	gies k	s - in 9
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti Requirement TEXT BOO 1. Willia	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva s Defined by ITU-T - An IoT Security Framework KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE,	ity - A	Attac PER	gies k	s in
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti Requirement TEXT BOO 1. Willia Cloud	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva s Defined by ITU-T - An IoT Security Framework KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, d," Addison-Wesley Professional, First Edition, 2015.	ity - A	Attac ures PER and	sies	s in
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti Requirement TEXT BOO 1. Willia Cloud 2. Jim D	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Privas S Defined by ITU-T - An IoT Security Framework KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, 1," Addison-Wesley Professional, First Edition, 2015. Doherty, "SDN and NFV Simplified: A Visual Guide to Understanding	ity - A rmeas cy	Attac ures PER and ware	gies k - IIOI	
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti Requirement TEXT BOO 1. Willia Cloud 2. Jim D	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva s Defined by ITU-T - An IoT Security Framework TOTAL KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, 1," Addison-Wesley Professional, First Edition, 2015. Doherty, "SDN and NFV Simplified: A Visual Guide to Understanding ed Networks and Network Function Virtualization," Addison-Wesley	ity - A rmeas cy	Attac ures PER and ware	gies k - IIOI	s · ir
Need for Qol Experience - Practice: The UNIT IV Security Req Surfaces - ET UNIT V Cloud Securi Data Protecti Requirement TEXT BOO 1. Willia Cloud 2. Jim D	E: Online Video Content - Service Failures Due to Inadequate QoE Quality Formation Process - Definition of Quality of Experience - Q QoE/QoS Layered Model. SDN AND NFV SECURITY uirements - Threats to SDN - Software-Defined Security - NFV Secur SI Security Perspective CLOUD AND IOT SECURITY ty - Security Issues and Concerns Cloud Security Risks and Counte on in the Cloud - Cloud Security as a Service - IoT Security and Priva s Defined by ITU-T - An IoT Security Framework TOTAI KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, 1," Addison-Wesley Professional, First Edition, 2015. Doherty, "SDN and NFV Simplified: A Visual Guide to Understanding ed Networks and Network Function Virtualization," Addison-Wesley Edition, 2016.	ity - A rmeas cy	Attac ures PER and ware	gies k - IIOI	

- 1. Paresh Shah, Syed Farrukh Hassan, Rajendra Chayapath, "Network Function virtualization with a touch of sdn," Addison-Wesley Professional, First edition, 2016.
- 2. Thomas D. Nadeau & Ken Gray, "SDN Software Defined Networks," O'Reilly, 2013.
- 3. Guy Pujolle, "Software Networks: Virtualization, SDN, 5G, Security," Wiley-ISTE, second addition, 2020.
- 4. Paul Goransson Chuck Black, "Software Defined Networks: A Comprehensive Approach," Morgan Kaufmann, Illustrated edition, 2014.

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Understand techniques to migrate legacy networks towards Cloud services.	2
CO2	Interpret the basic architecture of IoT.	3
CO3	Evaluate quality of service (QoS) and quality of experience (QoE) to determine customer needs and network design responses to those needs.	4
CO4	Analyze the security issues that have emerged with the evolution of SDN and NFV.	4
CO5	Analyze the security issues and data protection revolves with Cloud and IoT.	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;

*COs		10	5	5	20.04	Р	Os		/ U-	38 H	1.11		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	1	-	1	-	-	1	1	à	3	3	2
2.	3	3	3	1	-	-	39	Ē	1	1	51	3	3	2
3.	3	3	3	1	-	- J	1	-	1	16	1	3	3	2
4.	3	3	3	01	-	- 1			1	1	/-	3	3	2
5.	3	3	3	100	20		1	1	X	7	-	3	3	2
* 1 – W	eak, 2	– Mod	erate, 3	B – Stro	ong	11	TEN	57	au	/				
						- S. C	11	1.1.1						

		L	Т	Ρ	С
EC22075	SDN AND NFV ARCHITECTURES	3	0	0	3
COURSE O	BJECTIVES:				
	arn and differentiate between traditional networks and software defined	netv	vork	S	
• To un	derstand characteristics and functions of SDN architecture.				
• To an	alyze virtual machines and approach for orchestration.				
• To un	derstand and differentiate about VLAN standard and VPN.				
• To ex	pand the knowledge learned with uses cases in SDN				
UNIT I	NETWODZINC DASICS				9
	NETWORKING BASICS		D		-
	etwork and Internet Traffic- Demand: Big Data, Cloud Comput				
	ics, Packet Forwarding, Routing Protocols, Elements of a Router				
	cts of Congestion, Congestion Control Techniques - Software-Define	a r	letw	Ork	ng
(SDN)	1.85				
					0
UNIT II	SDN ARCHITECTURE	C.	1		9
-	s for SDN approach - SDN Architecture - Characteristics of Software-D				
0	- SDN Data Plane: Functions and Protocols - OpenFlow Logical Netwo				
	otocol - SDN Control Plane: Functions, Southbound and Northbound in			-	
OpenDayligh	t – SDN Application Plane: Network Services and applications, user in	erra	ice.		
	NETWODZ FUNCTIONS VIDTUALIZATION				0
	NETWORK FUNCTIONS VIRTUALIZATION			NT	9
Virtual Macl	nines: Architectural Approaches, Container Virtualization - NFV Co				FV
Virtual Macl Principles - I	nines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N				FV
Virtual Macl Principles - I	nines: Architectural Approaches, Container Virtualization - NFV Co				FV
Virtual Macl Principles - I Architecture:	nines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration				FV
Virtual Macl Principles - I Architecture: UNIT IV	nines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS	IFV	Ref	eren	FV nce 9
Virtual Macl Principles - H Architecture: UNIT IV Virtual LAN	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN	IFV	Ref	eren	FV nce 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LAN - IEEE 802.1	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtua	IFV I Me al Pi	Ref	eren	FV nce 9
Virtual Macl Principles - H Architecture: UNIT IV Virtual LAN - IEEE 802.1 Networks - II	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz	IFV I Me al Pi	Ref emberivat	eren	FV nce 9
Virtual Macl Principles - H Architecture: UNIT IV Virtual LAN - IEEE 802.1 Networks - II	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtua	IFV I Me al Pi	Ref emberivat	eren	FV nce 9 ip
Virtual Macl Principles - I Architecture: UNIT IV Virtual LANS - IEEE 802.1 Networks - II Architecture	nines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtua Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization	IFV I Me al Pi	Ref emberivat	eren	FV nce 9
Virtual Macl Principles - H Architecture: UNIT IV Virtual LAN - IEEE 802.1 Networks - II Architecture	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtua Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz Benefits of Network Virtualization SDN AND NFV USE CASES	IFV I Me al Pi atio	Ref embe rivat n	eren	FV nce 9 ip
Virtual Macl Principles - I Architecture: UNIT IV Virtual LAN - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualization - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use C	IFV I Me al Pi atio	Ref embe rivat n	ersh	FV nce 9 ip
Virtual Macl Principles - I Architecture: UNIT IV Virtual LANS - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtua Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV	IFV	Ref embe rivat n s - efine	ersh eed	FV nce 9 ip
Virtual Macl Principles - I Architecture: UNIT IV Virtual LANS - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases t's Virtual Tenant Network - Software-Defined Infrastructure - Software Architecture - QoS Architectural Framework: Data, Control and Mana	IFV I Me al Pr atio	Ref embo ivat n ss -	ersh ed Plan	FV nce 9 ip 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LANS - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtua Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Cases V - NFV	IFV I Me al Pr atio	Ref embo ivat n ss -	ersh ed Plan	FV nce 9 ip 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LAN: - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh Storage - SD	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Case t's Virtual Tenant Network - Software-Defined Infrastructure - Software I Architecture - QoS Architectural Framework: Data, Control and Mana TOTAL:	IFV I Me al Pr atio	Ref embo ivat n ss -	ersh ed Plan	FV nce 9 ip 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LAN - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh Storage - SD	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use C t's Virtual Tenant Network - Software-Defined Infrastructure - Software I Architecture - QoS Architectural Framework: Data, Control and Mana TOTAL: KS:	FV Meal Pratio	Ref embo ivat n s - efin ent PER	ersh ed Plan	FV nce 9 ip 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LANS - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh Storage - SD TEXT BOO 1. Willia	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use Case t's Virtual Tenant Network - Software-Defined Infrastructure - Software I Architecture - QoS Architectural Framework: Data, Control and Mana TOTAL: KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, Ic	FV Meal Pratio	Ref embo ivat n s - efin ent PER	ersh ed Plan	FV nce 9 ip 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LAN: - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh Storage - SD 1. Willia Cloud	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use C tt's Virtual Tenant Network - Software-Defined Infrastructure - Software I Architecture - QoS Architectural Framework: Data, Control and Mana TOTAL: KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, Io I," Addison-Wesley Professional, First Edition, 2015.	FV I Me al Pi atio Case e-D gen 45 I	Ref embo ivat n s - efin eefin eefin eefin and	erer ersh e ed Plan XIO	FV nce 9 ip 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LAN - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh Storage - SD 1. Willia Cloud 2. Jim D	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use C tt's Virtual Tenant Network - Software-Defined Infrastructure - Software I Architecture - QoS Architectural Framework: Data, Control and Mana TOTAL: MSS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, Ic I," Addison-Wesley Professional, First Edition, 2015. Doherty, "SDN and NFV Simplified: A Visual Guide to Understanding S	FV Matio	Ref	erer ersh e ed Plan RIO	FV nce 9 ip 9
Virtual Macl Principles - I Architecture: UNIT IV Virtual LANS - IEEE 802.1 Networks - II Architecture UNIT V SDN and NF OpenDayligh Storage - SD 1. Willia Cloud 2. Jim D Defin	hines: Architectural Approaches, Container Virtualization - NFV Co High-Level NFV Framework - NFV Benefits - NFV Requirements - N NFV Management and Orchestration VIRTUAL LANS s - The Use of Virtual LANs - Defining VLANs Communicating VLAN Q VLAN Standard - Nested VLANs OpenFlow VLAN Support - Virtual Psec VPNs - MPLS VPNs - Network Virtualization - Network Virtualiz - Benefits of Network Virtualization SDN AND NFV USE CASES V - NFV Use Cases - Architectural Use Cases - Service-Oriented Use C tt's Virtual Tenant Network - Software-Defined Infrastructure - Software I Architecture - QoS Architectural Framework: Data, Control and Mana TOTAL: KS: am Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, Io I," Addison-Wesley Professional, First Edition, 2015.	FV Matio	Ref	erer ersh e ed Plan RIO	FV nce 9 ip 9

- 1. Paresh Shah, Syed Farrukh Hassan, Rajendra Chayapath, "Network Function virtualization with a touch of sdn," Addison-Wesley Professional, First edition, 2016.
- 2. Paul Goransson Chuck Black, "Software Defined Networks: A Comprehensive Approach," Morgan Kaufmann, Illustrated edition, 2014.
- 3. Thomas D. Nadeau & Ken Gray, "SDN Software Defined Networks," O'Reilly, 2013.

COUI	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Recognize the challenges and opportunities associated with adopting SDN compared to traditional approaches to networking	2
CO2	Examine conceptual characteristics, components and functions of SDN architecture.	4
CO3	Categorize Network Functions Virtualization components and approach for orchestration.	4
CO4	Illustrate concepts of VLAN, VPN in SDN and NFV.	3
CO5	Analyse the knowledge deployment in SDN use cases.	4
Bloon Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	aluate-5;

*COs		POs									PSOs			
-	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14
1.	3	3	3	1	2-1	1-	34	-/	1	1	m	3	3	2
2.	3	3	3	1	- 5	-	97	-1	1	1	177	3	3	2
3.	3	3	3	1		1	-	-	1	1	20	3	3	2
4.	3	3	3	1	-	-	390	1	1	1	5/	3	3	2
5.	3	3	3	1	ł.	-	T	-	1	15	>/	3	3	2

EC22076		L	Т	Р	С
EC22076	WIRELESS BROADBAND NETWORKS	3	0	0	3
COURSE O	BJECTIVES:				
• To ge	et insights about the architecture of 3G and 4G standards in mobile cellu	lar r	netw	ork.	
• To un	nderstand the basic concepts and architectures in 5G network.				
• To ac	equire knowledge on the various network layer and transport layer proto	cols	for		
wirele	ess networks.				
• To lea	arn about the layer level functionalities in interconnecting networks.				
• To int	troduce the emerging technologies in broadband networks.	1			
UNIT I	EVOLUTION OF WIRELESS NETWORKS				<u>9</u>
	³ G, 4G, and 5G, ³ G network structure, network architecture of 3G				
	High Speed Packet Data-HSDPA, HSUPA, Introduction to LT				
	- EPC, E- UTRAN architecture, downlink/uplink data transfer, MAC c	ontro	oi ei	eme	nt,
random acces					
UNIT II	MOBILE NETWORK AND TRANSPORT LAYER				9
	ork layer- Fundamentals of Mobile IP, data forwarding procedures in m	obil	o ID	ID	
	bility management, IP addressing - DHCP, Mobile transport layer-Tr				
	CP improvements, Indirect TCP, snooping TCP, Mobile TCP – TCP				
	i improvements, inducet rer, shooping rer, woone rer – rer	000	,1 W	nen	-00
networks					
networks.	I a manager tot				
networks.	LAYER-LEVEL FUNCTIONS				9
UNIT III	LAYER-LEVEL FUNCTIONS	MA		che	9 me
UNIT III Characteristic	cs of wireless channels - downlink physical layer, uplink physical layer				me
UNIT III Characteristic - frame struc	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal	s ar	nd c	han	me nel
UNIT III Characteristic - frame struc estimation, S	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation	s ar	nd c	han	me nel
UNIT III Characteristic - frame struc estimation, S	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal	s ar	nd c	han	me nel
UNIT III Characteristic - frame struc estimation, S	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services.	s ar	nd c	han	me nel
UNIT III Characteristic - frame struc estimation, S multimedia b UNIT IV	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services.	s ar on, S	id c Serv	han	me nel
UNIT III Characteristic - frame struc estimation, S multimedia b UNIT IV 5G Architec	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking record	s ar on, s	nd c Serv	hani ices	me nel 9 1nd
UNIT III Characteristic - frame struc estimation, S multimedia b UNIT IV 5G Architec virtualization	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking recom- a support - Mobility QoS control - emerging approach for resource over	s ar on, s figu	nd c Serv Iration	hani ices on a	me nel 9 nd
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking record	s ar on, s figu r pro catio	nd c Serv Iration Diration Diration	hani ices on a	me nel 9 nd
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking recom- support - Mobility QoS control - emerging approach for resource over pr 5G mobile networks- capacity limits and achievable gains with densifi	s ar on, s figu r pro catio	nd c Serv Iration Diration Diration	hani ices on a	me nel 9 nd
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking recom- support - Mobility QoS control - emerging approach for resource over pr 5G mobile networks- capacity limits and achievable gains with densifi	s ar on, s figu r pro catio	nd c Serv Iration Diration Diration	hani ices on a	me nel - - 9 und
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking recom- support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES	s ar on, s nfigu r pro catic ectic	nd c Serv Iration Dvision - I ons.	hani ices on a	me nel 9 Ind ng, ile
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirele	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services. 5G EVOLUTION eture, The 5G internet - IoT and context awareness - Networking recom- a support - Mobility QoS control - emerging approach for resource over por 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future direction	s ar on, s nfigu r pro catic ectic	nd c Serv Irativ Dvision - 1 Dons.	hannices	me nel 9 nd ng,
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirele services (MM	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services. 5G EVOLUTION eture, The 5G internet - IoT and context awareness - Networking recom- n support - Mobility QoS control - emerging approach for resource over pr 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribu-	s ar n, s nfigu r procettic catic	id c Serv uration on - 1 ons.	hannices	me nel 9 nd ng,
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirele services (MM	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking record a support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribution /DS), Local multi point distribution services (LMDS), and Wideband in	s an on, s nfigu r pro- catic ectic utior utior ntegr	id c Serv iration iration in - 1 in - 1 in in - 1 in - 1 i in - 1 in - 1 in - 1 in - 1 in - 1 in - i	hannices ices on a ionin Mob	me nel 9 und ng, ile
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirele services (MM	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking recom- support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future direct EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribution MDS), Local multi point distribution services (LMDS), and Wideband in active Services (WIDIS), Challenges, risks, and advances in wireless set	s an on, s nfigu r pro- catic ectic utior utior ntegr	id c Serv iration iration in - 1 in - 1 in in - 1 in - 1 i in - 1 in - 1 in - 1 in - 1 in - 1 in - i	hannices ices on a ionin Mob	me nel 9 und ng, ile
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirelet services (MM Digital Intera	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION cture, The 5G internet - IoT and context awareness - Networking recom- n support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribut MDS), Local multi point distribution services (LMDS), and Wideband in active Services (WIDIS), Challenges, risks, and advances in wireless set TOTAL: KS:	s ar on, S nfigu r pro catic ectic utior ntegr turit 45]	id c Serv irationation praticipation pratici	hannices ices on a ionin Mob	me nel 9 und ng, ile 9
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirele services (MM Digital Intera TEXT BOO 1. Jocher	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregatic proadcast/multicast, location-based services. 5G EVOLUTION ture, The 5G internet - IoT and context awareness - Networking recom- n support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribution MDS), Local multi point distribution services (LMDS), and Wideband in active Services (WIDIS), Challenges, risks, and advances in wireless set TOTAL: KS: n Schiller, "Mobile Communication," Addison-Wesley, Second edition	s ar n, s nfigu r pro catic ectic utior ntegr turit 45 1	id c Serv urativ ovision - 1 ons.	hannices ices on a ionin Mob	me nel 9 und ng, ile
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirele services (MM Digital Intera TEXT BOO 1. Jocher 2. Willia	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION eture, The 5G internet - IoT and context awareness - Networking recom- n support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribution ADS), Local multi point distribution services (LMDS), and Wideband in active Services (WIDIS), Challenges, risks, and advances in wireless set TOTAL: KS: n Schiller, "Mobile Communication," Addison-Wesley, Second edition am Webb, "Introduction to Wireless Local Loop Broadband and Narrow	s ar on, s infigu r procettic ectic ectic ectic utior ntegr tutior 45 1	nd c Serv urational pons. nated y. PER 03. nd	hannices ices on a ionin Mob	me nel 9 ind ng, ile 9 DS
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirelet services (MM Digital Interation Digital Interation 1. Jochen 2. Williat Syster	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION ture, The 5G internet - IoT and context awareness - Networking recom- n support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribution MDS), Local multi point distribution services (LMDS), and Wideband in active Services (WIDIS), Challenges, risks, and advances in wireless services KS: n Schiller, "Mobile Communication," Addison-Wesley, Second edition and Webb, "Introduction to Wireless Local Loop Broadband and Narrow m", Mobile Communication Series, Artech House Publishers, Second E	s ar n, s nfigu r pro- catic ectic utior ntegr tior 45 1 , 200 7 Bar ditic	nd c Serv urational pons. nated y. PER 03. nd	hannices ices on a ionin Mob	me nel 9 ind ng, ile 9
UNIT III Characteristic - frame struct estimation, S multimedia b UNIT IV 5G Architect virtualization Small cells for data demand, UNIT V Fixed Wirelet services (MM Digital Interation Digital Interation 1. Jochen 2. Williat Syster	cs of wireless channels - downlink physical layer, uplink physical layer cture, resource structure, mapping, synchronization, reference signal SC-FDMA, interference cancellation – CoMP, Carrier aggregation proadcast/multicast, location-based services. 5G EVOLUTION eture, The 5G internet - IoT and context awareness - Networking recom- n support - Mobility QoS control - emerging approach for resource over or 5G mobile networks- capacity limits and achievable gains with densifi , Demand Vs Capacity, Small cell challenges, conclusion and future dir EMERGING TECHNOLOGIES ess, Direct Broadcast Satellite (DBS), Multi-channel, multi point distribution ADS), Local multi point distribution services (LMDS), and Wideband in active Services (WIDIS), Challenges, risks, and advances in wireless set TOTAL: KS: n Schiller, "Mobile Communication," Addison-Wesley, Second edition am Webb, "Introduction to Wireless Local Loop Broadband and Narrow	s ar n, s nfigu r pro- catic ectic utior ntegr tior 45 1 , 200 7 Bar ditic	nd c Serv urational pons. nated y. PER 03. nd	hannices ices on a ionin Mob	me nel 9 ind ng, ile

- 1. Vijay K.Garg, "Wireless Network Evolution 2G & 3G". Prentice Hall, 2008.
- 2. Sassan Ahmadi, "LTE-Advanced A practical systems approach to understanding the 3GPP LTE Releases 10 and 11 radio access technologies", Elsevier, 2014.
- 3. Kaveh Pahlavan, "Principles of wireless networks", Prentice-Hall of India, 2008.

