CM18151	2
ME22101	6
ME22152	12
ME18301	19
ME18302	25
ME18303	31
ME18304	37
ME18311	43
ME18312	46
ME18001	48
ME18501	54
ME18502	60
ME18503	66
ME18504	73
ME18511	79
ME18512	
ME18513	84
OE18005	86
ME18015	92
ME18023	98
ME18029	103
ME18701	109
ME18702	115
ME18703	121
ME18712	130
ME18713	133
OE18007	136

COURSE DELIVERY PLAN - THEORY

Page 1 of 4

I	DEPARTMENT MECHANICAL ENGINEERING		LP: CM18151
			Kev. No. 00
B.E/B.Tech/M.E/M.Tech PG Specialisation	n : Elcetrical and Electronics Engineering : -NA-	Regulation: 2022	Date: 10/11/2022
Sub. Code / Sub. Name	: CM22151 / BASIC CIVIL AND MECHANICAL	ENGINEERING	
Unit	: I- PART B: OVERVIEW OF MECHANICAL ENGI	NEERING	

Syllabus:

Overview of Mechanical Engineering - Mechanical Engineering Contributions to the welfare of Specialized sub disciplines in Mechanical Engineering – Manufacturing, Automation, Automobile and Energy Engineering - Interdisciplinary concepts in Mechanical Engineering

Objective:

After the end of this topic students will know the significance of the Mechanical Engineering Profession in

satisfying the societal needs

Session No	Topics to be covered	Books Referred	Teaching Method	
6	Overview of Mechanical Engineering	R.1, PP:1.69	РРТ	
7	Mechanical Engineering Contributions to the welfare of Society	R.1, PP:1.69 R.5, PP:4.17-4.20,	РРТ	
8	Specialized sub disciplines in Mechanical Engineering – Manufacturing, Automation, Automobile and Energy Engineering	R.1, PP:1.75	PPT	
9	Interdisciplinary concepts in Mechanical Engineering.	R.1, PP:1.75	PPT	
Content beyond syllabus covered (if any):				

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 2 of 4

Sub. Code / Sub. Name: CM22151 / BASIC CIVIL AND MECHANICAL ENGINEERING

Unit : IV - INTERNAL COMBUSTION ENGINES AND POWER PLANTS

Syllabus:

Classification of Power Plants- Working principle of steam, Gas, Diesel, Hydro -electric and Nuclear Power plants- Internal combustion engines as automobile power plant – Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines. Working principle of Boilers-Turbines, Reciprocating Pumps (single acting and double acting) and Centrifugal Pumps, Concept of hybrid engines. Industrial safety practices and protective devices.

Objective:

After the end of this topic students will know the working principle of internal combustion engine, Diesel and petrol engines, 2-Stroke and 4-Stroke engines and components and working principle of power plant.

Session	Topics to be covered	Books Referred	Teaching	
No			Method	
28	Classification of Power Plants	R.5, PP:4.1-4.5	PPT,BB	
29	Working principle of steam Power plants	R.4, PP:4.11-		
		4.12,4.14.	rr I,DD	
30	Working principle of Gas and Diesel Power plants	R.4, PP:4.13-	PPT BB	
		4.15,4.16.	111,00	
31	Working principle of Hydro -electric and Nuclear Power	D 5 DD 4 20 4 44		
	plants	K.5, PP:4.39-4.44	РР1,ВВ	
	CAT - I			
32	Internal combustion engines as automobile power plant	R.5, PP:4.12-4.16	PPT,BB	
33	Working principle of Petrol and Diesel Engines	R.5, PP:4.11-4.12	PPT,BB	
34	Working principle Four stroke and two stroke cycles -	R.5, PP:4.17-4.20,		
	Comparison of four stroke and two stroke engines.	R.1, PP:4.7-4.8,4.11-	PPT,BB	
		4.11		
35	Working principle of Boilers-Turbines	R.5, PP:2.1-2.4, R.1,	PPT BB	
		PP:2.12-2.12	111,00	
36	Reciprocating Pumps (single acting and double acting)			
	and Centrifugal Pumps, Concept of hybrid engines.	R.5, PP:2.4-2.22	PP1,BB	
Content h	evond syllabus covered (if any):			
	cyona synabus covercu (ii any).			

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 4

Sub. Code / Sub. Name: CM22151 / BASIC CIVIL AND MECHANICAL ENGINEERING

Unit : V - REFRIGERATION AND AIR CONDITIONING SYSTEM

Syllabus:

Principles of Refrigeration and Air Conditioning. Vapour compression and absorption system–Layout of typical domestic refrigerator–Window and Split type room Air conditioner. Tonnage calculations for refrigerator and air conditioning systems

OBJECTIVE:

After the end of this topic students will have the knowledge about Air-Conditioning, Refrigeration system.

Session	Tanias to be severed	Doolyg Doformad	Teaching
No	Topics to be covered	DOOKS KEIEFFEU	Method
37	Principle and Terminology used in Refrigeration,	R.5,PP:5.1-5.4	PPT,BB
38	Properties of refrigerants	R.4,PP:4.46-4.48	PPT,BB
39	Working principle of Vapour compression system, merits, demerits and applications.	R.5,PP:5.5-5.7	PPT,BB
	CAT - II		
40	Working principle of Vapour absorption system, merits, demerits and applications.	R.5,PP:5.7-5.10	PPT,BB
41	Comparison of vapour absorption and vapour compression system.	R.5,PP:5.10, R.1, PP:5.6	PPT,BB
42	Brief introduction about Air-Conditioning.	R.5,PP:5.11-5.22	PPT,BB
43	Working principle of Window air-conditioner, Working principle of Split type Air-conditioner	R.1,PP:5.5.8-5.9	PPT,BB
44	Working principle of Central Air-Conditioning System, Comparison of all air-conditioners	R.1,PP:5.5.9-5.10	PPT,BB
45	Tonnage calculations for refrigerator and air conditioning systems	R.1,PP:5.1, 5.5.10- 5.11	PPT,BB
	CAT - III		
Content be	eyond syllabus covered (if any):		

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 4 of 4

OUTCOMES:

The students will be able to

CO1: Summarize the importance of Mechanical engineering towards the welfare of society CO4: Explain about the various power plants and the working principles of internal combustion engines used in automotive vehicles.

CO5: Elaborate the working of domestic refrigerator and air conditioners.

TEXT BOOKS:

 G Shanmugam, M S Palanichamy, Basic Civil and Mechanical Engineering, McGraw Hill Education: First edition, 2018.

REFERENCES:

1. Palanikumar, K. Basic Mechanical Engineering, ARS Publications, 2018.

2. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P) Ltd, 2013.

3. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, 2005.

 Shantha Kumar SRJ., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, 2000.

Nag P.K, "Power Plant Engineering", Tata McGraw Hill Publishing Co., New Delhi, 2014.
 Ganesan V, "Internal Combustion Engines", 4th edition, Tata McGraw Hill Publishing Co.,

New Delhi, 2012,

7. Arora C.P, "Refrigeration and Air Conditioning", Tata McGraw Hill Publishing Co, New Delhi, 2009.

	Prepared by	Approved by	
Signature	le-	dr. Unn	
Name	Dr. M. Gajendiran / Dr. V. Arun Prasad Raja	Dr. M. Mohandass	
Designation	ASSISTANT PROFESSOR	A.H.O.D	
Date	10/11/2022	10/11/2022	
Remarks *:			

Remarks *:

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

Department	of Mechanical Engineering		LP: ME 22101
B.E/B.Tech/ M.E/M.Tech : Common to ME/MN/MAR branches Regulation:2022 CBCS PG Specialization : NA		Rev. No: 00 Date: 13-11-2022	
Sub. Code / Sub. Name : ME 22101 -	ENGINEERING DRAWING		
Unit : 0 and 1			

Unit Syllabus: CONCEPTS AND CONVENTIONS AND GEOMETRIC CONSTRUCTION (NOT FOR EXAM)

Importance of drawing in Engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning. Geometric construction - to draw perpendiculars, parallel lines, divide a line and circle, to draw equilateral triangle, square, regular polygons.

UNIT I CYCLOIDAL CURVES, INVOLUTE AND PROJECTIONS OF POINTS, LINES

Basic construction of cycloid, epicycloid and hypocycloid - Drawing of tangents and normal to the above curves. Construction of involutes of square, pentagon and circle - Drawing of tangents and normal to the above involutes.

Orthographic projection – Introduction to Principal Planes of projections - First angle projection - projection of points. Projections of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method.

Session No *	Topics to be covered	Ref	Teaching Aids
1,2	Importance of graphics in Engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Title Block, Usage of Drawing Pencils, Geometrical Constructions. Lettering and dimensioning, Dimensioning system- Aligned and Unilateral system of dimensioning, chain and parallel dimensioning, , Types of lines. <u>https://nptel.ac.in/courses/112103019</u> , <u>https://youtu.be/2uWYn9-M1AU</u>	Ref 2 (Chapter 1&3, pp.1-32 & 33-40, pp 57-78)	ICT & BB
3,4	Descriptive Drawing- Practice of tutorial Sheet No-I (lettering and Dimensioning Practice)	Ref 2 (Chapter 1&3, pp.1-32 & 33-40, pp 57-78)	BB
5,6	Construction of Engineering Curves: Conic Sections – Ellipse, Parabola, Hyperbola using Eccentricity method, Practice of Tutorial Sheet No-II (Conics and special curves)	Ref 2 (Chapter 5, pp.57-78)	BB
7,8	Construction of Cycloid, Epicycloid and Hypo-cycloid and Involute of Circle and Pentagon.	Ref 2 (Chapter 6, pp.79-91)	ICT & BB
9,10	Practice of Tutorial Sheet No.III (Projection of points and straight lines)	Ref 2 (Chapter 7,8,9,) pp.(92-100 ,131-141)	BB
11,12	Projection: Principal Planes, Projection of Points using Four Angles of Projection, Projection of points in first, second, third and fourth quadrants. Introduction to straight lines, Position of straight line in first quadrant with respect to principle planes of	Ref 2 (Chapter 8&9 p.(130-141)	ICT & BB

2

10

projections, Projection of straight lines	
(1) Parallel to both HP and VP	
(2) Parallel to HP and Perpendicular to VP.Projection of straight lines	
(3) Parallel to VP and perpendicular to HP	
(4) Parallel to VP and inclined to HP	
(5) Parallel to HP and inclined to VP	
(6) Inclined to both HP and VP	
Practice of Tutorial Sheet No.IV	
https://youtu.be/ZIZyQbCX30E ,https://youtu.be/8mbLMu1IvUI,	
https://youtu.be/PgoEg4V-J4Y	

* Session duration: 50 mins :ICT-Power Point presentation, You Tube videos, Google classroom, Assessment tools & DB - Black Board

Sub. Code / Sub. Name: ME 22101 - ENGINEERING DRAWING Unit: II

Unit Syllabus:

UNIT II PROJECTIONS OF PLANES AND PROJECTIONS OF SOLIDS

12

Projections of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

Projections of regular solids like prisms, pyramids, cylinder, cone when the axis is inclined to one of the principal planes and parallel to the other by rotating object method.

Objective: To develop in students graphic skill for to do projection of plane surfaces and solids.

Session No *	Topics to be covered	Ref	Teaching Aids
13,14	Introduction to Projection of planes. Projection of planes Parallel to HP and Perpendicular to VP Parallel to VP and Perpendicular to HP Inclined to HP and Perpendicular to VP,	Ref 2 (Chapter 10, pp.(201-227)	ICT & BB
15,16	Descriptive Drawing -Practice of T utorial sheet no. V (Projection of Planes)	Ref 2 (Chapter 10, pp. (201-227)	BB
	First Assessment Test		
17,18	Projection of solids (1)Solid axis perpendicular to HP and parallel to VP (2) Solid axis perpendicular to VP and parallel to HP (3)Solid axis parallel to both HP and VP	Ref 2 (Chapter 11, pp.(228-295)	ICT & BB
19,20	Practice of tutorial sheet no. VI	Ref 2 (Chapter 11, pp.(228-295)	BB
21,22	Projection of solids (4) Solid axis inclined to HP and parallel to VP (5) Solid axis inclined to VP and parallel to HP	Ref 2 (Chapter 11, pp.(250-295)	ICT & BB
23,24	Practice of Tutorial sheet no. VII- Projections of solids (Axis inclined to one plane)	Ref 2 (Chapter 11, pp.(250-295)	BB

* Session duration: 50 mins: PPT - PowerPoint Presentation: BB - Black Board: DB - Drawing Boar

Sub. Code / Sub. Name: ME 22101- ENGINEERING DRAWING Unit: III

Unit Syllabus:

UNIT III

SECTION OF SOLIDS & DEVELOPMENT OF SURFACES

12

Sectioning of regular solids like prisms, pyramids, cylinder and cone in vertical position when the section plane is inclined to one of the principal planes and perpendicular to the other - Drawing of sectional front and top views and true shape of section.

Development of surfaces of simple and sectioned solids - prisms, pyramids cylinders and cones.

Objective: To develop the students' graphic skill to draw sections of solids and development of surfaces.

Session No *	Topics to be covered	Ref	Teaching Aids
25,26	 Section of solids- Introduction, Projection of section of solids Section plane is parallel to HP and Perpendicular to VP Section plane is parallel to VP and Perpendicular to HP Section plane is inclined to HP and Perpendicular to VP 	Ref 2 (Chapter 12, pp.(296-348)	ICT & BB
27,28	Descriptive Drawing -Practice of tutorial sheet no. VIII (Sections of solids)	Ref 2 (Chapter 12, pp.(296-348)	BB
29,30	Section of solids- Introduction, Projection of section of solids Section plane is inclined to VP and Perpendicular to HP Section plane is perpendicular to both HP and VP https://youtu.be/mvl_AVGuZIA	Ref 2 (Chapter 12, pp.(296-348)	ICT & BB
31,32	Experimental Practice of Tutorial sheet no. VIII (Sections of solids)	Ref 2 (Chapter 12, pp.(296-348)	BB
\bigcirc	Second Assessment Test		
33,34	Development of surfaces – Introduction Development of lateral surfaces of sectioned Prisms and cylinders, sectioned Pyramids and cones, Development of lateral surfaces of solids with cylindrical cutouts, perpendicular to the axis.	Ref 2 (Chapter 13, 14pp.(349-401 ,402 -420))	ICT & BB
35,36	Practice of tutorial sheet no. IX (Development of surfaces)	Ref 2 (Chapter 14, pp.(402-420)	BB

* Session duration: 50 mins : PPT - Power Point Presentation : BB - Black Board : DB - Drawing Board

Sub. Code / Sub. Name: ME 22101- ENGINEERING DRAWING Unit: IV

Unit Syllabus:

UNIT IV ISOMETRIC PROJECTION AND INTERSECTION OF SURFACES

Introduction to Pictorial Projection - Principles of isometric projection - Isometric scales - lsometric projection of regular solids (prisms, pyramids, cylinder, cone), truncated solids and their combination in vertical position.

12

Line of intersection - Determining the line of intersection between surfaces of two interpenetrating solids with axes of the solids intersecting each other perpendicularly, using line method - Intersection of two square prisms and Intersection of two cylinders are only to be considered

Objective: To develop in student's graphic skill to draw isometric projections and intersection of Surfaces

Session No *	Topics to be covered	Ref	Teaching Aids
37,38	Principles of Isometric projection-Isometric scale-, Isometric view Vs Isometric Projection, Isometric projection of simple solids.	Ref. 2 (Chapter 15, pp.(421-472)	ICT & BB
39,40	Experimental Practice of tutorial sheet no.X (Isometric Projection)	Ref. 2 (Chapter 15, pp.(421-472)	BB
41,42	Isometric projection of simple solids, Isometric projection of truncated prisms, cylinders and cones	Ref. 2 (Chapter 15, pp.(421-472)	ICT & BB
43,44	Practice of tutorial sheet no.X (Isometric Projection)	Ref. 2 (Chapter 15, pp.(421-472)	BB
45,46	Line of intersection between surfaces of two interpenetrating solids with axes of the solids intersecting each other perpendicularly, using line method	Ref. 2 (Chapter 15, pp.(421-472)	ICT & BB
47,48	Practice of tutorial sheet no.X (Isometric Projection) https://youtu.be/LcqCeOW1mi4	Ref. 2 (Chapter 15, pp.(421-472)	BB

* Session duration: 50 mins: PPT - Power Point Presentation: BB - Black Board: DB - Drawing Board

Unit Syllabus:

UNIT V FREE-HAND SKETCHING

Free-hand sketching – Sketching procedures – Steps in sketching - Orthographic views (front, top and side views) of simple blocks from their Isometric view, Isometric view of simple blocks from their Orthographic views (front, top and side views) Objective: To develop the student's graphic skill to draw Free hand Sketching

Session No *	Topics to be covered	Ref	Teaching Aids
49,50	Free-hand sketching – Sketching procedures – Steps in sketching -	Ref. 2 (Chapter 15, pp.(421-472)	ICT & BB
51,52	Experimental Practice of Tutorial sheet no – XII (Free Hand Drawing)	Ref. 2 (Chapter 15, pp.(421-472)	BB
53,54	Orthographic views (front, top and side views) of simple blocks from their Isometric view,	Ref. 2 (Chapter 15, pp.(421-472)	ICT & BB
55,56	Descriptive Drawing Practice of Tutorial sheet no – XII (Free Hand Drawing)	Ref. 2 (Chapter 15, pp.(421-472)	BB
57,58	Isometric view of simple blocks from their Orthographic views (front, top and side views) https://youtu.be/gFSlv3-I7Fo	Ref 2 (Chapter 18, pp. (518-534)	ICT & BB
59,60	Practice of Tutorial sheet no – XII (Free Hand Drawing)	Ref 2 (Chapter 18, pp. (518-534)	BB
	Third Assessment Test		

* Session duration: 50 mins: PPT - Power Point Presentation: BB - Black Board: DB - Drawing Board **REFERENCES:**

Text Books

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2.Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.

3. Venugopal K. and Prabhu Raja V., "Engineering Drawing+AutoCAD", New Age International (P) Limited, 6th edition, 2022.

References:

4. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2nd Edition, 2019.

5. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.

Website Resources

- 1) Engineering Drawing by Dr. Anupam Saxena, Department of Mechanical Engineering, IIT Kanpur, NPTEL
- 2) https://archive.nptel.ac.in/courses/112/103/112103019/

Engineering drawing by Dr. Robi P.S.Department of Mechanical Engineering, IIT , Guwahati, NPTEL

COURSE ARTICULATION MATRIX

	PROGRAM OUTCOMES													PSO		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1										1						
CO2										2						
CO3										2						
CO4										3					-	
CO5										3					-	

	Prepared by	Approved by
Signature	M.B chelhum	Dullin
Name	Mr. M.Balakumar	Dr.M.Mohandass
Designation	Assistant Professor	A.H.O.D / Mechanical Engineering
Date	13.11.2022	13.11.2022
Remarks *:		- X X
Remarks *: This Lesson Plan	is to be followed for the Academic Year 2	021-22 (Odd Sem).

 \ast If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

D	LP: ME22152 Rev. No: 00		
B.Tech : Biotechnology 2022	& Chemical Engineering	Regulation:	Date: 17/11/2022
PG Specialisation	:-NA-		
Sub. Code / Sub. Name	and the second second		
Unit	: 1 - ENERGY RESOURCES		

Syllabus:

Classification of Energy Resources - Non-renewable and renewable energy resources. Nonrenewable energy resources - Steam power plant, Nuclear power plant, Hydroelectric power plant, Gas Turbine power plant. Diesel Power plant, Renewable Energy resources - Solar Energy, Wind Energy, Bio energy, tidal energy, fuel cells

Objective:

To teach the fundamentals of various energy resources

Session No	Topics to be covered	Books Referred	PPT, BB	
1	Classification of Energy Resources - Renewable energy resources	R.3, PP:3.89-3.91		
2	Non-renewable energy resources	R.3, PP:3.91-3.92	PPT, BB	
3	Working of a Steam power plant. Demonstration in Thermal Engineering Lab.	R.3, PP:3.75-3.76	PPT, BB	
4	Nuclear power plant	R.3, PP:3.76-3.80	PPT, BB	
5	Hydroelectric power plant	R.3, PP:3.76-3.76	PPT, BB	
6	Gas Turbine power plant	R.3, PP:3.76-3.76	PPT, BB	
7	Diesel Power plant.	R.3, PP:3.80-3.82	PPT, BB	
8	Solar Energy, tidal energy	R.3, PP:3.76-3.76	PPT, BB	
. 9	Wind Energy, Bio energy	R.3, PP:3.85-3.88	PPT, BB	
10 ,	Fuel cells	R.3, PP:3.85-3.88	PPT, BB	

Content beyond syllabus covered (if any):

Prime moyers, Boilers - Requirements of a Good Boiler - Lamont and Benson Boiler, Boiler Accessories, Turbines

* Session duration: 50 mins

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME22152 / BASIC MECHANICAL ENGINEERING

Unit : II - INTERNAL COMBUSTION ENGINES

Syllabus:

Classification, I.C. Engines parts and their function, working of 2 Stroke and 4 stroke engines. Basic terms -

Indicated power, brake power frictional power, thermal efficiency, mechanical efficiency (simple problems).

Objective:

To impart the concepts in internal combustion Engines

Session No	Topics to be covered	Books Referred	Teaching Method
11	Introduction and brief discussion about Engines, External combustion engine and Internal combustion engines in automobile power plant, Lubrication system and Classification of IC Engines. Demonstration in Thermal Engineering Lab .	R.4, PP:4.319-4.321	ррт, вв
12	Brief explanation about Petrol engines. Merits, Demerits and its applications. Demonstration in Thermal Engineering Lab.	R.3, PP:6.192-6.197	PPT, BB
13	Brief explanation about Diesel engines, Merits, Demerits and its applications. Demonstration in Thermal Engineering Lab.	R.3, PP:6.192-6.197	PPT, BB
14	Basic terms - Indicated power, brake power, frictional power, thermal efficiency, mechanical efficiency	R.3, FP:6.209-6.211	PPT, BB
	CAT-1		
15	Brief explanation about 2-Stroke engines, Merits, Demerits and its applications.	R.3, PP:6.188-6.197	PPT, BB
16	Brief explanation about 4-stroke engines, Merits, Demerits and its applications.	R.3, PP:6.188-6.197	PPT, BB
17	Simple problems in Diesel Engines	R.3, PP:6.209-6.211	PPT. BB
18	Simple problems in Petrol Engines	R.3, PP:6.209-6.211	PPT BB

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY Page 3 of 6

Sub. Code / Sub. Name: ME22152 / BASIC MECHANICAL ENGINEERING

Unit : III - REFRIGERATION AND AIR CONDITIONING SYSTEM

Syllabus:

Refrigeration: Types of refrigerants and properties of good refrigerant, Refrigerating effect and unit of Refrigeration (definition). Working principle of vapor Compression refrigeration and vapor absorption refrigeration (with a sketch). Applications areas of a refrigeration system. Basic Calculations. Air Conditioning: Definition, Types, Room air-conditioning working principle (with a sketch), Applications. Calculation of Tonnage requirement based on the room size

OBJECTIVE:

To make the students to understand the working principle of refrigeration and Air conditioning systems

Sessi	ion 0	Topics to be covered	Books Referred	Teaching Method
19)	Terminology used in Refrigeration.	R.3, PP:8.239-8.250	PPT, BB
20)	Principle of refrigeration effect, Properties of good refrigerant.	R.3, PP:8.239-8.250	PPT, BB
21		Working principle of Vapour compression system, merits, demerits and applications. Demonstration in Thermal Engineering Lab.	R.3, PP:8.247-8.250	PPT, BB
22	2	Working principle of Vapour absorption system, merits, demerits and applications. Comparison of vapour absorption and vapour compression system.	R.3, PP:8.250-8.250	PPT, BB
23	3	Applications areas of a refrigeration system. Basic Calculations	R.3, PP:8.250-8.250	PPT, BB
24	1	Brief introduction about Air-Conditioning. Demonstration in Thermal Engineering Lab.	R.3, PP:8.264-8.267	PPT, BB
25	5	Working principle of Window air-conditioner. Demonstration in Thermal Engineering Lab.	R.3, PP:8.264-8.267	PPT, BB
26	5	Working principle of Split type Air-conditioner. Demonstration in Thermal Engineering Lab.	R.3, PP:8.264-8.267	PPT, BB
27	7	Calculation of Tonnage requirement based on the room size	R.3, PP:8.264-8.267	PPT, BB
		CAT - II		

COURSE DELIVERY PLAN - THEORY Page 4 of 6

Sub. Code / Sub. Name: ME22152 / BASIC MECHANICAL ENGINEERING

Unit : IV - MATERIALS AND MANUFACTURING PROCESSES

Syllabus:

Engineering Materials: Classification – Properties – Alloys and their applications. Manufacturing Processes – classification – Casting – Pattern, Core, Green sand Mould preparation, Investment casting. Metal Joining Process – Arc welding and Gas welding process, Soldering and Brazing – introduction. Metal forming Process – Forging, rolling, Extrusion – introduction, Metal Removal process – Lathe, Milling, Drilling.

OBJECTIVE:

To impart the various engineering materials and their processing methods

Session No	Topics to be covered	Books Referred	Teaching Method			
28	Engineering Materials: Classification - Properties - Alloys and their applications	R.3, PP:3.19-3.524 R.4, PP:4.365-4.390	PPT, BB			
29	Manufacturing Processes – classification – Casting – Pattern, Core. Demonstration in Manufacturing Lab.	R.3, PP:20.597 - 20.600	PPT, BB			
30	Green Sand Mould preparation, Investment casting	R.3, PP:20.597 - 20.600	PPT, BB			
31	Metal Joining Process - Arc welding and Gas welding process. Demonstration in Manufacturing Lab.	R.3, PP:20.622 - 20.628	PPT, BB			
32	Introduction about the Working Metal Joining Process - Soldering and Brazing.	ring and R.3, PP:20.645 - 20.646				
33	Introduction about Metal forming Process - Forging.	R.3, PP:20.660 - 20.662	PPT, BB			
34	Metal forming Process – Rolling, Extrusion.	R.3, PP:3.657-3.659, PP:3.663-3.664	PPT, BB			
35	Introduction about Metal Removal process. Demonstration in Manufacturing Lab.	R.3, PP:19.556 - 19.557	PPT, BB			
36	Working of Lathe and Milling machines. Demonstration in Manufacturing Lab, and Basic Workshop.	R.3, PP:3.581-3.585	PPT, BB			
37	Working of a Drilling machine. Demonstration in Basic Workshop.	R.1, PP:5.1, 5.5.10-5.11	PPT, BB			
	CAT - II					

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY Page 6 of 6

TEXT BOOKS:

- 1. Dr Sadhu Singh, Elements of Mechanical Engineering, S. Chand Publishing, 2010.
- 2. Basant Agrawal, C.M. Agrawal. Basic Mechanical Engineering, Wiley India Pvt Ltd, 2008.
- 3. Pravin Kumar, Basic Mechanical Engineering, 2nd Edition Pearson India, 2018.
- 4. R.K. Rajput, Basic Mechanical Engineering, Lakshmi Publications, 2007.
- 5. Nag. P K, Basic Mechanical Engineering, McGraw-Hill Education (India) Pvt Limited, 2011.

	Prepared by	Approved by	
Signature	WA J Stor	Raument	
Name	Mr. G. Kirubakaran / Mr. S. Saravanan	Dr. S. Ramesh Babu	
Designation	ASSISTANT PROFESSOR	HEAD & PROFESSOR	
Date	17/11/2022	17/11/2022	
Remarks *:			
	Contraction of the second s		
Remarks *:			

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

Annexure to F1/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE OUTCOMES - THEORY

Page 1 of 1

DEPA	CO: ME22152	
B.E/B.Tech/M.E/M.Tech	Rev. No: 00	
Regulation	: 2022	Date: 17/11/2022
PG Specialisation	3	
Sub. Code / Sub. Name	: ME22152 / BASIC MECHANICAL ENGINEERING	

co	STATEMENTS	RBT* Level
CO-1	Students will be able to understand the various energy resources and the principle of their operations	3
CO-2	Students will be able to identify the types of IC engines and will calculate the various parameters	3
CO-3	Students will be able to understand the principle of refrigeration and Air-conditioning	3
CO-4	Students will be able to learn the various Engineering Materials and the manufacturing processes	3
CO-5	Students will be able to know the recent trends in I.C. engines and manufacturing	3 .

* Revised Bloom's Taxonomy

Mapping CO - PO - PSO:

1.0		termine ber	and the second second	Contraction and a	1222.000.2										
1		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
	CO-1														
	CO-2										4				
~	CO-3				1										
1	CO-4							1.5			1000				
1	CO-5														
		A - Strong; B - Moderate; C - weak Course Requirements Assessment Methods 1. Assignment 1 + CAT 1 2. Assignment 2 + CAT 2 3. Assignment 3 + CAT 3 4. End semester exam							Internals - 40 Marks - 60 Marks						
	-	Mr.G.Kirubakaran/Mr.S Saravanan Assistant Professor						Dr.S.Saravanan, Professor Signature of Module Coordinator							

COURSE DELIVERY PLAN - THEORY Page 6 of 6

TEXT BOOKS:

- 1. Dr Sadhu Singh, Elements of Mechanical Engineering, S. Chand Publishing, 2010.
- 2. Basant Agrawal, C.M. Agrawal. Basic Mechanical Engineering, Wiley India Pvt Ltd, 2008.
- Pravin Kumar, Basic Mechanical Engineering, 2nd Edition Pearson India, 2018.
- 4. R.K. Rajput, Basic Mechanical Engineering, Lakshmi Publications, 2007.
- 5. Nag, P K, Basic Mechanical Engineering, McGraw-Hill Education (India) Pvt Limited, 2011.

