SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY
Page 1 of 6

Department of Applied Mathematics				LP: Sub Code
B.Tech: Artificial Intelligence and Data Science Regulation: 2022	Rev. No:00			
Sub. Code / Sub. Name : MA22456 Mathematics for Machine Learning	Date:			
Unit $\quad:$ I Combinatorics	22.01 .2024			

Unit Syllabus: Mathematical induction - Strong induction and well ordering - The basics of counting - The Pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications

Objective: Apply the concepts of basic principles of Combinatorics and its Applications.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Sets and Operations	$\begin{array}{\|l} \hline \text { R2, Ch 2, } \\ \text { Pg. No 115-138. } \end{array}$	PPT/Black board
2	Inclusion and exclusion principle	$\begin{array}{\|l\|} \hline \text { R2, Ch } 8, \\ \text { Pg No } 552-558 . \end{array}$	PPT/Black board
3	Applications of Inclusion and exclusion principle	R2, Ch 8, Pg No 558-565.	PPT/Black board
4	Mathematical induction	$\begin{array}{\|l\|} \hline \text { R2, Ch 5, } \\ \text { Pg No 311-332. } \\ \hline \end{array}$	PPT/Black board
5	Strong induction and well ordering	$\begin{aligned} & \text { R2, Ch 5, } \\ & \text { Pg No 333-343. } \end{aligned}$	PPT/Black board
6	Tutorial class	R2, Ch 2, 5, 8.	PPT/Black board
7	The basics of counting, Pigeonhole principle	R2, Ch 6, Pg No 385-406.	PPT/Black board
8	Permutations and combinations	$\begin{aligned} & \hline \text { R2, Ch 6, } \\ & \text { Pg No } 407-414 . \\ & \hline \end{aligned}$	PPT/Black board
9	Tutorial class	R2, Ch 6.	PPT/Black board
10	Recurrence relations and solving linear recurrence relations	$\begin{array}{\|l\|} \hline \text { R2, Ch 8, } \\ \text { Pg No 501-526. } \\ \hline \end{array}$	PPT/Black board
11	Generating functions	$\begin{aligned} & \hline \text { R2, Ch 8, } \\ & \text { Pg No 537-557. } \end{aligned}$	PPT/Black board
12	Tutorial class	R2, Ch 8.	PPT/Black board
Content beyond syllabus covered (if any): Functions, sequences and summations			

[^0]Sub. Code / Sub. Name: MA22456 Mathematics for Machine Learning
Unit : II Vector spaces

Unit Syllabus: Vector spaces - Subspaces - Linear combinations and linear system of equations Linear independence and linear dependence - Bases and dimensions.

Objective: Understand the concepts of vector spaces.

Session No *	Topics to be covered	Ref	Teaching Aids
13	Vector spaces - Definition and examples	$\begin{array}{\|l} \hline \text { R4, Ch 1, } \\ \text { Pg. No } 1-8 . \end{array}$	PPT/Black board
14	Properties of vector spaces	$\begin{array}{\|l} \hline \text { R4, Ch 1, } \\ \text { Pg. No } 8-12 . \end{array}$	PPT/Black board
15	More examples of vector spaces	$\begin{array}{\|l\|} \hline \text { R4, Ch } 1, \\ \text { Pg. No } 12-16 . \\ \hline \end{array}$	PPT/Black board
16	Subspaces of vector space - Definition and examples	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No } 16-23 . \\ \hline \end{array}$	PPT/Black board
17	Tutorial class	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No 1-23. } \\ \hline \end{array}$	PPT/Black board
18	Linear combination and linear system of equations	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No } 24-34 . \\ \hline \end{array}$	PPT/Black board
19	Linear independence and linear dependence	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No 35-41. } \\ \hline \end{array}$	PPT/Black board
20	Tutorial class	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No } 24-41 . \end{array}$	PPT/Black board
21	Basis of a vector space - Definition and examples	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No } 42-50 . \\ \hline \end{array}$	PPT/Black board
22	Dimensions and span	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No 51-58. } \\ \hline \end{array}$	PPT/Black board
23	More examples involving dimensions and span	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No } 58-60 . \\ \hline \end{array}$	PPT/Black board
24	Tutorial class	$\begin{array}{\|l\|} \hline \text { R4, Ch 1, } \\ \text { Pg. No 42-60 } \\ \hline \end{array}$	PPT/Black board
Content beyond syllabus covered (if any):			

[^1]Sub. Code / Sub. Name: MA22456 Mathematics for Machine Learning
Unit : III Principal component Analysis

Unit Syllabus: Data Reduction Techniques - Definition of Population Principal Components - Principal Components obtained by Standardized variables - Rules to retain number of Principal Components using Scree Plot.

Objective: Understand the fundamental concepts of Principal component Analysis.