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
C01	Understand the architecture of 3G network standards and 4G LTE-A network standard.	2
CO2	Examine the current generation (5G) network architecture.	4
CO3	Design the various protocols in wireless networks.	4
CO4	Understand the interconnecting network functionalities by layer level functions.	2
CO5	Explore various emerging technologies and the challenges associated with its implementation.	3
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create	-6	

*COs		1	T. I		5 M. C.	P	Os	0 /	0.02	1	0		PS	PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	3	2	3		-38	5		PA-	84 J	N	3	3	2		
2.	3	3	2	3	2-1	1-	11-6				m	3	3	2		
3.	3	3	2	3	č	0	9-1	-/	1.50	(***)	ITT	3	3	2		
4.	3	3	2	3		1	÷	1	-	-/	2	3	3	2		
5.	3	3	2	3	-	-	32	1	1-3	1	51	3	3	2		
*1 W	ask ?	Mod	larata 3	Stro	na		100		-0-	1						

tadis

* 1 – Weak, 2 – Moderate, 3 – Strong

@ Tg

EC22077	WIRELESS NETWORKS	L	T	P	C
COURSE OB	IECTIVES:	3	0	0	3
• To appl	y technical intricacies of IEEE 802.11 standards for WiFi and emerging	higł	ı spe	ed	
variants					
-	ertise in design, operation and performance of wireless personal area network and ZigBee.	worł	cs lik	te	
• To asse	ss and address security and privacy vulnerabilities in wireless networks.				
	n technologies enabling reliable long-range communication systems incliss and WiMAX.	udin	g sat	ellite	e
	erstand of recent advances in push-to-talk (PTT) and upcoming advance technologies.	s in	wire	less	
	COLLE				
UNIT I	WIRELESS LANs				9
Home Networ Architecture an	rview of the LAN Industry-New Interest from Military and Service Pr king: Need, HAN Technologies, Home Access Networks-IEEE 80 d Services, PHY Layer, MAC Sub Layer, MAC Management Sub Layer, EEE 802.11 Standards	2.11	: 0	verv	iew,
	4				
UNIT II	WIRELESS PERSONAL AREA NETWORKS IEEE 802.15- Home RF-Bluetooth: Architecture, Protocol Stack, Phys				9
	uetooth Smart-Ricochet-ZigBee–Interference between Bluetooth and inge, Probability of Interference, Empirical Results	d II	EEE	802	.11:
UNIT III	SECURITY AND PRIVACY IN WIRELESS NETWORKS				9
Security Issues	in WiFi based AP Networks-Diffie Hellman Protocol-Firewalls and in Mobile Ad Hoc Networks (MANETs): Intrusion Detection, Require	men	ts fo	r an	IDS
	Mobile Agents for Intrusion Detection and Response in a MANET, In				
System in MA	DA) Based on a Static Stationary Database (SSD), Cluster-Based Int NETs, Logging Module, Selfishness in a MANET	rusi	on L	Jelec	uon
System in MA	ALTS, Logging Module, Senisiness in a MAALT				
UNIT IV	LONG RANGE COMMUNICATIONS				9
	eters and Configurations: Satellite Orbits, Frequency Bands, Transmiss	ion	Impa	irme	ents,
	ork Configurations- Satellite Capacity Allocation: Frequency Division				
	rision Multiple Access, Time Division Multiple Access-Satellite App				
Positioning Sys	stem, Direct Broadcast Systems-Fixed Broadband Wireless Access-WiMA	AX/]	EEF	E 802	.16:
Architecture, N	IAC Layer, Physical Layer-Smart Grid				
	RECENT ADVANCES IN WIRELESS NETWORK				9
UNIT V	TECHNOLOGIES				
		Jetw	orks	. PT	T in
Push-To-Talk Non-iDEN Cel Media Codecs	TECHNOLOGIES (PTT) Technology:PTT Network Technology, PTT in iDEN Cellular N lular Networks: PoC, Limitations of Current Services, Multimedia Service File Formats, Hypertext Transfer Protocol (HTTP), Media Control P bool (SIP), Multimedia Messaging Service (MMS), Mobility and Resou	es R roto	equi cols,	reme Ses	ents: sion

	TOTAL: 45	PERIODS
TEXT	'BOOKS:	
1.	Kaveh Pahlavan, Prashant Krishnamurthy, "Principles of Wireless Networks", Prentic Communications 2002	e Hall
2.	Dharma P. Agrawal, Qing-An Zeng, "Introduction to Wireless and Mobile Systems", Edition, Cengage Learning 2016	Fourth
3.	3. Cory Beard, William Stallings "Wireless Communication Networks and Systems", Publishers 2016	Pearson
REFE	RENCES:	
1.	William Stallings, "Wireless Communications & Networks", Second Edition, Pearsor Limited 2014	Education
2.	Vijay K.Garg, "Wireless Communication and Networking", The Morgan Kaufmann 2007	Publishers
COLI		DDT
	SE OUTCOMES: uccessful completion of the course, students should be able to:	RBT Level
CO1	Demonstrate comprehensive expertise in IEEE 802.11 WiFi architecture, services, layers, management, security, and emerging standards.	3
C O2	Apply WPAN technologies including Bluetooth, ZigBee, evaluating architectures, protocols, strengths and limitations.	3
C O 3	Analyze the security solutions for wireless networks including cellular, WiFi, MANETs, and mobile devices.	4
C O 4	Compare long-range wireless communication solutions for applications like satellite networks, rural broadband, smart grids.	4
CO5	Categorise the key components of current PTT services in Wireless Networks	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evalua	te-5;

*00				10	- 30	101		PSOs						
*COs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	3	3	2	2	2		-		-	1	-	1	2	2
2	3	3	2	2	2	-	1	-	-	-	-	1	3	2
3	3	3	2	3	2	-	-	-	-	1	-	2	3	2
4	3	3	2	3	2	-	1	-	-	1	-	2	3	2
5	3	3	3	2	3	1	1	-	-	1	-	1	2	3

EC22078	WIRELESS SENSOR NETWORKS	L	Т	P	С
		3	0	0	3
	BJECTIVES: rn about sensor network fundamentals.				
	lerstand the different routing protocols.				
	ve an in-depth knowledge on sensor network architecture and design iss				
	dy about the transport layer and security issues possible in wireless sen			ork	c
	<i>is a exposure to mote programming platforms and tools.</i>	501 1		UIK	5.
• 10 114					
UNIT I	INTRODUCTION TO WSN AND ITS ARCHITECTURES				9
Challenges for	or Wireless Sensor Networks, Enabling Technologies for Wireless Sen	isor	Net	wor	ks,
WSN applic	ation examples, Single-Node Architecture - Hardware Composition	nent	s, I	Ener	gy
Consumption	of Sensor Nodes, Network Architecture - Sensor Network Scenario	os, T	rans	scei	ver
Design Consi	derations, Optimization Goals and Figures of Merit.				
	A DULLEGA				
UNIT II	WSN NETWORKING CONCEPTS AND PROTOCOLS				9
	ols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wak				
	e Mediation Device Protocol, Contention based protocols - PAMAS, S	Sche	dule	bas	sed
protocols – L	EACH, IEEE 802.15.4 MAC protocol.	r			
					0
UNIT III	WSN NETWORK LAYER				9
	outing Protocols-Energy Efficient Routing, Gossiping and agent-				
	Broadcast and multicast, Geographic routing, Mobile nodes, Gate	wav	CO1	icer	+0
-	nd Issues in Transport layer protocol, Energy aware routing-Geograph				
Challenges an Aware routing	nd Issues in Transport layer protocol, Energy aware routing-Geograph				
Aware routing	nd Issues in Transport layer protocol, Energy aware routing-Geograph g				gy
Aware routing	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY	nic a	nd I	Enei	gy 9
Aware routing UNIT IV Network Secu	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY arity Requirements, Issues and Challenges in Security Provisioning, Ne	nic a	nd I	Ener	rgy 9 ity
Aware routing UNIT IV Network Secu Attacks, Laye	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY arity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jamm	two ing,	nd I	Ener	gy 9 ity ng,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jammi tack, flooding attack, Key Distribution and Management, Secure Rou	two ing,	nd I	Ener	gy 9 ity ng,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY arity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jamm	two ing,	nd I	Ener	gy 9 ity ng,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jamm tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks	two ing,	nd I	Ener	rgy 9 ity ng, NS,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jammi tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS	tworing,	nd I rk So tamj ; – S	Ener ecur perin SPIN	rgy 9 ity ng, VS, 9
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jamm tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft	tworing,	nd I rk So tamj ; – S	Ener ecur perin SPIN tfor	rgy 9 ity ng, VS, 9 ms
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jammi tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS	tworing,	nd I rk So tamj ; – S	Ener ecur perin SPIN tfor	rgy 9 ity ng, VS, 9 ms
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Nerr wise attacks in wireless sensor networks, possible solutions for jammi tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se	tworking, and a second	rk So tamj ; – S	Ener ecur perin SPIN tfor wor	rgy 9 ity ng, VS, 9 ms ks,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jamm tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft	tworking, and a second	rk So tamj ; – S	Ener ecur perin SPIN tfor wor	rgy 9 ity ng, VS, 9 ms ks,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne COOJA.	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Nerr er wise attacks in wireless sensor networks, possible solutions for jammin tack, flooding attack, Key Distribution and Management, Secure Rou- uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL:	tworking, and a second	rk So tamj ; – S	Ener ecur perin SPIN tfor wor	rgy 9 ity ng, VS, 9 ms ks,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne COOJA.	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY arity Requirements, Issues and Challenges in Security Provisioning, Ner- er wise attacks in wireless sensor networks, possible solutions for jammi- tack, flooding attack, Key Distribution and Management, Secure Rou- uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS:	two ing, iting ware nsor	nd I rk So tamj ; – S e pla • net	Ener ecur perin SPIN tfor wor	rgy 9 ity ng, VS, 9 ms ks,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne COOJA. TEXT BOO 1. Holge	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ner- track, flooding attack, Key Distribution and Management, Secure Rou- uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS: r Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor	two ing, iting ware nsor	nd I rk So tamj ; – S e pla • net	Ener ecur perin SPIN tfor wor	rgy 9 ity ng, VS, 9 ms ks,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne COOJA. TEXT BOOI 1. Holge John v	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ner- er wise attacks in wireless sensor networks, possible solutions for jammi- tack, flooding attack, Key Distribution and Management, Secure Rou- uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS: r Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor wiley publication, Jan 2006.	two ing, iting ware nsor	nd I rk So tamj ; – S e pla • net	Ener ecur perin SPIN tfor wor	rgy 9 ity ng, VS, 9 ms ks,
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne COOJA. TEXT BOO 1. Holge John v 2. Anna	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY writy Requirements, Issues and Challenges in Security Provisioning, Nerry er wise attacks in wireless sensor networks, possible solutions for jamming tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS: r Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor wiley publication, Jan 2006. Forster, "Introduction to Wireless Sensor Networks," Wiley, 2017.	two ing, iting ware nsor	nd I rk So tamj ; – S e pla • net	Ener ecur perin SPIN tfor wor	rgy 9 ity ng, VS, 9 ms ks,
Aware routing UNIT IV Network Secu Attacks, Laye black hole att reliability req UNIT V Sensor Node 1 – TinyOS, ne COOJA. TEXT BOOI 1. Holge John v 2. Anna REFERENC	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ner- er wise attacks in wireless sensor networks, possible solutions for jammi- tack, flooding attack, Key Distribution and Management, Secure Rou- uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS: r Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor wiley publication, Jan 2006. Forster, "Introduction to Wireless Sensor Networks," Wiley, 2017. ES:	twoling, tting utting 45	nd I k So tamj - S e pla • net PER	Ener ecur perin SPIN tfor wor RIO	rgy 9 9 VS, 9 ms ks, DS
Aware routing UNIT IV Network Secu Attacks, Laye black hole att reliability req UNIT V Sensor Node – TinyOS, ne COOJA. TEXT BOOD 1. Holge John v 2. Anna REFERENC 1. Feng	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ner- er wise attacks in wireless sensor networks, possible solutions for jamma- tack, flooding attack, Key Distribution and Management, Secure Rou- uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS: r Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor wiley publication, Jan 2006. Forster, "Introduction to Wireless Sensor Networks," Wiley, 2017. ES: Zhao, Leonidas Guibas, "Wireless Sensor Networks: an information of the sensor of the sensor Networks of the sensor Networks: an information of the sensor Networks of the sensor Networks: an information of the sensor Networks in the sensor Networks: an information of the sensor Networks: an information of the sensor Networks in the sensor Networks: an information of the sensor Networks in the s	twoling, tting utting 45	nd I k So tamj - S e pla • net PER	Ener ecur perin SPIN tfor wor RIO	rgy 9 9 VS, 9 ms ks, DS
Aware routing UNIT IV Network Secu Attacks, Laye black hole at reliability req UNIT V Sensor Node – TinyOS, ne COOJA. TEXT BOO 1. Holge John v 2. Anna REFERENC 1. Feng approx	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY Irity Requirements, Issues and Challenges in Security Provisioning, Ne er wise attacks in wireless sensor networks, possible solutions for jammi tack, flooding attack, Key Distribution and Management, Secure Rou uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sc, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS: r Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor wiley publication, Jan 2006. Forster, "Introduction to Wireless Sensor Networks," Wiley, 2017. ES: Zhao, Leonidas Guibas, "Wireless Sensor Networks: an informati ach," Elsevier publication, 2004.	twoling, tting utting 45	nd I k So tamj - S e pla • net PER	Ener ecur perin SPIN tfor wor RIO	rgy 9 9 VS, 9 ms ks, DS
Aware routing UNIT IV Network Secu Attacks, Laye black hole att reliability req UNIT V Sensor Node – TinyOS, ne COOJA. TEXT BOO 1. Holge John V 2. Anna REFERENC 1. Feng approx 2. Charle	nd Issues in Transport layer protocol, Energy aware routing-Geograph g SENSOR NETWORK SECURITY urity Requirements, Issues and Challenges in Security Provisioning, Ner- er wise attacks in wireless sensor networks, possible solutions for jamma- tack, flooding attack, Key Distribution and Management, Secure Rou- uirements in sensor networks SENSOR NETWORK PLATFORMS AND TOOLS Hardware – Berkeley Motes, Programming Challenges, Node-level soft sC, CONTIKIOS, Node-level Simulators – NS2 and its extension to se TOTAL: KS: r Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor wiley publication, Jan 2006. Forster, "Introduction to Wireless Sensor Networks," Wiley, 2017. ES: Zhao, Leonidas Guibas, "Wireless Sensor Networks: an information of the sensor of the sensor Networks of the sensor Networks: an information of the sensor Networks of the sensor Networks: an information of the sensor Networks in the sensor Networks: an information of the sensor Networks: an information of the sensor Networks in the sensor Networks: an information of the sensor Networks in the s	twoling, tting ward nson 45	nd I	Ener ecur perin SPIN tfor wor RIO cs,"	rgy 9 9 vity ng, vS, 9 ms ks, DS

survey", computer networks, Elsevier, 2002, 394 - 422.

ILS THE

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level					
CO1 Understand the basics of Wireless Sensor Networks							
CO2	Identify the suitable routing algorithm based on the network and user requirement.	3					
CO3	Apply the knowledge to identify appropriate network layer protocols	3					
CO4	Analyze the transport layer and security issues in sensor networks.	3					
CO5	Express various OS and simulators used in Wireless Sensor Networks.	2					
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;					

COURSE ARTICULATION MATRIX

*COs			12	27		P	Os	- 1		1.00			PS	PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1.	3	3	2	2	(A. 1	- 3	-	3 - 1	1.5	-/	5	2	3	2		
2.	3	3	2	2 _	4	1-	1	10	11-	- \	5	3	3	3		
3.	3	3	≤ 2	2		4)->	-		I	111	3	3	3		
4.	3	3	2	2	1.00	- 3	-	-	P-	14 A.	N	3	3	3		
5.	3	3	23	2	3	1-	314		-	1.7	177	3	3	3		
1 – W	eak. 2	– Mod	lerate, 3	- Stro	ng		27 -	1	1.126-1	()	177	1				

U

हेवता - 5

EC22070	MINI PROJECT	L	Τ	Р	С			
EC22070	MINI FROJEC I	0 0 4						
COURSE O	BJECTIVES:							
• To inv	vestigate, formulate and analyze a real-world problem in the field of Ne	two	rkin	g an	d			
Secur	ity.							
• To so	ve the problems independently or as part of a team.							
• To ac	quire knowledge in terms of the innovation & real time cases with impl	eme	entat	ion				
proce	ss of the project work.							
• To we	ork independently as well as in teams.							
• To ma	mage the project from start to finish.							
PROJECT V	VORK MODALITIES							
	take up small real world problems in the field of Networking and Se		•					
	student or as a team should conceive, design, develop and realize simula							
with validati	on on real time systems. It can be related to solutions to an engin	eeri	ng p	probl	em/			
	nd analysis of experimental data available/ conducting suitable experimental data available conducting suitable							
0 0	subjects/ characterization/ studying a software tool for the solution o		-	·				
1	The student should investigate a network related to real time syste							
	n WSN, WBN areas. Also he can implement SDN with NFV concepts in							
analytics. Th	e student should submit a soft bound project report at the end of the	ie se	emes	ster.	The			

TOTAL: 60 PERIODS

COUR	SE OUTCOMES:	RBT
	uccessful completion of the course, students should be able to:	Level
C01	Investigate, formulate and analyze a real-world problem in the field of Networking and Security	4
CO2	Design, analyze and optimize a wireless network with standardization of security concepts applied in WSN, WBN areas.	4
CO3	Design, analyze and optimize, networks with SDN, NFV concepts.	4
CO4	Learn to write technical reports and work as a team.	3
CO5	Develop skills to present and defend their work in front of a technically qualified audience.	3
* Bloon Create-	i's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; 6	

validation of results should be demonstrated at the time of examination. Few thrust area to be

concentrated in new areas of interest in Networking and Security.

Sec.

COURSE ARTICULATION MATRIX

*CO						P	'0 S						PSOs	
s	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	1	2	2	3	3	3	3	3	3
2.	3	3	3	3	3	1	2	2	3	3	3	3	3	3
3.	3	3	3	3	3	1	2	2	3	3	3	3	3	3
4.	3	3	3	3	3	1	-	2	3	3	3	3	3	3
5.	3	3	3	3	3	1	-	2	3	3	3	3	3	3
* 1 – V	Weak, 2	2 - Mo	derate,	3-Str	ong									

OPEN ELECTIVE COURSES

	OFEN ELECTIVE COURSES	т	т	р	С
OE22701	AUTOTRONICS	L 3	Т 0	P 0	<u>C</u>
COURSE OB.	IECTIVES:	•	v	U	-
	erstand the fundamentals of automotive electronics				
	y about sensors and actuators used in automobiles				
	erstand the working principles of fuel ignition and injection systems				
	lire knowledge on engine control system				
1	tify the various electronic devices used in vehicle intelligence system				
101001					
UNIT I	INTRODUCTION TO AUTOMOTIVE ELECTRONICS				9
Evolution of E	ectronics in automobiles – Emission laws - Electronic Engine Manag	gem	ent S	Syst	em
- Components	- Drivetrain - Working principles: Starting & Charging systems- Ign	nitic	on sy	/stei	n -
Suspension sys	tems - Brakes - ABS - Steering system		-		
	LAN DE				
UNIT II	SENSORS AND ACTUATORS				9
Basic Sensor A	rrangement – Types Of Sensors - Working principle and characteristic	s: –	Hal	Eff	ect
Sensor – There	nistor - Piezo-Electric Sensor - Piezo-Resistive Sensors - Oxygen	Co	ncer	trat	ion
	shaft Angular Position Sensor – Mass Air Flow (MAF) Rate – Man				
Pressure (MAP) - Throttle Plate Angular Position - Engine Oil Pressure Sensor -	Veł	nicle	Spe	eed
	er Motors – Relays – Detonation Sensor – Emission Sensor.				
UNIT III	FUEL INJECTION AND IGNITION SYSTEM				9
Introduction - I	Fuel system components - Electronic fuel system - fuel injection types	s: th	rott	e bo	ody
	ection - electronic control fuel injection:operation, types - fuel injecto				
	ous injection system - high pressure diesel fuel injection - MPFI syste			-	
	: operation, types - Electronic spark timing control.				
	Tall to the start				
UNIT IV	ENGINE CONTROL SYSTEM				9
Control modes	for fuel control - Engine control subsystems - ignition control me	ethc	dolo	ogie	s –
different ECU?	s used in the Engine management - Block diagram of the Engine	e m	anag	gem	ent
system. Vehicle	e networks: CAN standard, format of CAN standard – diagnostics syst	ems	in r	nod	ern
automobiles.					
UNIT V	VEHICLE INTELLIGENCE				9
Introduction -]	Basic structure - vision based autonomous road vehicles - architectur	re fo	or dy	ynar	nic
vision system -	A visual control system using image processing and fuzzy theory -	An	appl	icat	ion
	t vision to a vehicle information system - object detection, collisio	n w	arni	ng a	ınd
avoidance syste	em - low tyre pressure warning system.				
	TOTAL:	45	PEF	lo	DS
TEXT BOOK	S:				

1. William Ribbens, "Understanding Automotive Electronics: An Engineering Perspective", Butterworth-Heinemann, Seventh Edition, 2013.