	Prepared by	Approved by
Signature	both J Ssor	Dunit
Name	Mr. G. Kirubakaran / Mr. S. Saravanan	Dr. S. Ramesh Babu
Designation	ASSISTANT PROFESSOR	HEAD & PROFESSOR
Date	17/11/2022	17/11/2022
Remarks *:		
* If the san	ne lesson plan is followed in the subsequent seme	ster/year it should be mantianed

and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

FT/GN/68/01/23.01.16

De	LP: Sub Code ME18301	
B.E/B.Tech/M.E/M.Tech : M PG Specialisation : NA	Rev. No: 01 Date:29.08.2022	
Sub. Code / Sub. Name : ME	E 18301/ Engineering Thermodynamics	
Unit : I		12

Unit Syllabus: Basic Concepts and First Law

Basic concepts -concept of continuum, comparison of microscopic and macroscopic approach. Path and point functions. Intensive and extensive properties, total and specific quantities. System and their types. Thermodynamic Equilibrium, State, path and process. Quasi-static, reversible and irreversible processes. Heat and work transfer, definition and comparison, sign convention. Displacement work and other modes of work, P-V diagram. Zeroth law of thermodynamics-concept of temperature and thermal equilibrium-relationship between temperature scales -new temperature scales. First law of thermodynamics-application to non-flow and steady systems-unsteady flow processes (Descriptive only

Objective: To gain knowledge of Thermodynamics concept, I-law of Thermodynamics and its analysis

sion No *	Topics to be covered	Ref	g Aids
1.	Introduction to subject. Continuum principle, Microscopic and Macroscopic approaches. Definition of density and pressure.	1-11- All chapters	ICT
2.	Intensive & Extensive and Total & Specific properties. Pressure, Temperature, Volume, Mass, Enthalpy, Internal energy, Thermodynamic systems-types.	1-ch.1; pg.1-19 2- ch.2-6; pg.36-71 3- ch.2; pg.26-42	ICT
3.	Point & Path functions. Mechanical, Chemical, Thermal & Thermodynamic equilibriums, state, path and process. Reversible & irreversible. Quasi-static process. Cycle	1-ch.1; pg.1-19 2- ch.2-6; pg.36-71 3- ch.2; pg.26-42	ICT
4.	Heat and Work transfer, Sign convention. Displacement work, Modes of work, p-V diagram. Zeroth law, application of Zeroth law. Animated demonstration of	1-ch.1; pg.1-19 2- ch.8-9; pg.82-113 3- ch.2; pg.26-42	ICT
5.	Concept of temperature and thermal equilibrium, Relationship between temperature scales.	1-ch.1; pg.1-19 2- ch.8-9; pg.82-113 3- ch.2; pg.26-42	ICT
6.	First law for process and cycle. Application of I-law to closed system-Isometric, Isobaric, Isothermal, Isentropic, Polytropic, Free expansion process–W & Q.	1-ch.1; pg.1-19 2- ch.10-11; pg.114-140 3- ch.5; pg.158-162	ICT
7.	Steady flow processes. Governing equations for various thermal equipments. Power point presentation by students – Participative learning	1-ch.1; pg.1-19 2- ch.12-13; pg.160-198 3- ch.5; pg.176-194	ICT
8.	Problems on Non-flow processes. Calculation of Work and Heat Transfer for	1-ch.1; pg.1-19 2- ch.11; pg.141-159 3.ch.5; pg.163-173	BB,ICT
9.	Problems on Non-flow processes	1-ch.1; pg.1-19 2- ch.12; pg.175-188 3- ch.5; pg.176-194	BB,ICT
10	Problems on Non-flow processes	1-ch.1; pg.1-19 2- ch.12; pg.175-188 3- ch.5; pg.176-194	BB,ICT
11	Problems on flow processes	1-ch.1; pg.1-19 2- ch.12-13; pg.160-198 3- ch.5; pg.176-194	BB,ICT
12.	Unsteady flow processes	1-ch.1; pg.1-19 2- ch.12-13; pg.160-198 3- ch.5; pg.176-194	ICT

Content beyond syllabus covered (if any):

* Session duration: 50 minutes * ICT - Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: ME 18301/ Engineering Thermodynamics

Unit: II

12 Unit Syllabus : SECOND LAW AND AVAILABILITY ANALYSIS Heat reservoirs -source and sink. Heat Engine, Refrigerator, Heat pump. Statements of second law and its corollaries. Carnot and reversed Carnot cycles - Performance. Clausius inequality. Concept of entropy, T-s diagram, Tds Equations Entropy change for ideal gases-different processes, principle of increase in entropy. Applications of Second Law. High and low grade energy. Available and unavailable energy. Exergy and Irreversibility (Descriptive Only). First law and second law Efficiency

Objective: To acquire knowledge of II- law of Thermodynamics and its applications

Session	Topics to be covered	Ref	Teaching Aids
No *	Limitations of I-law, Heat reservoirs-Source and Sink, Heat	1-ch.1; pg.1-19 2- ch.14-15; pg.206-256	ICT
	Efficiency of Heat engines & COP of RHEs. II-law-Kelvin-Planck statement – Clausius statement, PMM-II, Compared Carnot cycle-Efficiency & COP. Problems	3- ch.6; pg.224-239 1-ch.1; pg.1-19 2- ch.14-15; pg.206-256	ICT
14	on heat & rev heat engines.	3- ch.0; pg.224-239 1-ch.1; pg.1-19 2- ch.14-15; pg.206-256 2- ch.14-15; pg.206-256	BB,ICT
15	Problems on Carnot and Reversed Carnot cycles.	3- ch.6; pg.224-239 1-ch.1; pg.1-19 2- ch.14-15; pg.206-256 3- ch.6; pg.224-259	BB,ICT
16	Clausius inequality, concept of entropy, T-s diagram	1-ch.1; pg.1-19 2- ch.16; pg.259-282 3- ch.7; pg.274-304	ICT
18	Entropy change for ideal gases-different processes, Principle of entropy increase, Power point presentation by students –	1-ch.1; pg.1-19 2- ch.16; pg.259-282 3- ch.7; pg.274-304	ICT
19	Problems on Entropy change.	1-ch.1; pg.1-19 2- ch.16; pg.283-307 3- ch.7; pg.274-304	BB,IC
20	Application of II law, High and Low grade energy. Available and Non-available energy.	1-ch.1; pg.1-19 2- ch.17-18; pg.311-367 3- ch.7; pg.319-331	ICT
21	I and II law efficiency.	1-ch.1; pg.1-19 2- ch.19-20; pg.388-419 3- ch.7; pg.319-331	ICT
22	Problems on Availability.	1-ch.1; pg.1-19 2- ch.17-18; pg.311-367 ch.7; pg.319-331	BB,IC
23	Problems on Entropy change	1-ch.1; pg.1-19 2- ch.16; pg.283-307 3- ch.7; pg.274-304	BB,I
23	Evergy and Irreversibility	1-ch.1; pg.1-19 2- ch.19-20; pg.388-419 3- ch.7; pg.319-331	ICT

Content beyond syllabus covered (if any):

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: ME18301/Engineering Thermodynamics

Unit : III

Unit Syllabus : PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE 12

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of First and Second law for pure substances. Ideal and actual Rankine cycles, Cycle improvement methods-Reheat and Regenerative cycles Objective: To gain knowledge about properties of pure substances and steam power cycles.

Session No *	Topics to be covered	Ref	Teaching Aids
25	Properties of pure substances in solid, liquid and vapour phases. Formation of steam, T-H diagram.	1-ch.1; pg.1-19 2- ch.21; pg.437-464 3- ch.3; pg.68-74	ICT
26	p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface, Thermodynamic properties-Enthalpy, entropy, specific volume & Latent heat of steam.	1-ch.1; pg.1-19 2- ch.21; pg.437-464 3- ch.3; pg.74-93	ICT
27	Use of Steam table and Mollier chart. Determination of dryness fraction.	1-ch.1; pg.1-19 2- ch.21; pg.437-464 3- ch.3; pg.74-93	ІСТ
28	Application of I and II law for pure substance. Problems on properties of steam.	1-ch.1; pg.1-19 2- ch.21; pg.437-464 3- ch.3; pg.74-93	ICT
29	Problems on properties of steam using steam table and chart.	1-ch.1; pg.1-19 2- ch.21; pg.464-498 3- ch.3; pg.74-93	ICT
30	Ideal and Actual Rankine Cycles, Cycle efficiency, Specific steam rate, Specific heat rate, Work ratio. Video demonstration on Replaine Cycle	1-ch.1; pg.1-19 2- ch.22; pg.503-576 3- ch.8; pg.377-384	ICT
31	Problems on Rankine Cycle	1-ch.1; pg.1-19 2- ch.22; pg.503-576 3- ch.8; pg.377-384	BB,ICT
32	Cycle improvement method - Reheat cycle .Calculation of Efficiency for Reheat Cycle – Problem Solving.	1-ch.1; pg.1-19 2- ch.22; pg.503-576 3- ch.8; pg.377-384	ICT
33	Cycle improvement method- Regenerative cycle	1-ch.1; pg.1-19 2- ch.22; pg.503-576 3- ch.8; pg.384-391	ICT
34	Problems on Reheat and Regenerative Cycles.	1-ch.1; pg.1-19 2- ch.22; pg.576-606 3- ch.8; pg.384-391	BB,ICT
35	Problems on Reheat and Regenerative Cycles	1-ch.1; pg.1-19 2- ch.22; pg.576-606 3- ch.8; pg.384-391	BB,ICT
36	Binary and Combined cycles	1-ch.1; pg.1-19 2- ch.22; pg.503-576 3- ch.8; pg.384-391	ICT

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

12

Sub. Code / Sub. Name: ME18301/ Engineering Thermodynamics

Unit: IV

Unit Syllabus : IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

Properties of Ideal gas -Ideal and real gas comparison-Equations of state for ideal and real gases-Reduced properties-Compressibility factor-Principle of Corresponding states-Simple Calculations using Generalised Compressibility Chart. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes.

12 C	
	death knowledge of different equations for the analysis of ideal and real gases
Objective: To gain in	depth knowledge of unterent equations for the and y

Session	Topics to be covered	Ref	Aids
37	Properties of real and ideal gases, Assumption in ideal gas, Comparison of ideal and real gases. Power point presentation by	1-ch.1; pg.1-19 2- ch.23-24; pg.611-636 3- ch.3; pg.93-111	BB,ICT
38	students – Participative learning Avagadro's law. Equation of state. Vander Waals, equation, derivation of Vander Waals equation, Virial expansions, Law of corresponding	1-ch.1; pg.1-19 2- ch.23-24; pg.611-636 3- ch.3; pg.93-111	BB,ICT
39	Compressibility factor, Compressibility factor and Chart	1-ch.1; pg.1-19 2- ch.23-24; pg.611-636 3- ch.3; pg.93-111	BB,ICT
40	Simple Calculations using Generalised Compressibility Chart	1-ch.1; pg.1-19 2- ch.23-24; pg.611-636 3- ch.3; pg.93-111	ICT
41	Problems on ideal and real gases.	1-ch.1; pg.1-19 2- ch.24; pg.637-639 3- ch.3; pg.93-111	ICT
42	Problems on ideal and real gases.	1-ch.1; pg.1-19 2- ch.24; pg.637-639 3- ch.3; pg.93-111	ICT
	Rules on Partial derivatives, Maxwell's equations,	1-ch.1; pg.1-19 2- ch.27; pg.729-753	ICT
43	Tds equations -Derivation of Difference and Ratio of heat capacities	1-ch.1; pg.1-19 2- ch.27; pg.729-753	ICT
44	Internal energy & enthalpy equations.	1-ch.1; pg.1-19 2- ch.27; pg.729-753 3- ch.3; pg.93-111	ICT
	Clausius Clapeyron equations	1-ch.1; pg.1-19 2- ch.27; pg.729-753	BB,IC
46	Joule-Thomson effect and coefficient, Value for ideal and real gases,	1-ch.1; pg.1-19 2- ch.27; pg.729-753	BB,IC
47	Inversion curve.	1-ch.1; pg.1-19 2- ch.27; pg.729-753	ICT
48	Phase change processes		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: ME18301/ Engineering Thermodynamics Unit : V

Unit Syllabus : GAS MIXTURES AND PSYCHROMETRY

12

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture-Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process -adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications .

Objective: To gain knowledge of gas mixtures, psychrometry and psychrometric processes

Session No *	Topics to be covered	Ref	Aids
49	Mole and Mass fraction, Dalton's and Amagat's law, Properities of gas mixtures-M, R, Density, U, H, S and G.	1-ch.1; pg.1-19 2- ch.25; pg.641-656 3- ch.9; pg.420-426	ICT
50	Problems on Gas mixtures.	1-ch.1; pg.1-19 2- ch.25; pg.656-664 3- ch.9; pg.420-426	ІСТ
51	Psychrometry, Properties, Chart.	1-ch.1; pg.1-19 2- ch.26; pg.667-675 3- ch.9; pg.420-426	ICT
52	Property calculations of air vapour mixtures by using expressions	1-ch.1; pg.1-19 2- ch.26; pg.667-675 3- ch.9; pg.420-426	BB,ICT
53	Property calculations of air vapour mixtures by using chart	1-ch.1; pg.1-19 2- ch.26; pg.667-675 3- ch.9; pg.420-426	ICT
54	Psychrometric processes-Sensible heating, Sensible cooling, Adiabatic saturation. Power point presentation by	1-ch.1; pg.1-19 2- ch.26; pg.676-691 3- ch.9; pg.426-436	ICT
55	students – Participative learning Psychrometric processes – Humidification and Dehumidification, Adiabatic dehumidification &	1-ch.1; pg.1-19 2- ch.26; pg.676-691 3- ch.9; pg.436-447	ICT
56	Evaporative cooling and Adiabatic mixing	1-ch.1; pg.1-19 2- ch.26; pg.676-691 3- ch.9; pg.436-447	ICT
57	Problems on Sensible heating and cooling using chart and	1-ch.1; pg.1-19 2- ch.26; pg.691-723 3- ch.9; pg.436-447	BB,ICT
58	tables. Problems on Adiabatic mixing of air streams using chart and	1-ch.1; pg.1-19 2- ch.26; pg.691-723 3- ch.9; pg.436-447	BB,ICT
	tables. Problems on Evaporative cooling.	1-ch.1; pg.1-19 2- ch.26; pg.691-723 3- ch.9; pg.436-447	BB,ICT
	Application of psychrometry in air conditioning.	1-ch.1; pg.1-19 2- ch.26; pg.691-723 3- ch 9: pg.436-447	ICT

Content beyond syllabus covered (if any):

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Units		I			II			III			IV			v	

REFERENCES:

- 1. Nag.P.K., "Engineering Thermodynamics", 4thEdition, Tata McGraw-Hill, New Delhi, 2008.
- 2. Natarajan E., "Engineering Thermodynamics: Fundamentals and Applications", Anuragam Publications, 2012.
- 3. Cengel. Y and M.Boles, "Thermodynamics An Engineering Approach", 7th Edition, Tata McGraw Hill, 2010.
- 4. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill, 1995.
- 5. Rathakrishnan. E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice-Hall of India Pvt. Ltd, 2006
- 6. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2010.
- 7. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 8. Van Wylen and Sonntag, "Classical Thermodynamics", Wiley Eastern, 1987
- 9. Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited,
- 10. Kau-Fui Vincent Wong, "Thermodynamics for Engineers", CRC Press, 2010 Indian Reprint.
- 11. Prasanna Kumar, "Engineering Thermodynamics" Pearson Education, 2013

	Prepared by	Approved by
Signature	S. Sam / But	p.Mm
Name	Dr.S.Saravanan/Dr.S.Natarajan	Dr.M.Mohandass
Designation	Professor/Associate Professor	Assistant HOD
Date	29.08.2022	29.08.2022
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

ALL COLLEGE ALL CO

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Mechanical Engineering	LP: ME18302
	Rev. No: 01
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering, Regulation: R2018	Date: 29/08/2022
PG Specialisation :	
Sub. Code / Sub. Name : ME18302 / MANUFACTUIRNG PROCESSES	
Unit : I	

Unit Syllabus: METAL CASTING PROCESSES

Introduction, Patterns – Materials, Types and Pattern allowances, Cores – Core Prints, Core making and Types of cores, Moulding sand – Properties, types, Moulding Machines – squeeze type, Jolt type and sand slinger, Melting Practices – Cupola and Induction Furnaces, Mould – Expendable and Permanent Mould, Green sand Mould preparation, Special casting Processes – Investment casting, Die casting – Hot chamber and Cold Chamber, Slush Casting, Centrifugal Casting – True, Semi and Centrifuging, Continuous Casting, Shell Moulding, Ceramic Mould Casting, CO₂ Process, Stir Casting Process– Defects in casting

Objective: To make the students to understand various casting process and how to select a particular process

based on the applications

Session No *	Topics to be covered	References	Teaching Aids
1	Introduction to Manufacturing Processes – classification of manufacturing processes – Course objective and course outcomes	Ref.1, pp. 1-18	ICT tools
2	Introduction to casting Process – Pattern definition – Pattern materials – pattern types	Ref.1, pp. 307- 312	ICT tools
3	Pattern allowances – Problems related to pattern allowances – cores – core print – types of cores – Moulding sand properties	Ref.1, pp. 320, 328-331, 345,368	ICT tools
4	Moulding machines – types – Melting practices – cupola and Induction furnaces – classification of mould – Green sand Mould preparation (Experiential Learning)	Ref.1, pp. 364,403-416	ICT tools
5	Special casting Processes – types based on mould and pattern – shell moulding – description	Ref.1, pp. 374	ICT tools
6	Investment casting – description, applications; Die casting – types – Hot chamber and cold chamber die casting	Ref.1, pp. 380- 382	ICT tools
7	Centrifugal casting Processes – description , types of centrifugal casting- true centrifugal casting, semi centrifugal casting and centrifuge, ceramic moulding and CO_2 Process	Ref.1, pp. 375, 384, 389-391 & Ref.6	ICT tools
9	Slush casting – description, applications, Continuous casting – description and applications	Ref.1, pp. 387,391-392	ICT tools
10	Stir casting Process – Defects in casting – causes and remedies	Ref. 1, pp.419- 422	ICT tools
11	Seminar presentation / Group discussion / Quiz (Participative learning)		

* Session duration: 50 minutes

* ICT - Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

10

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

10

Sub. Code / Sub. Name: ME18302 / MANUFACTUIRNG PROCESSES Unit : II

Unit Syllabus: JOINING PROCESSES

Fusion Welding Processes – Types of Gas Welding – Flame Characteristics, Oxy Fuel Gas Welding, Types of Gas welding Technique, Arc Welding – Arc welding Equipments, Fillers and Flux Materials, Electrodes – Coated electrode designation, Consumable Electrode – Shielded Metal Arc Welding, Submerged Arc Welding, Gas Metal Arc Welding, Flux Cored Arc Welding, Electro slag welding, Electro gas welding, Non Consumable Electrode – Gas Tungsten Arc Welding, Atomic Hydrogen Welding, Plasma Arc Welding, Electron Beam Welding, Laser Beam Welding, Solid State welding – Ultrasonic Welding, Friction Welding – Friction Stir Welding, Resistance welding – Types, Welding defects, Soldering and Brazing

Objective: To teach the various material joining process and how to select the process depending upon the material

Session No *	Topics to be covered	References	Teaching Aids
12	Material joining process – Introduction, Types – Introduction to gas welding, types of flames and applications, Introduction to arc welding – Experiential learning	Ref.1, pp. 211-226	ICT tools
13	Types of arc welding – Fillers, coated electrode, consumable electrode, non-consumable electrode, Manual metal arc welding (Experiential Learning)	Ref.1, pp. 211-230-233	ICT tools
14	Gas Metal arc welding, Tungsten inert gas welding, Submerged arc welding (Experiential Learning)	Ref.1, pp. 235-240,	ICT tools
15	Electro slag welding, Electro gas welding, Atomic hydrogen welding	Ref.1, pp. 237-238, 240	ICT tools
16	Plasma arc welding, electron beam welding, laser beam welding and ultrasonic welding	Ref.1, pp. 238-239,250-252 Ref. 2, pp. 892-894	ICT tools
17	Solid state welding process – introduction, resistance welding- introduction and types	Ref.1, pp. 211-226,242-245	ICT tools
18	Friction stir welding and friction welding (Experiential learning)	Ref. 2, pp. 915-917	ICT tools
19	Types of welding defects – causes and remedies.	Ref.3, pp. 387-389	ICT tools
20	Soldering and Brazing	Ref.3, pp. 379-384, Ref. 2, pp. 934-940	ICT tools
21	Problem solving – case study discussion		ICT tools

* Session duration: 50 minutes

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

9

Sub. Code / Sub. Name: ME18302 / MANUFACTUIRNG PROCESSES

Unit : III

Unit Syllabus: BULK DEFORMATION PROCESSES

Metal Forming Classification, Hot working, Cold Working and Warm Working of metals, Recrystallization Temperature.

Forging – Outline of Forging and related operations (Edging, Heading, Fullering, Drawing out, Upsetting, Drawing down, Swaging, Blocking, Coining, Trimming), Various Forging Processes such as Open and Closed die forging, Roll Forging, Iso thermal Forging and Orbital Forging, Defects in Forging

Extrusion Process – Types of Extrusion Process- Direct and Indirect Extrusion, Hydrostatic Extrusion, Impact Extrusion, Side extrusion, Extrusion defects

Rolling Processes – Terminology – Blooms, Billet, Slab, Plate, sheet, Foil, Types of rolling mills, Roll Pass design, Shape rolling operations, Thread Rolling, Ring Rolling, Gear Rolling, Roll piercing process, Rolling defects

Principles of rod, wire and tube drawing- Seamless tubes and Tube drawing methods **Objective:** To impart knowledge on the various bulk deformation processes.

Session No *	Topics to be covered	References	Teaching Aids
22	Introduction to bulk deformation processes – Recrystallization temperature – hot working, warm working and cold working, difference between hot and cold working	Ref.1, 153-162	ICT tools
23	Forging Introduction – types of forging operations – various forging processes	Ref.2, pp. 337-358, Ref. 6	ICT tools
24	Special forging processes – roll forging, iso thermal forging and orbital forging	Ref.2, pp. 328-329, 348-349	ICT tools
25	Extrusion Process – Types of extrusion process – direct and indirect extrusion – applications (Think Pair share)	Ref.2 pp.364-372, Ref. 6	ICT tools
26	Hydrostatic extrusion, impact extrusion, side extrusion, application and extrusion defects	Ref.2 pp.373-376	ICT tools
27	Rolling process – Introduction, Terminology – blooms, billet, slab, plate, sheet, foil.	Ref.2 pp.316-318, Ref. 6	ICT tools
28	Types of rolling, roll pass design for shape rolling	Ref.2 pp.318-328	ICT tools
29	Special rolling process – thread rolling, ring rolling, gear rolling, roll piercing, rolling defects	Ref.2 pp.325, 329-333	ICT tools
30	Rod, wire and tube drawing Case study on extrusion process (Participative learning)	Ref.2, pp.377-383, Ref. 6	ICT tools

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub Code / Sub Name: ME18302 / MANUFACTUIRNG PROCESSES

Unit : IV

Unit Syllabus : SHEET METAL FORMING PROCESSES

Definitions of Various Press Operations – Blanking, Punching, Shaving, Perforating, Lancing, Slitting, Trimming, Bending, Drawing, squeezing, Press working Terminology, Types of dies for Sheet metal operations, Press Tonnage calculation, Sheet Metal Forming operations – Bending and Drawing- Elastic recovery or spring back effect, Stretch forming, Rubber pad forming, Hydroforming, Metal Spinning – Types, High Energy Rate Forming Process – Explosive Forming, Magnetic Pulse Forming, Electro Hydraulic Forming, Superplastic Forming,

Objective: To teach the fundamental of various sheet metal forming processes and on high energy rate forming process

Session No*	Topics to be covered	References	Teaching Method
31	Introduction to sheet metal forming – various sheet metal forming operations – shearing operations	Ref.3, pp. 284-286, Ref.2, pp. 386-388, Ref. 7	ICT tools
32	Press working terminology, types of dies – press tonnage calculations – methods to reduce the press tonnage	Ref.3, pp. 291-293, Ref.2, 388-390	ICT tools
33	Sheet metal operations – forming operations – bending and drawing – elastic recovery – bend radius, bend allowance	Ref.2, pp. 402	ICT tools
34	Stretch forming, rubber pad forming, hydroforming	Ref.2, pp. 413-415,419-430	ICT tools
35	Metal spinning – high energy rate forming introduction – types of HERF	Ref.3, pp. 309-313, ref.2 428- 431	ICT tools
36	Explosive forming – process variables and applications – Electrohydraulic forming process – process variables and applications	Ref.2, pp. 428-431	ICT tools
37	Magnetic pulse forming process – process variables and applications	Ref.2, pp. 428-431	ICT tools
38	Superplastic forming – introduction – conditions for the material to exhibit superplasticity	Ref.2, pp. 426-427	ICT tools
39	Group discussion / Quiz		

* Session duration: 50 minutes

* ICT – Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

9

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: ME18302 / MANUFACTUIRNG PROCESSES Unit: V

Unit Syllabus: PROCESSING OF PLASTICS AND POWDER METALLURGY 7

Types of plastics – Types of Moulding – Injection Moulding, Blow Moulding, Compression Moulding, Transfer Moulding, Rotational Moulding, Extrusion, Thermoforming, Calendaring

Powder Metallurgy – Production of metal Powders, Compaction – Sintering and Finishing, Advantages and disadvantages of powder metallurgy.

Objective: To teach the various processing methods for plastics and to give an introduction about powder metallurgy

Session No*	Topics to be covered	References	Teaching Method
40	Types of plastics – need for plastics as engineering materials – processing methods for thermoplastics and thermos setting plastics	Ref. 2. Pp.494-498, Ref. 7	ICT tools
41	Injection Moulding – compression blow moulding – transfer moulding	Ref.2, pp. 502-511,pp. 512-514, Ref. 7	ICT tools
42	Extrusion process - Blow moulding – types; Injection blow moulding, stretch blow moulding and extrusion blow moulding process – rotational moulding process	Ref.2, pp. 495, pp. 509- 511, Ref. 7	ICT tools
43	Thermoforming – calendaring process – case study discussion	Ref.2, pp. 509-511, 517	ICT tools
44	Powder metallurgy process – Introduction – need for powder metallurgy process – steps involved in powder metallurgy	Ref.2, pp. 444-470, Ref.3 pp. 601-625	ICT tools
45	Advantages and drawbacks of powder metallurgy process	Ref.2, pp. 444-470	ICT tools

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

REFERENCES:

- 1. Hajra Choudhury, "Elements of Workshop Technology", Vol.I: Manufacturing Processes., Media Promoters & Publishers Pvt Ltd, 15th edition, 2012.
- 2. Serope Kalpakjian & Steven R. Schmid, "Manufacturing Engineering and Technology", Pearson India Education Services Pvt. Ltd, 7th edition, 2018
- Dr. P.C. Sharma, "A Textbook of Production Technology (Manufacturing Processes), S. Chand & Company Ltd, Reprint 2011.
- 4. https://archive.nptel.ac.in/courses/112/107/112107219
- 5. https://nptel.ac.in/courses/112107083
- 6. https://archive.nptel.ac.in/courses/112/103/112103279
- 7. https://nptel.ac.in/courses/112107221

	Prepared by	Approved by
Signature	Suma Suma	de Ilm
Name	Dr. S. Ramesh Babu/ Dr. S. Ponnuvel	Dr. M. Mohandass
Designation	Professor & HOD / Associate Professor	Assistant HOD
Date	29.08.2022	29.08.2022
Kemarks *:		
Kemarks *:		
Remarks *: Remarks *:		
Kemarks *: Remarks *:		

COURSE DELIVERY PLAN - THEORY

Page 1 of 5

	Department of Mechanical Engineering	LP: ME18303
		Rev. No: 01
B.E/ B.Tech/M.E/M.Tech :	Mechanical Engineering, Regulation: R2018	Date: 24/08/2022
PG Specialisation : -		
Sub. Code / Sub. Name : N	ME18303, MATERIAL CHARACTERIZATION AND METALLURGY	
Unit : 1	I	

Unit Syllabus: ALLOYS AND PHASE DIAGRAMS

Constitution of alloys – Solid solutions, Substitutional and Interstitial –Phase Diagrams-Unary and Binary Phase diagrams of solid materials- Hume-Rothery rule, Gibbs phase rule. Invariant reactions-eutectic, eutectoid, peritectic and peritectoid reactions. Iron – carbon equilibrium diagram-micro constituents and invariant reactions.

