

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

		LP: CY22153
Department of Applied Chemistry		Rev. No: 00
B.E/B.Tech/: I Year (Common to BIO, CHE & CVE)	Regulation: 2022	Date: 08.11.202

Regulation: 2022

Date: 08.11.2022

Sub. Code / Sub. Name : CY22153 / Technical Chemistry

Unit : 1

Unit Syllabus: ELECTROCHEMISTRY

Electrodes and electrochemical cells - electrode potential, standard electrode potential, single electrode potential and its determination, types of electrodes - calomel, quinhydrone and glass electrode. Nernst equation - determination of pH of a solution by using quinhydrone and glass electrode. Electrochemical series and its applications. Batteries – Primary (dry battery) and secondary batteries (Lead - acid storage battery and Lithium ion battery) and next generation batteries.

Objective: To make the students to understand the importance of electrochemistry.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Electrodes and electrochemical cells. Cell terminology, Types of cell- Electrochemical cell and electrolytic cell.	R2/CH24/PG :835	LCD/BB
2	Electrode potential- Origin, oxidation and reduction potential, Standard Hydrogen Electrode potential (SHE) - Construction & working principle and its use in determination of unknown electrode potential.	R2/CH24/PG: 838	LCD/BB
3	Construction & working principle of calomel, quinhydrone and glass electrodes.	R2/CH24/PG: 837	LCD/BB
4	Derivation of Nernst equation – Concentration dependence of electrode potential. Applications of Nernst equation.	R2/CH24/PG: 844	LCD/BB
5	Determination of pH of a solution by using quinhydrone and glass electrodes.	R2/CH24/PG: 845	LCD / BB
6	Electrochemical series – Arrangement of reduction potentials. EMF series- Applications	R2/CH24/PG: 846,865	LCD / BB
7	Batteries –Definition, Primary batteries- Construction & working principle of dry cells, Zinc-Carbon batteries and alkaline batteries.	T2/CH4/PG :129	LCD / BB
8	Secondary batteries - (Rechargeable)- Construction, working principle and uses of Lead - Acid storage battery and Lithium battery.	T2/CH4/PG :132	LCD/BB
9	Next generation batteries- Higher energy density – Construction, working principle and advantages of Aluminium- Air battery and Lithium ion solid battery.	T2/CH4/PG:1 31, 134	LCD/BB
Content l	peyond syllabus covered (if any): Fuel cells		

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: CY22153 / Technical Chemistry

Unit: 2

Unit Syllabus: PHOTOCHEMISTRY

Laws of photochemistry – Grotthuss-Draper law, Stark-Einstein law and Lambert Beer Law – determination iron by spectrophotometer. Quantum efficiency – Photo physical processes - internal conversion, inter-system crossing, fluorescence, phosphorescence and photo-sensitization-Quenching of fluorescence and its kinetics, Stern-Volmer relationship. Applications of photochemistry.

Objective: To enable the students to acquire knowledge on photochemical process and laws of photochemistry and its applications

Session No *	Topies to be covered	Ref	Teaching Aids
10	Introduction to electromagnetic radiation and its properties	T1/CH35/PG:119 3-1195	LCD/BB
11	Photochemistry— Photochemical reactions with examples—difference between photochemical and thermal reaction	T1/CH34/PG: 1141-1143	LCD/BB
12	Laws of Photochemistry - Grotthus - Draper law, Stark-Einstein law and Beer-Lambert Law - Applications and Limitations	T1/CH34/PG: 1143-1145	LCD/BB
13	Beer-Lambert Law – problems; determination of iron by spectrophotometer	T1/CH34/PG: 1182-1187	LCD/BB
14	Quantum efficiency (Φ) - classification of reactions based on quantum yield - Reason for high and low quantum yield, High quantum yield with example - formation of HCl, Low quantum yield with example - formation of HBr	T1/CH34/PG: 1147-1150	LCD / BB
15	Jablonski Diagram - Internal conversion - Inter-system crossing Fluorescence & Phosphorescence	T1/CH34/PG: 1154-1157	LCD / BB
16	Photosensitization – Mechanism and examples - quenching Difference between Fluorescence and Phosphorescence	T1/CH34/PG: 1158-1162	LCD / BB
17	Photochemical reaction kinetics with example	T1/CH34/PG: 1151-1153	LCD / BB
18	Stern-Volmer relationship and Applications of photochemistry	R1/CH29/PG:113 3-1134; T2/CH 26/PG: 927	LCD/BB