2. "Automotive Sensors Handbook", 8th Edition, 2011, BOSCH

3. Crouse, W.H "Automobile Electrical Equipment", McGraw-Hill Book Co., Inc., New York, 3rd edition, reprint 2010

REFERENCES:

- 1. Tom Denton, "Automobile Electrical and Electronics Systems", Butterworth- Heinemann, Fourth Edition, 2004.
- 2. Allan Bonnick, "Automotive Computer Controlled Systems" Taylor & Francis, Fifth Edition, 2001.
- 3. Robert Bosch GmbH, "Diesel-Engine Management", John Wiley & Sons, Fourth Edition, 2006.
- 4. Robert Bosch GmbH and Horst Bauer, "Gasoline-Engine Management", Bentley Publishers, Second Edition, 2006.
- 5. Hillier V.A.W, "Fundamentals of Automotive Electronics", Nelson Thornes Limited, Sixth Edition, 2012.
- 6. Robert. N, Brady, "Automotive Computers and Digital Instrumentation", Prentice Hall, First Edition, 1988.

COURS	SE OUTCOMES:	RBT
Upon su	ccessful completion of the course, students should be able to:	Level
CO1	Understand the basic fundamentals of Automobile Engineering Electronics	2
CO2	Interpret the different types of sensors and actuators used in automobile Engineering	3
CO3	Illustrate the principles of operation of electronically operated fuel injection and ignition systems	3
CO4	Acquaint knowledge on various control and network systems in automotives	2
CO5	Analyse basic electronic devices for design of vehicle intelligence systems in automotive electronics	4
Bloom's	s Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create-6	VAS TOT TOY	

COURSE ARTICULATION MATRIX

*COs						P	os						PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	2	2	1	1	2	1	1	2	3	1
2.	3	3	3	3	2	2	1	1	2	1	1	2	3	1
3.	3	3	3	3	2	2	1	1	2	1	1	2	3	1
4.	3	3	3	3	2	2	1	1	2	1	1	2	3	1
5.	3	3	3	3	2	2	1	1	2	1	1	2	3	1
* 1 – We	eak, 2 -	- Mode	erate, 3	- Stro	ng									

OE22702

BIOMETRIC SYSTEM AND ITS APPLICATION

 L
 T
 P
 C

 3
 0
 0
 3

9

9

9

9

9

COURSE OBJECTIVES:

- To introducte the basics of biometrics and its functionalities.
- To understand the technologies of fingerprint recognition.
- To identify the issues in realistic evaluation of Face recognition biometrics systems.
- To acquire knowledge in building Iris recognition system and its performance evaluation.
- To develop applications with biometric based systems.

UNIT I INTRODUCTION TO BIOMETRICS

Introduction to Biometric Systems- Person Recognition, Biometric Functionalities, Biometric System Errors, Performance measures, The Design Cycle of Biometric Systems, Applications of Biometric Systems, Security and Privacy Issues

11

UNIT II FINGERPRINT RECOGNITION

Introduction, Friction Ridge Pattern, Fingerprint Acquisition, Feature Extraction, Matching, Fingerprint, Fingerprint Synthesis, Palmprint

UNIT III FACE RECOGNITION

Psychology of face recognition, Image Acquisition, Face Detection - Viola-Jones face detector, Feature Extraction and Matching, Handling pose, illumination, and expression variations, Heterogeneous face recognition, Face modelling

UNIT IV IRIS RECOGNITION

Design of an Iris Recognition System, Image Acquisition, Iris Segmentation, Generating iris masks, Iris Normalization, Iris Encoding and Matching, Iris Quality, Performance Evaluation

UNIT V APPLICATIONS: CASE STUDY

Multibiometric Using Face and Ear, Biometric System Security, Application of Biometrics in the Government and Commercial Sector.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Anil K. Jain, Arun Ross, and Karthik Nandakumar, "Introduction to Biometrics", Springer, 2011.

REFERENCES:

- 1. Anil K Jain, Patrick Flynn and Arun A Ross, "Handbook of Biometrics", Springer, 2007. ISBN: 978-0-387-71040-2.
- Nikolaos V Boulgouris, Konstantinos N Plataniotis and Evangelia Micheli Tzanakov, "Biometrics Theory, Methods and Applications", IEEE & Wiley, 2009, ISBN: 978-0470-24782-2
- 2. John D Woodward, Nicholas M Orlans and Peter T Higgin, "Biometrics: The Ultimate Reference", Dream Tech, 2009.
- 3. Guide to Biometrics, By: Ruud M. Bolle, Sharath Pankanti, Nalini K. Ratha, Andrew W.

Senior, Jonathan H. Connell, Springer 2009.

4. https://archive.nptel.ac.in/content/syllabus_pdf/106104119.pdf

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Demonstrate fundamental principles underlying biometric systems.	2
CO2	Explore the feature extraction, segmentation and synthesis of finger, face and iris recognition systems.	3
CO3	Identify the multidisciplinary technologies for biometric applications	4
CO4	Apply data analytics and evaluate the performance metrics of biometric systems.	3
CO5	Designing and development of different identification/verification systems to validate the user identity	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva -6	luate-5;

COURSE ARTICULATION MATRIX

*C	Pos		14	1 .	- Ø		-		3.5		21	1	PSO)s
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	<3	3	2	2	7	-	1	1	(1)	2	3	3
2.	3	3	3	3	2	2	4-	0	1	1	1	2	3	3
3.	3	3	3	3	2	2	1.1	1	-1	1	1	2	3	3
4.	3	3	3	3	2	2	1	J-)	1	1	1	2	3	3
5.	3	3	-3	3	2	2	-	1	1	1	-1	2	3	3

U

tanto

* 1 – Weak, 2 – Moderate, 3 – Strong

25 THE

OE22703	COMPUTER VISION AND ITS APPLICATION	L T 3 0	P 0	C 3
COURSE O	BJECTIVES:			
• To a	scertain and describe the essentials of computer vision through	mathe	matic	cal
interp	retation.			
• To ac involv	quire the knowledge of various image enhancement and image restorat ved.	ion tech	ıniqu	ies
design	speriment the various image segmentation for a meaningful partition in the various basic feature extraction and object detection techniques for cations.			
	aluate various motion analysis and tracking techniques for various as	pects of	f ima	ıge
• To an	alyze and implement computer vision and image processing algorithme applications.	ns for	vario	ous
	A COLLEGE			
UNIT I	INTRODUCTION TO COMPUTER VISION			9
	ons -homography, affine transformations, Image processing fundamenta	ls.		
UNIT II	IMAGE ENHANCEMENT AND RESTORATION	L		9
U	cement techniques -contrast enhancement, histogram equalization, Noise gorithms -filters, deconvolution	reduct	ion a	nd
UNIT III	IMAGE SEGMENTATION ,FEATURE EXTRACTION AND OBJECT DETECTION			9
	n methods -thresholding, edge detection, Feature extraction technique detection methods -Haar cascades, HOG.	iques	-corr	ıer
	121 2 2 2 2	ļ		
UNIT IV	MOTION ANALYSIS AND TRACKING	<u> </u>		9
	and motion estimation, Object tracking techniques -Kalman filters Computer Vision-Stereo vision and depth estimation.	, track	ing-b	y-
UNIT V	APPLICATIONS OF COMPUTER VISION			9
	ge segmentation, Motion Estimation and Object Tracking, Face recogn	nition, (Gestu	ıre
recognition,				
recognition,	TOTAL: 4	45 PEI	RIOI	DS

TEXT BOOKS:

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education, Fourth Edition, 2018.
- 2. Richard Szeliski,"Computer Vision: Algorithms and Applications", Springer, Second edition, ISBN-10: 1848829345, ISBN-13: 978-1848829343, 2022 ,http://szeliski.org/Book/
- 3. Manas Kamal Bhuyan Computer Vision and Image Processing Fundamentals and Applications, CRC Press, 2020
- 4. S. Sridhar, "Digital Image Processing", Second Edition, Oxford University, 2016.

REFERENCES:

- 1. Anil K. Jain "Fundamentals of Digital Image Processing", PHI, Learning Private Ltd, 2011.
- 2. https://onlinecourses.nptel.ac.in/noc21_ee23/
- 3. David Marr, "Vision: A Computational Investigation into the Human Representation and Processing of Visual Information", The MIT Press, 2010

	RSE OUTCOMES:	RBT
Upon s	successful completion of the course, students should be able to:	Level
CO1	Demonstrate a deep understanding of the core principles, algorithms, and methodologies in computer vision, including image processing, and object recognition.	2
CO2	Apply various image enhancement techniques to improve image quality and perform advanced image analysis through segmentation, feature extraction, and object detection.	3
CO3	Utilize segmentation techniques to partition images into meaningful regions and extract relevant features, enabling effective analysis and understanding of visual data.	3
CO 4	Understand motion analysis techniques such as optical flow and implement object tracking algorithms for dynamic visual data.	3
CO5	Investigate various applications of computer vision across domains	4
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5
Create	-6	

COURSE ARTICULATION MATRIX

*C						P	os						PS	SOs
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
2.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
3.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
4.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
5.	3	2	2	2	1	-	-	-	-	-	-	1	3	-
* 1 - 1	Weak, 2	2 - Mo	derate,	3-Str	ong									

OE22704	CONSUMER ELECTRONICS	L	T	P	<u>C</u>
COUDSE OD I	ECTIVES.	3	0	0	3
COURSE OBJ	rstand the fundamentals of consumer electronic devices				
	the working principle of different types of audio systems				
-	the operating principle of different types of display systems				
	tibe the working of various house hold devices				
	ify various technologies involved in Smart home				
UNIT I	CONSUMER ELECTRONICS FUNDAMENTALS				9
History of Elec	tronic Devices - Vacuum Tubes, Transistors, Integrated Circuits-	Mo	ore's	s La	w,
Semiconductor	Devices, Diodes, Rectifiers, Transistors, Logic Gates, Microp	roce	essoi	s a	nd
Microcontroller	s in consumer electronics, Sensors: Motion Sensors, Thermal Sens	ors	and	Ima	ge
Sensors, PIR, IF					
UNIT II	AUDIO SYSTEMS				9
Audio systems:	Construction and working principle of : Microphone, Loud speaker	r, A	M a	nd F	M
receiver, stereo,	2.1 home theater, 5.1 home theater				
	IN SALAS				
UNIT III	VIDEO SYSTEMS				9
					T 7
Display system	s: CRT, LCD, LED and Graphics displays, Video Players : DVD a	nd I	Blue	RA	Υ.
	s: CRT, LCD, LED and Graphics displays, Video Players : DVD a ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches		Blue	RA	Y.
	and the second s		Blue	RA	Y.
	and the second s		Blue	RA	
Recording System UNIT IV	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches				9
Recording Syste UNIT IV Home Enableme	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES	chine	es, K	Litch	9 en
Recording Syste UNIT IV Home Enableme Electronics- Mi	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac	chine	es, K	Litch	9 en
Recording Syste UNIT IV Home Enableme Electronics- Mi	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac	chine	es, K	Litch	9 en
Recording Syste UNIT IV Home Enableme Electronics- Mi	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac	chine	es, K	Litch	9 en
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart	chine alar	es, K rms,	Litch Sm	9 en art 9
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME	chine alar	es, K rms,	Citch Sm	9 en art
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security Systems	chine alar stem	es, K rms, ns - (Litch Sm CCT e	9 en art 9 V,
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security System on, Automated blinds, Water Level Indicator, Intelligent Building Pe	chine alar stem	es, K rms, ns - (Litch Sm CCT e	9 en art 9 V,
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security System on, Automated blinds, Water Level Indicator, Intelligent Building Pe TOTAL:	chine alar stem	es, K rms, ns - (Litch Sm CCT e	9 en art 9 V,
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He Intruder Detection TEXT BOOKS	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security System on, Automated blinds, Water Level Indicator, Intelligent Building Pe TOTAL:	alar sten 45	es, K rms, ns - (Litch Sm CCT e	9 en art 9 V,
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He Intruder Detecti TEXT BOOKS 1. Thomas I 2. Philp Hof	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security Systems on, Automated blinds, Water Level Indicator, Intelligent Building Per TOTAL: S: _ Floyd "Electronic Devices" 10th Edition Pearson Education Asia 20 ff "Consumer Electronics for Engineers" - Cambridge University Press	chino alar sten 45 1	es, K rms, ns - (PER	Litch Sm CCT e	9 en art 9 V,
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He Intruder Detection TEXT BOOKS 1. Thomas I 2. Philp Hof 3. Jordan Fr	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security Systems on, Automated blinds, Water Level Indicator, Intelligent Building Per TOTAL: S: - Floyd "Electronic Devices" 10th Edition Pearson Education Asia 20 of "Consumer Electronics for Engineers" - Cambridge University Pres- ith, " Smartphones as Locative Media ", Wiley. 2014.	chino alar sten 45 1	es, K rms, ns - (PER	Litch Sm CCT e	9 en art 9 V,
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He Introduction- He Intruder Detection TEXT BOOKS 1. Thomas I 2. Philp Hof 3. Jordan Fr 4. Dennis C	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security Systems on, Automated blinds, Water Level Indicator, Intelligent Building Pe TOTAL: S: - Floyd "Electronic Devices" 10th Edition Pearson Education Asia 20 ff "Consumer Electronics for Engineers" - Cambridge University Pres- ith, " Smartphones as Locative Media ", Wiley. 2014. Brewer, " Home Automation", Que Publishing 2013.	chino alar sten 45 1 018. ss.19	es, K rms, ns - (ectiv PER	CCT e RIOI	9 en art 9 V,
Recording Syste UNIT IV Home Enableme Electronics- Mi locks UNIT V Introduction- He Introduction- He Intruder Detection TEXT BOOKS 1. Thomas I 2. Philp Hof 3. Jordan Fr 4. Dennis C	ems: Digital Cameras and Camcorders, Smart Phones, Smart Watches DOMESTIC APPLIANCES ent Systems: RFID Home, Automatic Cleaning Robots, Washing Mac crowave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart SMART HOME ome Virtual Assistants- Alexa and Google Home - Home Security Systems on, Automated blinds, Water Level Indicator, Intelligent Building Per TOTAL: S: - Floyd "Electronic Devices" 10th Edition Pearson Education Asia 20 of "Consumer Electronics for Engineers" - Cambridge University Pres- ith, " Smartphones as Locative Media ", Wiley. 2014.	chino alar sten 45 1 018. ss.19	es, K rms, ns - (ectiv PER	CCT e RIOI	9 en art 9 V,

- 1. M.L.Bushnell and V.D.Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002.
- 2. A.L.Crouch, "Design Test for Digital IC's and Embedded Core Systems", Prentice Hall International, 2002.

COURS	E OUTCOMES:	RBT
Upon su	ccessful completion of the course, students should be able to:	Level
CO1	Interpret the fundamentals of Electronic devices	2
CO2	Infer the technical specifications of various electronic audio systems	2
CO3	Infer the technical specifications of display and recording systems	2
CO4	Illustrate the functions of home appliances like Washing machine, Microwave oven etc.	3
CO5	Compare the technologies used in building a smart home	4
Bloom's	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create-6	121	

*COs		1	JI		1	P	os	0 / 1	ulves.	1	0		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	1	2	1	1	1	1	1	2	2	3	2
2.	3	3	-3	2	2	1	1	1	1	2	1	2	3	2
3.	3	3	3	2	2	1	1	1	1	2	1	2	3	2
4.	3	3	3	2	2	1	1	1	-1	2	-91	2	3	2
5.	3	3	3	2	3	1	1	1	1	2	$\leq 1/$	2	3	3
* 1 – W	eak. 2	– Mod	lerate. 3	3 - Stro	ong	c	. S			0	-/			

e Tar

परा देवता -

OE22705	EMBEDDED SYSTEMS AND ITS APPLICATION	L	T	P	C
		3	0	0	3
	BJECTIVES:				
	derstand the Embedded Systems Fundamentals				
	mprehend Embedded System Components				
	rn Embedded Hardware Design and Development				
	ow the different design approaches of Embedded Firmware				
5. To de	sign typical applications of Embedded Systems through case studies	1			
UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS				9
	to Embedded Systems: Definition of Embedded System, Embedded	d S	vster	ms	-
	puting Systems, History of Embedded Systems, Classification of Embedded				
	ation areas, Purpose of Embedded Systems, Characteristics and Quali		-		
Embedded Sy		ty a	uno	ates	01
Embedded By					
UNIT II	A TYPICAL EMBEDDED SYSTEM				9
		1	nton	face	-
	Embedded System-Memory-Sensors and Actuators-Communication	л	mer	Tace	- :
Embedded FI	rmware - Other System Components - PCB and Passive Components.				
	EMPEDDED HADDWADE DEGICINI AND DEVIEL ODMENT				0
UNIT III	EMBEDDED HARDWARE DESIGN AND DEVELOPMENT		1	<u>.</u>	9
-	ronic Components, Digital Electronic Components, VLSI and Internet Control of the second seco	-			
-	ronic Design Automation (EDA) Tools, Use of OrCAD EDA Tool - Sch				gn
using OrCAL	Capture CIS, The PCB Layout Design, Printed Circuit Board (PCB) H	abri	catio	on.	
					0
UNIT IV	EMBEDDED FIRMWARE DESIGN AND DEVELOPMENT				9
	irmware Design Approaches- Super Loop Based Approach, Embed		-		-
-	Based Approach, Embedded Firmware Development Languages - Asser	-		-	-
	pment, High Level Language Based Development, Mixing Assembly a	and H	High	-Le	vel
Language, Sin	mple programming in Embedded C.	r			
					_
UNIT V	CASE STUDY				9
	ng machine, Elevator Controller, Washing Machine -Application-Spec				
-	el Train Controller, Automotive-Domain Specific Examples of Emb	edde	ed S	yste	m,
Trends in em	bedded systems in industrial applications.				
	TOTAL	45	PER	IO	DS
TEXT BOO					
	K V, "Introduction to Embedded Systems", Second Edition, Mc Graw		· ·		
	e Wolf, "Computers as components Principles of Embedded Com	puti	ng S	Syste	em
Daria	n", Second Edition, Morgan Kaufmann Publishers, 2008.				
	-				
REFERENC	-				
REFERENC	-	rfaci	ng",	Th	ird

- Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata 2. McGrawHill, 2017.
- Lyla B Das, "Embedded Systems"-Pearson Education, 2013. 3.

COU	RSE OUTCOMES:	RBT						
Upon s	successful completion of the course, students should be able to:	Level						
CO1 Understand the selection procedure of processors in the embedded domain.								
CO2	Develop a comprehensive understanding of embedded systems	1						
CO3	Design and develop Hardware embedded systems	3						
CO4	Perform Firmware Design through programming using Embedded C	3						
CO5	Design embedded applications for Real-World Scenarios	6						
Bloom	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5;							
Create	-6							

*C			1,4	1 1	. Ø. 1	Р	OS	2	18		21		PS	Os
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	≤ 2	2	3	3)	0	- 1	1	E.		3	3
2.	3	1	3	3	- 3	3	5	2	14	80- J	Z	-	3	3
3.	3	1	3	3	3	2	1-6	1	-		171	-	3	3
4.	3	1	3	3	3	2	<u></u>	- J	1.20	0	m	1 -	3	3
5.	3	3	3	3	3	3	-	1	-	-/	20	- 1	3	3
* 1 – V	Weak, 2	2 – Mo	derate,	3 – Str	ong		335	1		1	21	1		
			10	6 2	197	1	<u>।</u> परा	100	In	0	/			

OE22706	FUNDAMENTALS OF ANALOG AND DIGITAL ICs	L 3	Т 0	P 0	C 3
COURSE O	BJECTIVES:	3	U	U	3
• To stu circuit	dy circuit configuration and introduce practical applications of linear i				
Locke	roduce the concept of application of ADC and DAC in real time system d Loop with applications.				
analyz	roduce the design of various combinational digital circuits using logic re sequential circuits quire knowledge about various logic families.	gates	s and	d to	
• 10 act	une knowledge about various logie families.				
UNIT I	INTRODUCTION TO OPERATIONAL AMPLIFIER & ITS APPLICATIONS				9
741, DC an Instrumentation	onal Amplifier - General operational amplifier stages - Internal circuit d AC performance characteristics, slew rate, Applications: Add on amplifier, Integrator, Differentiator, Logarithmic amplifier -Low pa tentals of Monolithic IC technology	er, S	Subt	tract	or,
UNIT II	ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS				9
	r – Weighted resistor type, R-2R Ladder type - IC Specifications - A/D - Successive Approximation type - IC Specifications.	Cor	nver	ters	
UNIT III	WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS				9
	, Voltage regulators - IC 723 - SMPS - Phase Locked Loop(PLL) -Bas rolled oscillator, Monolithic PLL IC 565, Application of PLL:	-		-	
UNIT IV	MSI ICs - COMBINATIONAL & SEQUENTIAL CIRCUITS	Ļ			9
Implementati	ry adder/subtractor, Magnitude comparator, Decoder, Encoder, Bo on using these IC's Flip Flops - Synchronous and Asynchronous Co er IC Specifications - Shift Registers - 74194 Shift Register IC Specific	ounte	ers -		
UNIT V	LOGIC FAMILIES & PROGRAMMABLE LOGIC DEVICES				9
Logic familie PLDs - ROM	s- TTL, MOS, CMOS, HMOS, HCMOS, BiCMOS - Comparison of L , PLA, PAL - Implementation of combinational logic using standard IC roduction to VLSI				s -
	TOTAL:	45 I	PER	RIO	DS
TEXT BOO		r 11 /	D		
Educa	kant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice E tion, 2015				1
2. M. M. REFERENC	prris Mano and Michael D.Ciletti, "Digital Design", Pearson, 5 th Editi ES:	011, 2	2013)	