Objective: To impart knowledge on the alloys, phase diagrams of different alloys, reactions, micro-constituents

emphasis on Fe-C system.

Session No *	Topics to be covered	References	Teaching Aids
1	Metals, Alloys, Constitution of alloys	1(Chap5, pag147-154)	BB
2	Solid solutions, Types-substitutional and interstitial	2 (Chap4, pag68-71)	BB, ICT
3	Hume Ruthery's rule for substitutional and interstitial solid solutions, Phase diagrams, unary-pure substance.	1 (Chap6, pag155-180)	BB, ICT
4	Binary systems-completely soluble & partially soluble, Eutectic and eutectoid reactions. Calculation of Phase amounts using Lever Rule – Problem Solving.	1 (Chap6, pag181-190)	ICT, BB
5	Peritectic and Peritectoid reactions	1 (Chap6, pag213-216)	ICT
6	Iron-Iron carbide equilibrium diagrams, Phases of iron-iron carbide system. Animation of phase change. Quiz on Iron and Iron Carbon diagram – Participative learning.	1 (Chap7, pag225-235)	BB, ICT
7	Invariant reactions in Iron-Iron carbide system. Animation of Invariant reactions.	2 (Chap9, pag277-287)	ICT
Content b and directi grain size,	eyond syllabus covered (if any): Crystalline and Non crystalline ons. BCC, FCC & HCP Structure, Miller indices, Point, line, plar Allotropy and Isomorphous system.	e materials, Unit Cell, Crystallogra nar and volume defects, Grain size	phic planes , ASTM

* Session duration: 50 minutes

* ICT - Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

7

COURSE DELIVERY PLAN - THEORY

Page 2 of 5

Sub. Code / Sub. Name: ME18303, MATERIAL CHARACTERIZATION AND METALLURGY Unit : II

Unit Syllabus : HEAT TREATMENT

Definition – Full annealing, stress relief, recrystallization and spheroidizing – Normalizing, Hardening and Tempering of steels. Quenching -different quenching medium and their characteristics. Isothermal Transformation diagrams – cooling curves superimposed on I.T. diagram, CCR, Hardenability, Jominy end Quench test - Austempering, Martempering. Case hardening - Carburizing, Nitriding, Cyaniding, Carbonitriding, Vacuum and Plasma hardening. Selective hardening – Flame and Induction hardening. Sintering using powder metallurgy.

Objective: To impart knowledge on the importance of heat treatment and phase transformations with studies on surface treatment.

Session No *	Topics to be covered	References	Teaching Aids
8	Need for heat treatment. Definition of annealing, full annealing. Laboratory demonstration of Full Annealing of Mild Steel – Experiential Learning.	6 (Chap9, pag. 238-240)	ICT
9	Types of annealing-Recrystallization, stress relief, & spheroidizing,	6 (Chap9, pag. 238-242)	ICT
10	Normalizing, Annealing Vs Normalizing, Hardening and tempering of steel. Laboratory demonstration of Hardening of Mild Steel – Experiential Learning.	6 (Chap9, pag. 243-265)	ICT, LAB
11	Isothermal transformation diagram (TTT diagram) – construction.	1 (Chap8, pag269-276)	BB, ICT
12	Austenite, martensite, ferrite and cementite transitions, CCT diagram, CCR, Cooling curves super imposed on IT diagram. Interpretation of TTT diagram using class quiz – Participative learning.	3 (Chap9, pag211-220)	BB, ICT
13	Hardenability, Hardness, Jominy end quench test	5 (Chap43, pag43.22- 43.25)	ICT
14	Austempering, Martempering	5 (Chap43, pag43.19- 43.21)	BB, ICT
15	Case Hardening, Carburizing and Nitriding. Video demonstration	4 (Chap13, pag408-411)	ICT
16	Cyaniding and carbonitriding	4 (Chap13, pag411-417)	ICT
17	Flame and Induction Hardening, Vacuum and Plasma Hardening. Video demonstration	4 (Chap13, pag403-405) 4(Chap13, pag414-416)	ICT
18	Powder Metallurgy & Interaction with students on Unit-II contents. – Power point presentation by students – Participative learning.	2 (Chap-14, pagS122)	ICT
Content (CCT) d	beyond syllabus covered (if any): Industrial furnaces, Applica agram, Significance of Critical Cooling Rate (CCR) with the co- ite	tions of Continuous Cooling Transmission of Pearlite, Bainite,	ransformation Sorbite and

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 3 of 5

9

Sub. Code / Sub. Name: ME18303, MATERIAL CHARACTERIZATION AND METALLURGY

Unit : III

Unit Syllabus : FERROUS AND NON-FERROUS METALS

Effect of alloying additions on steel- α and β stabilisers- stainless and tool steels – HSLA, Maraging steels – Cast Iron - Grey, white, malleable, spheroidal – alloy cast irons. Copper and copper alloys – Brass, Bronze and Cupronickel – Aluminium and Al-Cu – precipitation strengthening treatment – Bearing alloys-Al, Cu and White metal bearing alloys, Mg-alloys, Ni-based super alloys and Titanium alloys.

Objective: To impart knowledge on the ferrous and non-ferrous metals and discuss their applications.

Session No *	Topics to be covered	References	Teaching Aids
19	Effect of alloying elements on Steel (Mn,Si,Cr)	1 (Chap9, pag350-358)	ICT
20	Effect of Alloying elements on Steel (Mo,V,Ti and W) – Animated demonstration of changes in microstructure and mechanical properties of steel.	1 (Chap9, pag359-362)	ICT
21	Stainless and tool steels, HSLA steel & Maraging steels	1 (Chap9, pag376-382) (Chap10, pag400-408)	ICT
22	Cast Irons-gray, white, malleable, spheroidal, Graphite- Alloy Cast Irons. Visualization of microstructure of Steels and Cast Irons using microscope – Experiential learning	5 (Chap5, pag5.6-5.11)	ICT, LAB
23	Copper and Copper alloys-Brass, Bronze and Cupronickel	4 (Chap18, pag573-578)	BB, ICT
24	Aluminium and its alloys, Al-Cu alloy phase diagrams and reactions	4 (Chap19, pag597-602) (Chap18, pag574-575)	ICT
25	Precipitation strengthening treatment of Al-Cu alloy	1 (Chap12, pag473-476) 4 (Chap18, pag574-575)	BB, ICT
26	Bearing Alloys and Mg-alloys	4 (Chap20, pag632-633)	ICT
27	Ni-based super alloys and Titanium alloys – Power point presentation by students – Participative learning	4 (Chap20, pag619-628)	ICT
Content bey	yond syllabus covered (if any): The refractory metals, super-allo	ys, noble metals, Lead and Zinc a	lloys.

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 4 of 5

Sub Code / Sub Name: ME18303, MATERIAL CHARACTERIZATION AND METALLURGY

 $Unit: {\bf IV}$

Unit Syllabus : NON-METALLIC MATERIALS

Polymers – types of polymer, commodity and engineering polymers – Properties and applications of various thermosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET,PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE, Polymers – Urea and Phenol formaldehydes)- Engineering Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON –Composites-Classifications- Metal Matrix and FRP - Applications of Composites.

Objective: To impart knowledge on the non-metallic materials such as polymers and to discuss the types and

importance of composite materials.

Session	Torios to be severed	Deferences	Teaching
INO*	Topics to be covered	References	Method
28	Polymers and types	5 (Chap20, pag 1-2)	ICT
29	Commodity and engineering polymers	4 (Chap8, pag193-198)	ICT
	Properties and applications of PE,PP,PS.	· (enup: 0, pug. 1)0 1)0)	
30	Properties and applications of PVC, PMMA,		ICT
	PET. Power point presentation by students on	4 (Chap 8 pag 103 108)	
	the discussions of properties and applications	4 (Chap6, pag175-176)	
	of PC, PA, ABS – Participative learning.		
31	Properties and applications of PI, PAI, PPO,	4 (Chan 8 mag 100 211)	ICT
	PPS, PEK, PEEK and PTFE polymers, Teflon	4 (Chap8, pag199-211)	
32	Urea and Phenol Formaldehydes, Epoxies		ICT
	Ceramics and Engineering ceramics - Properties	4 (Chap8, pag212-215)	
	and applications of Al2O3,SiC,Si3,N4		
33	Partially Stabilized Zirconia and Sialon.	4 (Chap11, pag323-352)	ICT
34	Composites-Metal Matrix and FRP – properties		ICT
	and applications. Video demonstration on	2 (Chap15, pag547-566)	
	applications of FRP composites.		
Content b	eyond syllabus covered (if any): Applications of FRP in the c	construction of bridges, fabrication	n of bi-cycles
& automot	ive components. Applications of engineering ceramics in the in	ndustrial furnace & automobile.	-

* Session duration: 50 minutes

* ICT – Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

7

COURSE DELIVERY PLAN - THEORY

Page 5 of 5

Sub. Code / Sub. Name: ME18303, MATERIAL CHARACTERIZATION AND METALLURGY Unit : V

Unit Syllabus : MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS 11

Elastic & Plastic deformation, Young's modulus, Stress-Strain diagram of steel, Aluminium. Mechanisms of plastic deformation-slip and twinning., slip and twinning – Types of fracture – Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), Impact test - lzod and charpy, Fatigue and creep failure mechanisms, fatigue testing, creep testing of steels.

Objective: To impart knowledge on the mechanical properties of metallic materials and testing methods.

Session No*	Topics to be covered	References	Teaching Method
35	Plastic deformation of materials, Mechanism of slip and twinning	2 (Chap10, pag347-359)	BB, ICT
36	Types of fracture-brittle & ductile fractures,		
	fracture mechanics. Animated video of ductile &	2 (Chap11, pag387-405)	BB, ICT
27	Drittle Ifacture.		
37	Universal Testing Machine, Testing of materials	5 (61 40 0.6)	DD IOT
	under tension. Video demonstration of tensile	5 (Chap49, pag2-6)	BB, ICI
20			
38	Compression test, Testing of material under Snear		
	loads. Performing the tensile & compressive	5 (Chap49, pag6-10)	BB, ICT,
	testing of mild steel in the laboratory by		LAB
	students – Participative learning.		
39	Hardness tests – Brinell, Vickers. Demonstration		
	using Virtual Lab (VLAB) & Calculation of	5 (Chap49, pag6-10)	BB. ICT
	Brinell and Vickers hardness of different		22,101
	metallic materials – Problem Solving.		
40	Rockwell test, comparison of hardness testing methods.	2 (Chap9, pag325-330)	ICT
41	Impact test- Izod and Charpy. Animated video of	5 (Chan 40 mag 10 12)	ICT
	impact test.	5 (Chap49, pag10-12)	ICI
42	Mechanism of Fatigue and Creep failure.	5 (Chap49, pag15-17)	BB, ICT
43	Fatigue and creep tests.	5 (Chap49, pag15-17)	BB, ICT
44	Fracture toughness test	5 (Chap49, pag17-19)	BB, ICT
45	Demonstration on hardness test methods and		
	Impact test methods in laboratory –	8 (pag - 7, 14, 18)	LAB
	Participative learning.		
Content b	eyond syllabus covered (if any): Importance of fatigue strength	in dynamic loading conditions	& creep strength
in high ten	apperature applications.		1 0

^{*} Session duration: 50 minutes

^{*} ICT - Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: ME18303, MATERIAL CHARACTERIZATION AND METALLURGY

REFERENCES:

- 1. Avner,, S.H., "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1994.
- Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, Revised Indian Edition 2007.
- 3. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt. Ltd., 1999.
- 4. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint 2002.
- 5. Dr. O.P. KHANNA: Materials Science and Metallurgy, Dhanpat Rai Publications (P) Ltd., 2010
- 6. U.C.Jindal : Material Science and Metallurgy, Fourth Impression, Dorling Kindersley, 2013
- Srinivasan. R., Engineering Materials and Metallurgy, Tata McGraw-Hill, 2nd edition, 2010. (Recommended for slow learners)
- 8. Dr. M. Mohandass, MATERIAL TESTING AND METALLURGY LABORATORY MANUAL, 2019.

	Prepared by	Approved by
Signature	he lan-	Count
Name	Dr. M. MOHANDASS	Dr. S. RAMESH BABU
Designation	Asso. Prof.	HOD
Date	24/8/2022	24/08/2022
Remarks *:		

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Mechanical Engin	eering	LP: ME16304
B.E/ B.Tech/M.E/M.Tech : <u>Mechanical Engineering</u> PG Specialisation : NA - Sub. Code / Sub. Name : ME18304 – Mechanics of Solids Unit : 1	Regulation: 2018	Rev. No: 00 Date: 12/07/2019

Unit Syllabus: Tension, Compression, Shearing Stresses and Strains - Stress-Strain relationship, Hooke's law, Poisson's ratio – Elastic constants and their relations- Volumetric Strains, Thermal stresses, composite bars. **Objective:** To understand the basic concepts related to deformable bodies and their properties such as stress, strain, etc.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to Rigid bodies and Deformable bodies, Properties of Materials, Stress, Strain. Explanation of Hook's law	1 – Ch.1;Pg .1 - 6	PPT / BB
2	Introduction to types of loads, Deformation to simple bars,	1 - Ch.1;Pg.7 - 14	PPT / BB
3	Problems related to Stress, Strain and Hook's law	2 - Ch.2;Pg.134 - 136	PPT / BB
4	Problems related to Stress, Strain and Hook's law (Contd),	1 – Ch.1;Pg .7 – 14	PPT / BB
5	Introduction to compound bars, Problems in compound bars	1- Ch.1;Pg. 51 to 54	PPT / BB
6	Problems related to Hook's law, compound bars - Tutorial		-
7	Introduction to Thermal stresses in simple and compound bars, Problems in Thermal Stresses	1 – Ch.1;Pg .42 - 50	PPT / BB
8	Problems in Thermal stresses (Contd),	1 - Ch.1;Pg .42 - 50	PPT / BB
9	Derivation of Shear modulus, Bulk modulus, Poisson's ratio	1 – Ch.2;Pg.59-73	PPT / BB
10	Problems in Elastic constants – Tutorial		-
11	Problems in volumetric strains	+ 1 – Ch.2;Pg.59-73	PPT / BB
	Course Evaluation: Evaluating the problem-solving skills of the students from Tutorials and Objective type Questions.		1
Content b	eyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME18304 - Mechanics of Solids

Unit: II

Unit Syllabus: Shear force and bending moment. Relation between load, shear force and bending moment. Construction of Shear force diagrams and Bending moment diagrams for different types of static loading on cantilever, simply supported and overhanging beams.

Theory of simple bending, bending stresses, section modulus, bending stress and shear stress distribution in beams

Objective: To understand the concepts in beams, its various loading and its stress distributions.

Session No *	Topics to be covered	Ref	Teaching Aids
12	Introduction to Beams, Types of Beams and forces, Shear force diagram and Bending moment diagram and its sign conventions	Í – Ch.6;Pg. 235 - 238	PPT / BB
13	Problems in Cantilever beam, Simply supported beam with maximum bending moment	1 - Ch.6;Pg.239-270	PPT / BB
14	Problems in Overhanging beams, Point of contraflexure, Maximum Bending moment - position and value	1- Ch.6;Pg.270-279	PPT / BB
15	Shear force and Bending moment diagrams Problems – Tutorial		-
16	Discussion of simple bending, Theory of simple Bending and Derivation of Bending stresses for simple beam	1- Ch.7;Pg. 290-297	PPT / BB
17	Problems in bending stresses in Symmetrical sections, Section Modulus	1- Ch.7;Pg. 297-312	PPT / BB
18	Problems in bending stresses in Unsymmetrical sections, Strength of Sections	1- Ch.7;Pg. 312-326	PPT / BB
19	Problems in bending stresses – Tutorial		· -
20	Introduction to composite beams, Problems related to flitched beams	1- Ch.7;Pg. 327-336	PPT / BB
21	Introduction to Shear stress in Beams, Basic concepts in shear stress distribution	1- Ch.8;Pg. 342-348	PPT / BB
22	Problems in Shear stress distribution for Symmetrical and unsymmetrical sections and Introduction to shear center	1- Ch.8;Pg. 348-373	PPT / BB
23	Problems in flitched beam and Shear stress in Beams – Tutorial		-
	Course Evaluation :- Tutorials, Assignment – consisting of short and long questions as per the university pattern, Objective type questions Continuous Assessment Test – I comprising of I & II units		

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: ME18304 - Mechanics of Solids

Unit : III

Unit Syllabus: Governing differential equation– Macaulay's method – Area moment method for computation of slopes and deflections in beams - Conjugate beam and strain energy method.

Session No *	Topics to be covered	Ref	Teaching Aids
24	Introduction to deflection in beams, Methods adopted for the deflection in beams	1- Ch.12;Pg. 511,512	PPT / BB
25	Introduction to Macaulay's method	1- Ch.13;Pg. 554-558	PPT / BB
26	Problems in Macaulay's method for Simply supported beams	1- Ch.13;Pg. 558-560 1- Ch.12;Pg. 531-545	PPT / BB
27	Problems in Macaulay's method for Overhanging beams	1- Ch.12;Pg. 535-540	PPT / BB
28	Problems in Double Integration Method, Macaulay's Method - Tutorial		-
29	Introduction to Moment Area Method, Problems in Moment Area Method	1- Ch.12;Pg. 546-551 1- Ch.13;Pg. 571-575	PPT / BB
30	Introduction to Conjugate beam method, Problems for varying section in beams	1- Ch.14;Pg. 578-590	PPT / BB
31	Problems in Moment Area method, Conjugate Beam Method – Tutorial	•	
32	Deflection of beams using Strain energy approach, Derivation for deflection using Maxwell's reciprocal theorem	3- Ch.7;Pg. 244-252	PPT / BB
33	Problems in Strain energy approach for Cantilever, Simply supported and overhanging Beams	3- Ch.7;Pg. 253-260	PPT / BB
34	Problems in Strain energy approach for overhanging Beams	3- Ch.7;Pg. 253-260	PPT / BB
35	Problems in beams using Energy approach – Tutorial	-	-
	Course Evaluation :- Tutorials, Assignment – consisting of short and long questions as per the university pattern Continuous Assessment Test – II comprising of III & IV units		

Objective: To understand how to identify deflection and slopes in beams using different methods

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: ME18304 - Mechanics of Solids

Unit : IV

Unit Syllabus: Torsion formulation stresses and deformation in circular and hollow shafts – Stepped shafts– Deflection in shafts fixed at the both ends-Stresses in helical springs – Deflection of helical springs subjected to tension loan only, carriage springs.

Objective: To understand about torsion in shafts and stresses in springs.

Session No *	Topics to be covered	Ref	Teaching Aids
36	Introduction to Torsion, Derivation of Torsion with stresses and deformation	1- Ch.16;Pg. 670-677	PPT / BB
37	Problems in Torsion for solid and hollow shafts	1- Ch.16;Pg. 675-680	PPT / BB
38	Problems in Torsion for Stepped shafts – Tutorial	-	
39	Introduction to Polar Modulus, Problems related to strength of shaft	1- Ch.16;Pg. 687-690	PPT / BB
40	Composite shaft of varying section Problems	1- Ch.16;Pg. 698-710	PPT / BB
41	Torsional rigidity, Problems in Torsional Rigidity	1- Ch.16;Pg. 691-694	PPT / BB
42	Problems in Torsion of shafts - Tutorial		
43	Introduction to springs, Types of springs, derivation of stresses in helical springs	1- Ch.16; Pg. 721, 724, 725	PPT / BB
44	Derivation of stresses in open coiled helical springs, Problems	3- Ch.11;Pg. 372-375	PPT / BB
45	Derivation of stresses in leaf springs, Problems	1- Ch.16;Pg. 721-724	PPT / BB
46	Problems in Springs – Tutorial	-	-
47	Introduction and discussion in Flange Coupling Problems	1- Ch.16;Pg. 695-698	PPT / BB
48	Course Augmentation : Problem solving skills to identify the torsion on non-circular members, Thin walled hollow shafts	2- Ch.3;Pg.219-225	РРТ
	Course Evaluation: Evaluating the problem solving skills of the students from Tutorials and Objective type Questions.		

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: ME18304 - Mechanics of Solids

Unit : V

Unit Syllabus: Biaxial state of stress – Stress at a point – stresses on inclined planes – Principal stresses and Principal strains and Mohr's circle of stress, Theories of failure

Stresses in thin cylindrical shell due to internal pressure - circumferential and longitudinal stresses and deformation in thin and thick cylinders – spherical shells subjected to internal pressure –Deformation in spherical shells – Lame's theorem

Objective: To understand how to design the Pressure vessel base on loading conditions.

Session No *	Topics to be covered	Ref	Teaching Aids
49	Introduction to Pressure vessels, Explanation of Thin and Thick cylinders	1 [±] Ch.17;Pg. 740	PPT / BB
50	Derivation of Stresses in thin cylindrical shells, deformation of Thin cylinders in loading condition	1- Ch.17;Pg.741-742	PPT / BB
51	Problems in Thin cylinders to identify Stresses, deformation based on loading condition	1- Ch.17;Pg.750-769	PPT / BB
52	Derivation of Spherical shells, Problems in Spherical shells	1- Ch.17;Pg.770-771 1- Ch.17;Pg.771-775	PPT / BB
53	Problems in Thin cylinders, Spherical Shells – Tutorial	1. 10. 2	-
54	Derivation of Thick cylinders, Concept and its Applications, Discussion of Lame's Theorem,	1- Ch.18;Pg.781-783	PPT / BB
55	Explanation related to Stresses in inclined planes, derivation of Principal stress and Principal planes for simple bars	1 – Ch.2;Pg. 74 – 82 1 – Ch.3;Pg.85 - 128	PPT / BB
56	Problems in Principal Stress and Strains	1 – Ch.3;Pg.85 - 128	PPT / BB
57	Introduction in Mohr's circle of stresses, Problems in Mohr's circle – Type 1, Type 2 & Type 3	1 – Ch.3;Pg.128 - 139	PPT / BB
58	Problems in Mohr's circle – Type 3	1 – Ch.3;Pg.128 - 139	PPT / BB
59	Practicing problems in drawing sheet - Tutorial	· · ·	
60	Theories of failure, Problems and its application	1 – Ch.3;Pg.121 - 124	PPT/BB
61	Revison	-	-
	Course Evaluation :- Tutorials, Assignment – consisting of short and long questions as per the university pattern, Objective type questions and Continuous Assessment Test		

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: ME18304 - STRENGTH OF MATERIALS

WEEK			1		6.1			2					3					4					5					6		
TELK	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
UNITS	-	-	-		-	-	- 1	-	-	-	-	-		-	-	-	-	_	п	-		-	1	-	+			. I	п	-

WEEK		1	7					8					9					10					11	-		1		12		
WEEK	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Cits	-	ш	_				-	-		-	-	Т	v .				_		-	-	-			-	v ·	-			Salese	

REFERENCES:

- 1. Bansal R.K, " A textbook of STRENGTH OF MATERIALS", 4th edition, Laxmi Publications (P) Ltd, New Delhi
- 2. Beer Johnston, Dewolf Mazurek, "Mechanics of Materials", 6th edition, McGraw Hill Education(India) Pvt.Ltd, New Delhi
- 3. Rattan S S, " STRENGTH OF MATERIALS", 3rd edition, McGraw Hill Education(India) Pvt.Ltd, New Delhi
- 4. http://nptel.ac.in/courses/112101095/6

	Prepared by	Approved by
Signature	H. Hort	Curry 12/7/19
Name	M. MAHESWARAN	Dr. S. RAMESH BABU
Designation	Assistant Professor	Professor & Head
Date	12/07/2019	12 7 19
acad	enic year 20-21.	N. No 720/9/20 10 20109/2
Remarks *:	The same Lesson Plan	is followed for the academic
year	r 2021-22	23/1/21 QUIL25/17

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

.

COURSE DELIVERY PLAN - LABORATORY Page 1 of 2

FT/GN/68A/02/30.06.16

.

Department of Mechanical Engineering	LP: ME18311
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering Regulation: 2018	
PG Specialisation :	Date: 05.09.2022
Sub. Code / Sub. Name : ME18311/ Manufacturing Processes Laboratory	

Experiment No*	List of Experiments	
	CYCLE - I	

1	Sand moulding using solid pattern – Video Demonstration using ICT
2	Sand moulding using split pattern
3	Tee joint (T fillet Joint) - Video Demonstration using ICT
4	Corner joint
5	Butt joint by metal inert gas welding
6	Lap joint by metal inert gas welding
	CYCLE - II
7	Facing and Plain (straight) Turning – Video Demonstration using VLAB
8	Step turning, Grooving and Knurling operations and estimation of its machining time - Video Demonstration using VLAB
9	Taper Turning operation and estimation of its machining time
. 10	Pin and bush assembly
11	Single start external thread cutting operation
12	Drilling, boring and internal Thread cutting
13	Eccentric Turning

* Session Duration: 150 minutes

COURSE DELIVERY PLAN - LABORATORY Page 2 of 2

FT/GN/68A/02/30.06.16

Sub. Code / Sub. Name: ME18311 / Manufacturing Processes Laboratory

Session No.	Exp	eriment
	(Ist half of Batch)	(IInd half of batch)
1	1	3
2	2	4
3		5
4		6
5	Demonstration in Ma	achine shop (Full batch)
6	Exp. No. 7 d	& 8 (Full batch)
7	Exp. No.	9 (Full batch)
8	Exp. No. 1	0 (Full batch)
9	Exp. No. 1	1 (Full batch)
10	Exp. No. 1	2 (Full batch)
11	Exp. No. 1	3 (Full batch)
12	Demonstration on assem	nbly of head stock tail stock
13	Demonstration	n on TIG welding
14	Demonstration	n on Gas Welding
15	Model E	xamination
Content beyond	the Syllabus (if any):	
	Prepared by	Approved by
gnature	M.Balakumen Constrain	v R. Mm

Name	Dr.M.Balakumar & V.Senthilvelan	Dr.M.Mohandass	
Designation	Assistant Professor	Asst. HoD / MEC	
Date	05.09.2022	05.09.2022	
Remarks* :			

* If the same lab plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE OUTCOMES - LABORATORY

De	partment of Mechanical Engineering	
B.E/B.Tech/M.E/M.Tech	-: Mechanical Engineering	LP: ME18311
UG / PG Specialisation	: Mechanical Engineering	Rev. No: 01
Regulation	: R2018A	Date: 05/09/2022
Sub. Code / Sub. Name	: ME 18311 Manufacturing Process Laboratory	

СО	Statements	RBT* Level
CO1	The students can able to identify and perform the operations for a given product diagram for a lathe.	AN
CO2	The students can able to make a green sand mould using different patterns.	AP

CO3

The students can able to select the suitable welding parameters to make a welded component using Arc and MIG welding.

AN

* Revised Bloom's Taxonomy

Mapping CO – PO - PSO*:

			and the second se	Total and the second					provide the local day of the local day is a second day of the local day of	and the second se			the second data and the second second data and the second data and	And a particular of the second s	Contraction of the local distance of the loc
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2	PSO-3
CO1	3			2										3	
CO2	3			2	2									3	5
CO3	3			2										3	

3 – Strong; 2 – Moderate; 1 – weak

* Add Column if needed

Assessment Methods:

	Internal As	ssessment Marks		End Semester
Stream	Continuous Assessment (As per AAR)	Model Exam	Total	Marks
Non - Autonomous	-	-	-	- 1
Autonomous	40	20	60	40
	and the second			
Signature of Facul	ty / Course Coordinator	Signature	of Module (Coordinator

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY

Page 1 of 2

Department of Mechanical Engineering	LP: ME18313 Rev. No: 0
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering Regulation: R2018	Date:24/06/2019
PG Specialisation : NA	
Sub. Code / Sub. Name : ME 18313, Material Testing and Metallurgy Laboratory	

Session INO."	List of Experiments
	CYCLE-I
1,55,0	Torsion test on mild steel
2	Double shear test on mild steel & aluminum rods
3	Impact test on steel specimens - Ix 50
4	Hardness test on metals - Brinell & Rockwell Hardness Number
500	Deflection test on simply supported & cantilever beam
6	Compression test on Helical Springs
1 H2-17- parts	CYCLE-U
7	Tensile test on mild steel
8	Impact test on steel specimens - Charpy method
9	Strain measurement in Hollow shaft using rosette strain gauge
10	Comparison of Mechanical properties of steel – using impact & hardness tests fo Unhardened, Quenched and Quenched & tempered specimens
- 11	Microscopic Structure of Plain Carbon Steels
12	Microscopic structure of Cast Iron and Non Ferrous alloys
12 Content beyond sy 1. Heat Treatment	llabus (if any): of steels-Annealing, Normalizing & Hardening

STOR MARK

* Session Duration: 150 minutes

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY

Page 2 of 2

ub. Code / Sub. Name: ME 18313, Material Testing and Metallurgy Laboratory

Approved by Prepared by li Uma www. zulblig Signature Dr. S. RAMESH BABU Dr. M. MOHANDASS Vame Professor & Head Associate Professor Designation 24/06/2019 24/06/2019 Date Remarks*: The same lesson plan is to be tollowed for AY 2020-21. 8this convinces) R. Round ** Allins (Internet and Stand to A HOP) 20 followed for The Allon to A HOP Remarks* : * If the same are plan is followed in the bar sequent semester/year it should be mentioned and signed by the Faculty and the HOD The Same lesson plan to be followed for the academic year 2022-23-Allowing U. Mm 2/8/22 (Dr. J. MUNIRAJ) 2/8/22

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	Department of Mechanical Engineering	
B.E/B.Tech/M.E/M.Tec	h: Mechanical Engineering, Regulation: R2018	LP: ME18001
PG Specialisation	: NA	Rev. No: 01
Sub. Code / Sub. Name	: ME18001 / AUTOMOBILE ENGINEERING	Date: 31/05/2022
Unit	: I	

Unit Syllabus: VEHICLE STRUCTURE AND ENGINES

9

Types of automobiles, vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC Engine components – functions, materials and its applications in land (Off road and On road), water and air vehicles, variable valve timing (VVT) and its necessity

Objective: To impart knowledge on various construction of automobiles, their functions and materials.