Content beyond syllabus covered (if any): Photocatalyst and applications

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: CY22153 / Technical Chemistry

Unit: 3

Unit Syllabus: NANOCHEMISTRY

Basics and scale of nanotechnology, different classes of nanomaterials, Distinction between molecules, nanoparticles and bulk materials; size-dependent properties. Synthesis of nanomaterials, fabrication (lithography) and its applications — Basics of nanophotonics and quantum confined materials (surface plasmon resonance).

Objective: Objective: To acquaint the students with the basics of nanomaterials, their properties and uses.

Session No *	Topics to be covered	Ref	Teaching Aids
19	Introduction - Basics of Nanochemistry – Nano-technology – Nano-science – Nano-Chemistry features.	T1/CH 37/PG: 1303, 1304	LCD/BB
20	Difference between Nanomaterials and Bulk Materials.	T1/CH 37/PG: 1303, 1304	LCD/BB
21	Properties of nanomaterials-Physical and chemical.	T1/CH 37/PG: 1304,1337-1338	LCD/BB
22	Synthesis of nanomaterials - Mechanical milling, vibratory milling, or attrition milling, Mechanochemical synthesis,	T1/CH 37/PG: 1332-1337, R1/22/971-972	LCD/BB
23	Laser ablation & Ion sputtering-Fabrication and its application	T1/CH 37/PG: 1332-1337, R1/22/972-979	LCD/BB
24	Synthesis of nanomaterials-Bottom-up approach- Physical vapor deposition method (PVD), Chemical vapor deposition method (CVD).	T1/CH 37/PG:1317-1332, R1/22/961-971	LCD/BB
25	Synthesis of nanomaterials - Top down approach-Sol gel method, Hydrothermal method, Chemical reduction method, Solvothermal method	T1/CH 37/PG:1317-1332	LCD/BB
26	Nanophotonics-Fundamentals, Challenges, Future Prospects and Applied Applications.	T1/CH 37/PG:1337	LCD/BB
27	Quantum confined materials-Size effect, (surface plasmon resonance (SPR)-principle, application).	T1/CH 37/PG:1304-1305	LCD/BB
Content l	beyond syllabus covered (if any): Carbon nanotubes		

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub, Code / Sub, Name: CY22153 / Technical Chemistry

Unit: 4

Unit Syllabus: WATER TECHNOLOGY

Sources, impurities in water and their effects. WHO guideline and BIS guideline for drinking water. Water characteristics – Hardness – Types of hardness – Disadvantages of hard water. Boiler troubles: Scale, Sludge, Priming and Foaming, Caustic embrittlement and Boiler corrosion. Water softening methods - Internal treatment of water: Carbonate conditioning, Phosphate conditioning and Calgon conditioning - External treatment of water: Ion exchange process. Domestic water treatment. Water analysis: Hardness – determination by EDTA method, Alkalinity – determination by double indicator method, Determination of dissolved oxygen by Winkler's method and Determination of chloride by Mohr's method

Objective: To make the students conversant with boiler feed water requirements, related problems and the water treatment and analysis methods.