$\begin{gathered} \hline \text { Session } \\ \text { No * } \\ \hline \end{gathered}$	Topics to be covered	Ref	Teaching Aids
25	Principal component Analysis - Introduction	$\begin{aligned} & \hline \text { R3, Ch 12, } \\ & \text { Pg. No 380-381. } \\ & \hline \end{aligned}$	PPT/Black board
26	Data reduction techniques	$\begin{aligned} & \hline \text { R3, Ch 12, } \\ & \text { Pg. No 381-385. } \\ & \hline \end{aligned}$	PPT/Black board
27	Population principal components	$\begin{aligned} & \hline \text { R3, Ch 12, } \\ & \text { Pg. No } 385-387 . \\ & \hline \end{aligned}$	PPT/Black board
28	Principal components and perpendicular regression	$\begin{aligned} & \hline \text { R3, Ch 12, } \\ & \text { Pg. No } 387-389 . \\ & \hline \end{aligned}$	PPT/Black board
29	Tutorial class	$\begin{array}{\|l} \hline \text { R3, Ch 12, } \\ \text { Pg. No 380-389. } \\ \hline \end{array}$	PPT/Black board
30	Principal components obtained by standardized variables	$\begin{aligned} & \hline \text { R1, Ch } 10 \\ & \text { Pg. No } 333-339 . \\ & \hline \end{aligned}$	PPT/Black board
31	Deciding how many components to retain	$\begin{aligned} & \text { R3, Ch 12, } \\ & \text { Pg. No } 397-400 . \end{aligned}$	PPT/Black board
32	Tutorial class	$\begin{aligned} & \hline \text { R3, Ch 12, } \\ & \text { Pg. No } 397-400 . \\ & \hline \end{aligned}$	PPT/Black board
33	Plotting of principal components	$\begin{aligned} & \hline \text { R3, Ch 12, } \\ & \text { Pg. No 389-391. } \\ & \hline \end{aligned}$	PPT/Black board
34	Principal components from the correlation matrix	$\begin{aligned} & \text { R3, Ch 12, } \\ & \text { Pg. No 391-393. } \end{aligned}$	PPT/Black board
35	Rules to retain number of Principal Components using Scree Plot.	$\begin{aligned} & \hline \text { R3, Ch 12, } \\ & \text { Pg. No } 393-401 . \\ & \hline \end{aligned}$	PPT/Black board
36	Tutorial class	$\begin{aligned} & \text { R3, Ch 12, } \\ & \text { Pg. No 389-401. } \end{aligned}$	PPT/Black board
Content beyond syllabus covered (if any):			

[^2]Sub. Code / Sub. Name: MA22456 Mathematics for Machine Learning
Unit: IV Solution of equations and eigen value problems.

Unit Syllabus: Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

Objective: Acquaint the knowledge of the basic concepts of solving algebraic and transcendental equations.

$\begin{gathered} \text { Session } \\ \text { No * } \\ \hline \end{gathered}$	Topics to be covered	Ref	Teaching Aids
37	Solution of algebraic and transcendental equations	$\begin{aligned} & \hline \text { R5, Ch } 1, \\ & \text { Pg. No } 1-4 . \\ & \hline \end{aligned}$	PPT/Black board
38	Fixed point iteration method	$\begin{aligned} & \hline \text { R5, Ch 1, } \\ & \text { Pg. No } 15-19 . \\ & \hline \end{aligned}$	PPT/Black board
39	Newton Raphson method	$\begin{aligned} & \hline \text { R5, Ch 1, } \\ & \text { Pg. No 11-14. } \\ & \hline \end{aligned}$	PPT/Black board
40	Tutorial class	$\begin{aligned} & \hline \text { R5, Ch 1, } \\ & \text { Pg. No } 1-19 . \end{aligned}$	PPT/Black board
41	Solution of linear system of equations - Gauss elimination method	$\begin{aligned} & \hline \text { R5, Ch 1, } \\ & \text { Pg. No } 25-33 . \\ & \hline \end{aligned}$	PPT/Black board
42	Gauss Jordan method	$\begin{aligned} & \hline \text { R5, Ch 1, } \\ & \text { Pg. No 33-35. } \\ & \hline \end{aligned}$	PPT/Black board
43	Tutorial class	$\begin{aligned} & \hline \text { R5, Ch 1, } \\ & \text { Pg. No } 25-35 . \\ & \hline \end{aligned}$	PPT/Black board
44	Solution of linear system of equations - Iterative methods - Gauss Jacobi method	$\begin{aligned} & \hline \text { R5, Ch 1, } \\ & \text { Pg. No 41-46. } \end{aligned}$	PPT/Black board
45	Gauss Seidel method	$\begin{aligned} & \text { R5, Ch 1, } \\ & \text { Pg. No } 46-51 . \end{aligned}$	PPT/Black board
46	Eigenvalues of a matrix - Power method	$\begin{aligned} & \text { R5, Ch 1, } \\ & \text { Pg. No } 52-54 . \\ & \hline \end{aligned}$	PPT/Black board
47	Jacobi's method for symmetric matrices	$\begin{aligned} & \text { R5, Ch 1, } \\ & \text { Pg. No } 52-58 . \\ & \hline \end{aligned}$	PPT/Black board
48	Tutorial class	$\begin{aligned} & \text { R5, Ch 1, } \\ & \text { Pg. No 41-58. } \end{aligned}$	PPT/Black board
Content beyond syllabus covered (if any):			

[^3]
SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY
Page 5 of 6

Sub. Code / Sub. Name: MA22456 Mathematics for Machine Learning
Unit: V Interpolation, Numerical Differentiation and Numerical Integration.