Session No *	Topics to be covered	References	Teaching Aids
1	Types of automobiles	1 Pg. No: 12	BB, ICT
2	Different layouts in automobile construction	2 Pg.No:4	BB, ICT
3	Vehicle Chassis – Laboratory Demonstration	1 Pg.No:21	BB, ICT
4	Frames and body – Laboratory Demonstration	1 Pg.No:21-27	BB, ICT
5	Vehicle aerodynamics (various resistances and moments involved)	4 Pg.No:584	ICT
6	IC engines – Types working – Laboratory Demonstration	5 Pg.No:3	BB, ICT
7	IC engines Components, functions and materials	5 Pg.No:3-5	ICT
8	Valve timing diagram for SI and CI engines	5 Pg.No:5-14	ICT
9	Variable valve timing (VVT) and its necessity - Video demonstration	3 Pg.No:80-81	ICT
Content	beyond syllabus covered (if any):		

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME18001 / AUTOMOBILE ENGINEERING Unit : II

Unit Syllabus : ENGINE AUXILIARY SYSTEMS

Electronically controlled gasoline injection system for SI engines (SPI, MPFI, GDI), electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system CRDI), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Supercharger and Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, SCR system and EGR system

Objective: To make the students familiar with the various injection system, ignition system and ways to control emissions.

Session No *	Topics to be covered	References	Teaching Aids
10	Carburetor types application advantages and disadvantages	5 Pg.No:327	BB, ICT
11	Electronically controlled gasoline injection system for SI engines (SPI, MPFI, GDI system) - Video demonstration	5 Pg.No:328-331	BB, ICT
12	Electronically controlled diesel injection system –Unit Injector type and Rotary distributor type - Video demonstration	5 Pg.No:331-332	BB, ICT
13	Electronically controlled diesel injection system -Common rail direct injection system - Video demonstration	5 Pg.No:333	BB, ICT
14	Electronic ignition system -Transistorized coil ignition system	5 Pg.No:356	BB, ICT
15	Electronic ignition system - Capacitive discharge ignition system	5 Pg.No:357	BB, ICT
16	Super charger and Turbo chargers -WGT & VGT	3 Pg.No: 564	BB, ICT
17	Engine emission control by three way catalytic converter system (SCR and EGR) - Power point presentation by students – Participative learning.	7 Pg.No:488-493	BB, ICT
18	Engine emission control by three way catalytic converter system (EGR system) - Power point presentation by students – Participative learning.	7 Pg.No:488-493	BB, ICT

Content beyond syllabus covered (if any):

* Session duration: 50 minutes

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

9

Sub. Code / Sub. Name: ME18001 / AUTOMOBILE ENGINEERING

Unit : III

Unit Syllabus : TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes-manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints Differential and rear axle, Hotchkiss Drive and Torque Tube Drive

Objective: To make the students familiar with the different types of Transmission system (Manual and automatic) and various drives for transmission.

ch - Types and Construction - r boxes- Manual and Automatic r shift mechanisms & Over drive	1 Pg.No:28-73 1 Pg.No:77 & 102 1	BB, ICT BB, ICT
r boxes- Manual and Automatic r shift mechanisms & Over drive	1 Pg.No:77 & 102 1	BB, ICT
r shift mechanisms & Over drive	1	
	Pg.No:116	BB, ICT
sfer box, Fluid flywheel	1 Pg.No:67,94	BB, ICT
ue converter, Propeller shaft	1 Pg.No:109,132	BB, ICT
joints, Universal joints - Video Demonstration	1 Pg.No:138	BB, ICT
erential and Rear axle - Laboratory Demonstration	1 Pg.No:153-159	BB, ICT
chkiss Drive - Power point presentation by students – ticipative learning.	1 Pg.No:160	BB, ICT
ue Tube Drive - Power point presentation by students – ticipative learning.	1 Pg.No:161	BB, ICT
	ue converter , Propeller shaft joints, Universal joints - Video Demonstration rential and Rear axle - Laboratory Demonstration hkiss Drive - Power point presentation by students – ticipative learning. ue Tube Drive - Power point presentation by students – ticipative learning. d syllabus covered (if any):	Pg.No:67,94 ue converter, Propeller shaft 1 pjoints, Universal joints - Video Demonstration 1 pjoints, Universal joints - Video Demonstration 1 rential and Rear axle - Laboratory Demonstration 1 hkiss Drive - Power point presentation by students – 1 ticipative learning. 1 ue Tube Drive - Power point presentation by students – 1 ticipative learning. 1

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub Code / Sub Name: ME18001 / AUTOMOBILE ENGINEERING

Unit : IV

Unit Syllabus : STEERING, BRAKES AND SUSPENSION SYSTEM

9

Steering geometry and types of steering gear box - Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control

Objective: To make students familiar with steering, brakes and suspension systems.

Session No*	Topics to be covered	References	Teaching Method
28	Steering geometry	1 Pg.No:214	BB, ICT
29	Types of steering gear box	1 Pg.No:235-238	BB, ICT
30	Power Steering	1 Pg.No:244	BB, ICT
31	Types of Front Axle	1 Pg.No:210	BB, ICT
32	Types of Suspension Systems	1 Pg.No:172	BB, ICT
33	Pneumatic and Hydraulic Braking Systems – Video Demonstration	1 Pg.No:338 & 365	BB, ICT
34	Antilock Braking System (ABS)	1 Pg.No:391	BB, ICT
35	Electronic brake force distribution (EBD) - Power point presentation by students – Participative learning.	1 Pg.No:397	BB, ICT
36	Traction Control	3 Pg.No:879-81	BB, ICT

* Session duration: 50 minutes

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

9

Sub. Code / Sub. Name: ME18001 / AUTOMOBILE ENGINEERING Unit : V

Unit Syllabus : ALTERNATIVE ENERGY SOURCES

Hybrid Vehicles - Fuel Cell – Electric Battery = Electric vehicle – feasibility study of Electric, Hybrid and fuel cell vehicle, Alternate fuels - Emission norms (Euro and BS) and Driving Cycle

Objective: To make students familiar with alternative energy sources for vehicles.

Session No*	Topics to be covered	References	Teaching Method
37	Hybrid Vehicles	· 3 Pg.No: 665-668	BB, ICT
38	Fuel Cell Vehicle	3 Pg.No: 665-668	BB, ICT
39	Electric Battery Vehicle	3 Pg.No: 665-668	BB, ICT
40	Feasibility study of Electric Vehicle	3 Pg.No: 658-659	BB, ICT
41	Feasibility study of Hybrid Vehicle	3 Pg.No: 658-659	BB, ICT
42	Feasibility study of fuel cell vehicle	3 Pg.No: 658-659	ICT
43	Alternate fuels - Power point presentation by students – Participative learning.	7 Pg.No: 166-186	ICT
44	Emission norms (Euro and BS) and Driving cycle - Power point presentation by students – Participative learning.	7 Pg.No:472	BB, ICT
45			
46	Practical Training in dismantling and assembling of Engine parts and Transmission Systems to the students.	NA	LAB
47			
Content	beyond syllabus covered (if any):		

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: ME18001 / AUTOMOBILE ENGINEERING

REFERENCES:

- Dr. Kirpal Singh, "Automobile Engineering", Vol.1 & 2, Thirteenth Edition, Standard Publishers, New Delhi, 2013.
- 2. Jain K.K. and Asthana .R.B, "Automobile Engineering", Fifth Reprint, Tata McGraw Hill Publishers, New Delhi, 2002.
- 3. Newton, Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.
- 4. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart– Will Cox Company Inc, USA, 1978.
- 6. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 7. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.
- William H Crouse & Donald L Anglin, Automotive Mechanics, Tata McGraw-Hill, 10th edition, 2010.

WEB RESOURCES: https://nptel.ac.in/courses/107/106/107106088

Prepared by	Approved by
V. Souger glage	u.l.
Dr. V. Arun Prasad Raja	Dr. M. Mohandass
Assistant Professor	Assistant HOD
31-05-2022	31-05-2022
51-05-2022	51-05-2022
	Prepared by V. Jourge Market Dr. V. Arun Prasad Raja Assistant Professor 31-05-2022

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

De	partment of Mechanical Engine	ering	LP: ME 18501 Rev. No: 01
B.E/B.Tech/M.E/M.Tee	• : Mechanical Engineering	Regulation: 2018	Date:
Sub. Code / Sub. Name	: ME 18501 - Metrology and Qu	uality Control	05.08.2022
Unit	:1		

Unit Syllabus: INTRODUCTION

Introduction to Metrology – Basics - Need – Precision and Accuracy, Errors in Measurements, Comparators – Mechanical, Electrical & Optical. Interchangeability - limits, fits and tolerances, Limit gauges, Taylor's principle of gauge design. Calibration, Sensitivity, readability & repeatability. Linear measurement - Vernier calipers – Vernier height gaugeVernier depth gauge - Micrometers – Digital calipers - Slip gauges.

Objective: To make the students to define accuracy, precision, calibration, sensitivity, repeatability and relevant terms in metrology and to make them understand the principles of linear measuring instruments.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to Metrology	R1.1-80, R2. 1- 46	ICT
2	Basics- Calibration, Sensitivity, readability & repeatability	R1.7-8, R3 & R4	ICT
3	Need for measurement and inspection, Precision and accuracy	R1.4-12	ICT
4	Errors in Measurements	R2.13-20	ICT
5	Comparators-Mechanical, Electrical & Optical	R1. 363-417, R2.216-266	ICT
6	Interchangeability - Limits, Fits and Tolerances	R1.267, R2.437-449	ICT
7	Limit Gauges, Taylor's principle of gauge design	R2.483-489	ICT
8	Linear measurement - Vernier calipers - Vernier height gauge - Vernier depth gauge	R1. 135-145	ICT
9	Micrometers – Digital calipers - Slip gauges (Demonstration on calibration of various precision measuring instruments – Experiential learning)	R1.156-209	ICT

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME 16018 - ME 18501 - Metrology and Quality Control Unit: II

Unit Syllabus: ANGULAR AND FORM MEASUREMENTS

Angular Measurement - Angular measuring instruments - Types - Bevel protractor, Spirit levels, Sine bar - Sine center - Sine table - Angle Dekkor - Autocollimator. Form Measurement - Measurement of surface finish - Surf Tester. Screw thread measurement -Minor diameter & Effective diameter - Two wire method. Gear measurement - Gear terminology - Errors in gears - Pitch & Tooth thickness measurement - Parkinson's gear tester.

Objective: To make the students to understand and explore the fundamental working principles of various Angular measuring instruments, Form measuring instruments and gear measuring instruments.

Session No *	Topics to be covered	Ref	Teaching Aids
10	Angular Measurement - Angular measuring instruments, Types – Bevel protractor (Vernier & Optical bevel protractor	R1. 517-520, R2. 271- 341	ICT
11	Spirit levels & Sine bar	R1.520-530	ICT
12	Sine center & Sine table(Demonstration – Experiential Learning)	R1.520-530	ICT
13	Angle Dekkor & Autocollimator	R1. 540-543, R1. 533 -535, R1. 472-475	ICT
14	Form Measurement - Measurement of surface finish – Surf Tester. (Demonstration – Experiential Learning)	R1. 638-666	ICT
15	Gear measurement - Gear terminology	R1, 730-733,	ICT
16	Errors in gears	R1.735-739, R2. 637	ICT
17	Pitch & Tooth thickness measurement	R1.739-754	ICT
18	Parkinson's gear tester. (Demonstration – Experiential Learning)	R1.755-756	ICT
	C	AT-I	L

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: ME 18501 - Metrology and Quality Control

Unit : III

Unit Syllabus : ADVANCES IN METROLOGY

Interferometry - Types of Interferometers - Michelson interferometer - NPL flatness interferometer. Laser metrology - Basic concept of lasers - Advantages of Laser - Laser Interferometers - Types - DC and AC lasers interferometer - Applications. Coordinate Measuring Machines - Types of construction - Probes. CNC CMM, Machine vision system -Image acquisition & Image processing ..

Objective: To make the students to understand the principles of interferometry and familiarize them with the types and working principles of interferometers and CMM.

Session	Topics to be covered	Ref	Teaching Aids
19	Interferometry	R1. 418-420, R2. 71-74	ICT
20	Types of Interferometers – Michelson interferometer	R1.426-430	ICT
21	NPL flatness interferometer	R1. 430-432, R2. 80-82	ICT
22	Laser metrology - Basic concept of lasers - Advantages of Laser	R1.1076-1077	ICT
23	Laser Interferometers	R1. 535	ICT
24	DC and AC Interferometer & Application	R1.427-428, R1. 435-436	ICT
25	Coordinate Measuring Machines - Types of construction (Demonstration on cylindricity measurement -	R1. 792-794	ICT
26	CMM - Probes	R1.800-802, R1.809	ICT
27	Machine vision system – Image acquisition & Image processing.	R1. 818-821, R1.1064- 1070	ICT

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: ME 18501 - Metrology and Quality Control

Unit : IV

Unit Syllabus: MEASUREMENT OF PROCESS PARAMETERS

Measurement of Force Load cells Hydraulic & Pneumatic load cells LVDT. Basics of Torque & Power measurement. Flow measurement Differential pressure flow meter, Magnetic flow meter Ultrasonic flow meter. Temperature measurement - Thermocouples Radiation pyrometer Infrared temperature sensor.

Sessio	Topics to be covered	Ref	Teaching Aids
n No *	Introduction to measurement of process	R3 - Ch.12; Pg . 305	ICT
20	parameters	R3 - Ch.15; Pg . 358	ICT
29	Measurement of Preumatic load cells-	R3 - Ch.15; Pg . 359- 361	ICT
30	LVDT (Demonstration – Experiential	R3 - Ch.14. Pg . 348-	ICT
32	learning) Basics of	R3 – Ch.16; Pg . 349, 387	ICT
33	Flow measurement, Differential pressure flow	R3 – Ch.15; Pg . 364- 365	ICT
34	Magnetic flow meter, Ultrasonic flow meter	R3 – Ch.15; Pg . 365- 68	ICT
35	Temperature measurement – Thermocouples	R3 – Ch.15; Pg . 369- 372	ICT
26	Radiation pyrometer, Infrared temperature	R3 – Ch.15; Pg . 379- 382	ICT

Objective: i. To measure the dimensions of the components and process parameters.

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name	: ME18501- Metrology and Quality	Control
Linit	: V	+

Unit Syllabus: QUALITY CONTROL

Quality Definitions - Meaning of quality of product & services - Quality of conformance & Quality of performance. ISO 9000 Series & other standards, necessity of ISO certification. Statistical Quality Control Meaning and importance of SQC, Control charts for variables X & R charts, Acceptance Sampling

bjectiv	e: To provide knowledge and	Ref	Teaching Aids
No *	Topics to be covered	R3-Ch.11; Pg.	ICT
37	Need for quality	260-262	ICT
38	Quality Definitions - Meaning of quality of	260-264	ICT
	Ouality of conformance & Quality of	R3 - Ch.11; Pg.	ICI
39	performance	R3 - Ch.11; Pg.	ICT
40	ISO - Necessity of ISO Certification	287-289	ICT
41	ISO 9000 Series & other standards (Participative learning on latest standards through exploration of ISO	R3 - Ch.11; Pg . .287-289	No.
	official website)	R3-Ch.11; Pg.	ICT
42	Importance	R3 - Ch.11; Pg.	ICT
43	Control charts - Basics, Uses	271-273	ICT
	Control charts for variables X & R charts	R3 – Ch.11; Pg. 271-273	it i
44	Control charts for values	R3 - Ch.11; Pg	ICT
45	Acceptance Sampling	.270	

To provide knowledge on quality and control process.

* Session duration: 50

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: ME 18501 - Metrology and Quality Control

REFERENCES:

- 1. Jain R.K "Engineering Metrology", Khanna Publishers, 21 st edition, 2005.
- 2. Gupta. I.C., "Engineering Metrology", 7th edition, Dhanpatrai Publication, 2012.
- Raghavendra, Krishnamurthy, "Engineering Metrology and Measurements", Oxford University Press, 2013
- 4. https://nptel.ac.in/courses/112/104/112104250/
- 5. https://nptel.ac.in/courses/112/106/112106179/

	Prepared by	Approved by
Signature	De Chapter	n. Im
Name	Dr. S. Ponnuvel/Mr. A. Ranjith Raj	Dr. M. Mohandass
Designation	Associate Professor/Assistant Professor	Asst. HOD/MEC
Date	05.08.2022	05.08.2022

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Mechanical Engineering	LP: ME18502
	Rev. No: 01
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering, Regulation: R2018	Date: 01/08/2022
PG Specialisation :	
Sub. Code / Sub. Name : ME18502/DYNAMICS OF MACHINERY	
Unit : I	

Unit Syllabus: FORCE ANALYSIS

Dynamic force analysis – Inertia force and Inertia torque– D Alembert's principle –Dynamic Analysis in Slider Crank Mechanism – Turning moment diagrams –Fluctuation of Energy and Speed, Weight of Flywheel required

Objective: To impart knowledge on the fundamental force-motion relationship in components subjected to external forces and analysis of standard mechanisms

Session No *	Topics to be covered	References	Teaching Aids	
1	Introduction to the subject, Dynamic force analysis - Inertia force and Inertia torque	Ref.3-Ch.12-283-326; Ref.3-Ch.15-515	BB	
2	D Alembert's principle explanation –Introduction to Dynamic Analysis in reciprocating engines- determining gas forces neglecting the weight of the connecting rod- Bearing loads	Ref.3-Ch.12-283-326;	BB, ICT	
3	Explanation of Equivalent Dynamical System	Ref.3-ch.13-543-548	BB, ICT	
4	Calculation of correction couple to be applied to equivalent Dynamical System	Ref.3-ch.15-548-550	ICT, BB	
5	Derivation of Inertia forces neglecting the weight of the connecting rod and solving problems	Ref.3-ch.15-550-560	ICT	
6	Derivation of Crank shaft torque using Analytical method and solving problems	Ref.2- pg.no.437	BB, ICT	
7	Introduction to Turning moment diagrams –Explanation of Single and Multi cylinder engines- Video demonstration	Ref.2-435-437 Ref.3-ch.16-565-568	ICT	
8	Introduction to Turning moment diagrams –Explanation of Single and Multi cylinder engines-Quiz – Participative learning.	Ref.2-431-442	ICT	
9	Calculation of Fluctuation of Energy-Introduction to Fly Wheels – Determination of Coefficient of Fluctuation of Speed and Energy store	Ref.3-ch.16-568	ICT	
10	Explanation of how Flywheels used in punching presses and derivation of maximum fluctuation of energy	Ref.3-ch.16-568	ICT	
11	Continuation of problems based on Flywheels - Video demonstration	Ref.2-pg.no.439-446 Ref.3-ch.16-568-607	ICT	
12	Continuation of problems based on Flywheels	Ref.2-pg.no.439-446 Ref.3-ch.16-568-607	ICT	
Content beyond syllabus covered (if any):				

* Session duration: 50 minutes

* ICT - Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

12

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME18502/DYNAMICS OF MACHINERY Unit : \mathbf{II}

Unit Syllabus : BALANCING OF MASSES

Dynamic balancing – Balancing of rotating masses under single and several planes – Balancing of reciprocating masses - Primary and secondary forces and couples– Balancing of linkages.

Objective: To determine the undesirable effects of imbalances resulting from prescribed motions in mechanism.

Session No *	Topics to be covered	References	Teaching Aids
13	Introduction to Static and dynamic balancing – Principal involved in Balancing of rotating masses	Ref.2-ch.14-489-491 Ref.3-ch.21-833-835	ICT
14	Explanation of Balancing of Several masses rotating in same planes – Solving problems	Ref.2-ch.14-491-492 Ref.3-ch.21-837-841	ICT
15	Explanation of Balancing of Several masses rotating in different planes – Laboratory demonstration - Experiential Learning.	Ref.2-ch.14-489-491 Ref.3-ch.21-833-835	ICT, LAB
16	Explanation of Balancing of Several masses rotating in different planes – Solving problems	Ref.2-ch.14-489-491 Ref.3-ch.21-833-835	LAB, ICT
17	Calculation of masses for balancing Primary and Secondary unbalanced forces of reciprocating masses and Partial balancing and variation of Tractive force	Ref.2-ch.14-499-504 Ref.3-ch.22-859-873	BB, ICT
18	Calculation of masses for balancing Primary and Secondary unbalanced forces of reciprocating masses and Partial balancing and variation of Tractive force	Ref.2-ch.14-499-504 Ref.3-ch.22-859-873	ICT
19	Introduction to Balancing of coupled locomotives	Ref.2-ch.14-504-505 Ref.3-ch.22-873-878	BB, ICT
20	Calculation of masses for balancing primary forces and Secondary forces of multi cylinder inline engines	Ref.2-ch.14-505-508 Ref.3-ch.22-878-894	ICT
21	Calculation of masses for balancing primary forces and Secondary forces of multi cylinder inline engines- Quiz – Participative learning.	Ref.2-ch.14-505-508 Ref.3-ch.22-878-894	ICT
22	Calculation of masses to balance Radial engines	Ref.3-ch.22-894-898	ICT
23	Calculation of masses to balance V Engines	Ref.2-ch.14-513-520 Ref.3-ch.22-899-904	ICT
24	Principle involved in Balancing of linkages, Balancing machines and Field balancing of discs and rotors.	Ref.2-ch.14-521-525	ICT
Content	beyond syllabus covered (if any):		

* Session duration: 50 minutes

* ICT - Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

12

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

12

Sub. Code / Sub. Name: ME18502/DYNAMICS OF MACHINERY

Unit : III

Unit Syllabus FREE VIBRATION

Basic features of vibratory systems – Degrees of freedom – single degree of freedom – Free vibration – Equations of motion – Natural frequency – Types of Damping – Damped vibration – Critical speeds of shafts – Dunkerley Method- Torsional vibration of shaft – Torsional vibration – Two rotor Torsional systems

Objective: To inculcate the concepts of vibration and damping principles

Session No *	Topics to be covered	References	Teaching Aids	
25	Basic features of vibratory system, Degrees of freedom and terms used in vibratory motion freedom	Ref.2-ch.15-532 Ref.3-ch.23-904-910	ICT	
26	Principle of Free vibration– deriving equations of motion based upon following methods: Equilibrium method, Energy method and Rayleigh's method	Ref.2-ch.15-533-536 Ref.3-ch.23-911-915	ICT	
27	Principle of Free vibration– deriving equations of motion based upon following methods: Equilibrium method, Energy method and Rayleigh's method	Ref.2-ch.15-533-536 Ref.3-ch.23-911-915	ICT	
28	Determination of Natural frequency of transverse vibration with and without including effect of inertia on transverse vibration	Ref.2-ch.15-537-538 Ref.3-ch.23-915-918	ICT,	
29	Determination of Natural frequency of transverse vibration with and without including effect of inertia on transverse vibration	Ref.2-ch.15-537-538 Ref.3-ch.23-915-918	BB, ICT	
30	Determination of Natural frequency using Dunkerley's method	Ref.2-ch.15-545-546 Ref.3-ch.23-927-930	ICT	
31	Determination of Critical speeds of shaft— Laboratory demonstration - Experiential Learning.	Ref.2-ch.15-565-567 Ref.3-ch.23-930-937	BB, ICT	
32	Determination of Frequency of damped vibrations, Different Types of Damping	Ref.2-ch.15-552-554 Ref.3-ch.23-937	ICT	
33	Determination of Frequency of damped vibrations, DifferentTypes of Damping	Ref.2-ch.15-552-554 Ref.3-ch.23-937	ICT	
34	Determination of Natural frequency of Torsional vibration of shaft	Ref.2-ch.15-568-583 Ref.3-ch.24-972-975	BB,ICT	
35	Determination of Natural frequency of Two and three rotor torsional systems – Solving problems based on Geared Systems	Ref.2-ch.15-568-583 Ref.3-ch.24-977-980	BB,ICT	
36	Determination of Torsionally equivalent shaft	Ref.2-ch.15-585 Ref.3-ch.24-982-991	BB,ICT	
Content beyond syllabus covered (if any): The refractory metals, super-alloys, noble metals, Lead and Zinc alloys,				

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

12

Sub Code / Sub Name: ME18502/DYNAMICS OF MACHINERY

Unit : IV

Unit Syllabus : FORCED VIBRATION AND MESUREMENT

Response of one-degree freedom systems to periodic forcing – Harmonic disturbances – Disturbance caused by unbalance – Support motion –transmissibility – Vibration IsolationGeneral considerations in vibration measurement-vibration pickups.

Objective: To identify the undesirable effect of vibrations and its controlling procedures

Session No*	Topics to be covered	References	Teaching Method
37	Derivation of one degree freedom systems Responses to periodic forcing-	Ref.3-ch.23-949-961	ICT
38	Derivation of one degree freedom systems Responses to periodic forcing	Ref.3-ch.23-949-961	ICT
39	Derivation of one degree freedom systems Responses to periodic forcing	Ref.3-ch.23-949-961	ICT
40	Determination of Harmonic disturbances caused by unbalance	Ref.3-ch.23-949-961	ICT
41	Determination of Harmonic disturbances caused by unbalance	Ref.3-ch.23-949-961	ICT
42	Determination of Harmonic disturbances caused by unbalance	Ref.3-ch.23-949-961	ICT
43	Determination of transmissibility for Support motion	Ref.3-ch.23-961-968	ICT
44	Determination of transmissibility for Support motion	Ref.3-ch.23-961-968	ICT
45	Principle involved in Vibration isolation - Quiz – Participative learning.	Ref.3-ch.23-961-968	ICT
46	Principle involved in Vibration isolation	Ref.3-ch.23-961-968	ICT
47	considerations in vibration measurement-vibration pickups	Ref.5.Ch.10-771-799	ICT
48	considerations in vibration measurement-vibration pickups	Ref.5.Ch.10-771-799	ICT
Content b	eyond syllabus covered (if any):		

* Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: ME18502/DYNAMICS OF MACHINERY Unit : $\mathbf V$

Unit Syllabus : CONTROL MECHANISMS

12

Governors – Types – Centrifugal governors – Gravity controlled and spring controlled Centrifugal governors – Characteristics – Gyroscopic forces– Gyroscopic effects in Automobiles, Ships and Airplanes.

Objective: To understand the principles in mechanisms used for speed control and stability control

Session No*	Topics to be covered	References	Teaching Method
49	Principle involved in Governors, Types of Centrifugal governors	Ref.2-ch.13-454 Ref.3-ch.18-653	BB, ICT
50	Explanation of Pendulum type, example Watt governors and solving problems related through Watt Governors	Ref.2-ch.13-455-457 Ref.3-ch.18-654-656	BB, ICT
51	Explanation of Gravity controlled Porter governors and solving problems Laboratory demonstration - Experiential Learning.	Ref.2-ch.13-457-459 Ref.3-ch.18-657-668	BB, ICT
52	Explanation of Gravity controlled Proell governors and solving problems	Ref.2-ch.13-461-463 Ref.3-ch.18-670-678	BB, ICT, LAB
53	Explanation of Spring controlled centrifugal governors - Hartnell governors and solving problems	Ref.2-ch.13-464-465 Ref.3-ch.18-678-691	BB, ICT
54	Explanation of Pickering in governors	Ref.3-ch.18-698-700	ICT
55	Explanation of Sensitiveness and stability of governors, hunting and Isochronous governors and solving problems	Ref.3-ch.18-700-701	ICT
56	Explanation of Characteristics – Effect of friction -Effort and power of governor and solving problems	Ref.2-ch.13-472-480 Ref.3-ch.18-702-710	BB, ICT
57	Explanation of Controlling force curves	Ref.3-ch.18-711-712	BB, ICT
58	Determination of Gyroscopic effects in Airplanes and solving problems	Ref.1-ch.23-710-712 Ref.3-ch.14-486-488	BB, ICT
59	Determination of Gyroscopic effects in Naval ships and solving problems— Laboratory demonstration - Experiential Learning.	Ref.3-ch.14-488-490	ICT
60	Determination of Gyroscopic effects in Automobiles and solving problems	Ref.1-ch.23-706-707 Ref.3-ch.14-495-506	ICT
Content b	eyond syllabus covered (if any):		

^{*} ICT – Laptop, Projector, Pen drive, Google Classroom, Microsoft tools, YouTube Videos

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub. Code / Sub. Name: ME18502/DYNAMICS OF MACHINERY

TEXT BOOKS:

1. Rao, S.S, "Mechanical Vibrations," Pearson Education, Fifth Edition, 2011.

2. Rattan, S.S, "Theory of Machines", Tata McGraw-Hill, Fourth Edition, 2017.

3. Sadhu Singh, "Theory of Machines: Kinematics and Dynamics", Pearson Education, Third edition, 2011.

4. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, Fifth Edition, 2017.