- 1. D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2018, Fifth Edition
- 2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 4th Edition, Tata Mc Graw-Hill, 2016
- 3. Charles H.Roth Jr., "Fundamentals of Logic Design" Thomson Learning, 2013

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level				
CO1	CO1 Ability to design analog linear circuits and develop linear IC based Systems.					
CO2	Understand the concept of ADC and DAC in real time systems with applications	2				
CO3	Apply the principles of Special function ICs in the design of real time systems.	3				
CO4	Analyze various Combinational and Sequential digital circuits.	4				
CO5	Understand the concept of various logic families and programmable logic devices.	2				

*COs			141	1	15	P	Os	-	1 3	11	12		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	_3	3	3	2	1	/- 0	m7s	-)	9	- /	3	3
2.	3	3	3	3	3	2	1-	0.0	1.02	21-1	11	-	3	3
3.	3	3	3	3	3	2	N.	-		-	1	-	3	3
4.	3	3	3	3	3	2	100	1	(. U	20-1	11	1 -	3	3
5.	3	3	3	3	3	2	1	1	-		111	/	3	3
*1 V	Wook () Mo	derate	2 Str	ong	-	_	1		1	~01			

हेवता -

* 1 – Weak, 2 – Moderate, 3 – Strong

OE22707	LOT AND SENSING	L	Т	P	С
OE22707	IOT AND SENSING	3	0	0	3
COURSE O	BJECTIVES:				
• To un	derstand the underlying principles and performance characteristics of	impo	rtan	t	
sensor					
	fer the use of interface electronics.				
	miliarize the fundamentals of IoT				
	plement of Domain Specific IoT in real world				
• To de	sign and develop an IoT based application				
UNIT I	SENSORS ition, Sensor Characteristics, Principles of sensing – Capacitan				9
Resistance, F Sensors.	Piezoelectric Effect, Hall Effect, Temperature and thermal effects,	Ligh	ts, (Opti	cal
UNIT II	PROCESS MANAGEMENT INTERFACE ELECTRONIC CIRCUITS				9
Introduction,	Amplifiers, Excitation Circuits, Analog-to-Digital Converters, Direct	Digit	izati	lon,	
Bridge Circui	its, Data Transmission, Noise in Sensors and circuits, Calibration, Batt	eries	for	low	
power sensor	s. C - T C oll lol				
UNIT III	TEMPERATURE AND CHEMICAL SENSORS				9
-	Sensors: coupling with objects - temperature reference points - therm				
	rmoelectric contact sensors – Chemical sensors: characteristics – class		che	mic	al
sensors – bio	chemical sensors –multisensory arrays – electronic noses and tongues.				
UNIT IV	INTERNET OF THINGS		.		9
	s of IoT, Physical Design, Logical Design, IoT Enabling Technologies ent Templates.	, 101	Lev	vels	
UNIT V	IOT APPLICATIONS				9
Home Autom and Lifestyle	ation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Ind	ustry	, He	alth	
	TOTAL	45	PEF	RIO	DS
TEXT BOO	KS:				
Editio	Fraden, "Handbook of Modern Sensors: Physics, Designs, and Applic n, Springer, 2016. leep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approac				
Press,	2015.	, c	/ 111 / 1	-131	
REFERENC	CES:				

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi "The Internet of Things Key applications and Protocols", Wiley, 2012.
- 2. Jan Ho[•] ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Elsevier, 2014.
- 3. Dieter Uckelmann, Mark Harrison, Michahelles and Florian (Eds) "Architecting the Internet of Things", Springer, 2011.
- 4. Rajkamal, "Internet of Things: Architecture, Design Principles And Applications", McGraw Hill Higher Education, 2017.

COURSE OUTCOMES: RBT Upon successful completion of the course, students should be able to: Level To understand the fundamentals of sensing principles. **CO1** 2 To apply design concepts to interfacing sensors with various electronic **CO2** 3 components. 2 **CO3** Differentiate various temperature and chemical sensors based on its applications. **CO4** Interpret the key enablers of IoT. 4 Interrelate real-world IOT Applications. 4 **CO5** Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6

COURSE ARTICULATION MATRIX

*C			Ш	1.87	- I	P	Os	1	1.55	() () ()	m		PS	SOs
Os	1	2	-3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	2	1	-	3	3(3)	1	10	1	5	3	3	3
2.	3	2	2	2	2	-	4	-	2	2	21	2	3	3
3.	3	2	2	2	2	2	- 3	- 12	/	2	/-	2	3	3
4.	3	2	2	2	2	2	K	-	2	2	-	2	3	3
5.	3	2	2	2	2	2	110	- 21	70.	2	-	2	3	3
* 1 – V	Veak, 2	2 - Mo	derate,	3 - Str	ong	21	431	Y	/					

OE22708	FUNDAMENTALS OF WIRELESS COMMUNICATION		T	P	C
COURSEO	BJECTIVES:	3	0	0	3
	roduce various generations of wireless systems.				
	quaint fundamentals of cellular systems design.				
	niliarize with various multiple access schemes used in wireless comm	unica	tion	•	
	roduce mobile radio propagation.				
To pro	pyide basic knowledge of diversity and equalization techniques				
UNIT I	WIRELESS COMMUNICATION SYSTEMS	1 11			9
	f wireless communication systems: Examples of wireless systems: C				
-	lular Telephone System, Comparison of wireless systems, Personal	Com	mun	icat	ion
Systems, Cal	establishment in cellular systems.				
	LOLLEON				
UNIT II	FUNDAMENTALS OF CELLULAR COMMUNICATION				9
	use, Handoff, Channel Assignment, Interference and system capa				
	capacity in cellular systems: cell splitting, sectoring, repeaters for ra	inge	exte	nsio	ns,
microcell zon	e concept.				
UNIT III	MULTIPLE ACCESS TECHNIQUES				9
Introduction	o Multiple Access Techniques - FDMA, TDMA, Spread Spectrum M	lultip	le A	cces	ss -
FHMA, CDM	IA, Basics of OFDM.	-			
,					
					9
UNIT IV	MOBILE RADIO PROPAGATION	agati	on N	Ind	
UNIT IV Introduction	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop	0			el -
UNIT IV Introduction	MOBILE RADIO PROPAGATION	0			el -
UNIT IV Introduction t Propagation 1	MOBILE RADIO PROPAGATION to Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa	0			el - on
UNIT IV Introduction t Propagation I UNIT V	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES	th Pr	opag	gatic	el - on 9
UNIT IV Introduction t Propagation I UNIT V Introduction	MOBILE RADIO PROPAGATION to Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive	th Pr	opag - M	gatic axir	on 9 nal
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES	th Pr	opag - M	gatic axir	el - on 9 nal
UNIT IV Introduction t Propagation I UNIT V Introduction	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E	th Pr rsity	opag - M sity	gatio axir - Ti	el - on 9 nal me
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin	MOBILE RADIO PROPAGATION to Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive	th Pr rsity	opag - M sity	gatio axir - Ti	el - on 9 nal me
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin Diversity	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E TOTAL	th Pr rsity	opag - M sity	gatio axir - Ti	el - on 9 nal me
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E TOTAL	th Pr rsity	opag - M sity	gatio axir - Ti	el - on 9 nal me
UNIT IV Introduction f Propagation M UNIT V Introduction Ratio Combin Diversity TEXT BOO	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E TOTAL	th Pr rsity Divers : 45	opag - M sity PEF	axir - Ti RIO	el - on 9 nal me DS
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin Diversity TEXT BOO 1. Rapp	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive hing - Equal Gain Combining - Polarization Diversity - Frequency D TOTAL KS:	th Pr rsity Divers : 45	opag - M sity PEF	axir - Ti RIO	nal
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin Diversity TEXT BOO 1. Rapp 2. Vijay	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E TOTAL KS: aport. T.S., "Wireless communications", Pearson Education, 7th impre Garg, —Wireless Communications and networking, First Edition, Els	th Pr rsity Divers : 45	opag - M sity PEF	axir - Ti RIO	nal
UNIT IV Introduction to Propagation M UNIT V Introduction Ratio Combin Diversity TEXT BOO 1. Rapp 2. Vijay REFERENC	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency D TOTAL KS: aport. T.S., "Wireless communications", Pearson Education, 7th impre Garg, —Wireless Communications and networking, First Edition, Els	th Pr rsity Divers : 45 ession sevie	opag - M sity PEF	<u>axin</u> - Ti RIO)12.	9 mal me
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin Diversity TEXT BOO 1. Rapp 2. Vijay REFERENC 1. Joch	MOBILE RADIO PROPAGATION to Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive hing - Equal Gain Combining - Polarization Diversity - Frequency D TOTAL KS: aport. T.S., "Wireless communications", Pearson Education, 7th impre- Garg, —Wireless Communications and networking, First Edition, Else ES: len Schiller, "Mobile communications", PHI/Pearson Education, 2nd H	th Pr rsity Divers 45 ession sevie	opag - M sity PEF n, 200 r 200	<u>axin</u> - Ti RIO)12.	9 mal me
UNIT IV Introduction to Propagation M UNIT V Introduction Ratio Combin Diversity TEXT BOOM 1. Rapp 2. Vijay REFERENC 1. Joch 2. Sim	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E TOTAL KS: aport. T.S., "Wireless communications", Pearson Education, 7th impro- Garg, —Wireless Communications and networking, First Edition, Else ES: en Schiller, "Mobile communications", PHI/Pearson Education, 2nd F on Haykin & Michael Moher, "Modern wireless Communication", Pearson Methods and the set of the set	th Pr rsity Divers 45 ession sevie	opag - M sity PEF n, 200 r 200	<u>axin</u> - Ti RIO)12.	9 mal me
UNIT IV Introduction to Propagation M UNIT V Introduction Ratio Combin Diversity TEXT BOOM 1. Rapp 2. Vijay REFERENC 1. Joch 2. Sim Edu	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ming - Equal Gain Combining - Polarization Diversity - Frequency E Comparison KS: aport. T.S., "Wireless communications", Pearson Education, 7th impresented for Garg, —Wireless Communications and networking, First Edition, Else en Schiller, "Mobile communications", PHI/Pearson Education, 2nd Hon Haykin & Michael Moher, "Modern wireless Communication", Pearcation, 2007.	th Pr rsity Divers 45 ession sevie	opag - M sity PEF n, 200 r 200	<u>axin</u> - Ti RIO)12.	9 mal me
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin Diversity TEXT BOOD 1. Rapp 2. Vijay REFERENC 1. Joch 2. Sim Edu 3. And	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E TOTAL KS: aport. T.S., "Wireless communications", Pearson Education, 7th impro Garg, —Wireless Communications and networking, First Edition, Ele ES: en Schiller, "Mobile communications", PHI/Pearson Education, 2nd Hon Haykin & Michael Moher, "Modern wireless Communication", Peacation, 2007. reas. F.Molisch, Wireless Communication", John Wiley, 2006.	th Pr rsity Divers : 45 ession sevie	opag - M sity n, 20 n (2	gatic axir - Ti 012. 07. 003	9 mal me
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin Diversity TEXT BOOD 1. Rapp 2. Vijay REFERENC 1. Joch 2. Sim Edu 3. And	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ming - Equal Gain Combining - Polarization Diversity - Frequency E Comparison KS: aport. T.S., "Wireless communications", Pearson Education, 7th impresented for Garg, —Wireless Communications and networking, First Edition, Else en Schiller, "Mobile communications", PHI/Pearson Education, 2nd Hon Haykin & Michael Moher, "Modern wireless Communication", Pearcation, 2007.	th Pr rsity Divers : 45 ession sevie	opag - M sity n, 20 n (2	gatic axir - Ti 012. 07. 003	9 mal me
UNIT IV Introduction f Propagation M UNIT V Introduction T Ratio Combin Diversity TEXT BOO 1. Rapp 2. Vijay REFERENC 1. Joch 2. Sim Edu 3. And 4. T. S	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency E TOTAL KS: aport. T.S., "Wireless communications", Pearson Education, 7th impro Garg, —Wireless Communications and networking, First Edition, Ele ES: en Schiller, "Mobile communications", PHI/Pearson Education, 2nd Hon Haykin & Michael Moher, "Modern wireless Communication", Peacation, 2007. reas. F.Molisch, Wireless Communication", John Wiley, 2006.	th Pr rsity Divers : 45 ession sevie	opag - M sity n, 20 n (2	gatic axir - Ti 012. 07. 003	9 mal me
UNIT IV Introduction f Propagation I UNIT V Introduction Ratio Combin Diversity TEXT BOO 1. Rapp 2. Vijay REFERENC 1. Joch 2. Sim Edu 3. And 4. T. S Wire	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency D TOTAL: KS: aport. T.S., "Wireless communications", Pearson Education, 7th impre Garg, —Wireless Communications and networking, First Edition, Else ten Schiller, "Mobile communications", PHI/Pearson Education, 2nd H on Haykin & Michael Moher, "Modern wireless Communication", Pea- cation, 2007. reas. F.Molisch, Wireless Communication", John Wiley, 2006. . Rappaport, R. W. Heath Jr., R. C. Daniels, and J. M. Murdock,, Milli	th Pr rsity Divers : 45 ession sevie Editic arson	opag - M sity PEF n, 200 r 200 on (2	axir - Ti RIO 012. 07. 003	9 mal me
UNIT IV Introduction f Propagation M UNIT V Introduction Ratio Combin Diversity TEXT BOO 1. Rapp 2. Vijay REFERENC 1. Joch 2. Sim Edu 3. And 4. T. S Wire 5. 5. M	MOBILE RADIO PROPAGATION o Radio Wave Propagation - Large Scale Path Loss - Free Space Prop Mechanisms: Reflection, Diffraction, Scattering - Small Scale Multipa DIVERSITY TECHNIQUES to Diversity - Space Diversity - Selection Diversity - Feedback Dive ning - Equal Gain Combining - Polarization Diversity - Frequency I TOTAL KS: aport. T.S., "Wireless communications", Pearson Education, 7th impre Garg, —Wireless Communications and networking, First Edition, Elsters en Schiller, "Mobile communications", PHI/Pearson Education, 2nd H on Haykin & Michael Moher, "Modern wireless Communication", Pearson Education, 2nd H on Haykin & Michael Moher, "Modern wireless Communication", Pearson Education, 2nd H on Haykin & Michael Moher, "Modern wireless Communication", Pearson Education, 2nd H Mireless Communications", PHI/Pearson Education, 2nd H on Haykin & Michael Moher, "Modern wireless Communication", Pearson Education, 2007. reas. F.Molisch, Wireless Communication", John Wiley, 2006. Rappaport, R. W. Heath Jr., R. C. Daniels, and J. M. Murdock,, Millieless Communication., Pearson Education, 2015.	th Pr rsity Divers : 45 ession sevie Editic arson	opag - M sity PEF n, 200 r 200 on (2	axir - Ti RIO 012. 07. 003	9 mal me

COUR	RSE OUTCOMES:	RBT			
Upon s	successful completion of the course, students should be able to:	Level			
CO1 To be familiar with generations of wireless communication systems					
CO2	To acquire insights into cellular architecture	3			
CO3	To analyze various multiple-access techniques adopted in wireless applications	3			
CO4	To understand the various wave propagation mechanisms and a propagation model	3			
CO5	To analyze a multipath mitigation technique to retrieve signals under various channel conditions	3			
Bloom	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;			
Create	-6				

*COs			1.5) /		P	Os		1	2	10		PS	SOs
-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	2	3	1	1	-	1	N.	2	6	2	2	2
2.	3	2	$\triangleleft 2$	3	2	(47)~	-	-	2	60	3	2	2
3.	3	2	2	3	_ 2	-30	ľ	0	14	2	2	3	2	2
4.	3	2	22	3	1	1-)-7	7	1	2	177	2	2	2
5.	3	3	3	3	3		1	w-/	1	1	In	1	2	1
• 1 – W	eak, 2	– Moc	lerate, 3	– Stro	ng	1		/		1	271	1		
			1	1	1		9245	15	222	1	51			
			12	12					-4-3	15	2/			
			1.	0	S		÷ 10.,		/	9	/			
				7 I I	-		V	-	/ ,	2	/			
				0	19			-	2	1				
				1	14	17	TEN	15	2.	/				
						-	4.41		_					

	INTRODUCTION TO SMART CITY		T	P	<u>C</u>
COURSE OI	RIECTIVES	3	0	0	3
	rn the concept of smart city and associated challenges				
	derstand process of nomadic service discovery of smart city				
	rn several fundamental enabling technologies				
	sign and develop sustainable infrastructure for smart city applications				
	dy various case studies of smart city				
• 10 stu	dy various case studies of smart city				
UNIT I	INTRODUCTION				9
Trends in sm	art cities, Challenges of smart cities: Security, Fragmentation of standard	ds, S	Scal	abili	ty,
	of smart cities, Criteria for smart cities: Data Communications, Data				
	An economic point of view		-		
	ADDELEGE				
UNIT II	NOMADIC SERVICE DISCOVERY				9
	SD Service Discovery: Operational modes, Strategies for responding	-	-		
	ontext queries, Proxy support for sleeping nodes: Active Proxy and	Pas	sive	Pro	ху
delegation pro	otocols, Reliability				
	12/12/				
UNIT III	ENABLING TECHNOLOGIES				9
	nallenges, Enabling Technologies for smart cities - Internet of Things	s, S	mar	t Di	ıst,
Smartphones,	Cloud Computing, Big Data and Open Data				
					0
	SUSTAINABLE SMART CITIES				9
			T		1
Sustainability	Assessment, Balanced Sustainability, Procedural Balance, Contextual				ral
Sustainability	Assessment, Balanced Sustainability, Procedural Balance, Contextual Blocks as a Contextual Variable, Sustainability Information Modeling				ral
Sustainability Balance, City	Blocks as a Contextual Variable, Sustainability Information Modeling				
Sustainability Balance, City UNIT V	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE	Plat	forr	ns	9
Sustainability Balance, City UNIT V Traffic Surve	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun	Plat	forr	ns	9
Sustainability Balance, City UNIT V Traffic Surve	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati	Plat icat ons	forr	ns , V	9 2X
Sustainability Balance, City UNIT V Traffic Surve	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun	Plat icat ons	forr	ns , V	9 2X
Sustainability Balance, City UNIT V Traffic Surve	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati TOTAL:	Plat icat ons	forr	ns , V	9 2X
Sustainability Balance, City UNIT V Traffic Surve Network Integ TEXT BOOI	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati TOTAL: KS:	Plat icat ons 45	ions	ns , V RIO	9 2X DS
Sustainability Balance, City UNIT V Traffic Surve Network Integ TEXT BOOI 1. Houbin	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati TOTAL:	Plat icat ons 45	ions	ns , V RIO	9 2X DS
Sustainability Balance, City UNIT V Traffic Surve Network Integ TEXT BOOI 1. Houbin Applica	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati TOTAL: KS: g Song, Ravi Srinivasan, Tamim Sookoor, Smart Cities: Foundations, I	Plat icat ons 45	ions PEF	ns , V RIO	9 2X DS
Sustainability Balance, City UNIT V Traffic Surve Network Integ TEXT BOOI 1. Houbin Applica	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati TOTAL: KS: g Song, Ravi Srinivasan, Tamim Sookoor, Smart Cities: Foundations, H tions, Wiley, 2017	Plat icat ons 45	ions PEF	ns , V RIO	9 2X DS
Sustainability Balance, City UNIT V Traffic Surve Network Integ TEXT BOOI 1. Houbin Applica 2. Moham	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati TOTAL: KS: g Song, Ravi Srinivasan, Tamim Sookoor, Smart Cities: Foundations, I ations, Wiley, 2017 mad S. Obaidat and Petros Nicopolitidis, Smart Cities and Homes, Morg	Plat icat ons 45	ions PEF	ns , V RIO	9 2X DS
Sustainability Balance, City UNIT V Traffic Surve Network Integ TEXT BOOI 1. Houbin Applica 2. Moham 2016. REFERENC 1. Moha	Blocks as a Contextual Variable, Sustainability Information Modeling VEHICLE-TO-X (V2X) INFRASTRUCTURE illance, Detecting Abnormal Events, Micro-mobility Data Commun gration and Interoperability, Connected Cars, Green V2X Communicati TOTAL: KS: g Song, Ravi Srinivasan, Tamim Sookoor, Smart Cities: Foundations, I ations, Wiley, 2017 mad S. Obaidat and Petros Nicopolitidis, Smart Cities and Homes, Morg	Plat icat ons 45	ions PEF ciple Kau	ns , V RIO es, a	9 2X DS

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level				
CO1	CO1 Explain the basic concepts of smart city.					
CO2	Acquaint knowledge on service discovery of smart cities	2				
CO3	Interpret the characteristics of essentials Technologies	2				
CO4	Apply sustainable Infrastructure modeling for designing Smart Cities	3				
CO5	Analyze the various applications and case study of smart city	4				
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;				

*COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	3	3	2	2	2	1		-	N	1	3	3	2	
2.	3	3	3	3	2	2	14	100	1-2	1	$\langle 1 \rangle$	3	3	2	
3.	3	3	3	2	2	3		1	20	-/	21	3	3	2	
4.	3	3	3	3	3	3	-	0	1000	-)	0	3	3	3	
5.	3	2	3	3	3	3	-			20	1	3	3	3	
* 1 – We	$\frac{5}{\text{eak}, 2}$	-Mod	erate, 3	– Stro	ng	5	$\langle \cdot \rangle$	1	1 PF	10-10-10-10-10-10-10-10-10-10-10-10-10-1	E	5	3		