Session No *	Topics to be covered	Ref	Teaching Aids
28	Sources of water, impurities in water and their effects. WHO guideline and BIS guideline for drinking water.	T1/CH 1/PG : 1-2	LCD / BB
29	Water characteristics – Hardness – Types of hardness – Disadvantages of hard water in domestic and industry	T1/CH 1/PG : 2-6	LCD / BB
30	Boiler feed water - requirements, disadvantages of hard water in boilers and heat exchangers - scale and sludges formation and their preventive methods.	T1/CH 1/PG: 6-8	LCD/BB
31	Priming & foaming, caustic embrittlement – explanation with the elimination of these problems.	T1/CH 1/PG: 11- 12	LCD/BB
32	Boiler corrosion due to various agents and its prevention, Softening of hard water (external) - Internal conditioning methods- Principle- Phosphate, Calgon, Carbonate, Colloidal conditioning	T1/CH 1/PG : 8- 12	LCD/BB
33	Softening of hard water (external) - Zeolite process,- advantages & limitations, Demineralization (Ion exchange) process - explanation with mechanisms, regeneration of resins	T1/CH 1/PG : 15- 19	LCD/BB
34	Domestic water treatment - Removal of suspended particles, disinfection- Break point chlorination	T1/CH 1/PG: 20- 25	LCD / BB
35	Water analysis: Hardness – determination by EDTA method- Alkalinity – determination by double indicator method	T1/CH 1/PG : 28- 30 & 33-35	LCD/BB
36	Determination of dissolved oxygen by Winkler's method and Determination of chloride by Mohr's method	T1/CH 1/PG : 35- 36	LCD/BB
Content	beyond syllabus covered (if any): Electro dialysis	* g	÷ =

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: CY22153 / Technical Chemistry

Unit: 5

Unit Syllabus: MATERIALS CHEMISTRY

Polymers: Introduction – Monomers, functionality and its significance, Free radical polymerization mechanism. Conducting polymers – mechanism of conduction in polyacetylene and applications. Composites: Definition, need for composites. Constitution – Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of composites materials. Hybrid composites, Binding materials and its applications

Objective:

Session No *	Topics to be covered	Ref	Teaching Aids
37	Introduction – Polymers – Monomer; Classification of polymers – Natural and Synthetic (Inorganic and Organic) examples	T1/CH 1/PG : 119- 125	LCD / BB
38	Degree of polymerization – Functionality- bi, mixed, poly functional monomers and its significance	T1/CH 1/PG : 121- 122	LCD / BB
39	Free radical polymerization mechanism	T1/CH 1/PG : 127- 130	LCD / BB
40	Conducting polymers – mechanism of conduction in polyacetylene and applications	T1/CH 1/PG : 178- 181	LCD / BB
41	Composites: Definition, need for composites and classification	T1/CH 1/PG : 1005-1010	LCD / BB
42	Constitution – Matrix materials (Polymer matrix, metal matrix and ceramic matrix and Reinforcement (fiber, particulates, flakes and whiskers)	T1/CH 1/PG: 1006-1007; T2/CH 10/PG: 436-438	LCD / BB
43	Properties of composite materials -mechanical, electrical and corrosive	T1/CH 1/PG: 1007-1010; T2/CH 10/PG: 438	LCD / BB
44	Applications of composite materials- Acrospace, automobile and transportation, corrosive environments, electrical, energy, marine and sports	T1/CH 1/PG: 1005; T2/CH 10/PG: 447-448	LCD / BB
45	Binding materials and its applications	T1/CH 12/PG : 491-497	LCD / BB

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

OUTCOMES:

Upon successful completion of the course, students should be able to:

- 1. Identify electrochemical cells, corrosion and fundamental aspects of batteries
- 2. Interpret the photochemical reactions and make use of spectroscopic techniques
- 3. Realize the structures, properties and applications of nanoparticles.
- 4. Describe the hardness of water, the problems caused by the hard water and their removals to arrive for soft water.
- 5. Illustrate the various materials that are important both in industry and domestic.

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry", Dhanpet Rai & Sons, New Delhi,
- 2. S.S.Dara, "A Text Book of Engineering Chemistry", S.Chand & Co. Ltd., New Delhi,

REFERENCES:

- I. B.R. Puri, L.R. Sharma, M.S. Pathania., "Principles of Physical Chemistry" Vishal Publishing Company, 2008.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company,

Signatura	Prepared by	Approved by
Signature	-1 (15mm)	GD Sa gangan
Name	Dr. T. Balusamy Dr. N. Nachiappan	Dr. G. Devasagayam
Designation	Asst. Professor	Prof. & Head
Date	08.11.2022	
Remarks *:	08.11.2022	08.11.2022

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