REFERENCES:

1. Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", East-West Pvt. Ltd., New Delhi, 2008.

2. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 2009

3. Khurmi, R.S., "Theory of Machines", S Chand Publications, 2005.

4. Rao J.S. and Dukkipati R.V. "Mechanisms and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.

5. Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 2009.

1	Prepared by	Approved by	
Signature	1) danharin 2) To Ka u	p. Um	
Name	Dr. V-SRIDHARAN - M. J. San RAMA BADZAN	w.m. mohanday	
Designation	Asst. Peop Impen	Aut. HOP	
Date	21/08/20m	01/08/2022	
Remarks *:			
Remarks *:			

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

		LP: ME18503
Department of Mechanical Engineering	Rev. No: 01	
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering R	egulation: 2018	Date: 23/08/2022
PG Specialisation : NA		
Sub. Code / Sub. Name : ME 18503 DESIGN OF MACHINE ELEMENTS		
Unit : I		

Unit Syllabus: Design Process- types of Stress, Cyclic stresses, Factor of Safety, Stress concentration factor in tension, bending and torsion, Theories of failures. Notch sensitivity, Design for variable and repeated loadings, Fatigue stress concentration factor, Endurance diagrams, Introduction to fracture mechanics

Objective: To know the steps involved in design. Familiarize engineering materials and their selection for a particular application. To know the various standards, tolerances and different types of loading, stresses, factor of safety and design of components subjected to variable loading

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to design process and factors influencing machine design		
2	Types of Stress, Cyclic stresses, Factor of Safety examples		
3	Stress concentration factor in tension, bending and torsion		
4	Direct stresses- factor of safety, problems		
5	Problems		
6	Eccentric loading, Bending and torsion stress equations.	TB 1·	
7	Problems on the above topic Group : To solve the problem	Ch-01; - Pg.01-17, Ch-02-05; Pg.16-	BBD/ICT
8	Theories of failures		
9	Principal stresses, theories of failure, problems		
10	Stress concentration, problems. Methods to avoid stress concentration	160)	
11	Design for variable loading, Soderberg's and Goodman's equations, problems		
12	Problems: Problem solving Methodology: real time component stress analysis		
13	Tutorial on theories of failure		
14	introduction to fracture mechanics-theory QUIZ/ Group : To solve the problem		
Content material	beyond syllabus covered (if any): selection and stresses in curved beam introduction		

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME 18503 DESIGN OF MACHINE ELEMENTS

 $Unit: I\!I$

Unit Syllabus : Preferred Numbers- Standardization Design of shafts under static and fatigue loadings, Keys – types of keys , design of keys. Design of Rigid coupling, and Flexible coupling. Fits- types of Fits and Tolerance- hole basis system , Shaft basis problems

Objective: To know the design of shafts subjected to bending and torsional loads based on strength and rigidity. To select keys and found out the stresses acting on it and to design different types rigid and flexible couplings. Also familiarizing with standardization, fits and tolerances.

Session No *	Topics to be covered	Ref	Teaching Aids
15	Preferred Numbers, standardization Design of shafts based on strength- subjected to twisting and bending only		
16	Problems		
17	Design of shafts based on combined bending and torsion		
18	Problems Problem solving Methodology : M/c tools spindle design(lathe M/c)		
19	Design of shafts subjected to combined bending and torsion		
20	Problems on shafts carrying pulleys and gears Problem solving Methodology: : M/c tools spindle design(planner M/ctool	TB. 1 Ch. 09, Pg. 330-385	BBD/ICT BBD/ICT
21	Design of shafts subjected to bending torsion and axial loads		
22	Problems in the above topic Selection of keys and their applications – stresses on the keys		
23	Design of rigid couplings – muff, flange and marine type couplings		
24	Design of flexible couplings – pushed pin type couplings Grouping / Solving Method : Problem solving methodology		
25	Fits and tolerance- hole basis system and shaft basis system <i>Quiz& Seminar presentations</i>		
26	problems on the above topic		
	CAT I	1	
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

* Session duration: 50 mins

Sub. Code / Sub. Name: ME 18503 DESIGN OF MACHINE ELEMENTS

Unit : III

Unit Syllabus: Design of Close coil helical springs under varying load condition. Design of Leaf spring, Disc Spring and Torsion spring.

Objective: To design the close coli helical spring, leaf spring, torsion and disc springs subjected to direct and eccentric loading.

Session No *	Topics to be covered	Ref	Teaching Aids	
27	Springs introduction types stresses, terminologies in springs			
28	Close coil helical spring design under static load- design			
29	problem in the above topic Problem solving Methodology : Two wheeler spring design			
30	Close coil helical spring design under static load- eccentric load design			
31	Close coil spring in varying load – Soderberg equation application <i>Problem solving Methodology</i> : Two wheeler spring design	TB. 1,	BBD/ICT	
32	Leaf spring design	Ch. No.07, 219-269.		
33	Problem Problem solving Methodology: LMV /HV spring design	Ch. No. 08,		
34	Disc spring design Group Discussion/ Seminar Presentation	272-325		
35	Problems			
36	Torsion spring design			
37	Problems			
38	Tutorial on helical valve springs			
	CATII			
Content beyond syllabus covered (if any):				

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: ME 18503 DESIGN OF MACHINE ELEMENTS

Unit : IV

Unit Syllabus : Rivet – Types of rivet joints, Caulking and fuluring, Design of riveted joints for structural and pressure vessels. Eccentrically loaded rivet joint, Welding – Welding symbols, Design of welded joints under eccentrically load. Geometry of thread forms, Terminology of screw threads.Design of screws and bolts.

Objective: To study the design of rivet joints for structural and vessels and to design weld structure subjected to direct, eccentric load and cyclic loadings.

Session No *	Topics to be covered	Ref	Teaching Aids
39	Rivet – Types of rivet joints, Caulking and fuluring		
40	Design of riveted joints for structural		
41	Problems Problem solving Methodology : riveted Truss design		
42	Rivet design for pressure vessels		BBD/ICT
43	Problems Problem solving Methodology: Thermal lab Bolie's Rivet design		
44	Eccentrically loaded rivet joint -design	1B. No. 1 Ch. No. 10	
45	Problems	392-443,	
46	Welding – Welding symbols Types -Terminologies - stresses	Ch. No. 21, 749-767	
47	Welding design – simple cases- problems Problem solving Methodology: Welded Truss design		
48	Design of welded joints under eccentrically load- problems		
49	. Geometry of thread forms, Terminology of screw threads		
50	Design of screws and bolts-Problems		
50	QUIZ/Group discussion		
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: ME 18503 DESIGN OF MACHINE ELEMENTS

Unit : V

Unit Syllabus : Design and selection of rolling contact bearings – Design of sliding contact bearings. Introduction of EHD Journal Bearings.

Objective: The students are able to design hydrodynamic journal bearings. The students are able to study and derive the properties of the lubricants and bearings. The students are to select rolling contact bearings and compute the mean life of the bearings for its survival.

Session No *	Topics to be covered	Ref	Teaching Aids
51	Theory of Lubrication, Bearings, types, hydrodynamic lubrication	_	BBD/ICT
52	Design of hydrodynamic bearings - procedure		
53	Somerfield numbers,		
54	Problems on design of journal bearings Problem solving Methodology: Lathe spindle bearing design/Planar M/c tool s over head shaft design	TB. No. 1 Ch. No. 16, Pg. No. 601- 644, Ch. No 15. Pg. No. 564-599	
55	Rolling contact bearings – types selection and their applications		
56	Selection of rolling contact bearings – problems Problem solving Methodology: Wheel axel support bearing in Two wheeler or Machine tool's ball bearing design		
57	Problems		
58	90% survival of the bearings, mean life of the bearings, problems		
59	Problems Problem solving Methodology: Life estimation of Wheel axel support bearing in Two wheeler or Machine tool's ball bearing design		
60	Introduction of EHD Journal Bearings Seminar/ Group discussion		
	CAT III		
Content beyond syllabus covered (if any):			

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: ME 16503 DESIGN OF MACHINE ELEMENTS

TEXT BOOKS:

1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.

2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

3.Khurmi R.S., and Gupta J.K., "Machine Design", 14 th Edition, S Chand&Co NewDelhi, 2005.

4. Sundararajamoorthy, T.V. and Shanmugam, N., "Machine Design", Anuradha Agencies, Chennai, 2003.

REFERENCES:

1. Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.

2. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005

3. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum"s Outline), 2010

4. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.

5. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.

6. Ansel Ugural, "Mechanical Design – An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
7. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2000.

8.Lingaiah K., "*Machine Design Data Book*", 2 nd Edition Tata McGraw – Hill.New delhi,2010. 9.Robort.L.Norton," Machine Design", 5 th Edition, Pearson Publisher, New delhi,2018.

10.Sharma,P.C and Agarwal,D.K, "MachineDesign", Agrawal-Kataria and Sons Publication, NewDelhi, 2014. 11.Shigley, J.E., Charles, R.M. and Richard, G.B., "*Mechanical Engineering Design*", 10th ed., McGraw-Hill, New Delhi, 2014.

12.Spotts M.F., "Design of Machine Elements", 8 th Edition, Pearson Education, NewDelhi, 2019.

	Prepared by	Approved by
Signature		
Name		
Designation		
Date		
Remarks *:		
Remarks *:		

COURSE DELIVERY PLAN - THEORY Page 6 of 6

REFERENCES:

- Mikell.P.Groover"Automation, ProductionSystemsandComputerIntegratedManufacturing", PrenticeH allofIndia, 2008.
- RadhakrishnanP,SubramanyanS.andRajuV., "CAD/CAM/CIM",2ndEdition,NewAgeInternational(P) Ltd, NewDelhi,2000.
- 3. KantVajpayeeS,"Principlesof ComputerIntegratedManufacturing", PrenticeHallIndia, 2003.
- 4. Rao.P,N T i w a r i & T.K.Kundra, "ComputerAidedManufacturing", TataMcGrawHillPublishingCompany ,2000
- 5. GrooverM.P., "IndustrialRobotics-TechnologyProgrammingandApplications", McGrawHill, 2001
- Computer-Integrated Design and Manufacturingby David D. Bedworth, M.R. Henderson, Published December 1st 1991 by McGraw-Hill Companies
- 7. Li-Hong Juang "Intelligent Robots", Nova Science Publishers, Inc.2019

	Prepared by	Approved by
Signature	Alliz	proleme
Name	Dr.S. MUNIRAJ	Dr M. Mohandas
Designation	Assistant Professor	AHoD/ME
Date	30.07.2021	3017/2021
Remarks *: 5	he same lesson planisto be	followed for AY 2022-23.
	.g. this 382022	QUNITE AJ.)
Remarks *:		
18		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Mechanical Engineering		LP: Sub Code ME18504 Rev. No: 01	
B.E/B.Tech/M.E/M.Tec	h: V/ Mechanical	Regulation:2018	Date: 08/08/2022
PG Specialisation			
Sub. Code / Sub. Name	: ME18504/Heat and Mass Transfer		
Unit	: I		

Syllabus:

12

General Differential equation of Heat Conduction–Cartesian and Polar Coordinates–One Dimensional Steady State Heat Conduction —Plane and Composite Systems –Conduction with Internal Heat Generation –Extended Surfaces –Unsteady Heat Conduction –Lumped Analysis – Infinite Solids –Use of Heisler''s charts

Objective:

• To understand the mechanisms of heat transfer under steady and transient conditions.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Basic Concepts – Mechanism of Heat Transfer – Conduction, Convection and Radiation- https://www.youtube.com/watch?v=HpCvWuvCUoA		ICT
2	Fourier Law of Conduction; General Differential equation of Heat , Conduction in Cartesian coordinates	5,7	ICT
3	Fourier Law of Conduction; General Differential equation of Heat Conduction in Cylindrical coordinates	5,7	ICT
4	One Dimensional Steady State Heat Conduction – Conduction through Plane Wall,	5,7	ICT
5	Method of Weighted Residuals (Tutorial-1 Steady state conduction) - Descriptive Assignments	5,7	ICT
6	Composite Systems both plane wall and cylindrical systems Experimental Steady Laboratory demonstration of composite wall	5,7	ICT
7	Method of Weighted Residuals (Tutorial-2 Composite system) - Descriptive Assignments.	5,7	ICT
8	Conduction with Internal Heat Generation	5,7	ICT
9	Solution to Conduction equation with Internal Heat Generation	5,7	ICT
10	Extended Surfaces – fins- Experimental Steady Laboratory demonstration of fins	5,7	ICT
11	Unsteady Heat Conduction - Lumped Analysis - Use of Heislers Chart.	5,7	ICT
12	Semi-infinite, Infinite solids	7	ICT

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

12

Sub. Code / Sub. Name: ME18504: Heat and Mass transfer

Unit : II

Syllabus:

Free and Forced Convection -Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders, non circular cross section and Internal flow through tubes flow, across banks of tubes, non-circular cross section.

Objective:

• To study the heat transfer rate for laminar and turbulent flows

Topics to be covered	Ref	Teaching Aids
Basic Concepts: Convective Heat Transfer Coefficients – Boundary Layer Concept and similarity between momentum and heat transfer- <u>https://www.youtube.com/watch?v=B8H06ZA2xmo</u>	5,7	ICT
Types of Convection – Forced Convection – Dimensional Analysis- - Experimental Steady Laboratory demonstration of Forced Convection	5,7	ICT
External Flow – Flow over Plates, Cylinders	5	ICT
External Flow – Flow over Cylinders	7	ICT
Flow over plate Problems (Tutorial 3) - Quiz and Descriptive Assignments	7	ICT
Flow over cylinder Problems (Tutorial 4) - Quiz and Descriptive Assignments	7	ICT
Internal Flow – Laminar and Turbulent Flow – Combined Laminar and Turbulent	5,7	ICT
Flow over Bank of tubes, and its importance in heat exchanger	5,7	ICT
Tutorial 6 on Internal flow and flow over bank of tubes	5,7	ICT
Free convection: Flow over Vertical Plate, Horizontal Plate, Experimental Steady Laboratory demonstration of Free Convection	7	ICT
Tutorial 5on free convection, problems	5,7	ICT
Tutorial 6 on free convection, problems	5,7	ICT
	Topics to be coveredBasic Concepts: Convective Heat Transfer Coefficients – Boundary Layer Concept and similarity between momentum and heat transfer- https://www.youtube.com/watch?v=B8H06ZA2xmoTypes of Convection – Forced Convection – Dimensional Analysis- - Experimental Steady Laboratory demonstration of Forced ConvectionExternal Flow – Forced Convection – Dimensional Analysis- - Experimental Steady Laboratory demonstration of Forced ConvectionExternal Flow – Flow over Plates, CylindersExternal Flow – Flow over CylindersFlow over plate Problems (Tutorial 3) - Quiz and Descriptive AssignmentsFlow over cylinder Problems (Tutorial 4) - Quiz and Descriptive AssignmentsInternal Flow – Laminar and Turbulent Flow – Combined Laminar and TurbulentFlow over Bank of tubes, and its importance in heat exchanger Tutorial 6 on Internal flow and flow over bank of tubes Free convection: Flow over Vertical Plate, Horizontal Plate, Experimental Steady Laboratory demonstration of Free ConvectionTutorial 5 on free convection, problemsTutorial 6 on free convection, problems	Topics to be coveredRefBasic Concepts: Convective Heat Transfer Coefficients – Boundary Layer Concept and similarity between momentum and heat transfer- https://www.youtube.com/watch?v=B8H06ZA2xmo5,7Types of Convection – Forced Convection – Dimensional Analysis- - Experimental Steady Laboratory demonstration of Forced Convection5,7External Flow – Flow over Plates, Cylinders5External Flow – Flow over Plates, Cylinders7Flow over plate Problems (Tutorial 3) - Quiz and Descriptive Assignments7Flow over cylinder Problems (Tutorial 4) - Quiz and Descriptive Assignments7Internal Flow – Laminar and Turbulent Flow – Combined Laminar and Turbulent5,7Flow over Bank of tubes, and its importance in heat exchanger 5,75,7Tutorial 6 on Internal flow and flow over bank of tubes5,7Free convection: Flow over Vertical Plate, Horizontal Plate, Experimental Steady Laboratory demonstration of Free Convection7Tutorial 5 on free convection, problems5,7

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: ME18504: Heat and Mass transfer

Unit : III

Syllabus:

12

Nusselt"s theory of condensation-Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types -Overall Heat Transfer Coefficient –Fouling Factors - Analysis –LMTD method -NTU method.

Objective:

To understand the phenomenon of boiling and condensation heat transfer To learn the thermal analysis of heat exchanger

Session No *	Topics to be covered	Ref	Teaching Aids
25	Nusselt theory of condensation	7	ICT
26	Correlations in condensation	7	ICT
27	Boiling; Pool boiling, flow boiling, correlations in boiling- https://www.youtube.com/watch?v=BAIwZYKwQTU	7	ICT
28	Boiling and condensation Problems (Tutorial 7) - Quiz and Descriptive Assignments	7	ICT
29	Types of Heat Exchangers - Experimental Steady Laboratory demonstration of Counter flow and Parallel flow heat exchangers-	5,7	ICT
30	Analysis of heat exchanger LMTD method	5,7	ICT
31	Heat exchanger Problems using LMTD method (Tutorial 8) - Quiz and Descriptive Assignments- https://www.youtube.com/watch?v=mK2QDYjCjzQ	5	ICT
32	Analysis of heat exchanger using Effectiveness – NTU method- https://www.youtube.com/watch?v=vXrnPD1NyUg	5	ICT
33	Overall Heat Transfer Coefficient with and without Fouling Factors	7	ICT
34	Fouling Factors in heat exchangers	7	ICT
35	Tutorial 9 in heat exchanger-	5,7	ICT
36	Tutorial 9 in heat exchanger continued	5,7	ICT
Content b	eyond syllabus covered (if any):		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: ME18504: Heat and Mass transfer

Unit : IV

Syllabus:

Black Body Radiation –Gray body radiation - Shape Factor algebra –Electrical Analogy – Radiation Shields. Radiation through gases

Objective:

To understand the concepts of radiation in black and gray body, and in gases. To learn the concepts of electrical analogy and shape factor algebra in radiation

Session No	Topics to be covered	Ref	Teaching Aids
37	Basic Concepts, Laws of Radiation – Stefan Boltzmann Law, Kirchhoff's Law- <u>https://www.youtube.com/watch?y=B8H06ZA2xmo</u>	7	ICT
38	Black Body Radiation	7	ICT
39	Grey body radiation	7	ICT
40	Shape Factor Algebra	7	ICT
41	Tutorial 11 in Black Body Radiation and Grey body radiation	7	ICT
42	Tutorial 11 in shape factor algebra	7	ICT
43	Tutorial 11 in Black Body Radiation and Grey body radiation	7	ICT
44	Tutorial 11 - shape factor algebra Problems - Quiz and Descriptive Assignments	5,7	ICT
45	Electrical Analogy, Radiation Shields	5,7	ICT
46	Tutorial 12 Radiation problems using Electrical Analogy	5,7	ICT
47	Introduction to Gas Radiation.	5,7	ICT
48	Tutorial 13 - Gas Radiation Problems - Quiz and Descriptive Assignments	5	ICT

* Session duration: 50 mins

ICT - PowerPoint presentation, YouTube videos, Google classroom, Assessment tools.

12

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: ME18504: Heat and Mass transfer

Unit : V

Syllabus:

12

Concept - Diffusion Mass Transfer - Fick's Law of Diffusion - Steady state Molecular Diffusion -Convective Mass Transfer - Momentum, Heat and Mass transfer Analogy- Convective Mass Transfer Correlations

Objective:

To understand the basic concepts of diffusion mass transfer Convection mass transfer

Session No	Topics to be covered	Ref	Teaching Aids
49	Basic Concepts – Diffusion Mass Transfer- https://www.youtube.com/watch?v=Yc2eSffzhBI&list=PLwdnz IV3ogoVX S 8DyKa7RudEazDL00	5,7	ICT
50	Fick's Law of Diffusion - Steady state Molecular Diffusion	5,7	ICT
51	Convective Mass Transfer-correlations - https://www.youtube.com/watch?v=CMIv2KqkW80	5,7	ICT
52	Convective Mass Transfer-Problems	5,7	ICT
53	Momentum, and Mass Transfer Analogy	5,7	ICT
54	Equimolar counter diffusion-problems	5,7	ICT
55	Steady state diffusion-problems	5,7	ICT
56	Convective Mass Transfer Correlations continued	5,7	ICT
57	Tutorial 14 using Fick's Law	5,7	ICT
58	Tutorial 15 Using the Convective Mass Transfer Correlations- https://www.youtube.com/watch?v=M2i3HSw4Ays	5,7	ICT
59	Tutorial 14 using Fick's Law	5,7	ICT
60	Tutorial 15 Using the Convective Mass Transfer Correlations	5,7	ICT
Content bey	ond syllabus covered (if any):		

* Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: ME18504: Heat and Mass transfer

TEXT BOOKS:

1. Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition, 2015 2. Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 2011,

REFERENCES:

1.Ghoshdastidar, P.S, "Heat Transfer", Oxford University Press, 2012

2.Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 7th edition, 2010

3.Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age

International, New Delhi, 1998.

4.Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 3rd edition 2011

5.Ozisik, M.N., "Heat Transfer", McGraw Hill Book Company., 1994.

6.Sachdeva, R.C.Fundamentals Of Engineering HeatTransfer, New Age Science Ltd., New Delhi; 4th edition, 2009.

7. Thirumaleshwar.M: Fundamentals of Heat and Mass Transfer, "Heat and Mass

Transfer", First Edition, Dorling Kindersley, 2009.

8. Venkateshan. S.P., "Heat Transfer", Ane Books, New Delhi, 2004.

9.Yadav, R., "Heat and Mass Transfer", Central Publishing House, 1995.

WEBSITE:

https://nptel.ac.in/courses/112101097

	Prepared by	Approved by
Signature	Phinipenii	dillin
Name	Dr.K.Pitchandi / Mr.R.Kaliyanasunder	Dr. M. Mohandass
Designation	Prof/Assis. Prof /Mechanical	AHoD - Mechanical
Date	08/08/2022	08/08/22

• If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY

Page 1 of 2

		LP: 18511
Department of Mechan	nical Engineering	Rev. No: 01
B.E/B.Tech/M.E/M.Tech : MEC	Regulation: 2018	Date: 25/07/2022
PG Specialisation : Sub Code / Sub. Name : ME18511 DYNAMICS	AND VIBRATION LABORATORY	2010112022

Session No.	List of Experiments
	CYCLE-I
1	Single degree of freedom Spring Mass System – Determination of natural Frequency Virtual Lab (VLAB) demonstration
2	Porter Governor - Determination of range sensitivity and effort Video Demonstration using ICT
3	Determination of natural Frequency by Dunkerley method.
4	Determination of Mass moment of inertia and Radius of Gyration of Fly wheel and Axle system
5	Determination of Mass Moment of Inertia and Radius of Gyration using Billiar Suspension
6	Motorized gyroscope – Study of gyroscopic couple effect Video Demonstration using ICT
7	Determination of Mass Moment of Inertia and Radius of Gyration using Compound
8	Verification of Torsion equilibrium using Epicyclic Gear Train
0	Whirling of shafts – Determination of critical speeds of shafts Video Demonstration using ICT
9	to the firms showed and
10	Cams - Cam profile drawing and study of jump phenomenon
10 11	Cams – Cam profile drawing and study of jump phenomenon Determination of torsional natural frequency of single Rotor systems under Undamped condition

* Session Duration: 150 minutes

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY

Page 2 of 2

Sub. Code / Sub. Name: ME18511 DYNAMICS AND VIBRATION LABORATORY

	Prepared by	Approved by	
Signature	C. Sullthe	m. Mm	_
Name	Dr.C.Senthamaraikannan	Dr. M.Mohandas	5
Designation	Associate Professor	Asst HoD & Prof	•
Date	25/07/2022	25/07/2022	
Remarks* :	tan ang ang ang ang ang ang ang ang ang a	Motore at sympositic studen Video Deno o tration wing IC	
* If the same	e lab plan is followed in the subsequent	semester/year it should be	
mentioned a	nu signed by the Faculty and the 110D		

Supersystem (States) for any second se

COURSE OUTCOMES - LABORATORY

Department of Mechanical Engineering	CO: ME18511
B.E/B.Tech/M.E/M.Tech -: Mechanical Engineering	Rev No: 01
UG / PG Specialisation : Mechanical Engineering	Date: 25/07/2022
Regulation : R2018	Date. 23/07/2022
Sub. Code / Sub. Name : ME18511 DYNAMICS AND VIBRATION LAB	ORATORY

CO	Statements	RBT*
C01	Students will calculate the Moment of Inertia and radius of gyration for the mechanical members.	Level
CO2	Students will determine the natural frequency of free and forced vibration systems	L3
CO3	Students will analyse the motion transmission in cam and gears	L4
CO4	Students will analyse the performance characteristics of governors and gyroscope	L4

Mapping CO - PO - PSO*:

		A 0			~~ .										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2	PSO-3
CO1	2	3			3	2		2	3				3	Ī	
CO2	2	3			2	2		2	3				3		
CO3	3	2	-		3	2		2	2				2		
CO4	2	3			3	2		2	3				1		

3 – Strong; 2 – Moderate; 1 – weak * Add Column if needed

Assessment Methods:

	Internal A	End Semester			
Stream	Continuous Assessment (As per AAR)	Model Exam	Total	- Examination Marks	
Non - Autonomous	12	8	20	80	
Autonomous	50	25	75	25	

C. Sullet TC. Rai Signature of Module Coordinator Signature of Faculty / Course Coordinator

SRI VENKATESWARA COLLEGE OF ENGINEERING (Autonomous)

Department of Mechanical Engineering

DEPARTMENT: Mechanical Engineering (UG)

Regulation: 2018

Subject Code & Name: ME 18512- Metrology and Instrumentation Laboratory

Session No*	List of Experiments
	CYCLE-I
1	Calibration and Use of precision instruments-Vernier/Micrometer/Dial gauge.
2	Measurement of Taper angle using: Sine Bar
3	Measurement of Tool nomenclature using: Tool Maker's Microscope
4	Checking the limits of Dimensional tolerances using Pneumatic Comparator. (Video Demonstration using ICT)
5	Bore Measurement using bore dial gauge/Micrometer/Telescopic gauge
6	Straightness measurement using Autocollimator
	CYCLE-II
7	Measurements of Thread Parameters using Floating Carriage Micrometer
8	Measurement of Gear Tooth Dimensions using Gear tooth Vernier
9	Measurement of Force using Proving ring Measurement of Torque using Torque Measuring setup
10	Measurement of nomenclature of spur gear using Tool Maker's Microscope. (Video Demonstration using ICT)
11	Measurement of Temperature using Thermocouple/RTD/Thermistor
12	Displacement measurement - LVDT
	CYCLE-III
13	Measurement of Surface roughness using surf tester.
14	Linear, Angular, Cylindricity and circularity Measurement using CMM.
15	Measurement of geometric dimensions of industrial components using CMM.(Experiential learning at Industry)
16	Measurement of Geometric dimensions of Industrial components using Vision Measuring Machine. (Experiential learning at Industry)

3. Angle measurement using Bevel protector

* Session Duration: 150 minutes

COURSE DELIVERY PLAN - LABORATORY

Page 2 of 2

Sub. Code / Sub. Name: ME18512- Metrology and Instrumentation Laboratory

* If the same lab plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

0

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY Page 1 of 2

FT/GN/68A/02/30.06.16

1

	LP: SUB CODE ME18513					
B.E/B.Tech/	Rev. No:					
PG Specialis	PG Specialisation :Nil					
Sub. Code /	Sub. Name : ME18513 Heat Transfer, Refrigeration	ion and air conditioning lab				
Session No*	List o	f Experiments				
	CYCLE	C-I				
1	PERFORMANCE TEST ON REFRIGER	ATION TEST RIG				

HEAT TRANSFER COEFFICIENT – NATURAL CONVECTION (PIN-FIN APPARATUS)
PERFORMANCE TEST ON HEAT EXCHANGERS Video Demonstration using ICT
PERFORMANCE TEST ON MULTISTAGE RECIPROCATING AIR COMPRESSOR
HEAT TRANSFER IN NATURAL CONVECTION (VERTICAL TUBE)
DETERMINATION OF EMISSIVITY OF A GREY SURFACE
EVAPORATOR CAPACITY TEST ON AIR CONDITIONING TEST RIG
CONDENSER CAPACITY TEST ON AIR CONDITIONING TEST RIG
CYCLE-II
THERMAL CONDUCTIVITY OF METALS (COMPOSITE WALL) Video Demonstration using ICT
HEAT TRANSFER COEFFICIENT – FORCED CONVECTION (PIN-FIN APPARATUS)
HEAT TRANSFER IN FORCED CONVECTION (INSIDE TUBE APPARATUS)
HEAT TRANSFER THROUGH LAGGED PIPE APPARATUS
VAPOUR COMPRESSION REFRIGERATION TEST RIG USING HYDROCARBON
STEFAN BOLTSMAN APPARATUS
ond syllabus (if any):
ssion Duration: 150 minutes

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY Page 2 of 2

	Prepared by	Approved by
Signature	And therefui	J. Mrs
Name	Mr.R.Kalyana sundaran/ Dr.P.Raghu	J Dr.S.Rameshbabu
Designation	Assistant Professor	Professor&HOD
Date	05.08.2022	05.08.2022

Remarks* :

Domor	Ve*	
Nemai.	VD	•

* If the same lab plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	LP: OE18005	
Department of Mechanical Engin	Rev. No: 01	
B.E/B.Tech/M.E/M.Tech : <u>B.E & B.Tech</u>	Regulation: R2018	Date: 28.07.22
PG Specialisation : NA		
Sub. Code / Sub. Name : OE 18005 / Industrial Engine		
Unit : 1		

Unit Syllabus: Meaning, Definition, Objective, Need, Scope, Evolution and developments. Definition of productivity, individual enterprises, management productivity of materials, land, building, machine and power. Measurement of productivity, factors affecting the productivity, productivity improvement programs, wages and incentives (simple numerical problems)

Objective: To know the basics Concepts of Industrial Engineering

Session No *	Topics to be covered	Ref	Teaching Aids				
1	Meaning, Definition, Objective of Industrial Engineering	R1, pg 2-3	BB/PPT				
2	Need, Scope for Industrial Engineers	R1, pg 5-10	BB/PPT				
3	Evolution and developments. Presentation by students about various application of industrial engineering- Participative learning	R1, pg 15-24	BB/PPT				
4	Definition of productivity, individual enterprises	R1, pg 26-32	BB/PPT				
5	Management productivity of materials, land	R1, pg 33-42	BB/PPT				
6	Management productivity of building, machine and power	R1, pg 45-58	BB/PPT				
7	Factors affecting the productivity,	R1, pg 62-66	BB/PPT				
8	Productivity improvement programs,	R1, pg 92-95	BB/PPT				
9	Numerical problems in wages and incentives Problem solving – Different industrial cases and solutions	R1, pg 115-117	BB/PPT				
Content b	Content beyond syllabus covered (if any):						

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: OE 18005 / Industrial Engineering and Manegement Unit : II

Unit Syllabus: Definition, objective and scope of work study. Human factors in work study. Work study and management, work study and supervision, work study and worker. Method study Definition, objective & scope, activity recording and exam aids. Charts to record moments in shop operation process charts, flow process charts, travel chart and multiple activity charts. (With simple problems). Charts to record moment at work place principles of motion economy, classification of moments two handed process chart, SIMO chart, and micro motion study. Development, definition and installation of the improved method, brief concept about synthetic motion studies.