ER THE CONTRACTOR

	MEDICAL IMAGING SYSTEM	L	T	P	C
COURSE OI	BJECTIVES:	3	0	0	3
	roduce the basics of Medical Imaging and its functional modalities.				
	derstand the principles and working of CT imaging technology.				
	entify the clinical applications of Ultrasound imaging technology.				
	part in-depth knowledge of Thermal imaging technology to diagnose di	sea	2 PC		
	rn the working principles of the MRI technique.	bou			
- 10100	In the working principles of the trift teeninque.				
UNIT I	INTRODUCTION TO MEDICAL IMAGING				9
The basic ima	aging principle, Imaging Modalities-Projection radiography, Computed	l To	mog	grap	hy,
Nuclear medi	cine, Ultrasound imaging, Magnetic Resonance Imaging.			_	-
	COLLEN				
UNIT II	COMPUTED TOMOGRAPHY				9
and Patient 7	d, Fourth, Fifth, Sixth & Seventh, Dual-Energy CT, CT Detectors, Gan Table, Image Formation- Line Integrals, Parallel Beam Reconstruction, Helical CT Reconstruction.				
UNIT III	ULTRASOUND IMAGING				9
	Transducer Arrays, A mode, B mode, M mode scanners, Steering a pring and Focusing, Beamforming and Dynamic Focusing.	and	Foc		ng-
UNIT IV	THERMAL IMAGING				9
Equipment, (mography-Infrared Radiation, Physical Factors, Infrared Detectors, To Quantitative Medical Thermography-Digital Analysis of Thermograms I Thermographic Camera.				
Vidicon based					
Vidicon based	MAGNETIC RESONANCE IMAGING				9
UNIT V Principles of selection, Fre	NMR Imaging system, Basic NMR components, MRI Data Acq equency encoding, Polar Scanning, Gradient Echoes, Phase Encoding fects of magnetic field, Introduction to Functional MRI.	Sp	in E	Echo	ice es,
UNIT V Principles of selection, Fre	NMR Imaging system, Basic NMR components, MRI Data Acq equency encoding, Polar Scanning, Gradient Echoes, Phase Encoding fects of magnetic field, Introduction to Functional MRI.	Sp		Echo	ice es,
UNIT V Principles of selection, Fre Biological eff	NMR Imaging system, Basic NMR components, MRI Data Acq equency encoding, Polar Scanning, Gradient Echoes, Phase Encoding fects of magnetic field, Introduction to Functional MRI. TOTAL:	Sp	in E	Echo	ice es,
UNIT V Principles of selection, Fre Biological eff TEXT BOOI 1. Jerry I Hall, S 2. R S K	NMR Imaging system, Basic NMR components, MRI Data Acq equency encoding, Polar Scanning, Gradient Echoes, Phase Encoding fects of magnetic field, Introduction to Functional MRI. TOTAL:	45	in E PEF	RIO rent	ice es, DS ice

- 1. K Kirk Shung, Michael B Smith & Benjamin M W Tsui, Principles of Medical Imaging, Academic Press Inc, 2012.
- 2. Ray H Hashemi & William G Bradley Jr, Lippincott Williams & Wilkins, Basics of MRI, Fourth edition, 2017.
- 3. Joachim Hornegger, Vincent Christlein, Stefan Steidl, Medical Imaging Systems, 2020.
- 4. Cornelius T Leondes, Medical Imaging Systems Technology Volume 5: Methods In Cardiovascular And Brain System, 2005.

COU	RSE OUTCOMES:	RBT
Upon	successful completion of the course, students should be able to:	Level
CO1	Exhibit the principles, components, and procedures of different imaging modalities.	4
CO2	Demonstrate the operation of CT imaging systems and their applications.	2
CO3	Analyze the Ultrasound imaging technique for a particular application.	4
CO4	Analyze the images obtained from the Thermal imaging technique for diagnosis and treatment.	4
CO5	Apply the knowledge of MRI and its types for clinical applications.	3
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva -6	luate-5;

*COs	POs		1	24	8 M	-	10		1.0	20-1	122		PSO	5
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	1	-	-	-	-/	7	2	3	3
2.	3	3	2	3	3	2	- 52	1	2	1.	S^{1}	2	3	2
3.	3	3	3	3	2	-	1		1	10	1	2	3	3
4.	3	3	2	3	3	A		-	2	1	1	2	3	2
5.	3	3	3	3	3	2	-	1	1	V	1	2	3	3
* 1 – W	'eak, 2	– Mod	erate, 3	3 – Stro	ong	εŢ	TD	51	as					

	NEURAL NETWORKS AND ITS APPLICATION	L 3	Т 0	P 0	C 3
To deveTo studyTo imp	JECTIVES : erstand the basic ideas and principles of Neural Networks. elop an understanding of the fundamentals of Convolutional Neural N y the basic concepts of recurrent neural networks. Part knowledge in deep reinforcement algorithms. ore the generative adversarial networks for various applications.		-		5
					0
UNIT I	INTRODUCTION TO NEURAL NETWORKS eural networks and their history, Biological inspiration: neurons and				9
learning: super- working of fee	rminology of neural networks, Activation functions and their role - Tyvised, unsupervised, reinforcement, feed forward Neural Networks, A d forward neural networks Forward propagation and back propagation and its variants, Implementation of a simple feed forward network	Archi	tecti	ire a	nd
UNIT II	CONVOLUTIONAL NEURAL NETWORKS (CNNs)				9
Applications of	Filters, Parameter sharing, Regularization and reducing spate CNNs in image classification.				
UNIT III	RECURRENT NEURAL NETWORKS (RNNs)				9
	e sequential data and RNNs, Bidirectional RNNs, Encoder-decodet tectures, Long Short-Term Memory (LSTM) networks, Application		-		
-	ration, sentiment analysis				
NLP: text gene					
NLP: text gene UNIT IV Stateless Algor Carlo Tree Sea	ration, sentiment analysis DEEP REINFORCEMENT LEARNING rithms: Multi-Armed Bandits, Bootstrapping for Value Function L arch, Applications of Reinforcement Learning - Building Conversa for Chatbots, Self-Learning Robots, Self-Driving Cars.	Learn	ing,	Mo	9 nte
NLP: text gene UNIT IV Stateless Algor Carlo Tree Sea Deep Learning	DEEP REINFORCEMENT LEARNING rithms: Multi-Armed Bandits, Bootstrapping for Value Function L arch, Applications of Reinforcement Learning - Building Conversa for Chatbots, Self-Learning Robots, Self-Driving Cars.	Learn	ing,	Mo	9 nte ns:
NLP: text gene UNIT IV Stateless Algor Carlo Tree Sea Deep Learning UNIT V	DEEP REINFORCEMENT LEARNING ithms: Multi-Armed Bandits, Bootstrapping for Value Function L arch, Applications of Reinforcement Learning - Building Conversa for Chatbots, Self-Learning Robots, Self-Driving Cars. GENERATIVE ADVERSARIAL NETWORKS (GANs)		ing, Il Sy	Mo: /ster	9 nte ns: 9
NLP: text gene UNIT IV Stateless Algor Carlo Tree Sea Deep Learning UNIT V Understanding	DEEP REINFORCEMENT LEARNING rithms: Multi-Armed Bandits, Bootstrapping for Value Function L arch, Applications of Reinforcement Learning - Building Conversa for Chatbots, Self-Learning Robots, Self-Driving Cars.		ing, Il Sy	Mo: /ster	9 nte ns: 9
NLP: text gene UNIT IV Stateless Algor Carlo Tree Sea Deep Learning UNIT V Understanding	DEEP REINFORCEMENT LEARNING Tithms: Multi-Armed Bandits, Bootstrapping for Value Function L arch, Applications of Reinforcement Learning - Building Conversa for Chatbots, Self-Learning Robots, Self-Driving Cars. GENERATIVE ADVERSARIAL NETWORKS (GANs) GAN architecture, Training process: generator and discriminator,	Learni ationa	ing, Il Sy	Mo: /ster	9 nte ns: 9 of
NLP: text gene UNIT IV Stateless Algor Carlo Tree Sea Deep Learning UNIT V Understanding	DEEP REINFORCEMENT LEARNING ithms: Multi-Armed Bandits, Bootstrapping for Value Function L arch, Applications of Reinforcement Learning - Building Conversa for Chatbots, Self-Learning Robots, Self-Driving Cars. GENERATIVE ADVERSARIAL NETWORKS (GANs) GAN architecture, Training process: generator and discriminator, generation, style transfer. TOTAL:	Learni ationa	ing, Il Sy	Mo: /ster	9 nte ns: 9 of

- 1. Satish Kumar, "Neural Networks: A Classroom Approach", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2nd edition,2017.
- 2. Phil Kim, "MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.
- 3. Jon Krohn, Grant Beyleveld, Aglaé Bassens "Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence", 1st edition Addison-Wesley Professional 2019.

COURS	SE OUTCOMES:	RBT
Upon su	ccessful completion of the course, students should be able to:	Level
CO1	Infer the concepts of neural networks and their applications	2
CO2	Apply appropriate convolutional neural network for image classification problems	3
CO3	Deploy RNN and LSTM in NLP and real world problems	3
CO4	Implement deep reinforcement learning techniques in various applications to improve their performance	3
CO5	Apply GAN model for data augmentation	3
Bloom's	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create-6	ISI ++ CONTIN	

*CO	CO		2	- 2	20	P	Os	7	1-1-1				PS	Os
s	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	-	-	-		1	-	-	11	1	3	1
2.	3	3	2	1	2	2	2	-	2	1/	21	2	3	2
3.	3	3	2	1	2	2	2	-	2	1	21	2	3	2
4.	3	3	2	51	2	2	2	- S	2	(fc)	1	2	3	2
5.	3	3	2	1	2	2	2	2	2	1	- 1	2	3	2
* 1 – V	Weak, 2	2 - Mo	derate,	3-Str	ong	-		- 5	201	1		•	•	•

OE22712	ROBOTIC SYSTEMS				C
COUDSE	PIECTIVES.	3 ()	0	3
	•				
	-				
• 10 5	OE22712 ROBOTIC SYSTEMS 3 0 0 3 0 0 0 0 COURSE OBJECTIVES: The student should be exposed to: • To understand robotics, automation and control technologies • To explore various types of robotic sensors • To comprehend robotic vision and machine learning • To learn about actuators and robot programming • To study various applications of robotics and its system in industry UNIT I OVERVIEW OF ROBOTICS AND AUTOMATION Prevision of robot movements – Accuracy, Resolution, Repeatability. Automation: Basic elements of an automated system – Level of automation; Overview or controller and its types – PI, PD, PID UNIT II SENSORS FOR ROBOTIC APPLICATIONS Proximity sensors. Proximity sensors.Speed sensors – Velocity/motion sensors; Force/Pressure and torque sensors Advanced Sensor Technology - Smart sensors, MEMS-based sensors; Sensor fusions UNIT III ROBOTIC VISION SYSTEM Proximity sensor sensors – Image processing and analysis, Segmentation, Feature extraction, Object Recognition, Vision Sensors-Overview on Artificial Intelligence/Machine Learning for obotic vision UNIT III ROBOTIC VISION SYSTEM Proximity sensor sensors – Technology - Smart sensors, MEMS-based sensors; Sensor fusions UNIT IV ACTUATORS AND ROBOT PROGRAMMING				
UNIT I	OVERVIEW OF ROBOTICS AND AUTOMATION				9
Robotics: De	efinition, Origin, Different types, Various generations, Degrees of freed	om; A	nat	om	y
		ited, S	CA	RA	١;
		_			
		Overv	viev	v o	n
controller an	id its types – PI, PD, PID				
LINIT II	SENSORS FOR ROBOTIC APPLICATIONS				9
		ion of	nac		-
		Jique	sen	SOL	s ,
Advanced S					
	ensor Technology - Smart sensors, MEMS-based sensors; Sensor fusio	ns			
	ensor Technology - Smart sensors, MEMS-based sensors; Sensor fusio	ns			
		ns			0
UNIT III	ROBOTIC VISION SYSTEM				9
UNIT III Robotic visi	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex	tractio			9
UNIT III Robotic visi Object Reco	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex gnition, Vision Sensors-Overview on Artificial Intelligence/Machine L	tractio			9
UNIT III Robotic visi Object Reco	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex gnition, Vision Sensors-Overview on Artificial Intelligence/Machine L	tractio			9
UNIT III Robotic visi Object Reco robotic visio	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex gnition, Vision Sensors-Overview on Artificial Intelligence/Machine L n	tractio		or	
UNIT III Robotic visi Object Reco robotic visio UNIT IV	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex gnition, Vision Sensors-Overview on Artificial Intelligence/Machine L n ACTUATORS AND ROBOT PROGRAMMING	tractio earnir	ıg fo	or	9
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators –	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exgnition, Vision Sensors-Overview on Artificial Intelligence/Machine L n ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools -	tractio earnir	ıg fo	or	
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exignition, Vision Sensors-Overview on Artificial Intelligence/Machine Linn ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools - defectors – Grippers and Tools - iderations in gripper selection; Robot programming, Introduction to rol	tractio earnir	ıg fo	or	
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exignition, Vision Sensors-Overview on Artificial Intelligence/Machine Linn ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools - defectors – Grippers and Tools - iderations in gripper selection; Robot programming, Introduction to rol	tractio earnir	ıg fo	or	
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex gnition, Vision Sensors-Overview on Artificial Intelligence/Machine L n ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools - iderations in gripper selection; Robot programming, Introduction to rol	tractio earnir	ıg fo	or	
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons languages-II UNIT V Industrial ap	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exgnition, Vision Sensors-Overview on Artificial Intelligence/Machine L n ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools- iderations in gripper selection; Robot programming, Introduction to rol PL ROBOTIC SYSTEMS IN INDUSTRY plications – Material transfers, Machine loading and unloading, Autom	tractio earnir – Type oot	es,	or	9 9 9 V,
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons languages-II UNIT V Industrial ap Automatic i	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exignition, Vision Sensors-Overview on Artificial Intelligence/Machine Line ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools - iderations in gripper selection; Robot programming, Introduction to role MOBOTIC SYSTEMS IN INDUSTRY plications – Material transfers, Machine loading and unloading, Autom inspection, Flexible Manufacturing Systems; Introduction to modern respection	tractio earnir – Type oot	es,	or	9 9 9 V,
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons languages-II UNIT V Industrial ap Automatic i	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exignition, Vision Sensors-Overview on Artificial Intelligence/Machine Linn ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools - iderations in gripper selection; Robot programming, Introduction to rol PL ROBOTIC SYSTEMS IN INDUSTRY plications – Material transfers, Machine loading and unloading, Autom nspection, Flexible Manufacturing Systems; Introduction to modern rits, cooperative and collaborative robots	Type - Type - Type Dot atic as nobile	es,	or 	9 9 9 7 9 9 9 7
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons languages-II UNIT V Industrial ap Automatic i	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exignition, Vision Sensors-Overview on Artificial Intelligence/Machine Linn ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools - iderations in gripper selection; Robot programming, Introduction to rol PL ROBOTIC SYSTEMS IN INDUSTRY plications – Material transfers, Machine loading and unloading, Autom nspection, Flexible Manufacturing Systems; Introduction to modern rits, cooperative and collaborative robots	Type - Type - Type Dot atic as nobile	es,	or 	9 9 9 7 9 9 9 7
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons languages-II UNIT V Industrial ap Automatic i Swarm robo	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex gnition, Vision Sensors-Overview on Artificial Intelligence/Machine L n ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools- iderations in gripper selection; Robot programming, Introduction to rol PL ROBOTIC SYSTEMS IN INDUSTRY plications – Material transfers, Machine loading and unloading, Autom nspection, Flexible Manufacturing Systems; Introduction to modern r ts, cooperative and collaborative robots	Type - Type - Type Dot atic as nobile	es,	or 	9 9 <i>y</i> , s:
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons languages-II UNIT V Industrial ap Automatic i Swarm robo	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature exignition, Vision Sensors-Overview on Artificial Intelligence/Machine Line ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools - iderations in gripper selection; Robot programming, Introduction to rol PL ROBOTIC SYSTEMS IN INDUSTRY plications – Material transfers, Machine loading and unloading, Autom nspection, Flexible Manufacturing Systems; Introduction to modern ris, cooperative and collaborative robots TOTAL: OKS:	Type Type Type Type Type Type Type Type	es,	or ably bots	9 9 7, 8: DS
UNIT III Robotic visi Object Reco robotic visio UNIT IV Actuators – Design cons languages-II UNIT V Industrial ap Automatic i Swarm robo	ROBOTIC VISION SYSTEM on systems – Image processing and analysis, Segmentation, Feature ex gnition, Vision Sensors-Overview on Artificial Intelligence/Machine L n ACTUATORS AND ROBOT PROGRAMMING Electric – Hydraulic – Pneumatic; End effectors – Grippers and Tools- iderations in gripper selection; Robot programming, Introduction to rol PL ROBOTIC SYSTEMS IN INDUSTRY plications – Material transfers, Machine loading and unloading, Autom nspection, Flexible Manufacturing Systems; Introduction to modern r ts, cooperative and collaborative robots	Type Type Type Type Type Type Type Type	es,	or ably bots	9 9 7, 8: DS

REFERENCES:

- 1. Saeed B. Niku, "An Introduction to Robotics: Analysis, systems and applications", Pearson Education, 2009.
- 2. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987.
- 3. Mikell P. Groover, "Automation, Production systems and Computer Integrated Manufacturing", Prentice Hall India Pvt. Ltd., 2011.

DDT

- 4. Richard D Klafter, and Michael Negin, "Robotics Engineering", Prentice Hall, 2009.
- 5. Designing Autonomous Mobile Robots, John M Holland, Elsevier, 2004
- 6. D. Patranabis, Sensors and Transducers, PHI, 2nd Ed 2013
- 7. Jon S.Wilson, Sensor Technology Handbook, Elsevier, 2005

COURSE OUTCOMES:

	SE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Classify robotics systems, automation and control technologies.	3
CO2	Select appropriate sensors for certain applications	3
CO3	Sketch various stages involved in computer vision for robotics	3
CO4	Select required actuators, end effectors, robot programming languages for any given applications.	4
CO5	Illustrate recent industrial robotics and their applications.	4
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; E-6	valuate-5;

*C		POs											PS	SOs
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	2	1	1	10	17	E	-61	1	<u> </u>	-	1	1	1
2.	3	2	1	1	-		-		-	-	-	1	1	1
3.	3	2	1	1	-	-	-	-	-	-	-	1	1	1
4.	3	3	1	2	-	-	-	-	-	-	-	1	1	1
5.	3	1	1	2	-	-	-	-	-	-	-	1	1	1
* 1 – V	Veak, 2	2 – Moo	lerate,	3 - Stro	ong		-					-		