Unit Syllabus: Lagrange's and Newton's divided difference interpolations - Newton's forward and backward difference interpolation - Approximation of derivatives using interpolation polynomials - Numerical single and double integrations using Trapezoidal and Simpson's $1 / 3$ rules.

Objective: Provide the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Lagrange's Interpolation Formula	R5, Ch 2, Pg. No 63 - 69.	PPT/Black board
50	Newton's Divided difference Interpolation formula	R5, Ch 2, Pg. No 70 - 76.	PPT/Black board
51	Newton's Forward Difference formula	R5, Ch 2, Pg. No 80 - 85.	PPT/Black board
52	Newton's Backward Difference formula	R5, Ch 2, Pg. No 85 - 97.	PPT/Black board
53	Tutorial Class	R5, Ch 2, Pg. No 63 - 97.	PPT/Black board
54	Approximation of derivatives using Interpolation polynomials	R5, Ch 3, Pg. No 109 - 112.	PPT/Black board
55	Newton's forward and backward difference formula for finding the values of the derivatives.	R5, Ch 3, Pg. No 112 - 123.	PPT/Black board
56	Tutorial class	R5, Ch 3, Pg. No 109 - 123.	PPT/Black board
57	Numerical Integration - Simpson's 1/3 rule	R5, Ch 3, Pg. No 136 - 146.	PPT/Black board
58	Trapezoidal rule	R5, Ch 3, Pg. No 128 - 135.	PPT/Black board
59	Numerical Double Integration	R5, Ch 3, Pg. No 169 - 176.	PPT/Black board
60	Tutorial class	R5, Ch 3, Pg. No 136 - 176.	PPT/Black board
Content beyond syllabus covered (if any):			

[^4]COURSE DELIVERY PLAN - THEORY

Sub Code / Sub Name: MA22456 Mathematics for Machine Learning

REFERENCES:

1. M. P. Deisenroth, A. A. Faisal, C. S. Ong, "Mathematics for Machine Learning", Cambridge University Press, 2020.
2. Kenneth H. Rosen, "Discrete Mathematics \& its Applications", Tata McGraw-Hill (SIE), $7^{\text {lh }}$ edition, 2017.
3. Alvin C.Rencher, "Methods of Multivariate Analysis", $2^{\text {nul }}$ Edition, Wiley Inter-science, 2002
4. Friedberg, A.H., Insel, A.J. and Spence, L., "Linear Algebra", Prentice Hall of India, New Delhi, 2004.
5. lyengar, S.R.K., and Jain, R.K, "Numerical Methods", New Age International Publishers, 2012.

	Prepared by	Approved by
Signature	G.Sar_	Dr. G. Satheesh Kumar
Name	Assistant Professor	Professor and Head
Designation	22.01 .2024	22.01 .2024
Date		
Remarks *:		
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE OUTCOMES - THEORY
ANNEXURE - I

Department of Applied Mathematics		
Academic Year $\quad: \quad$ 2023-2024	Semester: EVEN	
B.Tech : Artificial Intelligence and Data Science	Regulation : 2022	
Sub. Code / Sub. Name $:$ MA22456 Mathematics for Machine Learning		

CO	Statements	$\mathbf{R B T}^{*}$ Level
CO 1	Apply the Counting Principles to compute the running time algorithm.	AP
CO 2	Explain the fundamental concepts of Linear Algebra.	AP
CO 3	Demonstrate the use of the concepts of Principal component Analysis	AP
CO 4	Solve algebraic, transcendental and linear system of equations.	AP
CO 5	Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering	AP

* Revised Bloom's Taxonomy

Mapping CO - PO - PSO *

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO 1	3	3	2									1	1	
CO 2	3	3	2	2								1	1	
CO 3	3	3	2	2								1	1	
$\operatorname{CO4}$	3	3										1		
$\operatorname{CO5}$	3	3										1		

* Put a ' X ' for the mapping

CO ATTAINMENT

$\mathbf{C O}$	Target (\%) (A)	Achieved (\%) (B)	Gap (\%) (A-B)
$\mathrm{CO1}$			
$\mathrm{CO2}$			
$\mathrm{CO3}$			
CO 4			
$\mathrm{CO5}$			

COURSE OUTCOMES - THEORY
ANNEXURE - I
BRIDGING THE GAP IN CO

CO	ACTION PLAN
CO1	
$\operatorname{CO2}$	
$\operatorname{CO3}$	
$\operatorname{co4}$	
$\operatorname{CO5}$	

PO ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
Attainment $(\%)$														

Signature of Faculty / Course Coordinator	Signature of Module Coordinator

[^0]: * Session duration: 50 minutes

[^1]: * Session duration: 50 mins

[^2]: * Session duration: 50 mins

[^3]: * Session duration: 50 mins

[^4]: * Session duration: 50 mins