Objective: To understand about Work Study, Method Study and Time Study.

Session No *	Topics to be covered	Ref	Teaching Aids			
10	Definition, objective and scope of work study, human factors in work study.	R2, pg 112-113	BB/PPT			
11	Work study and management, work study and supervision, work study and worker Demonstration with YouTube videos about method of performing work study	R2, pg 128-132	BB/PPT			
12	Method study Definition, objective & scope, activity recording and exam aids	R2, pg 134-141	BB/PPT			
13	Charts to record moments in shop operation process charts, flow process charts, travel chart and multiple activity charts	R2, pg 142-145	BB/PPT			
14	Simple problems in activity chart Industrial cases – Problem solving	R2, pg 162-167	BB/PPT			
15	Charts to record moment at work place principles of motion economy,	R2, pg 172-183	BB/PPT			
16	Classification of moments two handed process chart Case study discussion with live example of handed process chart – Experiential learning	R2, pg 184-187	BB/PPT			
17	SIMO chart, and micro motion study	R2, pg 192-198	BB/PPT			
18	Development, definition and installation of the improved method	R2, pg 211-213	BB/PPT			
19	Brief concept about synthetic motion studies.	R1, pg 182-188	BB/PPT			
Content beyond syllabus covered (if any):						

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: OE 18005 / Industrial Engineering and Manegement

Unit : III

Unit Syllabus : Definition, objective and benefit of work measurement. Work measurement techniques. Work sampling: need, confidence levels, sample size determinations, random observation, conducting study with the simple problems. Time Study, Definition, time study equipment, selection of job, steps in time study. Breaking jobs into elements, recording information. Rating & standard Rating, standard performance, scale of rating, factors of affecting rate of working, allowances and standard time determination. Predetermined motion time study Method time measurement (MTM)

Objective: To understand the concept of Motion Study.

Session No *	Topics to be covered	Ref	Teaching Aids
20	Definition, objective, techniques and benefit of work measurement	R3, pg 52 - 66	BB/PPT
21	Work sampling: need, confidence levels, sample size determinations	R3, pg 173-186	BB/PPT
22	Random observation, conducting study with the simple problems	R4, pg 10-20	BB/PPT
23	Time Study, Definition, time study equipment, selection of job, steps in time study Presentation by students about application of time study in day to day example – participative learning	R3, pg 201-203	BB/PPT
24	Breaking jobs into elements, recording information.	R3, pg 201-203	BB/PPT
25	Rating & standard Rating, standard performance, scale of rating, determination	R3, pg 201-203	BB/PPT
26	Factors of affecting rate of working allowances and standard time	R3, pg 201-203	BB/PPT
27	Predetermined motion time study Method time measurement (MTM)	R3, pg 201-203	BB/PPT
28	Industrial cases discussion in Method study and work measurement Brainstorming session about possible solutions for industrial problems- Participative learning	R3, pg 201-203	BB/PPT
Content b	eyond syllabus covered (if any):	1	

Page 4 of 6

Sub. Code / Sub. Name: OE 18005 / Industrial Engineering and Manegement Unit : IV

Unit Syllabus: Introduction, areas of study under ergonomics, system approach to ergonomics model, man-machine system. Components of man-machine system and their functions work capabilities of industrial worker, study of development of stress in human body and their consequences. Fatigue in industrial workers, Quantitative qualitative representation and alphanumeric displays, Controls and their design criteria, control types, relation between controls and displays, layouts of panels and machines. Design of work places, influence of climate on human efficiency. Influence of noise, vibration and light **Objective:** To recognize the need for Ergonomics and Ergonomics Model.

Session No *	Topics to be covered	Ref	Teaching Aids
29	Introduction to ergonomics, why study ergonomics?	R3, pg 91 – 94	BB/PPT
30	Areas of study under ergonomics	R3, pg 95 – 109	BB/PPT
31	System approach to ergonomics model, man-machine system Demonstration with YouTube videos about how man machine system works	R3, pg 110 – 114	BB/PPT
32	Components of man-machine system and their functions work capabilities of industrial worker,	R3, pg 115 –121	BB/PPT
33	Study of development of stress in human body and consequences	R3, pg 121 –129	BB/PPT
34	Fatigue in industrial workers, Quantitative qualitative representation and alphanumeric displays	R3, pg 136 –138	BB/PPT
35	Controls and their design criteria, control types, relation between controls and displays, layouts of panels and machines.	R3, pg 142 –143	BB/PPT
36	Design of work places - Influence of climate on human efficiency	R3, pg 146-155	BB/PPT
37	Design of work places -Influence of noise, vibration and light Case study discussion and brainstorming for ergonomically designed workplace – particiative learning	R3, pg 91 – 94	BB/PPT
38	Discussion on cases of how ergonomically designed workplace influences productivity	R3, pg 95 – 109	BB/PPT
Content beyond syllabus covered (if any):			

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: OE 18005 / Industrial Engineering and Manegement

Unit : V

Unit Syllabus: Introduction to Agile manufacturing, Lean and Six Sigma, Value Engineering, Just in time, Total quality management, Enterprise resource planning, Supply chain and logistics management.

Objective: To know the current trends in Industrial Engineering

Session No *	Topics to be covered	Ref	Teaching Aids
37	Introduction to Agile manufacturing	R3, pg 22-27	BB/PPT
38	Lean and Six Sigma,	R3, pg 367-379	BB/PPT
39	Just in time, Total quality management	R3, pg 380-391	BB/PPT
40	Value stream Engineering Case study discussion of industrial problem using VSM – Participative learning	R3, pg 392-395	BB/PPT
41	Enterprise resource planning	R3, pg 341-350	BB/PPT
42	Supply chain and logistics management. Role play related to logistics and SCM – Experiential learning	R3, pg 310-313	BB/PPT
43	Case study discussion	R3, pg 54-65	BB/PPT
Content b	eyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

TEXT BOOK:

1.George Kanawaty, "Introduction to Work study", IV Revised Edition, 1992.

- 2.Khanna O.P, Industrial Engineering and Management", Dhanpat Rai Publications Pvt Ltd, 2010
- 3. Marvin E. Mundel and David L. Danner, Motion and Time study Improving Productivity, Prentice Hall India, 7th edition, 1994.
- 4. Ralph M.Barnes, "Motion and time study design and Measurement of work", Paperback, 2009.

5. "Engineered work Measurement" - Weldon, ELBS, 1991

REFERENCES:

1.Bridger RS. Introduction to Ergonomics. 3 rd CRC Press, Boca Raton, Fl, USA, 2009.

2.Khan M.I, Industrial Engineering, New Age International, 2nd edition, 2009

3. Sanders. S and E J McCormick, Human Factors in Engineering Design, Mcgraw Hill, New york, 7 th Edition, 1993.

WEB RESOURCE:

1. https://nptel.ac.in/courses/112/107/112107292/

	Prepared by	Approved by
Signature	P. Fund	p. Im
Name	K. Ram Prasad	Dr.M.Mohandass
Designation	Assistant Professor	Asst HOD & Associate Professor
Date	201722	28/07/22
Remarks *:		
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

``	LP: ME18015
DEPARTMENT OF MECHANICAL ENGINEERING	Rev. No: 01
B.E/B.Tech/M.E/M.Tech : <u>B.E</u> Regulation: R2018	Date:25.07.22
PG Specialisation : NA	Date.23.07.22
Sub. Code / Sub. Name : ME18015 / Lean Six Sigma	
Unit : 1	

Unit Syllabus: LEAN MANUFACTURING

9

Evolution of lean; traditional versus lean manufacturing; ford production system concept of lean; Toyota's foray in lean, Customer Need; lean tools- Process mapping value stream management3 M; 7 types of Muda; 7 major losses reduction. cell layout; line balancing; concept of kaizen; steps involved in kaizen deployment; kanban concepts; types of Kanban; and practical application; push vs pull; changeover time reduction - single minute exchange of die; concept of TPM; poka-yoke; 5S; maintenance - preventive, time based and condition based; autonomous maintenance, JIT, Autonomation, DFMA.

Objective: To impart knowledge on the Lean manufacturing concepts

Session No *	Topics to be covered	Ref	Teaching Aids
1	Evolution of lean; traditional versus lean manufacturing	R1, pg 2-3	BB //PPT
2	Ford production system concept of lean; Toyota's foray in lean	R1, pg 5-10	BB/PPT
3	Customer Need; lean tools- Process mapping value stream management3 M; 7 types of Muda; 7 major losses reduction	R1, pg 15-24	BB/PPT
4	cell layout; line balancing; concept of kaizen; steps involved in kaizen deployment; kanban concepts;	R1, pg 26-32	BB/PPT
5	Types of Kanban; and practical application; Presentation by students about Kanban application in manufacturing and service industries- Participative learning	R1, pg 33-42	BB/PPT
6	Push vs Pull; changeover time reduction - single minute exchange of die;	R1, pg 45-58	BB/PPT
7	Concept of TPM; poka-yoke; 5S; maintenance - preventive, time based and condition based	R1, pg 62-66	BB /PPT
8	Autonomous maintenance, JIT, Autonomation Presentation by students about various lean tools and its application in daily life- Participative learning	R1, pg 92-95	BB/PPT
9	DFMA	R1, pg 115-117	BB/PPT
Content beyond syllabus covered (if any):			

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME18015 / Lean Six Sigma

Unit : II

Unit Syllabus: LEAN METRICS

Identify lean metrics; kaizen cloud identification in VSM; lean assessment. improving targets and benchmarks.

Objective: To expertise in the implementation of lean metrics, VSM and all lean assessments.

Session No *	Topics to be covered	Ref	Teaching Aids
10	What is Lean Metrics	R1, pg 112- 113	BB /PPT
11	Identify Lean Metrics	R1, pg 118- 122	BB/PPT
12	Value Stream Mapping and its benefits	R1, pg 124- 131	BB/PPT
13	Case study in VSM Brainstorming session with industrial case of how VSM is done for industrial problem – Experiential learning	R1, pg 132- 135	BB/PPT
14	Kaizen and its impact Demonstration with YouTube videos about kaizen innovation and application	R1, pg 152- 157	BB/PPT
15	Kaizen cloud identification in VSM	R1, pg 162- 173	BB/PPT
16	Case study	R1, pg 174- 177	BB/PPT
17	Lean assessment	R1, pg 182- 188	BB/PPT
18	Improving targets and benchmarks.	R1, pg 201- 203	BB/PPT
Content beyond syllabus covered (if any):			

* Session duration: 50 mins

9

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: ME18015 / Lean Six Sigma

Unit : III

Unit Syllabus : SIX SIGMA , TOOLS AND TECHNIQUES

9

SIPCO,QFD; voice of the customer, kano models, , cost of poor quality (COPQ), statistical process control, DMAIC

Objective: To gain knowledge on the six sigma principles, tools and its techniques.

Session No *	Topics to be covered	Ref	Teaching Aids
19	SIPCO	R3, pg 52 - 66	BB /PPT
20	QFD Brainstorming discussion with industrial case of how QFD is done for industrial problem – Experiential learning	R3, pg 173- 186	BB/PPT
21	Voice of the customer	R3, pg 10- 20	BB /PPT
22	Kano models	R3, pg 201- 203	BB/PPT
23	Industrial Kano models	R3, pg 201- 203	BB/PPT
24	Cost of poor quality (COPQ)	R3, pg 201- 203	BB /PPT
25	Statistical process control	R3, pg 201- 203	BB /PPT
26	DMAIC Case study discussion with example of DMAIC phase for industrial application- Participative learning	R3, pg 201- 203	BB/PPT
27	Case studies of DMAIC	R3, pg 201- 203	BB/PPT
Content beyond syllabus covered (if any):			

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: ME18015 / Lean Six Sigma

Unit : IV

Unit Syllabus: SIX SIGMA DEFINE, MEASURE AND ANALYSE PHASE

9

DMAIC phases, overview, project charter – voice of the customer – high level process map – project team – case study, types of measures – introduction to statistical methods – sampling plan – data collection – choosing statistical software – measure tools – process maps, pareto charts, cause and effect diagrams, histograms, six sigma measurements – measurement system analysis – process capability calculations. Analyze – process analysis – hypothesis testing – statistical tests and tables – tools for analyzing relationships among variables – survival analysis.

Objective: To inculcate the knowledge on the application of Six Sigma principles of three phases to improve the quality of process outputs

Session No *	Topics to be covered	Ref	Teaching Aids
28	DMAIC phases, overview, project charter	R3, pg 91 - 94	BB /PPT
30	Voice of the customer – high level process map – project team – case study	R3, pg 95 - 109	BB/PPT
31	Types of measures – introduction to statistical methods — process maps	R3, pg 110 – 114	BB/PPT
32	Sampling plan – data collection – choosing statistical software – measure tools	R3, pg 115 – 121	BB/PPT
	Industrial cases – Problem solving		
33	Pareto charts, cause and effect diagrams, histograms, calculations	R3, pg 121 – 129	BB/PPT
34	Six sigma measurements – measurement system analysis – process capability Presentation by students about quality tools and its application – Participative learning	R3, pg 136 – 138	BB/PPT
35	Analyze – process analysis – hypothesis testing – statistical tests and tables	R3, pg 142 –143	BB/PPT
36	Tools for analyzing relationships among variables – survival analysis.	R3, pg 146-155	BB/PPT
Content b	eyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

9

Sub. Code / Sub. Name: ME18015 / Lean Six Sigma

Unit : V

Unit Syllabus: IMPROVE AND CONTROL PHASE

Process redesign – generating improvement alternatives – design of experiments – pilot experiments – cost/benefit analysis – implementation plan. Control phase control plan – process scorecard – failure mode and effects analysis – final project report and documentation. DMADV, DFSS–six sigma in manufacturing and services case studies & Sustainability of Lean Six Sigma.

Objective: To induce a knowledge on the analyze and control the processes using six sigma concept.

Session No *	Topics to be covered	Ref	Teaching Aids	
37	Process redesign – generating improvement alternatives	R3, pg 22-27	BB /PPT	
38	Design of experiments – pilot experiments	R3, pg 367-379	BB/PPT	
39	Cost/benefit analysis & implementation plan	R3, pg 380-391	BB/PPT	
40	Control phase control plan – process scorecard	R3, pg 392-395	BB/PPT	
41	Failure mode and effects analysis – final project report and documentationStudent's presentation about FMEA for an industrial problem – Experiential learning	R3, pg 341-350	BB/PPT	
42	DMADV	R3, pg 310-313	BB/PPT	
43	DFSS–six sigma Case study analysis of DFSS using Industrial example	R3, pg 54-65	BB/PPT	
44	Manufacturing and service case study of DMADV & DFSS	R3, pg 67-73	BB/PPT	
45	Sustainability of Lean Six Sigma.	R3, pg 465-480	BB/PPT	
Content b	eyond syllabus covered (if any):	Content beyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

REFERENCES BOOKS:

- 1. Gopalakrishnan N, Simplified Lean Manufacture: Elements, rules, tools and implementation, Prentice Hall of India, NewDelhi 2013.
- 2. James P. Womack, Daniel T. Jones, Lean Thinking, Free press business, 2013.
- 3. Kai Yang and Basemel-Haik, "Design for Six-Sigma: A Roadmap for Product Development", McGraw Hill, 2009.
- 4. Michael L. George, David Rowlands, Bill Kastle , What is Lean Six Sigma, Tata McGrawHill, 2003.
- 5. James P. Womack, Daniel T. Jones, Lean Thinking, Free press business, 2013.

WEB RESOURCES:

1. https://nptel.ac.in/courses/110/105/110105123/

	Prepared by	Approved by
Signature	Kound	& Im
Name	Mr. K.Ram Prasad	Dr. M. Mohandass
Designation	Assistant Professor/Mechanical	Asst HOD/Mechanical
Date	25 712>	25/7/2022
Kemarks *:		
Remarks *:		140

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

FT/GN/68/01/23.01.16

12

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 5

	LP: ME18023
Department of Mechanical Engineering	Rev. No: 00
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering	Date: 29.07.2022
Regulation : 2018	
PG Specialisation :Not Applicable	
Sub. Code / Sub. Name : ME18023- POWER PLANT ENGINEERING	
Unit : I	

Unit syllabus: COAL BASED THERMAL POWER PLANTS

Rankine cycle -improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, All types of valves, Boiler Safety valves and relief valves, Pipes and tubes for boiler pressure parts, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems

Objective: Understanding engineering principles of operation and carry out thermodynamic cycle analysis for Thermal power generation systems.

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction thermodynamic cycles, Rankine cycle	1 -Ch.2; Pg.41- 45	РРТ
2	Layout of modern coal power plant, problems solving in Rankine cycle	1- Ch.2; Pg.74-75	PPT, ICT
3	Super Critical Boilers, FBC Boilers Problem solving	1- Ch.5; Pg.274-276	PPT, ICT
4	Turbines, Condensers, Steam & Heat rate	1- Ch.7; Pg.428- 508,562-565	РРТ
5	Boiler Safety valves and relief valves	1- Ch.6; Pg.356- 374,580-586	PPT,
6	Pipes and tubes for boiler pressure parts	1- Ch.6; Pg.356- 374,580-586	РРТ
7	Subsystems of thermal power plants	1- Ch.6; Pg.356- 374,580-586	РРТ
8	Fuel handling	1-Ch.5; Pg.241-248	РРТ
9	Ash handling	1-Ch 2; Pg. 402	РРТ
10	Draught system, Feed water treatment.	1-Ch 4; Pg. 189	PPT, BB
11	Binary Cycles	2-Ch.3;Pg.105	РРТ
12	Cogeneration systems	1-Ch 2; Pg 78	PPT
Content	beyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 2 of 5

Sub. Code / Sub. Name: ME18023- POWER PLANT ENGINEERING

Unit : II

Unit syllabus: DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems

Objective: To understand the working principles of Diesel engine and Gas turbine power plant components.

Session No *	Topics to be covered	Ref	Teachin g Aids
13	Layout of Diesel engine power plants	1-Ch.11; Pg.765	PPT
14	Components of Diesel engine working principles and its components, Demonstration in thermal laboratory Experimental learning	1-Ch.11; Pg.765	ICT PPT
15	Diesel Engine Sub systems- Electronic fuel injection system	1-Ch.11; Pg.765	РРТ
16	Components of Gas Turbine power plants Participate learning Power point presentation by students	1 - Ch.11; Pg.785-793	PPT,
		3 – Ch.3; Pg.76 - 112	ICT
17	Combined Cycle Power Plants	1 - Ch.3; Pg.109-110	PPT
18	Introduction gasifier	1 - Ch.5; Pg.299	PPT
19	Types of gasifier	1 - Ch.5; Pg.299	PPT,
20	Integrated Gasifier based Combined Cycle systems	1 - Ch.5; Pg.307-310	PPT
Content bey	ond syllabus covered (if any):		

* Session duration: 50 mins

Sub. Code / Sub. Name: ME18023- POWER PLANT ENGINEERING

Unit : III

Unit syllabus: NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-

COURSE DELIVERY PLAN - THEORY

Page 3 of 5

Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants

Session No *	Topics to be covered	Ref	Teaching Aids
21	Basics of Nuclear Engineering	1-Ch 9; Pg. 602-612	PPT
22	Layout of Nuclear Power Plants	1-Ch 9; Pg. 602-612	PPT,
23	Elements of nuclear reactor- core, moderator, control rod, coolant, shield pressure and thermal shield	1-Ch 9; Pg. 602-632	PPT
24	Types of reactors - Boiling Water Reactor, pressurized water reactor	1-Ch 9; Pg. 632-638	PPT
25	Fast breeder reactor and CANDU, Quiz by students Participate learning	1-Ch 9; Pg 641	PPT, ICT
26	Gas cooled Reactors, Liquid Metal Cooled Reactors	1-Ch 9; Pg. 640 - 641	РРТ
27	Safety measures for Nuclear Power plants, Power point presentation by students Participate learning	l-Ch 14; Pg 899	PPT, ICT
Content beyond syllabus covered (if any): Basics of nuclear fission, fusion, Radioactive chain reactions explain Clearly.			

Objective: To understan	d the Nuclear	power plant,	types of	f reactors,	pressurized	water reactor,	waste
disposal.							

Sub. Code / Sub. Name: ME18023- POWER PLANT ENGINEERING

Unit : IV

Unit syllabus: POWER FROM RENEWABLE ENERGY 10

Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, OTEC, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

Objective: To understand the concept of Renewable energy power generation

Session No *	Topics to be covered	Ref	Teachi ng
28	Introduction hydroelectric power plant	1-Ch 10; Pg 658	РРТ
29	Hydroelectric power plant layout	1-Ch 10; Pg 667	РРТ
30	Hydroelectric power plant - Classification	l-Ch 10; Pg 676	PPT
31	Hydraulic turbine - Pelton Wheel. Francis and Kaplan working principles Participate learning Power point presentation by students	l-Ch 10; Pg 679- 691	PPT, ICT

COURSE DELIVERY PLAN - THEORY

Page 4 of 5

32	Working of Wind, Tidal power systems, OTEC	l-Ch 14; Pg 912	PPT
33	Working of Solar Photo Voltaic (SPV) power system	1-Ch 14; Pg 899	PPT
34	Working of Solar Thermal power system, Participate learning	1-Ch 14; Pg 899	PPT, ICT
35	Working of Geo Thermal power system	1-Ch 13; Pg 888,929	PPT
36	Biogas power system Participate learning Power point presentation by students	1-Ch 14; Pg 935	ICT,P PT,
37	Working of Fuel Cell power system	1-Ch 13; Pg 879	PPT
Content beyond syllabus covered (if any): Explain with neat sketch working principle of Pumped storage power plant.			

Sub. Code / Sub. Name: ME18023- POWER PLANT ENGINEERING

Unit : V

Unit Syllabus: ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS ${\bf 8}$

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants - ESP-Electro Static Preceptor - Repair & Maintenance cost and selling cost.

Objective: Understand the current power generation industry economic, political, technical and environmental context and challenges and have an appreciation of how these challenges may change in future.

Session No *	Topics to be covered	Ref	Teaching Aids
38	Introduction economics of power plants - Cost of Electric Energy Fixed and operating Costs	1-Ch 1 Pg; 1-37	PPT
39	Various terms of power plant - Energy Rates - Types of Tariffs	1-Ch 1 Pg; 1-37	РРТ
40	Economics of load sharing	1-Ch 1 Pg; 1-37	PPT
41	Comparison of economics of various power plants, Problem solving	1-Ch 1 Pg; 1-37	PPT, ICT
42	Cost of Electric energy and tariff -Numerical problems	1-Ch 1 Pg; 1-37	РРТ
43	Tariffs - Numerical problems, problem solving	1-Ch 1 Pg; 1-37	PPT, ICT

COURSE DELIVERY PLAN - THEORY

Page 5 of 5

44	Pollution control technology, Waste disposal for coal and nuclear, Power point presentation by students Participate learning	1-Ch 1 Pg; 1-37	PPT, ICT
45	ESP-Electro Static Preceptor - Repair & Maintenance cost and selling cost.	1-Ch 1 Pg; 1-37	РРТ
Content bey	ond syllabus covered (if any):		

Sub Code / Sub Name: ME18023- POWER PLANT ENGINEERING

TEXT BOOKS: 1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw -Hill Publishing Company Ltd., 2014. REFERENCES 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw –Hill Publishing Company 2. Ltd., 2010. 3. Black & Veatch, "Power Plant Engineering", Springer Publications, 1996. 4. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw-Hill, 1998. 5. Godfrey Boyle, "Renewable energy, Power for a Sustainable Future", Oxford University Press,2012. 6. N.K. Bansal, Non-Conventional Energy Resources, Vikas Publishing House, 2014. **WEB RESOURCES:** https://nptel.ac.in/courses/112107291, https://www.youtube.com/watch?v=Int8whA izQ https://www.youtube.com/watch?v=mx09jPJb3gY, https://www.youtube.com/watch?v=HgKS7PqcD6Y, https://www.youtube.com/watch?v=69q27Q6RSsI

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

	LP: ME 18029
Department of Mechanical Engineeering	Rev. No: 00
B.E/B.Tech/M.E/M.Tech : Mechanical Engineeering Regulation: R2018	Date: 25/07/2022
PG Specialisation :	
Sub. Code / Sub. Name : ME18029 Renewable Energy Resources	
Unit : I	
U-4 C-U-Land SOL AD ENERCY	0

Unit Syllabus: SOLAR ENERGY

9

Introduction – Renewable vs non-renewable sources of energy, Solar Radiation; Solar collectors - Flat Plate and Concentrating Collectors; Solar Applications – power generation, green houses, space heating and cooling; Solar Cells - Fundamentals of Solar Photo Voltaic Cells, Power Generation & Applications

Objective: To identify the methods and technologies for effective utilization of solar energy, wind energy and biomass

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction – Renewable sources of energy	1 (Chap1, page2-4)	ICT
2	Renewable vs non-renewable sources of energy	1 (Chap1, page9-20)	ICT
3	Solar Radiation- Measurement of Solar Radiation using PYRANOMETER – Experiential Learning.	1 (Chap1, page37-56)	ICT
4	Solar collectors - Flat Plate	1 (Chap3, page57-79)	ICT
5	Solar collectors - Concentrating Collectors	1 (Chap3, page80-94)	ICT
6	Solar Applications – power generation, green houses	1 (Chap5, page113-138)	ICT
7	Solar Applications – space heating and cooling;	1 (Chap5, page138-152)	ICT
8	Solar Cells - Fundamentals of Solar Photo Voltaic Cells- Video demonstration	2 (Chap7, page182-194)	ICT
9	Solar Cells - Power Generation & Applications	2 (Chap7, page194-224)	ICT
Content bey	yond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

9

Sub. Code / Sub. Name: ME18029 Renewable Energy Resources

Unit : II

Unit Syllabus: WIND ENERGY

Wind Energy - Wind data, site selection, power available in wind, Betz criterion; Wind energy conversion - Principle, evolution of wind mills, Vertical and Horizontal axis wind mills, Construction and working, Safety and failure

Objective: To acquire knowledge about wind energy conversion techniques

Session No *	Topics to be covered	Ref	Teaching Aids
10	Wind Energy -Introduction	1 (Chap6, page175-184)	ICT
11	Wind data, site selection	1 (Chap6, page190-194)	ICT
12	power available in wind	1 (Chap6, page196-220)	ICT
13	Betz criterion;	2 (Chap9, page220-277)	ICT
14	Wind energy conversion – Principle -Video demonstration	1 (Chap6, page201-220)	ICT
15	Wind energy conversion – Evolution of wind mills	1 (Chap6, page220-228)	ICT
16	Vertical axis wind mills	1 (Chap6, page201-228)	ICT
17	Horizontal axis wind mills	1 (Chap6, page201-228)	ICT
18	Construction and working, Safety and failure - quiz on safety and working– Participative learning	2 (Chap9, page305-328)	ICT
	CAT 1		
Content be	yond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

9

Sub. Code / Sub. Name: ME18029 Renewable Energy Resources

Unit : III

Unit Syllabus: BIO ENERGY

Bio energy – Introduction, energy crops, Biomass, Municipal & Industrial waste stream, Conversion techniques – Physical means, direct combustion, Thermo chemical and biochemical methods, Biomass gasifiers, Digesters, Ethanol production, Bio diesel. **Objective:** To learn how biomass could become an energy source

Session No *	Topics to be covered	Ref	Teaching Aids
19	Bioenergy – Introduction	2 (Chap11, page 351-354)	ICT
20	Bioenergy – Energy crops, Biomass	2 (Chap11, page 357-365)	ICT
21	Municipal & Industrial waste stream -Power point presentation by students – Participative learning.	2 (Chap11, page 351-354)	ICT
22	Conversion techniques – Physical means, direct combustion	2 (Chap11, page 354-374)	ICT
23	Conversion techniques –Thermo chemical and biochemical methods	2 (Chap11, page 375-387)	ICT
24	Conversion techniques -Biomass gasifiers	1 (Chap7, page 301-314)	ICT
25	Conversion techniques -Biomass Digesters- Biogas plant Demonstration -Experiential Learning	1 (Chap7, page 280-291)	ICT
26	Conversion techniques -Ethanol production	1 (Chap7, page 317-318)	ICT
27	Conversion techniques -Bio diesel production	2 (Chap11, page 388-393)	ICT
Content bey	yond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

9

Sub. Code / Sub. Name: ME18029 Renewable Energy Resources

Unit : IV

Unit Syllabus: HYDRO ENERGY

Tidal energy, Ocean Thermal energy – Open and Closed OTEC Cycles, Geothermal Energy, Small Hydro energy and conversion techniques.