OE22713	SYSTEM DESIGN USING MICROCONTROLLERS	L T P C 3 0 0 3
COURSE OB	JECTIVES:	
• To stu	udy the Architecture, addressing modes & instruction set of PIC Mic	crocontroller and
	op skills in writing simple programs.	
• To un	derstand the concepts of Interrupts, timer and Serial ports	
	troduce commonly used peripheral interfacing ICs.	
	pose the students to the fundamentals of Arduino - based system des	sign
	idy and understand the typical applications of microcontrollers	C
UNIT I	INTRODUCTION TO MICROCONTROLLER	9
Overview of	PIC microcontroller - Architecture – Program Memory consideration	ns – Register File
Structure - I	nstruction Set - Addressing modes - Assembly language Progr	amming - Simple
operations	COLLE	
	A DOLLEGA	
UNIT II	PORTS, TIMERS AND INTERRUPTS OF	9
	MICROCONTROLLER	
	gister formats, Serial port register formats - Timer and Coun ler Interrupts – Sources of PIC Interrupts	ter registers, PIC
UNIT III	PERIPHERALS AND INTERFACING	
		-
Serial Comm	nunication – Universal Synchronous Asynchronous Receiver Tran	smitter $(IIS \Delta RT)$
	nunication – Universal Synchronous Asynchronous Receiver Tran	
Serial Perij	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An	nalog to Digita
Serial Perij		nalog to Digita
Serial Peri Converter (pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa	nalog to Digita
Serial Perij Converter (UNIT IV	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa INTRODUCTION TO ARDUINO	nalog to Digita acing
Serial Perij Converter (UNIT IV Single-board 1	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br	nalog to Digita acing ceakdown – Powe
Serial Perij Converter (UNIT IV Single-board 1 Supply – Mic	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo	nalog to Digita acing reakdown – Powe otion sensor, ligh
Serial Perij Converter (2 UNIT IV Single-board 1 Supply – Mic sensor, pressu	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo are sensor, proximity sensor, humidity and temperature sensor, Ac	nalog to Digita acing reakdown – Powe otion sensor, ligh
Serial Perij Converter (UNIT IV Single-board n Supply – Mic sensor, pressu	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR moder re sensor, proximity sensor, humidity and temperature sensor, Acting sensor, RGB and Gesture sensor	nalog to Digitancing reakdown – Powe otion sensor, ligh cceleration sensor
Serial Perij Converter (2 UNIT IV Single-board 1 Supply – Mic sensor, pressu sound detectin UNIT V	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR more sensor, proximity sensor, humidity and temperature sensor, Ac ng sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY	nalog to Digitancing reakdown – Powe otion sensor, ligh cceleration sensor
Serial Perig Converter (2 UNIT IV Single-board 1 Supply – Mic sensor, pressu sound detectin UNIT V Interfacing L	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR more re sensor, proximity sensor, humidity and temperature sensor, Ac ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC	nalog to Digita acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control
Serial Perij Converter (2 UNIT IV Single-board 1 Supply – Mic sensor, pressu sound detectin UNIT V Interfacing L Controlling	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface (INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board bre procontroller Shields; Sensors – Distance Ranging sensor, PIR more sensor, proximity sensor, humidity and temperature sensor, Act ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC	nalog to Digita acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control
Serial Perij Converter (2 UNIT IV Single-board 1 Supply – Mic ensor, pressu ound detectin UNIT V Interfacing L Controlling	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface (INTRODUCTION TO ARDUINO INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board brarocontroller Shields; Sensors – Distance Ranging sensor, PIR mare sensor, proximity sensor, humidity and temperature sensor, Act ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino)	reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board
Serial Perij Converter (2 UNIT IV Single-board 1 Supply – Mic sensor, pressu sound detectin UNIT V Interfacing L Controlling microcontrol	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR moder re sensor, proximity sensor, humidity and temperature sensor, Acting sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm used (Example-Arduino) TOTA	nalog to Digita acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control
Serial Perij Converter (UNIT IV Single-board n Supply – Mic Sensor, pressu sound detectin UNIT V Interfacing L Controlling microcontrol	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) TOTA	alog to Digitancing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS
Serial Perig Converter (2 UNIT IV Single-board 1 Supply – Mic sensor, pressu sound detection UNIT V Interfacing L Controlling microcontrol TEXT BOOK 1. Muhar	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface (INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board brace resensor, Pile Sensors – Distance Ranging sensor, PIR mare sensor, proximity sensor, humidity and temperature sensor, Acting sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY .CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm useler (Example-Arduino) TOTA KS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC Mare Sensor's PIC Mare PIC Mare Sensor's PIC Mare Sensor's PIC Mare Sensor's PIC Mare PIC PIC PIC PIC Mare PIC	alog to Digitancing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS
Serial Perig Converter (2 UNIT IV Single-board 1 Supply – Mic sensor, pressu sound detection UNIT V Interfacing L Controlling microcontroll FEXT BOOK 1. Muhar Embed	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface (INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board brace on the sensor, Pice of Sensors – Distance Ranging sensor, PIR mare sensor, proximity sensor, humidity and temperature sensor, Acting sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm user (Example-Arduino) TOTACS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC M Ided Systems using Assembly and C for PIC18', Pearson Education	halog to Digitan acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008
Serial Perij Converter (2 UNIT IV Single-board I Supply – Mic Sensor, pressu sound detection UNIT V Interfacing L Controlling microcontroll FEXT BOOK 1. Muhar Embed 2. Peatma	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) TOTA SS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC M Ided Systems using Assembly and C for PIC18', Pearson Education an, J. B., "Design with PIC Micro Controllers" Pearson Education, 3	halog to Digitan acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008
Serial Perij Converter (2 UNIT IV Single-board I Supply – Mic sensor, pressu sound detection UNIT V Interfacing L Controlling microcontroll FEXT BOOK 1. Muhar Embed 2. Peatma 3. Arduin	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br rocontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac g sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) TOTA SS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC M Ided Systems using Assembly and C for PIC18', Pearson Education an, J. B., "Design with PIC Micro Controllers" Pearson Education, 3 io-For-Beginners.pdf (makerspaces.com)	alog to Digitancing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008 3rd Edition, 2004.
Serial Perij Converter (2 UNIT IV Single-board n Supply – Mice ensor, pressu ound detection UNIT V Interfacing L Controlling microcontroll TEXT BOOK 1. Muhan Embed 2. Peatma 3. Arduin 4. Arduin	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) TOTA SS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC M Ided Systems using Assembly and C for PIC18', Pearson Education an, J. B., "Design with PIC Micro Controllers" Pearson Education, 3 no-For-Beginners.pdf (makerspaces.com) no Course for Absolute Beginners eBook Info - Programming Electro	alog to Digitancing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008 3rd Edition, 2004.
Serial Perij Converter (2 UNIT IV Single-board I Supply – Mic Sensor, pressu sound detection UNIT V Interfacing L Controlling microcontroll FEXT BOOK 1. Muhar Embed 2. Peatma 3. Arduin REFERENC	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) TOTA SS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC M Ided Systems using Assembly and C for PIC18', Pearson Education an, J. B., "Design with PIC Micro Controllers" Pearson Education, 3 to-For-Beginners.pdf (makerspaces.com) to Course for Absolute Beginners eBook Info - Programming Electro ES:	alog to Digitancing acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008 3 rd Edition, 2004. conics Academy
Serial Perij Converter (2 UNIT IV Single-board n Supply – Mice sensor, pressu sound detection UNIT V Interfacing L Controlling microcontroll FEXT BOOK 1. Muhan Embed 2. Peatma 3. Arduin 4. Arduin REFERENCI 1. Tim W	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) TOTA SS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC M Ided Systems using Assembly and C for PIC18', Pearson Education an, J. B., "Design with PIC Micro Controllers" Pearson Education, 3 no-For-Beginners.pdf (makerspaces.com) no Course for Absolute Beginners eBook Info - Programming Electre ES: Vilmshurst, "Designing Embedded Systems with PIC Microcontrolle	alog to Digitancing acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008 3 rd Edition, 2004. conics Academy
Serial Perig Converter (A UNIT IV Single-board I Supply – Mice Sensor, pressue sound detection UNIT V Interfacing L Controlling microcontroll TEXT BOOK 1. Muhar Embed 2. Peatma 3. Arduin REFERENC 1. Tim Wa and Ap	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interfa INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br rocontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac g sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC appliances – Simple programmable robotic arm us ler (Example-Arduino) CT AC application D. Mckinlay, Danny Causey 'PIC M ded Systems using Assembly and C for PIC18', Pearson Education, 3 no-For-Beginners.pdf (makerspaces.com) no Course for Absolute Beginners eBook Info - Programming Electro ES: Cilmshurst, "Designing Embedded Systems with PIC Microcontrolle oplications", Newness Publication, 2007	alog to Digitancing acing reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008 3 rd Edition, 2004. conics Academy
Serial Perig Converter (A UNIT IV Single-board I Supply – Mice Sensor, pressue sound detection UNIT V Interfacing L Controlling microcontrol TEXT BOOK 1. Muhar Embed 2. Peatma 3. Arduin 4. Arduin REFERENCI 1. Tim Wa and Ap 2. John Io	pheral Interface (SPI), Inter-Integrated Circuit (I2C), An ADC), Digital to Analog Converter (DAC) and Sensor Interface INTRODUCTION TO ARDUINO microcontroller (Example-Arduino) – Types of Boards - Board br procontroller Shields; Sensors – Distance Ranging sensor, PIR mo re sensor, proximity sensor, humidity and temperature sensor, Ac ag sensor, RGB and Gesture sensor SYSTEM DESIGN – CASE STUDY CD Display – Keypad Interfacing – Stepper Motor Control - DC DC/ AC appliances – Simple programmable robotic arm us ler (Example-Arduino) TOTA SS: nmad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC M Ided Systems using Assembly and C for PIC18', Pearson Education an, J. B., "Design with PIC Micro Controllers" Pearson Education, 3 no-For-Beginners.pdf (makerspaces.com) no Course for Absolute Beginners eBook Info - Programming Electre ES: Vilmshurst, "Designing Embedded Systems with PIC Microcontrolle	alog to Digitation reakdown – Powe otion sensor, ligh cceleration sensor C Motor Control sing Single-board AL: 45 PERIODS licrocontroller an 2008 3rd Edition, 2004. conics Academy ers – Principles

Press, Taylor & Francis Group, 2007.

- 4. Arduino Course for Absolute Beginners eBook Info Programming Electronics Academy
- 5. Web Resource: https://www.udemy.com/course/arduino-for-beginners-complete-course

COURS	E OUTCOMES:	RBT
At the en	d of the course, learners will be able to	Level
CO1	Interpret the PIC architecture and its assembly language programming	2
CO2	Determine the feasibility of employing the PIC microcontroller's I/O ports, Timers & Interrupts in real time applications	3
CO3	Identify the best commonly used interfaces of PIC microcontroller such as USART, SPI, I2C and to develop applications based on DAC, ADC of PIC	3
CO4	Identify suitable type of Arduino and sensors for an application	3
CO5	Examine the available case studies based on PIC and Arduino microcontroller to design an embedded system	4
Bloom's	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evalu	uate-5;
Create-6	A STATE OF STATE	

COURSE ARTICULATION MATRIX

15

125 770

*COs	POs													SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	2	1	1	18	-	5	3	2	3
2.	3	3	3	3	3	2)->	-	-		01	3	2	3
3.	3	3	3	3	3	2	5-	-	14	-	2	3	2	3
4.	3	3	3	3	3	2	14	-			FTT	3	2	3
5.	3	3	3	3	3	2	9-1	-/	1.20	(-)	m	3	2	3
* 1 – W	eak. 2	- Mo	derate,	3 - Str	ong	-		1			77	/		•

Π

tants

VALUE ADDED COURSES

	VALUE ADDED COURSES	_		1	
VD22701	5G AND 6G ANTENNA THEORY AND DESIGN	L 2	T 0	P 0	C 2
COURSE OF	BJECTIVES:		Ŭ	Ŭ	L
	part the knowledge about antenna arrays for 5G and 6G.				
	niliarize with conformal antenna array.				
-	wide exposure on Leaky wave antennas.				
• To des	sign antenna for 5G and 6G wireless communication.				
					(
		ments	3 of A	Antei	1na
UNIT II	CONFORMAL ANTENNAS	Τ			6
		ying	tripl	e la	yeı
		<u> </u>			
					(
UNIT IV Introduction,		 millir	neter	w	ave
onformal Transmit arrays, Challenges, Conformal Transmit arrays employing triple la lements, Conformal arrays for 5G and beyond. INIT III LEAKY WAVE ANTENNAS requency Independent Beam Scanning Leaky Wave Antennas, Reconfigurable Fabry-Perot (WA, Period-Reconfigurable SIW Based LWA, Reconfigurable Composite Right/Left-Han WA. INIT IV 5G AND 6G WIRELESS COMMUNICATIONS Introduction, key features-Modulation and Multiple Access techniques-millimeter wommunications, 5G Architectures -Antenna technologies used in 5G and 6G. INIT V ANTENNAS FOR 5G AND 6G WIRELESS COMMUNICATIONS Introduction to 5G and 6G antennas and arrays, Design of Antennas for 5G wireless communicat ub-6 GHz antennas, and millimeter wave 5G antennas, Measurement techniques. TOTAL: 30 PERIO TOTAL: 30 PERIO EXT BOOK: 1. Constantine.A.Balanis, "Antenna Theory Analysis and Design", 4th Edition Wiley Stude Edition, 2016.					
UNIT V					6
			imun	licati	on
			PEI	RIO	DS
	्या परा क्ष				
			~		
		1 W1le	ey St	uder	ıt
2. Rappap Hall, N	ort, T.S., "Wireless Communications, Principles and Practice", 2nd L 2002	Editio	on, P	renti	ice
,	El-Zooghby, Smart Antenna Engineering, Artech House Publishers	,2005	•		
4. Y. Jay (Guo, Richard W Ziolkowski, "Advanced Antenna Array Engineerin	g for	6G a	nd	
beyond	wireless communications", online resource, Hoboken, New Jersey :				
Press, 2 REFERENC					
		001	7		
	D.Kraus," Antennas for all Applications", 5th Edition, Mc Graw Hill			• • • • •	

2. Afif Osseiran, Jose F Monserrat, Patrick Marsch, "5G Mobile and Wireless Communications

Technology", Cambridge University Press, 2016

3. Saad Z. Asif, "5G Mobile Communications Concepts and Technologies", CRC Press, Taylor & Francis Group, First Edition, 2018

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level
CO1	Understand the fundamentals of antenna arrays for 5 G and 6G.	2
CO2	Analyze conformal antenna systems and its applications.	4
CO3	Acquire knowledge about leaky-wave Antennas.	3
CO4	Articulate the principles of 5G and 6G wireless communication.	3
CO5	Utilize the commercial simulation software to design and analyze the antennas for 5G and 6G.	4

COURSE ARTICULATION MATRIX

*CO	121			/	1	Р	OS		1	1	01		PS	Os
s	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3 -	3	2	1	0-	102	-	10	1	1	3
2.	3	3	3	3	3	2	1		-	20	1-	1	2	3
3.	3	3	3	3	3	2	1		1.6	<u> 19</u>	$ \leq$	1	2	3
4.	3	3	2	2	2	2	146	1	1.1.	ist i	1	1	2	1
5.	3	2	2	2	3	2	-	-/	-		1	1	1	3
* 1 – V	Veak, 2	2 - Mc	oderate,	3 - Str	ong	-		/		1	-0	/		

tant o

VD22702	ARTIFICIAL NEURAL NETWORKS	L 1 2 (C 2
COURSE O	BJECTIVES:		Ţ	
• To un	derstand the basic concepts of neural networks.			
 To illu 	strate the different working principles of the back propagation network	κ.		
• To ana	alyze the different types of neural networks.			
• To int	roduce the advanced level networks.			
• To ap	bly artificial neural networks for real-time applications.			
UNIT I	INTRODUCTION			6
Characteristic	s of neural networks, Learning Methods, Gradient Descent Rules, Perce			
		-		
		ativa	Man	6
10				
UNIT III	OTHER NEURAL NETWORKS			6
			ng,	Self
UNIT IV	ADVANCE NETWORKS			6
Support Vector	or Machines, R B F Network, Neocognitron Evolving neural networks	using	GA.	
		<u> </u>	1	<u>6</u>
	VD22702 ARTIFICIAL NEURAL NETWORKS 2 0 OURSE OBJECTIVES: • To understand the basic concepts of neural networks. •	Mec	ncai	
Application-1				
TEXT BOO	KS:			
Pvt. L 2. David	td, Second Edition, 2017. Goldberg, "Genetic Algorithms in Search, Optimization and Mach			,
-	• • •	Comp	utati	onal
REFERENC	ES:			
		1994.		
2. B. Ye	gnanarayana, "Artificial Neural Networks", PHI, New Delhi 1998.			
3. James	A Freeman and David M.Skapra, "Neural Networks", Addison – Wesle	ey, Ind	ia 19	99.
	ie Mitchell, "An Introduction to Genetic Algorithms", Prentice Hall	•		

- 5. Philip D.Wasermann, "Advanced Methods in Neural Computing", Van Nostrand Reinhold, New York, 1993.
- 6. Simon Haykins, "Neural Networks", Prentice Hall International Inc, Third Edition, 2009.

COU	COURSE OUTCOMES:							
Upon successful completion of the course, students should be able to:								
CO1	O1 Demonstrate the basic principles of neural networks.							
CO2	Implement various types of networks for back propagation models .	3						
CO3	Understand the different types of neural networks.	3						
CO4	Implement the optimization algorithm for neural networks.	3						
CO5	Evaluate the given neural network application for latest technologies.	5						
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5;								
Create-6								

L'ES STATE

*COs	Pos									2	10		PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	2	3	3	1	1	-	112	-	2	3	3	3
2.	3	3	2	3	3	9)	5	<u> </u>		2	3	3	3
3.	3	3	≥ 2	3	. 3	JI	1	-	14	×0	2	3	3	3
4.	3	3	3	3	3	1-	- Jh (-	11		2	2	3	3
5.	3	3	3	3	3	-	1	-1	26	(1-1)	/17	2	3	3
* 1 – W	eak, 2	2 - Mo	derate,	3 – Str	ong	1		/			27	1		

U

tanto

VD22703	DEEP LEARNING USING PYTHON	L 2	Т 0	<u>Р</u> 0	<u>C</u> 2
COURSE O	BJECTIVES:	-	U	U	
	derstand the theoretical foundations of machine learning models.				
 To illu 	ustrate the different working principles of deep learning architectures.				
	alyze on how to reduce the dimensions of high resolution data.				
	aluate the generalizability of the optimized deep networks.				
	ply optimized deep networks for appropriate real-time applications.				
UNIT I	MACHINE LEARNING CONCEPTS				6
	to Machine Learning – ML terminologies – Linear Regression: Traini	ing a	and	Los	s –
	on techniques – Working with python (Tensorflow).	U			
	ADDELEGA				
UNIT II	CLASSIFICATION AND CLUSTERING				6
	ession – Generalization – Regularization - Classification – Clustering: G				
	Density-based Clustering - Distribution-based Clustering - Hierarchical	Clu	steri	ng -	-
Working with	n Python Tensorflow and Google's colab environment.	1			
UNIT III	DEEP NETWORKS				6
Introduction t library – Feed	to Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory.				lib
Introduction t library – Feed its variants – UNIT IV	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING		twor	ks a	lib nd
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via	to Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND	ll ne	twor	ks a	lib nd
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment.	ll ne	twor	ks a	ib nd 6
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS	l net	twor	ks a	lib nd
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS oltzmann Machines – Deep Belief networks – Deep Boltzmann machine il Boltzmann machine – Working with Python.	l net ining aptic	g an	ks a	
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS oltzmann Machines – Deep Belief networks – Deep Boltzmann machine	l net ining aptic	g an	ks a	
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c of Google's Colab environment. DEEP GENERATIVE MODELS oltzmann Machines – Deep Belief networks – Deep Boltzmann machine l Boltzmann machine – Working with Python. TOTAL:	l net ining aptic	g an	ks a	
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona TEXT BOO	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS oltzmann Machines – Deep Belief networks – Deep Boltzmann machine d Boltzmann machine – Working with Python. KS:	ll net ining aptic	g an	ks a	
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona TEXT BOO 1. Deep	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS oltzmann Machines – Deep Belief networks – Deep Boltzmann machine d Boltzmann machine – Working with Python. TOTAL: KS: Learning for Computer Vision by Rajalingappaa Shanmugamani , 2018	I net ininina aptic	g an ponin	Ima g.	lib nd ge
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona TEXT BOOI 1. Deep 2. Hands	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS oltzmann Machines – Deep Belief networks – Deep Boltzmann machine l Boltzmann machine – Working with Python. TOTAL: KS: Learning for Computer Vision by Rajalingappaa Shanmugamani , 2018 s-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd	I net ininina aptic	g an ponin	Ima g.	lib nd ge
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona TEXT BOO 1. Deep 2. Hands Auréli	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS Oltzmann Machines – Deep Belief networks – Deep Boltzmann machine I Boltzmann machine – Working with Python. TOTAL: KS: Learning for Computer Vision by Rajalingappaa Shanmugamani , 2018 s-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ien Géron. Released September 2019. Publisher- O'Reilly Media,	I net ininin aptic 30	g an onin	Ima g.	6 DS
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona TEXT BOO 1. Deep 2. Hands Auréli 3. Yoshu	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS oltzmann Machines – Deep Belief networks – Deep Boltzmann machine l Boltzmann machine – Working with Python. TOTAL: KS: Learning for Computer Vision by Rajalingappaa Shanmugamani , 2018 s-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd	I net ininin aptic 30	g an onin	Ima g.	6 ge
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona TEXT BOO 1. Deep 2. Hands Auréli 3. Yoshu 2015	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS Oltzmann Machines – Deep Belief networks – Deep Boltzmann machine l Boltzmann machine – Working with Python. KS: Learning for Computer Vision by Rajalingappaa Shanmugamani , 2018 s-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ien Géron. Released September 2019. Publisher- O'Reilly Media, na Bengio and Ian J.Goodfellow and Aaron Courville, "Deep Learning"	I net ininin aptic 30	g an onin	Ima g.	6 DS
Introduction t library – Feed its variants – UNIT IV Digit Classifi Classifier via Working with UNIT V Restricted Bo Convolutiona TEXT BOOI 1. Deep 2. Hands Auréli 3. Yoshu 2015 REFERENC	o Neural networks – Terminology – Working with tensors – Pandas, nur d forward networks – Convolutional Neural network – Recurrent neura Long-Short Term memory. DEVELOPING CONVOLUTIONAL NETWORKS AND SEQUENCE MODELING cation using MNIST - Image Classification with Fashion MNIST - Tra Transfer Learning - Building a Text Classifier with TF-Hub – Image c n Google's Colab environment. DEEP GENERATIVE MODELS Oltzmann Machines – Deep Belief networks – Deep Boltzmann machine l Boltzmann machine – Working with Python. KS: Learning for Computer Vision by Rajalingappaa Shanmugamani , 2018 s-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ien Géron. Released September 2019. Publisher- O'Reilly Media, na Bengio and Ian J.Goodfellow and Aaron Courville, "Deep Learning"	1 net ining aptic 2 – 30 1 3 1 Edi	g an onin PER	ks a Ima g. RIO	6 DS

- 2. Li Deng, Dong Yu, "Deep Learning: Methods and Applications", now publishers, 2014
- 3. K. P. Murphy, "Machine Learning: A probabilistic perspective", MIT Press, 2012.
- 4. C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.