Objective: To know the energy available in various hydro and geo-based sources in the world and its conversion

Session No *	Topics to be covered		Ref	Teaching Aids
28	Hydro energy- Introduction.	2 (0 240	Chap8, page237-	ICT
29	Tidal energy – classification.	1 (0 391	Chap9, page387-)	ICT
30	Tidal energy- conversion techniques -Video demonstration	1 (0 403	Chap9, page392-	ICT
31	Ocean Thermal energy – Introduction -Video demonstration	1 (0 378	Chap9, page375-	ICT
32	Ocean Thermal energy - Open Cycles.	1 (C 380	Chap9, page379-	ICT
33	Ocean Thermal energy - Closed Cycles.	1 (C 386	Chap9, page381-	ICT
34	Geothermal Energy – classification. Quiz on geothermal – Participative learning	2 (0 475	Chap15, page471-	ICT
35	Geothermal Energy - conversion techniques -Video demonstration	2(C 487	(hap15, page476- ()	ICT
36	Small Hydro Energy - conversion techniques -Video demonstration	1 (0 421	Chap9, page411-)	ICT
	CAT 2			
Content be	yond syllabus covered (if any):			

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

9

Sub. Code / Sub. Name: ME18029 Renewable Energy Resources

Unit: V

Unit Syllabus: OTHER NON-CONVENTIONAL ENERGY TECHNOLOGY

Hydrogen – Production & Storage; Fuel Cell – principle, construction, working and limitations of Alkali, Molten Carbonate, Solid Oxide, Phosphoric acid, Proton Exchange Membrane fuel cells. Super capacitors.

Objective: To get educated about various new forms of energy and its effective usage

Session No *	Topics to be covered	Ref	Teaching Aids
37	Other non-conventional energy technology- Introduction.	1 (Chap12,page 503-507)	ICT
38	Hydrogen – Production & Storage	1 (Chap11, page464-477)	ICT
39	Fuel Cell – principle and limitations - Video demonstration	2(Chap16, page 506-517)	ICT
40	Construction and working – Alkali fuel cells	2(Chap16, page 495-505)	ICT
41	Construction and working - Molten Carbonate, fuel cells	1(Chap10, page 427-431)	ICT
42	Construction and working - Solid Oxide fuel cells	1(Chap10, page 432-438)	ICT
43	Construction and working - Phosphoric acid fuel cells	1(Chap10, page 439-448)	ICT
44	Construction and working - Proton Exchange Membrane fuel cells – Quiz on fuel cell – Participative learning	1(Chap10, page 439-448)	ICT
45	Super capacitors - Power point presentation by students – Participative learning	2 (Chap16, page505-507)	ICT
	CAT 3		
Content bey	ond syllabus covered (if any):		

FT/GN/68/01/23.01.16

COURSE DELIVERY PLAN - THEORY

SRI VENKATESWARA COLLEGE OF ENGINEERING

Page 6 of 6

Sub Code / Sub Name: ME18029 Renewable Energy Resources

REFERENCES:

- 1. Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2011.
- 2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 2006.
- 3. Sukhatme. S.P., Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- 4. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 1996.
- Tiwari. G.N., Solar Energy "Fundamentals Design, Modeling & Applications", Narosa Publishing House, New Delhi, 2002.
- 6. Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, 1990.
- David M. Mousdale "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2010.
- 8. Chetan Singh Solanki, "Solar Photovoltaics Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2015

	Prepared by	Approved by
Signature	the	a llun
Name	Dr. M.GAJENDIRAN	Dr. M.MOHANDASS
Designation	AP/ME	Assistant HOD
Date	25/07/2022	25/07/2022
Kemarks .		
D 1 *		
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Mechanical Engineering		LP: ME18701 Rev. No: 01
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering	Regulation: 2018 (CBCS)	Date: 20/07/2022
PG Specialisation : NA		17
Sub. Code / Sub. Name : ME18701 Finite Element Analysis		
Unit : 1		

Unit Syllabus:

General description of Finite Element Method - General procedure of FEM - Applications of FEM - FEA softwares. General field problems, Discrete and continuous models, Variational formulation in finite elements - Ritz method - Weighted residual methods - Galerkin - sub domain - Method of least squares and collocation method - numerical problems

Objective:

To introduce basic Modeling concept & classical techniques incorporated into Finite Element Method. To introduce basic Finite Element Method and its advantage over others

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction-Ansys application in FEA -Historical Background	R6 p6	ICT
2	Mathematical Modeling - Discrete & Continuous Models	R7 p78-96	ICT
3	Governing Equations- Boundary, Initial & Eigen Value Problems	R7 p78-96	ICT
4	Discrete & Continuous Models - (Direct) Stiffness Method	R3 p20-24	ICT
5	Method of Weighted Residuals (Theory through Tutorial)	T2 p16-36	ICT
6	Method of Weighted Residuals (Tutorial) - Descriptive Assignments	T2 p16-36	-
7	Variational Formulation of Boundary Value Problems	T2 p66-67	ICT
8	Ritz Techniques - Problems and its importance	T2 p68-80	ICT
9	Steps involved in Finite Element Method	R2 p7-14	ICT
10	Galerkin FEM Formulation	T2 p41-47	ICT
11	Variational FEM Formulation & equivalence to Galerkin FEM	T2 p67-73	ICT
12	Shape Function for Linear & Higher Order (1d) Element	R2 p34-35	ICT
Content be Session 4:]	Direct Stiffness Method		

* Session duration: 50 minutes

ICT - PowerPoint presentation, YouTube videos, Google classroom, Assessment tools.

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: ME18701 Finite Element Analysis Unit : II

Unit Syllabus:

One dimensional elasticity – Castigliano's first theorem – Principle of minimum potential energy - Linear spring - Elastic bar with constant and varying cross sections using linear and quadratic elements – Truss structures and Beams

Objective:

Steps involved in Finite Element Method. To demonstrate h & p refinement for 1D case. Application to Solid Mechanics & Heat transfer problems

Session No *	Topics to be covered	Ref	Teaching Aids Ref No
1	Principle of Virtual work - Castigliano's first theorem and its uses in 1D elasticity	T2 p73-74	ICT
2	Principle of Minimum Potential Energy - Problems	T2 p75 - 80	ICT
3	Introduction to 1D element in Linear Spring and its relation with Bar element, Problems	T2 p48-57	ICT
4	Introduction to Bar element - Bar Problems in structural application	T2 p48-57	ICT
5	Bar Problems - Quiz and Descriptive Assignments	T2 p48-57	-
6	Derivation of stiffness matrix for Linear and quadratic elements in bar	T2 p101 - 103	ICT
7	Introduction to Truss element - Problems in Truss	R5 p133-155	ICT
8	Truss element Problems	R5 p133-155	ICT
9	Truss element Problems (contd) - Quiz and Descriptive Assignments	R5 p133-155	-
10	Beam Problem	R2 p151-204	ICT
11	Beam Problem (Contd.) – Activity based Assignment	R2 p151-204	-
12	Beam Problem (Contd.)	R2 p151-204	ICT

* Session duration: 50 mins

1CT - PowerPoint presentation, YouTube videos, Google classroom, Assessment tools.

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: ME18701 Finite Element Analysis

Unit : Ill

Unit Syllabus:

Introduction to plane elasticity theory – Plane stress, Plane strain and Axisymmetric problems – Finite Element formulations of plane elasticity problems using CST and four noded quadrilateral elements only **Objective:**

To demonstrate 2D Elements & their application to scalar variable problems

Session No *	Topics to be covered	Ref	Teaching Aids Ref No
1	2 nd order 2d Equation involving Scala®Variable Functions	R8 p87-97	ICT
2	Triangular Elements - Shape function, Element Matrices & Vectors	T2 p171-178	ICT
3	Application to Field Problems for Plane stress, Plane strain and Axisymmetric	R8 p227-235	ICT
4	Derivation of Stiffness matrix , [B] and [D] matrix for Plane stress problem	T1 p607-609	ICT
5	Problems in Plane Stress condition for CST element	T1 p622-628	ICT
6	Plane stress Problems (contd.) - Descriptive and Application type Assignments	T1 p622-628	-
7	Derivation of Stiffness matrix , [B] and [D] matrix for Plane strain problem	T1 p607-609	ICT
8	Problems in Plane Strain condition for CST element	T1 p622-628	ICT
9	Plane Strain problems (Contd.)	T1 p622-628	ICT
10	Derivation of Stiffness matrix, [B] and [D] matrix for Axisymmetric problem	T1 p441	ICT
11	Problems in Axisymmetric condition for CST element	T1 p442-450	ICT
12	Axisymmetric problems (Contd.) - Descriptive and Application type Assignments	T1 p442-450	-
13	Formulation of four noded Isoparametric element	T2 p149-151	ICT

* Session duration: 50 mins

1CT - PowerPoint presentation, YouTube videos, Google classroom, Assessment tools.

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: ME18701 Finite Element Analysis

Unit : IV

Unit Syllabus:

Finite Element formulation of One-dimensional and Two-dimensional steady state heat conduction problems with convection - Simple elements only

Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation - Transverse deflections and Natural frequencies of beams

Objective:

To understand the concepts of 1D Elements in Heat transfer and vibration problems

Session No *	Topics to be covered	Ref	Teaching Aids Ref No
1	Derivation of Stiffness matrix for 1D heat transfer problems	T2 p48-60	ICT
2	Bar Problem (Heat Transfer)	T2 p48-60	ICT
3	Problems in Fins involving conduction and convection	R5 p361-385	ICT
4	Derivation of Stiffness matrix for 2D CST element for Heat transfer problems	R5 p361-385	ICT
5	2D Heat transfer problem - Application type Assignments	R5 p361-385	-
6	Derivation of Mass matrix for 1D vibration	T2 p245	ICT
7	Longitudinal Vibration - Natural Frequencies & Mode Shapes	T2 p235-237	ICT
8	Longitudinal Vibration Problems – Natural Frequencies & Mode Shapes (Contd.)	T2 p235-237	ICT
9	Eigen value and Eigen vector Problems to find mode shapes - Methods	R5 p433-435	ICT
10	Transverse Vibration Problems – Natural Frequencies – Quiz, Application type Assignments	T2 p237-240	-
11	Transverse Vibration Problems – Natural Frequencies and Modes shapes (Contd.)	T2 p237-240	ICT

* Session duration: 50 mins

ICT - PowerPoint presentation, YouTube videos, Google classroom, Assessment tools.

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: ME18701 Finite Element Analysis

Unit : V

Unit Syllabus:

lso, Sub & Super parametric element, shape functions for four noded, eight noded and nine noded rectangular elements – Numerical Integration-Gaussian quadrature -Matrix solution techniques - Solutions Techniques to Dynamic problems - Introduction to Analysis Software.

Objective:

To introduce the concepts needed for effective FEM implementation.

Session No *	Topics to be covered	Ref	Teaching Aids Ref No
1	Classification of Iso parametric, Sub parametric and super parametric elements, Introduction to Natural Co-ordinate Systems	T2 p156-167	ICT
2	Importance of jacobian matrix – Relation with Global and natural coordinates	T2 p156-167	ICT
3	Shape function for Isoparametric Elements for 4, 9 noded elements	R1 p140-143	ICT
4	Shape function for Isoparametric Elements for 8 noded elements - Serendipity Elements	R1 p140-143	ICT
5	Numerical Integration & application to plane stress problems	T1 p537-538	ICT
6	Problems in Numerical Integration – Gaussian quadrature	T1 p540-557	ICT
7	Problems in Numerical Integration (Contd) – Descriptive Assignment	T1 p540-557	
8	Matrix Solution Techniques – Problems - Descriptive Assignment	R8 p413-421	
9	Solution Techniques to Dynamics Problems to find mode shapes	T2, p232-294	ICT
10	Introduction to Simulation software, its uses	-	ICT
11	Demo in ANSYS software with practical problems		ICT
10	Revision		ICT

* Session duration: 50 mins

1CT - PowerPoint presentation, YouTube videos, Google classroom, Assessment tools.

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

FT/GN/68/01/23.01.16

Sub Code / Sub Name: ME18701 Finite Element Analysis

TEXT BOOK:

- 1. Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2018
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

REFERENCES:

- 1. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004 2. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 20
- 3. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2010.
- 4. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 2012
- 5. O.C.Zienkiewicz & R L Taylor "The Finite Element Method Volume 1 : The Basis",5th Edition, Butterworth Heinemann,2011

WEBSITES:

- 1. https://nptel.ac.in/courses/112/104/112104116/
- 2. https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-of-solids-andfluids-i-fall-2009/lecture-notes/

	Prepared by	Approved by
Signature	M. M 723/1/22	pa. Um
Name	Mr. M. Maheswaran	Dr. M. Mohandass
Designation	Assistant Professor	AHoD - Mechanical
Date	23/07/202	23/07/202
Remarks *:		
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN - THEORYPage 1 of 6

	LP: ME18702
Department of Mechanical Engineering	Rev. No: 01
B.E/B.Tech/M.E/M.Tech : Mechanical EngineeringRegulation:2018	Date: 22/08/2022
PG Specialisation: NA	
Sub. Code/Sub. Name : ME18702/COMPUTER INTEGRATED MANUFACTURING	
Unit : I - CIM CONCEPTS, AUTOMATION AND COMPUTER AIDED PROCESS PLANNING	

Unit Syllabus:

CIM concepts – Meaning and origin of CIM - Production systems – Automation in production systems – Automation principles and strategies - Basic elements of an automated systems – Advanced automation functions - Levels of automation - Process planning – Computer Aided Process Planning (CAPP) – Logical steps in Variant and Generative approaches of CAPP. Integration of CAD/CAPP/CAM/CNC.

Session No *	Topics to be covered	Ref	Teaching Aids
1	BriefintroductiontoCADandCAM	R1: Chapter:24,P699 -708 R2: P8-11 R5: P 1-4	ICT/BBD/BBD
2	Manufacturing and Production systems, CIM concepts- Computerized elements of CIM system, CIM wheel II & II	R1:P708 - 710 R1:P710-712 ; 728 - 729 R2: P5-9; 18-20; 25 -26 R2: P4-7, 11-12 R5: P 10;134-145;599-601	ICT/BBD
3	Production systems -Types of production	R1:chapter1,P1-2,7,78	ICT/BBD
4	Automation in production systems ,Automation principles and strategies	R1:chapter3,P61-70,	ICT/BBD
5	Basic elements of an automated systems – Advanced automation functions - Levels of automation	R1:chapter1,P76-78	ICT/BBD
6	BasicElementsofanAutomatedsystem <i>Experimental Learning:</i> CNC center, Half Nut in conventional lathe	R1:chapter3,P61-64	ICT/BBD
7	Levels of Automation	R1:chapter3,P76-78	ICT/BBD
8	Process planning – Computer Aided Process Planning (CAPP) – Logical steps in Variant and Generative approaches of CAPP <i>Participative learining: Route sheet</i> <i>prepaprtion for the given work part.</i>	R1:chapter25,P782-790	ICT/BBD
9	Logical steps in Variant and Generative approaches of CAPP. Integration of CAD/CAPP/CAM/CNC.	R1:chapter25,P782-790 R2: Chapter17, P608-616	ICT/BBD
	CATI		
Content be	eyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORYPage 2 of 6

* Session duration: 50 minutes

Sub. Code / Sub. Name:ME18702/COMPUTER INTEGRATED MANUFACTURING **Unit :**II - CELLULAR MANUFACTURING

Unit Syllabus:

Group Technology(GT), Part Families – Parts Classification and coding – Simple Problems in Opitz Part Coding system – Production Flow Analysis – Cellular Manufacturing – Composite part concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing – Rank Order Clustering Method - Arranging Machines in a GT cell – Hollier Method – Simple Problems

Session No *	Topics to be covered	Ref	Teaching Aids
10	Group Technology(GT), Part Families – Parts Classification and coding	R1: Chapter 15 P 420-442	ICT/BBD
11	Simple Problems in Opitz Part Coding system Experimental Learning: Creation of Part code from the real work	R1: Chapter 15 P 420-442	ICT/BBD
12	Production Flow Analysis Problem solving Methodology: Machine cell design evaluation	R1: Chapter 15 P 431-438	ICT/BBD
13	Cellular Manufacturing – Composite part concept Experimental learning: Classify the given component and executing the composite concept.	R1: Chapter 15 P 422-430	ICT/BBD
14	Machine cell design and layout based on GT and Cellular manufacturing	R1: Chapter 15 P 420-442	ICT/BBD
15	Quantitative analysis in Cellular Manufacturing – Rank Order Clustering Method	R1: Chapter 15 P 439-442	ICT/BBD
16	Sample problems solving in Rank order clustering method and PFA Problem solving Methodology: Machine cell design evaluation	R1: Chapter 15 P 439-442	ICT/BBD
17	Arranging Machines in a GT cell – Holier Method – Simple Problems Problem solving Methodology: Machine cell design evaluation	R1: Chapter 15 P 439-442	ICT/BBD
18	Simple problems solving in Holier method and Composite part concepts Problem solving Methodology: Machine cell design evaluation	R1: Chapter 15 P 439-442	ICT/BBD
Content	beyond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORYPage 3 of 6

Sub. Code / Sub. Name: ME18702/COMPUTER INTEGRATED MANUFACTURING

Unit :III - FLEXIBLE MANUFACTURINGSYSTEM(FMS) AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)

Unit Syllabus :.

Types of Flexibility - FMS – FMC/FMS Components – FMS Application, Quantitative analysis in FMS – Simple Problems. Automated Guided Vehicle System (AGVS) – AGVS Application – Vehicle Guidance technology – Vehicle Management & Safety

Session No *	Topics to be covered	Ref	Teaching Aids
19	FMS–Types ofFlexibility	R1 Chapter 16,P480-485	ICT/BBD
20	FMS Components	R1 Chapter 16, P469-479	ICT/BBD
21	FMSApplication & Benefits- FMS Planning and Control	R1 Chapter 16, P476-479	ICT/BBD
22	Quantitative analysis in FMS–Simple Problems Problem solving Methodology: Giving Part families, forming FMS lay out	R1 Chapter 16, P476-479	ICT/BBD
23	Automated Guided Vehicle System(AGVS)	R1 Chapter 16, P835-844	ICT/BBD
24	AGVS Application	R1 Chapter 16, P835-844	ICT/BBD
25	Vehicle Guidance technology	R1 Chapter 16, P835-844	ICT/BBD
26	Vehicle Management &Safety	R1 Chapter 16, P835-844	ICT/BBD
27	Solving problems on quantitative analysis Quiz/ Group discussion: AGVS operation and safety, traffic management.	R1 Chapter 16, P835-844	ICT/BBD/B B
	CATII		
Content bey	yond syllabus covered (if any):	1	1

COURSE DELIVERY PLAN - THEORYPage 4 of 6

Sub. Code / Sub. Name: ME18702/COMPUTER INTEGRATED MANUFACTURING

Unit :IV - INDUSTRIAL ROBOTICS

Unit Syllabus :

Robot Anatomy and Related Attributes – Classification of Robots- Robot Control systems – End Effectors – Sensors in Robotics – Robot Accuracy and Repeatability - Industrial Robot Applications – Intelligent robots

Session No *	Topics to be covered	Ref	Teaching Aids
28	Introduction to robotics,	R1,Chapter7, P212-210	ICT/BBD
29	Robot Anatomy and Related Attributes	R1,Chapter7, P212-210	ICT/BBD
30	Classification of Robots	R1,Chapter7, P212-210	ICT/BBD
31	Robot Control systems	R1,Chapter7, P218-220	ICT/BBD
32	End Effectors	R1,Chapter7, P220	ICT/BBD
33	Sensors in Robotics	R1,Chapter7, P222	ICT/BBD
34	Robot Accuracy and Repeatability Quizz/ Group Discussion	R1,Chapter7, P230-240	ICT/BBD
35	Industrial Robot Applications Experimental learning: Robotics simple program in lab	R1,Chapter7, P230-240	ICT/BBD
36	Intelligent robots	R1,Chapter7, P230-240	ICT/BBD
Content beyon	nd syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORYPage 5 of 6

Sub. Code / Sub. Name: ME18702/COMPUTER INTEGRATED MANUFACTURING SYSTEMS

Unit : V - OPEN SYSTEM AND DATABASE FOR CIM

Unit Syllabus :

Open systems-open system inter connection - manufacturing automations protocol and technical office protocol (MAP /TOP). Development of databases -database terminology- architecture of database systems-data modelling and data associations - relational data bases - database operators - advantages of data base and relational database

Session No *	Topics to be covered	Ref	Teaching Aids
37	Open systems-open system inter connection	R2: chapter 1, P1145-162	ICT/BBD
38	Manufacturing automations protocol and technical office protocol (MAP /TOP).	R2: Chapter 1 ,P94,114,159 28-29 R3: chapter5 171-	ICT/BBD
39	Manufacturing automations protocol (MAP)	R ³¹ chapter 4 P159-162,	ICT/BBD
40	Technical office protocol (TOP). <i>Participative learning: Quizz, Seminar presentation</i>	R3: chapter5,P223- 224	ICT/BBD
41	Development of databases -database terminology architecture of database systems	R2: 1159-162 R2: : chapter5, P172-196	ICT/BBD
42	Modeling and data associations	R2: : chapter5, P172-196	ICT/BBD
43	Database operators	R2: P 172-196	ICT/BBD
44	Advantages of data base and relational database	R2: chapter5, P 171-196	ICT/BBD
45	Relational Data base Group discussion: OSI model and data base structrue	R2: chapter5 P 172-196	ICT/BBD
	CAT3		
Content bey	ond syllabus covered (if any):		

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: ME 16503 DESIGN OF MACHINE ELEMENTS

TEXT BOOKS:

1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.

2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

3.Khurmi R.S., and Gupta J.K., "Machine Design", 14 th Edition, S Chand&Co NewDelhi, 2005.

4.Sundararajamoorthy, T.V. and Shanmugam, N., "Machine Design", Anuradha Agencies, Chennai, 2003.

REFERENCES:

1. Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.

2. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005

3. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum"s Outline), 2010

4. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.

5. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.

Ansel Ugural, "Mechanical Design – An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
 Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition,

Printice Hall, 2000.

8.Lingaiah K., "Machine Design Data Book", 2 nd Edition Tata McGraw – Hill.New delhi,2010. 9.Robort.L.Norton," Machine Design", 5th Edition, Pearson Publisher, New delhi,2018.

10.Sharma, P.C and Agarwal, D.K, "MachineDesign", Agrawal-Kataria and Sons Publication, NewDelhi, 2014.

11.Shigley, J.E., Charles, R.M. and Richard, G.B., "Mechanical Engineering Design", 10th ed., McGraw-Hill, New Delhi,2014.

12. Spotts M.F., "Design of Machine Elements", 8 th Edition, Pearson Education, NewDelhi, 2019.

Prepared by	Approved by
Altis	alle
Dr. S. Muniraj	Dr.M.Mohandas
Assistant Professor	AHOD/MEC
23/8/2022	5
is the is used for this A	1: 2022 -23. 8, Jun 2
	Prepared by Dr. S. Muniraj Assistant Professor 23/8/2022 is the is used for this A

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE DELIVERY PLAN – THEORY

Page 1 of 9

FT/GN/68/01/23.01.16

	LP: ME18703
Department of Mechanical Engineering	Rev. No: 00
B.E/B.Tech/M.E/M.Tech :Mechanical EngineeringRegulation: 2018	Date: 24/08/2022
PG Specialisation: NA	
Sub. Code / Sub. Name : ME18703 - Mechatronics	
Unit :1	

UNIT I SENSORS, TRANSDUCERS ANDACTUATORS 10

Static and dynamic Characteristics of Sensor, Potentiometers–LVDT–Capacitance sensors– Strain gauges–Load cell–Eddy current sensor–Hall effect sensor–Temperature sensors– Light sensors-Types of Stepper and Servomotors –Construction–Working Principle– Advantages and Disadvantages.

Objective: To impart the knowledge about elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation

Session No *	Topics to be covered	Ref	Teaching Aids
1	Introduction to Mechatronics.	Ref 1 (Chapter 1 pp. 1-3)	ICT
2	Static and dynamic Characteristics of Sensor	Ref 1 (Chapter 1 pp. 4-6)	ICT
3	Potentiometers and LVDT	Ref 1 (Chapter 1 pp. 7-10)	ICT
4	Capacitance sensors and Strain gauges	Ref 1 (Chapter 1 pp. 22-27)	ICT
5	Eddy current sensor and Hall Effect Sensor	Ref 1 (Chapter 2 pp. 22-27)	ICT
6	Tutorial – 1 (Activity based Assignment -Experiential learning)		
7	Temperature sensors& Light Sensors	Ref 1 (Chapter 2 pp. 28-29)	ICT
8	Stepper Motor – working principle	Ref 1 (Chapter 2 pp. 30-38	ICT
9	Types of Stepper – working principle	Ref.1 (Chapter 9 pp. 201-209)	ICT
10	Servo motor – working principle	Ref.1 (Chapter 9 pp. 201-209)	ICT
11	Laboratory demonstration of sensors and actuators – Experiential learning	-	LAB
12	Tutorial – 2 (Quiz & Descriptive type – Participative learning)		-
Content l	beyond syllabus covered (if any):		

* Session duration: 50 minutes

ICT - Laptop, Projectors, Pen drive, Google classroom, Microsoft tools, YouTube videos

COURSE DELIVERY PLAN – THEORY

Page 2 of 9

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: ME18703- MECHATRONICS Unit: II

UNIT II MICROPROCESSOR AND MICROCONTROLLER 14

Introduction- Architecture of 8085-Pin Configuration- Addressing Modes-Instruction set, Timing diagram of 8085- Programming- Concepts of 8051 microcontroller-Block diagram. Concepts of 8255 PPI-Block diagram.

Objective: The students will be imparted the basic of microprocessor and microcontroller which are the main components in mechatronics system design.