Extensive Reading:

• https://developers.google.com/machine-learning/crash-course/ml-intro

https://www.tensorflow.org/tutorials/

COURSE OUTCOMES: Upon successful completion of the course, students should be able to:							
CO1	Demonstrate the basics of deep learning for a given context.	2					
CO2	Implement various deep learning models for the given problem.	3					
CO3	Realign high dimensional data using reduction techniques for the given problem.	3					
CO4	Analyze optimization and generalization techniques of deep learning for the given problem.	4					
CO5	Evaluate the given deep learning application and enhance by applying latest techniques	5					
	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6						

COURSE ARTICULATION MATRIX

*CO			\leq		.	P	Os	0	1 25	×0	2		PS	Os
S	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	2	190	1	1.17	20-	1	1	3	3
2.	3	3	3	3	3	2		1	-		1	1	3	3
3.	3	3	3	3	3	2	2710	-	75->	-/	1	1	3	3
4.	3	3	2	2	2	2			10	1	1/	1	3	1
5.	3	2	2	2	3	2	t Đ	S -	-/	- 90	1	1	3	3
* 1 – V	Neak. 2	$\frac{1}{2} - Mc$	oderate.	3 - Str	ong		VE	1.00	1.	2	/		•	

590

विद्या पर

		L	Т	P	С
VD22704	EMBEDDED SYSTEM SIMULATION	2	0	0	2
COURSE OBJEC	FIVES:		l		<u>.</u>
embedded C	the fundamental concepts of microcontroller-based sys coding. students to know about the Arduino hardware, interfac				
	practical experience nd Interfacing sensors and actuators through suitable co	ommu	nicat	ion	
• To explore t	basic concepts in android based mobile application cont		_		
• To be famili	ar with Wi-Fi technology associated with Embedded sy	stem	s.		
UNIT I	INTRODUCTION OF EMBEDDED SYSTEM				6
	ology, Basic micro controller concept, Embedded syste	em an	nlica	tion	
	er concept, Embedded c using basic microcontroller		prica	tion,	
/	5/	1			
UNIT II	ARDUINO IDE ino hardware, Led blink basic programs, Serial commu	1			6
UNIT III	READ-WRITE OPERATION HANDLING	2			6
	write, Analog serial communication, Bluetooth comm like lcd, bluetooth, and ultrasonic sensor etc.	nunic	ation,	Inter	face
	ANDROID BASED ADDS CONTROL	1			
UNIT IV Mobile app Handlir	ANDROID BASED APPS CONTROL g, Interfacing app with hardware.	/			6
moone upp manan	g, moritoning upp with hardware.	6			
UNIT V	EMBEDDED WITH WI-FI TECHNOLOGY				6
Introduction to wire					
	ТОТ	AL:	30 F	PERI	ODS
TEXT BOOKS:					
C", Pearson	Ali Mazidi, "8051 Microcontroller embedded systems Second edition, 2008				
bound in To	ald and Michael Shiloh, "THE ARDUINO PROJECTS" rino, Italy September 2012.		-		
2011.	ee, "Beginning Android Application Development", W	-		hing,	Inc.,
4. Erwin Ouya	ng, "Hands-On IoT:Wi-Fi and Embedded Web Develop	omen	ί.		

REFERENCES:

- 1. https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8bit-mcus/avr-mcus
- 2. https://forum.arduino.cc/
- 3. https://developer.android.com/
- 4. Jakob Iversen, Michael Eierman, "Learning Mobile App Development", Pearson Education, Inc., 2014

COURSE OUTCOMES: Upon successful completion of the course, students should be able to:					
CO1	Apply basic microcontroller concept for building embedded system applications using embedded c coding.	3			
CO2	Design interfacing applications based on Arduino and programming them.	4			
CO3	Handle sensors and actuators interfacing through suitable communication modes.	4			
CO4	Develop mobile applications and interface it with hardware.	5			
CO5	Construct embedded systems using Wi-Fi technology.	5			

*COs	POs											PS	Os	
	1	2	3	4	5	6	7	8	9	10	(11)	12	13	14
1.	3	3	3	3	3	-	E.	-	3	10	51	3	1	3
2.	3	3	3	3	3	- 1	0	-	3	1	2	3	1	3
3.	3	3	3	3	3	1	X	~	3	1	2	3	-	3
4.	3	3	3	3	3	71	1	- Ed	3	1	2	3	-	3
5.	3	3	3	3	3	1	44	1	3	1	2	3	-	3
* 1 – W	eak, 2	2 - Mo	derate,	3-Str	ong									

VD22705	HARDWARE MODELING AND ANALYSIS USING	L	Т	Р	C
, 2 2 2 7 0 0	EDA TOOL	2	0	0	2
OBJECTIVE	ES:				
To leTo le	ntroduce the Verilog Hardware Description Language earn various Issues in Digital Circuit Modeling using Verilog earn functional verification of the Hardware Model by writing test nalyze the area, power and delay of the hardware model using ED.				
					(
UNIT I	HIERARCHICAL MODELING CONCEPTS Digital Design with Verilog HDL, Emergence of HDLs, Typic	1.0	•	171	6
Importance o Example: Hal a Simulation,	f HDLs, Popularity of Verilog HDL, Trends in HDLs, Design f Adder, Full Adder, 4-bit Ripple Carry Adder, Modules, Instance Design Block, Stimulus Block, Example- Ripple Carry Adder, entions, Data Types, System Tasks and Compiler Directives.	Meth s. Co	iodol mpon	ogies ents	- of
UNIT II	COMPONENTS OF VERILOG MODULE AND GATE-				6
	LEVEL MODELING Ports, Modules- Components of Verilog Module, Example: S-R				
Gate-level mu	ng - Gate Types- AND/OR Gates, BUF/NOT Gates, Array of inst		,	r -	
UNIT III	DATAFLOW AND BEHAVIORAL MODELING	-			6
UNIT III Dataflow Mo Operator Typ Modeling, St		unter; ment	Beh s, Mı	avior 1ltiwa	ls, al ay
UNIT III Dataflow Mo Operator Typ Modeling, St	DATAFLOW AND BEHAVIORAL MODELING deling - Continuous Assignments, Delays, Expressions, Operator bes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Con ructured Procedures, Procedural Assignments, Conditional State	unter; ment	Beh s, Mı	avior 1ltiwa	ls, ral ay
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, Lo UNIT IV Switch-Level directional sw	DATAFLOW AND BEHAVIORAL MODELING deling - Continuous Assignments, Delays, Expressions, Operator bes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Con ructured Procedures, Procedural Assignments, Conditional State pops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiplexe	unter; ements er, 4-b DS sw tion o	Beh s, Mu bit Co vit Co	avior iltiwa unter es, E	sal ay ∴ 6 βi-
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, Lo UNIT IV Switch-Level directional sw Examples: Cl	DATAFLOW AND BEHAVIORAL MODELING deling - Continuous Assignments, Delays, Expressions, Operator oes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State oops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiplexer SWITCH-LEVEL MODELING Modeling, Switch-Modeling Elements- MOS switches, CMC witches, Power and Ground, Resistive Switches, Delay Specificat	unter; ements er, 4-b DS sw tion o	Beh s, Mu bit Co vit Co	avior iltiwa unter es, E	$\frac{1}{1}$ s, $\frac{1}{1}$ s al ay $\frac{1}{1}$ s $\frac{1}{1}$
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, Lo UNIT IV Switch-Level directional sw Examples: Cl Adder. UNIT V Modeling Del state machine	DATAFLOW AND BEHAVIORAL MODELING deling - Continuous Assignments, Delays, Expressions, Operator bes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State coops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiplexer SWITCH-LEVEL MODELING Modeling, Switch-Modeling Elements- MOS switches, CMC vitches, Power and Ground, Resistive Switches, Delay Specificat MOS Inverter, CMOS NAND Gate, CMOS NOR Gate, 2-to-1 FSM MODELING ays – Modeling Conditional Operations – State Machine Modelin a – Modeling Moore FSM – Modeling Mealy FSM - Traffic Light	unter; ements er, 4-b DS sw tion o Multi g – In	Beh s, Mu bit Co vitchon plexe	avior ultiwa unter es, B vitche er, Fu ting	<u>6</u> 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, Lo UNIT IV Switch-Level directional sw Examples: Cl Adder. UNIT V Modeling Del state machine	DATAFLOW AND BEHAVIORAL MODELING deling - Continuous Assignments, Delays, Expressions, Operator bes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State coops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiplexer SWITCH-LEVEL MODELING Modeling, Switch-Modeling Elements- MOS switches, CMO vitches, Power and Ground, Resistive Switches, Delay Specificat MOS Inverter, CMOS NAND Gate, CMOS NOR Gate, 2-to-1 FSM MODELING lays – Modeling Conditional Operations – State Machine Modelin	unter; ement: er, 4-b DS sw tion o Multi g – In Contr	Beh s, Mu oit Co vitcho on Sw plexe	avior iltiwa unter es, B vitche er, Fu ting	6 6
UNIT III Dataflow Mo Operator Typ Modeling, St Branching, Lo UNIT IV Switch-Level directional sw Examples: Cl Adder. UNIT V Modeling Del state machine	DATAFLOW AND BEHAVIORAL MODELING deling - Continuous Assignments, Delays, Expressions, Operator bes, Examples: 4-to-1 Multiplexer, 4-bit Full Adder, Ripple Contructured Procedures, Procedural Assignments, Conditional State boops, Sequential and Parallel Blocks, Examples: 4-to-1 Multiplexer SWITCH-LEVEL MODELING Modeling, Switch-Modeling Elements- MOS switches, CMC vitches, Power and Ground, Resistive Switches, Delay Specificat MOS Inverter, CMOS NAND Gate, CMOS NOR Gate, 2-to-1 FSM MODELING lays – Modeling Conditional Operations – State Machine Modelin – Modeling Moore FSM – Modeling Mealy FSM - Traffic Light	unter; ement: er, 4-b DS sw tion o Multi g – In Contr	Beh s, Mu oit Co vitcho on Sw plexe	avior iltiwa unter es, B vitche er, Fu ting	6 6 6 6 6

- 1. Samir Palnitkar "Verilog HDL: A Guide to Digital Design and Synthesis", Second Edition.
- 2. Zainalabedin Navabi "Verilog Digital System Design".

REFERENCES:

- 1. Simon Monk "Programming FPGAs: Getting Started with Verilog".
- 2. Jayaram Bhasker "A Verilog HDL primer".

Web Resource:

https://www.udemy.com/course/system-design-using-verilog/

	E OUTCOMES:	RBT Level	
Upon successful completion of the course, students should be able to:			
CO1	Determine hierarchical hardware modeling techniques suitable for a digital design	4	
CO2	Develop Gate Level Modeling for digital designs	3	
CO3	Develop Dataflow Modeling and Behavioral Modeling for digital designs	3	
CO4	Develop Switch-Level Modeling and User-Defined Primitives for digital designs	4	
CO5	Use CADENCE software tool for Hardware Modeling, Functional verification, Simulation, Synthesize and Analyze the Area, Power and Delay for the digital designs	5	

*COs		Pos											PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	-	2	1	21	5	-	-	-	-	2	2
2.	3	3	3	-	2	1	1	-	-	-	-	-	2	2
3.	3	3	3	-	2	1	1	-	-	-	-	-	2	2
4.	3	3	3	-	2	2	1	-	-	-	-	-	2	2
5.	3	3	3	-	2	2	1	-	-	-	-	-	2	2
* 1 – W	eak, 2	– Mode	erate, 3	– Stro	ng									

VD22706	
---------	--

MIMO TECHNOLOGIES

L	Т	Р	С
2	0	0	2

6

6

6

6

6

COURSE OBJECTIVES:

- To introduce the concept of MIMO system
- To provide various techniques for MIMO signal processing
- To inculcate the knowledge of beamforming in MIMO systems
- To deliver estimation techniques for MIMO under various channel conditions
- To provide knowledge channel estimation techniques for an MIMO system

UNIT I INTRODUCTION

Types of multi-antenna systems, MIMO vs. multiantenna systems. Diversity, exploiting multipath diversity, Transmit diversity, Space-time codes, The Alamouti scheme, Delay diversity, Cyclic delay diversity

UNIT II EQUALIZATION IN MIMO

The generic MIMO problem, Singular Value Decomposition, Eigen values and eigenvectors, Equalising MIMO systems, Disadvantages of equalising MIMO systems, Predistortion in MIMO systems and its disadvantages.

UNIT III SIGNAL PROCESSING IN MIMO

Pre-coding and combining in MIMO systems, Advantages of pre-coding and combining, Disadvantages of precoding and combining, Channel state information.

UNIT IV MIMO AND BEAMFORMING

Beamforming principles, Switched beamformer, Adaptive beamformer, Narrowband beamformer, Wideband beamformer

UNIT V MIMO SIMULATION

MIMO in LTE, Precoding for transmit diversity, Beamforming in LTE, Cyclic delay diversitybased pre-coding, MIMO channel models.

TOTAL: 30 PERIODS

TEXT BOOKS:

- 1. Claude Oestges, Bruno Clerckx, "MIMO Wireless Communications: From Real-world Propagation to Space-time Code Design", Academic Press, 1st edition, 2010.
- 2. Mohinder Janakiraman, "Space Time Codes and MIMO Systems", Artech House Publishers, 2004.

REFERENCES:

- 1. Howard Huang, Constantinos B. Papadias_and Sivarama Venkatesan, "MIMO Communication for Cellular Networks", Springer, 2011
- 2. Robert W. Heath Jr. and Angel Lozano, "Foundations of MIMO Communication", Cambridge University Press, 2018

	RSE OUTCOMES: successful completion of the course, students should be able to:	RBT Level									
CO1	Realize MIMO systems with various system consideration	2									
CO2	2 Perform Equalization technique over MIMO system 3										
CO3	Analyze the signal processing schemes in MIMO system										
CO4	Apply appropriate beamforming techniques for MIMO system	3									
CO5	CO5 Perform basic mathematical modelling of MIMO systems 3										
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;									

2 3	3		1.	P	Os		-	0)	10		PS	Os
3		4	5	6	7	8	9	10	11	12	13	14
5	3	2	1	1	0-ST	Ξ.	1.5	1.5	1	3	3	3
3	3	2	1	1	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	-	1-1	1	1	3	3	3
3	3	2	2	1	-	1	A	-	2	3	3	3
3	3	3	2	1	3	0	<u>u</u> ve	- 1	3	3	3	3
3	3	3	2	1	4		-00	St.	3	3	3	3
2 - Mo	derate, 1	3 – Str	ong	11.00	1		- 3					
	13	2	1/2	_	Ĵ	-	2	10				
	3 3 3	3 3 3 3 3 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 2 2 1 - - - 2 3 3 3 3 3 2 1 - - - 2 3 3 3 3 3 2 1 - - - 3 3 3 3 3 3 2 1 - - - 3 3 3

VD22707	MIXED SIGNAL IC DESIGN	L 2	Т 0	P 0	C 2
COURSE OBJ	ECTIVES	4	U	U	4
 To provi To study develop To unde To introduction 	ide an overview of principles of Embedded System the Architecture, addressing modes & instruction set of PIC Microson skills in writing simple programs. rstand the concepts of Interrupts, timer and Serial ports duce commonly used peripheral interfacing ICs. and understand the typical applications of microcontrollers	contr	olle	r an	d
UNIT I	REFERENCE CIRCUITS				6
Current Mirrors Reference, Ban	A Self Biased Current Reference, VBE based Current Reference, VT d Gap Reference, Supply Independent Biasing, Temperature Independent T Current Generation.				
UNIT II	LOW DROPOUT REGULATORS				6
Shunt regulator,	, Error amplifier, AC Design, Stability, Internal and External Compensation circuits, NMOS vs. PMOS regulators.	ensat	ion,	PSI	R
UNIT III	FREQUENCY SYNTHESIZERS				6
-	e Lock Loop (PLL), Fractional-N Phase Lock Loop, Delay-Lock L, Injection-locked PLLs, and Sub-sampled PLLs.	c Lo	op ((DL	L),
UNIT IV	ACTIVE FILTER DESIGN				6
Continuous time	ter approximations, Chebyshev Filter approximations, Frequency Tree filters- Biquad and Ladder based designs, Active RC and Gm-C s, Integrator realization and nonidealities				
•	1211 + 12/2/				
UNIT V	CLOCK AND DATA RECOVERY CIRCUITS				6
transmitter and	cteristics-intersymbol interference, eye diagrams, Linear equal receiver; CDR Architectures, Transimpedance Amplifiers, Linear l capture Range CDR Circuits.				
	TOTAL	: 30	PEF	RIO	DS
circuits", John 2. Gabriel.A. R Professional Pu Sons, Inc 2005 REFERENCES	Rincon-Mora, "Voltage references from diode to precision higher ord Wiley & Sons, Inc 2002. Rincon-Mora, "Analog IC Design With Low-Dropout Regulators", M ub, 2nd Edition, 2014 3. Floyd M. Gardner, "Phase Lock Techniques S:	cGra s" Jo	ıw-H hn v	Hill viley	
 Williams an Deliyannis, 	ase-Locked Loops : "Design, Simulation, and Applications", McGraw d Taylor, "Electronic Filter Design Handbook", McGraw-Hill, 3 rd I Sun, and Fidler, "Continuous-Time Active Filter Design", CRC Pres avi, "Design of Analog CMOS Integrated Circuits", Tata McGraw F	Editi ss 19	on, 98,	199:	

COURS	E OUTCOMES:	RBT
Upon suc	ccessful completion of the course, students should be able to:	Level
CO1	Design Band gap reference circuits and Low Dropout regulator for a given specification.	3
CO2	Design of regulators and compensation circuits.	3
CO3	Design Frequency synthesizers meeting a given specification.	3
CO4	Choose active filter topology and design for a given specification.	3
CO5	Design clock generation circuits in the context of high speed I/Os, High speed BroadBand Communication circuits and Data Conversion Circuits.	3
Bloom's	Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;
Create-6	COLLE	

THE SHI

*C	POs												PSOs		
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	2	3	2	3	2)	3 - 1	3-5	1	2	-	3	3	
2.	3	3	3	3	3	2	1	0	11-5	- \	6	S-	3	3	
3.	3	3	3	2	3	2)	0		<u>, -</u> 1	11	- /	3	3	
4.	3	3	3	3	3	2	1	-	白白	<u> - 11 - 1</u>	2	-	3	3	
5.	3	3	_3	3	3	2	14	1	I.	4. C (1777	- 1	3	3	
* 1 – V	Weak, 2	2 – Mo	derate, 1	3 – Str	ong	100		-	1.1865	0	m				

परा

tadio

VD22708	PCB DESIGN USING EDA TOOL	L 2	Т 0	P 0	C 2
COURSE OBJ	IFCTIVES	4	U	U	2
	oduce the basic electronics components.				
	n the design rules for PCB circuits.				
	erstand the need for PCB Design and the steps involved in the PCB D	esio	n nr	oce	22
	iliarize Schematic and layout design flow using Electronic Design Au		-		55.
(EDA)		.com	uno		
, ,	n the basic circuit PCB design using EDA tool.				
• 10 10 10	i në basie enedit i eb design using LDA tooi.				
UNIT I	INTRODUCTION TO PRINTED CIRCUIT BOARD				6
Fundamental of	Electronic Components - Basic Electronic Circuits - Basics of Printer	d Ci	cuit	Bo	ard
	Planning, general rules and parameters, Various PCB Materials.				
<u> </u>					
UNIT II	DESIGN RULES FOR PCB				6
	r Digital circuit PCBs - Analog circuit PCBs - high-frequency applic.	ation	s	Ρου	v
electronic appli		atioi		100	
electronic upph					
UNIT III	PCB TECHNOLOGY TRENDS				6
	Bs - Multiwire PCB - Flexible PCBs - Surface mount PCBs - Reflow	sold	arina	r	U
Multilayer I CL	ss - Multiwite TCB - Trexible TCBs - Sufface mount TCBs - Kenow		511112	5.	
UNIT IV	INTRODUCTION TO EDA TOOLS FOR PCB DESIGNING				6
					U
Manufacturing	Layout Designing-Prototype Designing: Design Rule Check (DRO (DFM)- PCB Making: Printing, Etching, Drilling - Assembly of of design, creating manufacturing data (GERBER) for design.				
UNIT V	PRACTICAL TRAINING ON PCB DESIGN				6
using 7805, In	Layout Design: ON/OFF Switches Circuits, Full-wave Rectifier, Reverting Amplifier or Summing Amplifier using op-amp, Astable sing IC555, Full-Adder using half-adders.				
	TOTAL:	30	PER	IO	DS
	441 4				
TEXT BOOKS	S:				
1. R.S. Kh	andpur, Printed Circuit Board -Design, Fabrication, Assembly & Tes	ting	TN	IH,	3 rd
Edition,		0			
,	C. Bosshart, Printed circuit Board - Design & Technology, TMH. Rep	orint	200	8.	
	Monk, "Make Your Own PCBs with EAGLE: From Schematic Desig				ed
	(Electronics)" 2017.				
REFERENCE					
	F. Coombs, Jr., Printed Circuits Handbook, Sixth Edition, McGraw-	Hill	Edu	cati	on,
	Aitzner Bob Doe Alexander Akulin Anton Suponin Dirk Müller,	Com	plete	e Po	СВ

3. S. Yogesh, "OSCAD: An Open Source EDA Tool for Circuit Design, Simulation, Analysis and PCB Design", Shroff Publishers & Distributors Pvt. Ltd, 2013.

	SE OUTCOMES:	RBT							
Upon su	ccessful completion of the course, students should be able to:	Level							
CO1	Understand the steps involved in the schematic, layout and assembly process of PCB design	2							
CO2 Classify the design rules of Digital and analog circuit PCBs									
CO3	CO3 Appreciate the necessity and evolution of PCB, types and classes of PCB.								
CO4	Describe the PCB design and EDA tool.	3							
CO5 Design (schematic and layout) PCB for analog circuits, digital circuits and mixed circuits.									
Bloom'	s Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva	luate-5;							
Create-									

COURSE ARTICULATION MATRIX

*C	POs											PS	PSOs		
Os	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	3	2	<3	3	3	(4	7	-	1	1	0	3	3	3	
2.	3	2	3	3	3	- 10	4-	-	1	1	1	3	3	3	
3.	3	2	3	3	3	1-1	17	7	1	1	1	3	3	3	
4.	3	2	3	3	3	1	1	1	1	1	the	3	3	3	
5.	3	2	3	3	3	1	_	1	1	1	-1	3	3	3	

tantes

* 1 – Weak, 2 – Moderate, 3 – Strong

STR.

VD22709	RF CIRCUIT DESIGN – THEORY AND SIMULATION USING EM SIMULATION TOOLS	L 2	T 0	P 0	C 2
COURSE O	BJECTIVES:				
• To get	t insights about RF circuit design.				
• To inv	vestigate the design of Microwave Circuits.				
• To be	familiar with the most popular antenna design.				
• To deal	D22709 USING EM SIMULATION TOOLS URSE OBJECTIVES: • To get insights about RF circuit design. • To investigate the design of Microwave Circuits. • To be familiar with the most popular antenna design. • To design special antenna using simulation tool. • To introduce the design and its simulation of Microstrip Antenna • To introduce the design and its simulation of Microstrip Antenna • To introduce the design and its simulation of Microstrip Antenna • TT I OVERVIEW OF RF CIRCUITS • Oddetter COMPONENTS • gen and simulation of Microwave amplifiers, oscillators, filters, couplers and divided and simulation of Microwave amplifiers, oscillators, filters, couplers and divided and simulation of antennas concepts. Antenna characteristics (radiation pattered ance, bandwidth, and polarization). Wire Antennas theory and simulation simulation. • TT IV DESIGN AND SIMULATION OF SPECIAL ANTENNAS • IT IV DESIGN AND SIMULATION OF SPECIAL ANTENNAS • IT IV DESIGN AND SIMULATION OF SPECIAL ANTENNAS • IT IV DESIGN AND SIMULATION OF MICROSTRIP PATCH ANTENNAS • IT IV IMPLEMENTATION OF MICROSTRIP PATCH ANTENNAS				
UNIT I	OVERVIEW OF RF CIRCUITS				6
Introduction	of the course, including an overview of applications and trends.	Passiv	e mi	crow	ave
,	COLLES				
UNIT II	oduction of the course, including an overview of applications and treatis, covering transmission-line based circuits including impedance management IT II DESIGN AND SIMULATION OF MICROWAVE COMPONENTS gn and simulation of Microwave amplifiers, oscillators, filters, couplers and IT III ANTENNA THEORY AND SIMULATION oduction of antennas concepts. Antenna characteristics (radiation pedance, bandwidth, and polarization).Wire Antennas theory and simulation. IT IV DESIGN AND SIMULATION OF SPECIAL ANTENN				6
Design and sin		s.			
8					
UNIT III	ANTENNA THEORY AND SIMULATION				6
					<u> </u>
VD22/09 USING EM SIMULATION TOOLS 2 0 0 2 COURSE OBJECTIVES: • To get insights about RF circuit design. • To investigate the design of Microwave Circuits. • To be familiar with the most popular antenna design. • To design special antenna using simulation tool. • To introduce the design and its simulation of Microstrip Antenna • UNIT I OVERVIEW OF RF CIRCUITS • • Introduction of the course, including an overview of applications and trends. Passive microwave circuits, covering transmission-line based circuits including impedance matching. • • UNIT II DESIGN AND SIMULATION OF MICROWAVE • • COMPONENTS • • • • Design and simulation of Microwave amplifiers, oscillators, filters, couplers and dividers. • • • UNIT III ANTENNA THEORY AND SIMULATION • • • • Introduction of antennas concepts. Antenna characteristics (radiation pattern, directivity, gain, impedance, bandwidth, and polarization). Wire Antennas theory and simulation, Linear array theory and simulation. • • • UNIT IV DESIGN AND SIMULATION OF SPECIAL ANTENNAS <td< td=""><td>6</td></td<>	6				
	of dipole, loop, parabolic reflector, Yagi-Uda and horn antennas	usin	g sir	nulat	ion
		/			
UNIT V					6
		anter	nna a	nd ar	ray
	URSE OBJECTIVES: • To get insights about RF circuit design. • To investigate the design of Microwave Circuits. • To be familiar with the most popular antenna design. • To design special antenna using simulation tool. • To introduce the design and its simulation of Microstrip Antenna VIT I OVERVIEW OF RF CIRCUITS • roduction of the course, including an overview of applications and trends. Passive microwave cuits, covering transmission-line based circuits including impedance matching. VIT II DESIGN AND SIMULATION OF MICROWAVE 6 COMPONENTS 61 sign and simulation of Microwave amplifiers, oscillators, filters, couplers and dividers. 61 VIT II ANTENNA THEORY AND SIMULATION 6 sugaration. 61 61 voluction of antennas concepts. Antenna characteristics (radiation pattern, directivity, gain, pedance, bandwidth, and polarization). Wire Antennas theory and simulation. Linear array theory 1 simulation. 6 VIT V DESIGN AND SIMULATION OF SPECIAL ANTENNAS 6 sualization of dipole, loop, parabolic reflector, Yagi-Uda and horn antennas using simulation allon allon and antenna and array ng simulation tool. Final project to design specific microstrip patch antenna and array ng simulation tool. Final project to design specific microstrip antenna. 70 VIT V IMPLEMENTA				
		AL: 3	0 PE	RIO	DS
1. Reinh	old Ludwig and Gene Bogdanov, "RF Circuit Design: Theory a	ind A	pplic	catior	ıs",
Pearso	on Education Inc., 2011.				
2. Const	antine.A.Balanis "Antenna Theory Analysis and Design", 4th Edit	ion V	Viley	Stud	ent
COURSE OBJECTIVES: • To get insights about RF circuit design. • To investigate the design of Microwave Circuits. • To be familiar with the most popular antenna design. • To design special antenna using simulation tool. • To introduce the design and its simulation of Microstrip Antenna UNIT I OVERVIEW OF RF CIRCUITS Introduction of the course, including an overview of applications and trends. Passive microw circuits, covering transmission-line based circuits including impedance matching. UNIT II DESIGN AND SIMULATION OF MICROWAVE COMPONENTS Design and simulation of Microwave amplifiers, oscillators, filters, couplers and dividers. UNIT III ANTENNA THEORY AND SIMULATION Introduction of antennas concepts. Antenna characteristics (radiation pattern, directivity, § impedance, bandwidth, and polarization). Wire Antennas theory and simulation. Linear array th and simulation. UNIT IV DESIGN AND SIMULATION OF SPECIAL ANTENNAS Visualization of dipole, loop, parabolic reflector, Yagi-Uda and horn antennas using simulation! UNIT V IMPLEMENTATION OF MICROSTRIP PATCH ANTENNAS Microstrip patch antenna fundamental and design. Simulation of microstrip patch antenna and a using simulation tool. Final project to design specific microstrip antenna. TOTAL: 30 PERIC TOTAL: 30 PERIC TOTAL: 30 PERIC					
	•	p An	tenna	Des	ign
REFERENC	ES:				
	M. Pozar, "Microwave Engineering", 4th Edition, Wiley India (P)	Ltd, 1	New	Delh	i,
2. John l	D.Kraus," Antennas for all Applications", 5th Edition, Mc Graw Hi	11, 20	17.		

	RSE OUTCOMES: successful completion of the course, students will able to:	RBT Level							
CO1	Understand the fundamentals of RF circuits.	2							
CO2	Utilize commercial simulation software to design and analyze the RF and Microwave circuits.								
CO3	Articulate the principles of electromagnetic energy radiation in free space by antennas.								
CO4	Design and simulate the special antennas.	3							
CO5	Implement the microstrip patch antennas for specific applications	4							
Bloom Create	's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Eva-6	luate-5;							

*COs				1.1	an	P	Os	-	36				PS	Os
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	3	3	2	-31		-	1	1	1	1	3
2.	3	3	3	3	3	2	1.1	<u></u>	1-2	1	$\langle 1 \rangle$	1	2	3
3.	3	3	3	3	3	2	-	-	N	-	2	1	2	3
4.	3	3	2	2	2	2	1	/ 0	n s	- \	0	1	2	1
5.	3	2	2	2	3	2	1	1	7.00	25	1	1	1	3
* 1 – W	eak, 2	2 - Mo	derate,	3 – Str	ong	1.5	1		Lft	- hager-	\leq			
			10	6 2	100	T	₹ F F	101	ant	100	PIN			

VD22710 SIMULATION OF COMMUNICATION NETWORKS

L	Т	Р	С
2	0	0	2

6

6

6

6

6

COURSE OBJECTIVES:

- To understand the concept of emerging topics in communication networks and systems
- To study several simulation frameworks
- To introduce various open-source tools for simulating communication networks.
- To learn suitable tools to model wireless networks.
- To build a simple network using open-source tools.

UNIT I NETWORK ARCHITECTURE

Overview of Networks - Services and Protocols – Edge and Core – Packet Switching vs. Circuit Switching – Protocol Layers and Service Models - Client-Server and Peer-to-Peer architectures -Performance Metrics Delay – Loss – Throughput

UNIT II SIMULATION FRAMEWORKS

Simulation models and tools - Event Driven simulation - Discrete Event simulation: Sequential discrete simulation, Spatial parallel simulation, Time parallel simulation - Process-oriented simulation - GPU-based simulation - Multi-agent-based simulation

UNIT III OPEN SOURCE TOOLS

Network simulation issues - Simulation frameworks overview - Open Source network simulators: OMNET++, OPNET, CrowNet - OS-oriented tools: Tiny OS, Contiki, RiOT - Co-Simulation of wireless and mobile systems

UNIT IV NETWORK SIMULATOR

Introduction to NS2 - Installation - Directories and Convention - Simulation of wireless local - personal and wide area networks using NS2 – Analysis of trace files and inferencing - Design a network topology - Implementation of TCP and UDP using NS2

UNIT V CASE STUDY ON OPEN SOURCE TOOLS

Features of NS3 - Installation - Simulating the computer networks - Collision control for VANET application - Trust aware routing for MANET - Installation of OMNET++ - Configuration of Wireless Sensor Networks - Live monitoring and remote control application using OMNET++

TOTAL: 30 PERIODS

1

TEXT BOOKS:

- Mohammad S. Obaidat, Faouzi Zarai, Petros Nicopolitidis, "Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications", Morgan Kaufmann, 2015
- 2. Klaus Wehrle, Mesut Günes, James Gross, "Modeling and Tools for Network Simulation", Springer Berlin Heidelberg, 2010.
- 3. Behrouz A. Forouzan, "Data Communications and Networking", Fifth Edition, McGraw-Hill, 2013.

REFERENCES:

- 1. Teerawat Issariyakul, Ekram Hossain, "Introduction to Network Simulator NS2", Second Edition, Springer, 2012.
- 2. Antonio Virdis, Michael Kirsche, "Recent Advances in Network Simulation: The OMNeT++ Environment and Its Ecosystem ", Springer, 2019.
- 3. Jack L. Burbank, "An Introduction to Network Simulator 3" John Wiley & Sons, Incorporated, 2018.

COURSE OUTCOMES: Upon successful completion of the course, students should be able to:								
Upon successful completion of the course, students should be able to:LevelCO1Interpret the services and performance metrics of communication networks.2								
CO2	Describe the concepts of different simulation models and tools.	2						
CO3	Identify the most appropriate open-source network simulators to build a reliable network	3						
CO4	Apply the network simulator as learning and practice tool for networking algorithms.	3						
CO5	Implement various networking applications	4						
	Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6							

*COs			-	- 0.	5	F	POs		1.61	1.4.4	\leq		PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	2	1	1	-		- 25	(<u>-</u>	2	3	3	3
2.	3	3	3	2	1	1	-	1	-	-/	2	3	3	3
3.	3	3	3	3	1	1	-330	-	-3	1	2	3	3	3
4.	3	3	3	3	2	1	-7	-	-0-	10	3	3	3	3
5.	3	3	3	<u>3</u>	2	1	0.0	12	-/		3	3	3	3
* 1 – Weak, 2 – Moderate, 3 – Strong														
apt The Ede														

7 परा

		L	Т	P	С
VD22711	SMART IOT APPLICATIONS	2	0	0	2
COURSE OI	BJECTIVES:				
• To une	derstand the concept of IoT and its design procedures				
• To Int	roduce the several IoT-related enabling technologies and protocols				
• To int	roduce various interfacing techniques for popular input devices includi	ing s	ensc	rs,	
output	devices and communication protocols.				
 To stu 	dy the IoT peripherals and its interfacing techniques				
• To but	ild a simple IoT application and to perform predictive analysis on gathe	ered	data		
UNIT I	INTRODUCTION				6
	act- IoT challenges - Architecture - Core IoT functional Stack - IoT Dattion Technologies used in IoT - Smart Objects	ta M	anag	gem	ent
	1 ar VE				
UNIT II	ENABLING TECHNOLOGIES AND PROTOCOLS				6
Enabling Tech	hnologies: Wireless Sensor Networks, Cloud Computing - IoT Network	c pro	toco	l sta	ack
- IoT technolo	bgy stack - Communication Protocols: Bluetooth, Zigbee, 6LowPAN				
	LUI TO CI				
UNIT III	IoT SYSTEM DESIGN				6
-	n Sensors, Communication: Connecting microcontroller with molon through Bluetooth, wifi and USB				
communication	on through Bluetooth, wifi and USB PERIPHERAL CONTROL				6
communication UNIT IV Working with	on through Bluetooth, wifi and USB				6
communication UNIT IV Working with Relay and Ste	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contr apper Motor interfacing				6 /M
communication UNIT IV Working with Relay and Steen UNIT V	on through Bluetooth, wifi and USB PERIPHERAL CONTROL LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contr pper Motor interfacing IoT PROJECTS	rol u	sing	PW	6 /M 6
communication UNIT IV Working with Relay and Steen UNIT V Designing GU	on through Bluetooth, wifi and USB PERIPHERAL CONTROL LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid	rol u	sing	PW	6 /M 6 nce
communication UNIT IV Working with Relay and Stee UNIT V Designing GU application u	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing Ior PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vidsing IoT, Set up cloud environment –Cloud access from sensors	rol u leo si s– D	sing	PW illar	6 /M 6 nce
communication UNIT IV Working with Relay and Steen UNIT V Designing GU application unimplementation	on through Bluetooth, wifi and USB PERIPHERAL CONTROL LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid	rol u leo si s– D	sing	PW illar	6 /M 6 nce
communication UNIT IV Working with Relay and Stee UNIT V Designing GU application u	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vidsing IoT, Set up cloud environment —Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro-	rol u leo si s– D otecti	sing urve Desig	PW illar gn a syste	6 /M 6 nce and em
communication UNIT IV Working with Relay and Steen UNIT V Designing GU application unimplementation	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing Ior PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vidsing IoT, Set up cloud environment –Cloud access from sensors	rol u leo si s– D otecti	sing urve Desig	PW illar gn a syste	6 /M 6 nce und em
communication UNIT IV Working with Relay and Steen UNIT V Designing GU application un implementation using IoT.	Den through Bluetooth, wifi and USB PERIPHERAL CONTROL A LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contre- pper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid- sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro- TOTAL:	rol u leo si s– D otecti	sing urve Desig	PW illar gn a syste	6 /M 6 nce und em
communication UNIT IV Working with Relay and Steen UNIT V Designing GU application u implementation using IoT.	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro TOTAL: KS:	rol un r	sing arve on s	PW illan gn æ syst	6 /M 6 nce und em DS
communication UNIT IV Working with Relay and Ster UNIT V Designing GU application u implementation using IoT. TEXT BOOI 1. David	Den through Bluetooth, wifi and USB PERIPHERAL CONTROL A LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contre- pper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid- sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro- TOTAL: KS: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome	rol un r	sing urve esig on s PER	PW illar gn æ syst	6 /M 6 nce und em DS T
communication UNIT IV Working with Relay and Ster UNIT V Designing GU application un implementation using IoT. TEXT BOOI 1. David Funda	Den through Bluetooth, wifi and USB PERIPHERAL CONTROL A LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro- TOTAL: KS: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jeromore mentals: Networking Technologies, Protocols and Use Cases for Intern-	rol un r	sing urve esig on s PER	PW illar gn æ syst	6 /M 6 nce und em DS T
communication UNIT IV Working with Relay and Ster UNIT V Designing GU application u implementation using IoT. TEXT BOOI 1. David Funda Cisco	Den through Bluetooth, wifi and USB PERIPHERAL CONTROL LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro TOTAL: KS: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jeromer mentals: Networking Technologies, Protocols and Use Cases for Intern Press, 2017	rol un r	sing pesig on s PER nry, f Th	PW illar gn æ syst RIO "Io"	6 /M 6 nce em DS T 5,",
communication UNIT IV Working with Relay and Ster UNIT V Designing GU application u implementation using IoT. TEXT BOOI 1. David Funda Cisco 2. Kamle	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro TOTAL: KS: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jeromoment Press, 2017 esh Lakhwani, Hemant Kumar Gianey, Joseph Kofi Wireko, "Internet of the sensor of the senset of the sensor of the sensor of the sensor of the se	rol un r	sing pesig on s PER nry, f Th	PW illar gn æ syst RIO "Io"	6 /M 6 ince ind em DS
communication UNIT IV Working with Relay and Ster UNIT V Designing GU application u implementation using IoT. TEXT BOOI 1. David Funda Cisco 2. Kamle Princi	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing Iot PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro KS: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jeromomentals: Networking Technologies, Protocols and Use Cases for Intern Press, 2017 esh Lakhwani, Hemant Kumar Gianey, Joseph Kofi Wireko, "Internet of ples, Paradigms and Applications of IoT", BPB Publications, 2020.	rol us rol us leo su s– D otecti 30 l e Hen net o	sing urve pesig on s PER	PW illar gn æ syst RIO "Io"	6 //M 6 nce und em DS
communication UNIT IV Working with Relay and Ster UNIT V Designing GU application u implementation using IoT. TEXT BOOI 1. David Funda Cisco 2. Kamle Princin 3. "Build	on through Bluetooth, wifi and USB PERIPHERAL CONTROL a LED, Switch, and Buzzer - ADC, DAC and, Motor - DC Motor Contrepper Motor interfacing IoT PROJECTS JI for capturing and analyzing sensor data from IoT kit, Developing Vid sing IoT, Set up cloud environment –Cloud access from sensors on of cloud-based smart home automation system, Smart industry pro TOTAL: KS: Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jeromoment Press, 2017 esh Lakhwani, Hemant Kumar Gianey, Joseph Kofi Wireko, "Internet of the sensor of the senset of the sensor of the sensor of the sensor of the se	rol us rol us leo su s– D otecti 30 l e Hen net o	sing urve pesig on s PER	PW illar gn æ syst RIO "Io"	6 //M 6 nce und em DS

- 1. ArshdeepBahga, Vijay Madisetti, "Internet of Things : A hands on approach", First Edition, Universities Press, 2015.
- 2. Dieter Uckelmann Mark Harrison; Florian Michahelles, "Architecting the Internet of Things ", Springer, 2011.
- 3. "The Internet of Things-Do it Yourself at Home Projects for Arduino, Raspberry Pi and BeagleBone Black," Donald Norris, 2015, TMH

COURSE OUTCOMES: Upon successful completion of the course, students should be able to:									
CO1	CO1 Explain the basic building blocks of the Internet of Things.								
CO2	Describe the working of IoT network technologies, systems, and protocols.								
CO3	Identify the most appropriate IoT devices and sensors to build real-time applications using IoT								
CO4	Apply knowledge on interfacing various peripherals	3							
CO5	Analyze the working of real-time applications 4								
Bloom's Taxonomy (RBT) Level: Remember-1; Understand-2; Apply-3; Analyze-4; Evaluate-5; Create-6									

J

*COs)s		2	20	1 1	POs	1	1-1-1		PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	3	3	3	2	1	1	- 1	-	-	- /	11	3	3	3
2.	3	3	3	2	1	1	-	-	10	-/	21	3	3	3
3.	3	3	3	2	2	1	1	1	10	1.	2	3	3	3
4.	3	3	3	3	2	1	E E	š	/	9	3	3	3	3
5.	3	3	3	3	2	1	S.	1	1	1.1	3	3	3	3
* 1 – W	eak, 2	2 – Mo	derate,	3 - Str	ong	_		X	101	1				
				-	10	41	TE	6	~	8				