Session

	No *	Topics to be covered	Ref	Teaching Aids
	12	Introduction to 8085 Microprocessor	Ref 2 (Chapter 1 pp. 1-13)	ICT
	13	Architecture of 8085 Microprocessor	Ref 2 (Chapter 3 pp. 57-61)	ICT
-	14	Tutorial – 3 (Activity based Assignment on data transfer using registers – Experiential learning)	-	ICT
	15	Pin Configuration of 8085 Microprocessor	Ref 7 (Chapter 3 pp. 84-86)	ICT
	16	Addressing Modes	Ref 7 (Chapter 4 pp. 99-101)	ICT
	17	Instruction set and formats	Ref 7 (Chapter 4 pp. 99-120)	ICT
A STATISTICS	18	Timing diagram of 8085	Ref 7 (Chapter 3 pp. 91-94)	ICT
	19	Programming of Microprocessors	Ref 7 (Chapter 4 pp. 97-126)	ICT
	20	Programming of Microprocessors	Ref 7 (Chapter 4 pp. 97-126)	ICT
	21	Programming of Microprocessors	Ref 7 (Chapter 4 pp. 97-126)	ICT
	22	Tutorial – 4 (Activity based Assignment on Microprocessor Simulation App – Experiential learning)	-	ICT
	23	Introduction to 8051 Microcontroller	Ref 7 (Chapter 9 pp. 418-419)	ICT

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN – THEORY

Page 3 of 9

24	Architecture of 8051 Microcontroller	Ref 7 (Chapter 9 pp. 419-420)	ICT
25	Pin description of 8051 Microcontroller	Ref 7 (Chapter 9 pp. 430-432)	ICT
26	Introduction to Peripheral Interface	Ref 7 (Chapter 7 pp. 245-247)	ICT
27	Architecture of 8255	Ref 7 (Chapter 7 pp. 249-250)	ICT
28	Laboratory demonstration on traffic light and Stepper motor interfacing – Experiential learning	-	LAB
29	Tutorial – 5 (Quiz & Descriptive type – Participative learning)	2 7 — 1	_

	Icar mins)		8	
Content k	beyond syllabus covered (if an	ny):		
N				
				-

COURSE DELIVERY PLAN – THEORY

FT/GN/68/01/23.01.16

Page 4 of 9

Sub. Code / Sub. Name: ME18703 – MECHATRONICS Unit: III

UNIT III PROGRAMMABLE LOGIC CONTROLLER 14 Introduction-Basic structure-Input and output processing -Programming -Mnemonics-Boolean algebra -Timers, counters and internal relays-Data handling- Selection of PLC Applications of PLC

Objective: To make the student to understand basics of Programmable Logic Controllers and its elements used for making ladder logic programs.

Session			
No *	Topics to be covered	Ref	Teaching

			Aids
30	Introduction and Basic structure of PLC	Ref 1 (Chapter 21, pp. 440-443)	ICT
31	Input and output processing	Ref 1 (Chapter 21, pp. 443-444)	ICT
32	Ladder diagram programming	Ref 1 (Chapter 21, pp. 445-450)	ICT
33	Tutorial – 6 (Activity based Assignment on PLC Simulation App for basic PLC program– Experiential learning)	-	ICT
34	Structured text programming and other types of programming	Ref 1 (Chapter 21, pp. 445-450)	ICT
35	Boolean algebra Programming	Ref 1 (Chapter 21, pp. 445-450)	ICT
36	Types of Timers and its function	Ref 1 (Chapter 21, pp. 452-457)	ICT
37	Tutorial – 7 (Activity based Assignment on PLC Simulation App for PLC timer programming – Experiential learning)	-	ICT
38	Programming using ON & OFF delay timer function	Ref 1 (Chapter 21, pp. 452-457)	ICT
39	Programming using ON & OFF delay timer function	Ref 1 (Chapter 21, pp. 452-457)	ICT
40	Types of counters and its function	Ref 1 (Chapter 21, pp. 458)	ICT
41	Programming using UP/DOWN counter function	Ref 1 (Chapter 21, pp. 458)	ICT

COURSE DELIVERY PLAN - THEORY

FT/GN/68/01/23.01.16

Page 5 of 9

42	Tutorial – 8 (Activity based Assignment on PLC Simulation App for PLC counter programming – Experiential learning)	-	IC7
43	Internal relay and its function	Ref 1 (Chapter 21, pp. 459)	ICT
44	Programming on Internal relay function	Ref 1 (Chapter 21, pp. 459)	ICT
45	Data handling and Selection of PLC	Ref 1 (Chapter 21, pp. 460)	ICT
46	Application of PLC	Ref 1 (Chapter 21, pp. 460)	ICT
47	Laboratory demonstration on PLC programming using Siemens and FANUC PLC Trainer kit– Experiential learning	-	LAB
48	Tutorial – 9 (Quiz & Descriptive type – Participative learning)	-	_
Conteat b	eyond syllabus covered (if any):		
* Session	n duration: 50 mins		

COURSE DELIVERY PLAN – THEORY

FT/GN/68/01/23.01.16

Page 6 of 9

Sub. Code / Sub. Name: ME18703 – MECHATRONICS

Unit: IV

Unit – IV MECHATRONICS SYSTEMDESIGN

12

Mechatronics, key elements of mechatronic systems, Stages in design, traditional and mechatronic design approaches, Data acquisition systems, overview of I/O process, virtual instrumentation software. Condition monitoring, adaptive control and SCADA systems. Possible Design Solutions

No *	Topics to be covered	Ref	Teachin
49	Key elements of mechatronic systems	Ref. 1 (Chapter 24, pp. 501-506)	ICT
50	Stages of design process	Ref. 1 (Chapter 24, pp. 501-506)	ICT
51	Traditional and Mechatronics design concepts	Ref. 1 (Chapter 24, pp. 501-506)	ICT
52	Traditional and Mechatronics design: case Study	Ref. 1 (Chapter 24, pp. 501-506)	ICT
53	Tutorial – 10 (Activity based Assignment – Experiential learning)	-	
54	Data acquisition systems	Ref. 1 (Chapter 24, pp. 501-506)	ICT
55	Overview of I/O process,	Ref. 1 (Chapter 24, pp. 501-506)	ICT
56	Virtual instrumentation software	Ref. 1 (Chapter 24, pp. 511-513)	ICT
57	Condition monitoring	Ref. 1 (Chapter 24, pp. 513-520)	ICT
58	Adaptive control	Ref. 1 (Chapter 24, pp. 520-522)	ICT
59	SCADA systems	Ref. 1 (Chapter 24, pp. 522-523)	ICT
60	Possible design solutions	Ref. 1 (Chapter 24, pp. 501-506)	ICT
61	Possible design solutions	Ref. 1 (Chapter 24, pp. 501-506)	ICT
62	Tutorial – 11 (Quiz & Descriptive type – Participative learning)	-	-

Objective: To describe the mechatronics design solutions for various industrial applications

COURSE DELIVERY PLAN - THEORY

Page 7 of 9

FT/GN/68/01/23.01.16

Sub. Code / Sub. Name: ME18703 – MECHATRONICS Unit : V

UNIT V MECHATRONICS APPLICATIONS 10

Mechatronic control in automated manufacturing, Artificial intelligence in Mechatronics, Fuzzy logic applications in Mechatronics, Microsensors in Mechatronics-Case studies-pick and place robot, engine management system, consumer mechatronic products.

Objective: To study the role of AI, Fuzzy application in automation and the case studies.

Session

Topics to be acrowed

Teaching

		Ref	Aids
63	Mechatronic control in automated manufacturing	Ref.1 (Chapter 9 pp. 201-209)	ICT
64	Mechatronic control in automated manufacturing	Ref.1 (Chapter 9 pp. 201-209)	ICT
65	Artificial intelligence in Mechatronics	Ref.1 (Chapter 9 pp. 210-215)	ICT
66	Fuzzy logic applications in Mechatronics	Ref.1 (Chapter 9 pp. 210-215)	ICT
67	Fuzzy logic applications in Mechatronics	Ref. 1 (Chapter 24, pp. 501-506)	ICT
68	Experiential – 12 (Activity based Assignment –	-	-
69	Microsensors in Mechatronics	Ref. 1 (Chapter 24, pp. 501-506)	ICT
70	Case studies of Mechatronics systems: Pick and place Robot	Ref. 1 (Chapter 24, pp. 511-513)	ICT
71	Engine Management system	Ref. 1 (Chapter 24, pp. 513-520)	ICT
72	Consumer mechatronics products	Ref. 1 (Chapter 24, pp. 513-520)	ICT
73	Other case Studies.	Ref. 1 (Chapter 24, pp. 513-520)	ICT
74	Laboratory demonstration on Pick and Place robot programming using Mitsubishi Robot– Experiential learning	-	LAB
75	Tutorial – 11 (Quiz & Descriptive type – Participative learning)	-	

FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN – THEORY

Page 8 of 9

Sub Code / Sub Name: ME18703 – MECHATRONICS

TEXT BOOKS:

- 1. Bolton, "Mechatronics", Prentice Hall, 2019
- 2. RameshSGaonkar, "MicroprocessorArchitecture, ProgrammingandApplications with the 8085", 6th Edition, PrenticeHall, 2013.

REFERENCES:

1. Bradley D.A, Dawson D, Buru N. C and Loader A.J, "Mechatronics", Chapman and Hall, 2013.

2. DevadasShettyandRichardA.Kolk,"MechatronicsSystemsDesign",PWSpublishing company, 2013.

3. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2013. Larence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2014.

4. Michael B. Histand and Davis G. Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International 4th edition, 2017.

5. Smaili.A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford UniversityPress,2012.

WEBRESOURCES:

Sl. No	Topics	Online Resources	Mapping
1.	Sensors and transducers	https://www.youtube.com/wat ch?v=bfw_So5cCp4	
2.	Stepper motor	https://www.youtube.com/wat ch?v=eyqwLiowZiU	Unit – 01
3.	Servo motor	https://www.youtube.com/wat ch?v=ditS0a28Sko	
4.	Microprocessor Programming Simulation	https://youtu.be/RNJjF3xLLz U	Unit – 02
5.	PLC Ladder programming Simulation	https://youtu.be/cUnmMfx84I 8	Unit - 03
6.	PLC – Timer programming Simulation	https://youtu.be/P8P5PVsCtE0	
7.	Mechatronics	https://onlinecourses.nptel.ac.i n/noc21_me27/preview	Unit – 01 Unit – 02 Unit – 05
8.	Mechatronics	https://nptel.ac.in/courses/112/ 103/112103174/	Unit – 01 Unit – 03

FT/GN/68/01/23.01.16

COURSE DELIVERY PLAN - THEORY

Page 9 of 9

	Prepared by	Approved by
Signature	tory	1. Mm
Name	Mr.M.Arulkumar	Dr S Ramesh Babu
Designation	Assistant Professor	Professor and Head
Date	24/08/2022	24/08/2022
Remarks *:		24/00/2022

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY Page 1 of 3

Department of Mechanical Engineer	LP: ME18712 Rev. No: 01	
B.E/B.Tech/M.E/M.Tech : Mechanical Engineering	Regulation: 2018	Date: 22/08/2022
PG Specialisation : NA		
Sub. Code / Sub. Name : ME18712 - FINITE ELEMENT ANAL SIMULATION LABORATORY	LYSIS AND	

Session No*	List of Experiments
	CYCLE-I
1	 (a) Analysis of Trusses with same cross sections - Demonstration using ICT (b) Analysis of Trusses with different cross sections - Demonstration using ICT
2	Analysis of beams to compute shear force, bending moment and maximum deflection - Demonstration using ICT
3	 (a) Stress analysis of a plate with a circular hole (Plane stress problem) - Demonstration using ICT (b) Stress analysis of pressure vessel (Plane strain problem) - Demonstration using ICT (c) Stress analysis of a bicycle spanner (Additional exercise)- Demonstration using ICT
4	Stress analysis of an axi-symmetric component - Demonstration using ICT
5	 (a) Thermal stress analysis of a 2D component - Demonstration using ICT (b) Convective heat transfer analysis of a 2D component - Demonstration using ICT
6	Analysis of a spring – mass system - Demonstration using ICT
7	Mode frequency analysis of beams (Cantilever, Simply supported, Fixed ends) - Demonstration using ICT
8	Mode frequency analysis of a 2 D component - Demonstration using ICT
9	Harmonic analysis of a 2D component - Demonstration using ICT
	CYCLE-II
10	Introduction to MATLAB - Dealing with matrices, simple Simulink components - Demonstration using ICT
11	Simulink model for Simulation for work done by a cutting tool
12	Simulink model Simulation of Doorbell Using Solenoid Valve

COURSE DELIVERY PLAN - LABORATORY

Page 2 of 3

13	Spring Mass Damper System – Unforced and Forced Response - Demonstration using ICT
14	Model Exam
Content beyon	nd syllabus (if any): Demonstration of ANSYS Workbench for 1. Slider crank mechanism 2. Optimization for beam, and 3. Contact Analysis.

* Session Duration: 150 minutes

Sub. Code / Sub. Name: ME 18712 - FINITE ELEMENT ANALYSIS AND SIMULATION LABORATORY

Course Outcomes:

Course Outcome 1: Students will **analyse and simulate the structural components** for various mechanical applications using analysis software.

Course Outcome 2: Students will analyse and simulate the thermal components for various mechanical applications using analysis software.

Course Outcome 3: Students will predict the performance of vibration systems using MATLAB analysis software.

Mapping - CO - PO:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2								2	3		
CO2	3	3	2	2								2	3		
CO3	3	3	2	2								2	3		

3 - Strong; 2 - Moderate; 1 - Weak

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY Page 3 of 3

Sub. Code / Sub. Name: ME 18712 - FINITE ELEMENT ANALYSIS AND SIMULATION LABORATORY

Signature Name Mr M M Mr.G.I	aheswaran, &	M. Mahandass
Name Mr M M Mr.G.I	aheswaran, &	Dr. M. Mohandasa
	in doux ur an	DI. M. Wonandass
Designation Assista	nt Professor	Assistant HoD - Mechanica
Date 22/	08/2022	22/08/2022
Remarks* :		

* If the same lab plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY

Page 1 of 2

Department of Mechanical Engineering	LP: ME18713
B.E/B.Tech/M.E/M.Tech: Mechanical Regulation: 2018	Rev. No: 00
PG Specialisation : NA	24/08/2022
Sub. Code / Sub. Name : ME18713/ Mechatronics Laboratory	

Session No*		List of Experiments
12		CYCLE-I
	a. Control of single acting cyl Virtual lab demonstration	linder using AND &OR value – Basic Pneumatic trainer kit –

1	i activitation
	b. Design and operation of cascade circuit using pilot operated DCV-Pneumatic trainer kit - Virtual lab demonstration
2	a. Control of single/ double acting cylinders using solenoid operated DCV & electrical timer- Basic Electro Pneumatic trainer kit Virtual lab demonstration
	b. Design and operation of cascade circuit using solenoid operated DCV and timers in the sequence A ⁺ B ⁺ B ⁻ A ⁻ - Basic Electro Pneumatic trainer kit - Virtual lab domenstruction
3	a. Design and operation of pneumatic circuit for shaping operation using PLC- Basic Electro Pneumatic trainer kit & PLC - Virtual lab demonstration
	b. Design and operation of cascade circuit with the sequence A ⁺ B ⁺ B ⁻ A ⁻ - Basic Electro Pneumatic trainer kit & PLC - Virtual lab demonstration
4	a. Control of single acting cylinder using- Basic hydraulic trainer kit Virtual lab demonstration
	b. Design and operation of cascade circuit using - Basic Hydraulic trainer kitVirtual lab demonstration
5	a. Design and operation of pneumatic circuit for shaping operation using PLC-Basic Electro Hydraulic trainer kit & PLC – Virtual lab demonstration

2

	operation) - Basic Electro Hydraulic trainer kit & PLC - Virtuel leb demonstration of Cascade circuit with the sequence A ⁺ B ⁺ B ⁻ A ⁻ (Punching/Pressing
6	a. Simulation using FluidSim software.
	b. Simulation using Automation Studio software
7	Implementation of Logic gates and Boolean expression using PLC. – Virtuallab demonstration

Antonia and the second

(-)

FT/GN/68A/02/30.06.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - LABORATORY

Page 2 of 2

Sub. Code / Sub. Name: ME18713/ Mechatronics Laboratory

	CYCLE-II
8	a. Interfacing A Stepper motor using 8051 Microcontroller.
	b. Traffic light control using 8051 Microcontroller.
9	Closed loop speed control of PMDC motor using 3 phase fully controlled converter.
10	Characteristics study of various types of transducers Virtual lab demonstration
11	To Study Assembly language programming of 8085 – Addition – Subtraction

11	Multiplication – Division – Sorting – Code conversion							
12	ImageprocessingtechniqueusingMachine Vision system.							
13	Programmingon Pick and Placerobot manipulator.							
Content	beyond syllabus (if any):							
	* Session Duration: 150 minutes							
	Prepared by	Approved by						
Signatu	re thank	l. Un						
Name	Mr.M.Arulkumar	Dr.S.Ramesh Babu						
Designa	tion Assistant Professor	Professor & Head						
Date	24/08/2022	24/08/2022						
Remarks	5*:							
Remarks	;* :							

* If the same lab plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

COURSE OUTCOMES - LABORATORY

Dep	CO: ME18713	
B.E/B.Tech/M.E/M.Tech	: Mechanical Engineering	Rev No: 00
UG / PG Specialisation	: NA	Date: $24/08/202$
Regulation	: 2018	Date.24/00/202
Sub. Code / Sub. Name	: ME18713 – Mechatronics Laboratory	4

CO	Statements	RBT* Level
CO1	The students can able to work on basic fluid power based automated process.	U
CO2	The students are competent toprogram apick and placerobot for different operations	AP
CO3	Thestudents willbeabletoidentifythevariousaccessories,tooling's required forautomation.	U
CO4	The studentsare capable todesignandprogramforgivenbasic sequenceof operation using Programmable LogicController(PLC).	AP
CO5	Thestudents can controlaprocessusing microprocessor/ microcontroller.	AP

Mapping CO – PO - PSO^{*}:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2	PSO-3
CO1	2	0	3	0	3	0	0	0	0	0	0	0	3	0	0
CO2	0	0	3	0	- 3	0	0	0	0	0	0	0	3	0	0
CO3	2	0	3	0	3	0	0	0	2	0	0	0	3	0	0
CO4	0	0	3	0	3	0	0	0	0	0	0	0	3	0	0
CO5	2	0	3	0	3	0	0	0	0	0	0	0	3	0	0

3– Strong;2 – Moderate; 1– weak

Assessment Methods: Internal Assessment Marks End Semester Examination Stream Total Model Exam Continuous Assessment Marks (As per AAR) 20 8 80 Non - Autonomous 12 25 25 75 50 Autonomous

uzon **Signature of Module Coordinator** Signature of Faculty / Course Coordinator

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

LP: OE18007
Rev. No: 00
Date:12/09/2022

UNIT SYLLABUS: ENERGY RESOURCES 9

Energy generation in coal based, nuclear based, diesel and gas based power plants, world energy flows, energy and economic growth, supply and availability; Electric utilities and regulations, cost structure analysis, economics of energy use in agriculture, transport, building, Industry and energy substitution, cost benefit analysis –carbon credit and footprint.

Objective: To impart knowledge on various sources of energy and associated environmental impact

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Introduction to the subject and Overview of syllabus https://www.youtube.com/watch?v=1TKHIfPrEFQ	8- Ch.2; Pg.74-75	PPT,BB,ICT
2.	Energy generation in coal basedpower plants https://www.voutube.com/watch?v=IdPTuwKEfmA	8- Ch.2; Pg.74-75	PPT,BB,ICT
3.	Energy generation in Nuclear basedpower plants https://www.youtube.com/watch?v=q8HmRLCgDAI	8-Ch 9; Pg. 602-612	PPT,BB,ICT
4.	Energy generation in Gas basedpower plants https://www.youtube.com/watch?v=AMXxXoHtM-o	8 - Ch.11; Pg.785-793	PPT,BB,ICT
5.	World and Indian energy scenario and energy flows, energy and economic growth, supply and availability FM_GOPSONS.qxd (beeindia.gov.in)	8 - Ch.11; Pg.785-793	PPT,BB,ICT
6.	Electric utilities and regulations, cost structure analysis	8 - Ch.11; Pg.785-793	PPT,BB,ICT
7.	Economics of energy use in agriculture, transport and in buildings <u>An Analysis of Cost Structures in the Electricity</u> Generation Industry (repec.org)	8 - Ch.11; Pg.785-793	PPT,BB,ICT
8.	Industry and energy substitution, cost benefit analysis	8 - Ch.11; Pg.785-793	PPT,BB,ICT
9.	Carbon credit and footprint and Revision of topics covered	8 - Ch.11; Pg.785-793	PPT,BB,ICT
Content be	yond syllabus covered (if any): Indian energy scenario	-	•

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

9

Sub. Code / Sub. Name: **OE18007 – Basics of Energy Resources** Unit : II

Unit Syllabus: ENVIRONMENTAL IMPACTS OF ENERGY USE

Global warming -sources of emissions, CO_2 emissions, impacts, mitigation and sustainability. environmental standards, legislation and audits, air pollution -SOx, NOx, CO, particulates, solid and water pollution, formation of pollutants, measurement and controls.

Objective: To impart knowledge on environmental impacts associated with usage of traditional energy sources.

Session No *	Topics to be covered	Ref	Teaching Aids
10.	Environmental impacts of energy use - Overview	8- Ch.2; Pg.74-75	PPT,BB,ICT
11.	Global warming - Contributing factors <u>Global Warming 101 - Definition, Facts, Causes and Effects of</u> <u>Global Warming NRDC</u>	8- Ch.2; Pg.74-75	PPT,BB,ICT
12.	Sources of emissions <u>Global Greenhouse Gas Emissions Data US</u> <u>EPA</u>	8- Ch.2; Pg.74-75	PPT,BB,ICT
13.	CO ₂ emissions, impacts, mitigation and sustainability <u>Sustainability</u> <u>Free Full-Text</u> <u>Issues</u> , <u>Impacts</u> , and <u>Mitigations of Carbon</u> <u>Dioxide Emissions in the Building Sector (mdpi.com)</u>	8- Ch.2; Pg.74-75	PPT,BB,ICT
14.	Environmental standards, legislation and auditshttps://en.wikipedia.org/wiki/Environmental_audit	8- Ch.2; Pg.74-75	PPT,BB,ICT
15.	Air pollution -SOx, NOx, CO, particulate emissionhttps://aeronsystems.com/iot/smart-air-quality-	8- Ch.2; Pg.74-75	PPT,BB,ICT
16.	Solid (Land) and water pollution	8- Ch.2; Pg.74-75	PPT,BB,ICT
17.	Formation of pollutants, measurement and controls	8- Ch.2; Pg.74-75	PPT,BB,ICT
18.	Revision of topics covered	8- Ch.2; Pg.74-75	PPT,BB,ICT
Content bey	yond syllabus covered (if any): Methods of reducing emissions		-

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: **OE18007 – Basics of Energy Resources** Unit : **III**

Unit Syllabus: RENEWABLE ENERGY

9

Solar PV cell; Wind energy - HAWT; Biomass energy - Bio digesters, Bio-diesel; OTEC

Objective: To impart knowledge on various techniques used in effective conversion of renewable sources of energy.

Session No *	Topics to be covered	Ref	Teaching Aids	
19.	Renewable energy resources overview	8-Ch 14; Pg 899	PPT,BB,ICT	
20.	Solar PV cell, principle of energy conversion & methods of conversion of Solar energy <u>https://www.sciencedirect.com/topics/earth-and-planetary- sciences/photovoltaic-conversion</u> <u>https://www.sciencedirect.com/topics/earth-and-planetary- sciences/solar-energy-conversion</u>	8-Ch 14; Pg 899	PPT,BB,ICT	
21.	Potential, advantages & limitations of Solar energy	8-Ch 14; Pg 899	PPT,BB,ICT	
22.	Wind energy - Potential, advantages & limitations <u>https://www.energy.gov/eere/wind/advantages-and-challenges-</u> wind-energy	8-Ch 14; Pg 912	PPT,BB,ICT	
23.	Horizontal Axis Wind Turbine (HAWT) - construction and working principle	8-Ch 14; Pg 912	PPT,BB,ICT	
24.	Types of refrigerated Cargos, Importance of maintaining temperature, humidity, oxygen content in container	8-Ch 14; Pg 912	PPT,BB,ICT	
25.	Biomass energy - Potential, advantages & limitations <u>https://nam04.safelinks.protection.outlook.com/?url=https%</u> <u>3A%2F%2Fwww.glbrc.org%2Foutreach%2Feducational-</u> <u>materials%2Ffermentation-</u>	8-Ch 14; Pg 912	PPT,BB,ICT	
26.	Bio digesters, Biodiesel - Potential, advantages & limitationshttps://nam04.safelinks.protection.outlook.com/?url=https% 3A%2F%2Fwww.eia.gov%2Fenergyexplained%2F&data=02%7C01 %7CShelby.Strudler%40constellation.com%7Cfafa4fdaed8448850f45 08d82390853e%7C600d01fc055f49c6868f3ecfcc791773%7C0%7C0 %7C637298451979511143&sdata=OQe1pxMTjzXkotSzCyKfW4oD %2BHrWtmYV6mPHLrRahSA%3D&reserved=0	8-Ch 14; Pg 912	PPT,BB,ICT	
27.	Ocean Thermal Energy Conversion (OTEC), Revision of topics covered	8-Ch 14; Pg 912	PPT,BB,ICT	
Content beyond syllabus covered (if any): Global renewable energy utilization scenario				

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: **OE18007 – Basics of Energy Resources** Unit : **IV**

Unit Syllabus: ENERGY STORAGE

Potential energy, Pumped hydro storage; KE and Compressed gas system: Flywheel storage, compressed air energy storage; Electrical and magnetic energy storage: Capacitors, electromagnets; Chemical Energy storage: Thermo-chemical, photo-chemical, Superconducting Magnet Energy Storage (SMES) systems.

Objective: To impart knowledge on storage of energy in different forms.

Session No *	Topics to be covered	Ref	Teaching Aids
28.	Energy storage - overview	8- Ch.12; Pg.778-817	PPT,BB,ICT
29.	Potential energy, Pumped hydro storage https://www.energy.gov/eere/water/pumped-storage-hydropower	8- Ch.12; Pg.778-817	PPT,BB,ICT
30.	Kinetic Energy and Compressed gas system <u>https://www.atlascopco.com/en-</u> <u>in/compressors/wiki/compressed-air-articles/what-is-</u> <u>compressed-air</u>	8- Ch.12; Pg.778-817	PPT,BB,ICT
31.	Flywheel storage, compressed air energy storage https://www.youtube.com/watch?v=ay NiGu7mis	8- Ch.12; Pg.778-817	PPT,BB,ICT
32.	Electrical and magnetic energy storage, Capacitors, electromagnets	8- Ch.12; Pg.778-817	PPT,BB,ICT
33.	Chemical Energy storage: Thermo – chemical https://www.etipbioenergy.eu/everyone/fuels-and- conversion/thermochemical-conversion	8- Ch.12; Pg.778-817	PPT,BB,ICT
34.	Photo-chemical, Bio-chemical energy storage	8- Ch.12; Pg.778-817	PPT,BB,ICT
35.	Superconducting Magnet Energy Storage (SMES) systems	8- Ch.12; Pg.778-817	PPT,BB,ICT
36.	Revision of topics covered	8- Ch.12; Pg.778-817	PPT,BB,ICT
Content bey	ond syllabus covered (if any): Advantages of decentralization of er	nergy production	

* Session duration: 50 mins

9

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: **OE18007 – Basics of Energy Resources** Unit : **V**

Unit Syllabus: ENERGY ECONOMICS9

Simple payback period, time value of money, IRR, NPV, life cycle costing, cost of saved energy, and cost of energy generated, examples from energy generation and conservation, energy chain, primary energy analysis, life cycle assessment, net energy analysis, case studies on life cycle costing

Objective: To impart knowledge to assess the life cycle and cost analysis.

Session No *	Topics to be covered	Ref	Teaching Aids		
37.	Introduction to Energy economics	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
38.	Timevalue of money, Internal Rate of Return (IRR), Net Present Value (NPV)	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
39.	Life cycle costing, cost of saved energy and cost of energy generated	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
40.	Examples from energy generation and conservation	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
41.	Energy chain, primary energy analysis	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
42.	Life cycle assessment, net energy analysis	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
43.	Expansion valves – types, construction and maintenance	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
44.	Casestudies on life cycle costing	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
45.	Revision of all the 5 units	8-Ch 1; Pg. 1-37	PPT,BB,ICT		
Content bey	Content beyond syllabus covered (if any): Energy economics scenario				

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: OE18007 - Basics of Energy Resources

TEXT BOOKS:

Energy and the Challenge of Sustainability, World energy assessment, UNDP New York, 2004.
 AKN Reddy, RH Williams, TB Johansson, Energy after Rio, Prospects and challenges, UNDP, United Nations Publications, New York, 1997

REFERENCES:

3. Nebojsa Nakicenovic, Arnulf Grubler and Alan McDonald "Global energy perspectives", Cambridge University Press, 1999.

4. Fowler, J.M., "Energy and the environment", McGraw Hill, 1984.5. Robert Ristirer, and Jack P. Kraushaar., "Energy and the environment", Willey, 2005

5. Yves Brunet., "Energy storage", Wiley publications, 2013.

6. Rai, G.D., "Non-conventional Energy Sources", Khanna Publishers, 2002.

7. S.K.Garg, Dr.Ranjini Garg, "Environmental Studies and Green Technologies", Khanna Publishers, 2008

8. Nag P.K, "Power Plant Engineering", Tata McGraw Hill Publishing Co., New Delhi, 2014.

WEB RESOURCES:

8. https://nptel.ac.in/courses/108105058/

9. https://nptel.ac.in/courses/121106014/

10. https://www.iea.org and other related websites

	Prepared by	Approved by
Signature	Softwar	littim
Name	Dr. S.Arumugam	🕂 Dr. S. Ramesh Babu
Designation	Assistant Professor	Professor & HoD
Date	12.09.2022	12.09.2022
Remarks *:		
Remarks *:		

* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD