COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Biotechnology LP:BY18009 Rev. No: 00 B.E/B.Tech/M.E/M.Tech: Biotechnology Regulation:2018 PG Specialisation : Not Applicable Date: 13-07- Sub. Code / Sub. Name : BY18009 / Environemental Biotechnology Unit : I Unit Syllabus: 1 Microbial flora of soil, Ecological adaptations, Interactions among soil microorganisms, biogeochemical role of soil microorganisms. Biodegradation, Microbiology of degradation and its mechanism, Bioaugmentation, Biosorption, Bioleaching, Bioremediation - Types of Bioremediations, Bioreactors for Bioremediation, Metabolic pathways for Biodegradation for specific organic pollutants. Objective: To learn about the role of microorganisms in the bioremediation | Session
No * | Topics to be covered | Ref | Teaching
Aids | |-----------------|--|------------------------------------|------------------| | 1. | Microbial flora of soil, Ecological adaptations, Interactions among soil microorganisms, biogeochemical role of soil microorganisms. | RB10-Ch1
(1-121) | Online
(GCR) | | 2. | Biodegradation, Microbiology of degradation and its mechanism, | RB15-Ch7
Pg. 201-221 | Online
(GCR) | | 3. | Bioaugmentation | 5-Ch5
(148,192-
193,198,407) | Online
(GCR) | | 4. | Biosorption, Bioleaching | 5-Ch5
(216-218) | Online
(GCR) | | 5. | Bioremediation - Types of Bio-remediation | 5-Ch5
(173-229) | Online
(GCR) | | 6. | Bioreactors for Bioremediation | 5-Ch5
(201-203) | Online
(GCR) | | 7. | Metabolic pathways for Biodegradation for specific organic pollutants. | 5-Ch5
(224-229) | Online
(GCR) | ## Content beyond syllabus covered (if any): Microorganisms in xenobiotic /pop removal ^{*} Session duration: 50 minutes #### **COURSE DELIVERY PLAN - THEORY** Page 2 of 6 Sub. Code / Sub. Name:BY18009 / Environmental Biotechnology Unit: II Unit Syllabus: 2 Pollution - Sources of pollutants for Air, Water (ground water, marine), Noise, Land and its characteristics - Pollution control and management - Environmental monitoring & sampling, Physical, chemical and biological methods and analysis - Air pollution - control and treatment strategies. Modes of Biological treatment methods for wastewater - aerobic digestion, anaerobic digestion, Anoxic digestion, the activated sludge process, Design and modeling of activated sludge processes, Aerobic digestion, Design of a trickling biological filter, Design of anaerobic digester. Objective: To understand about different pollution types and pollution control strategies | | Topics to be covered | Ref | Teaching
Aids | |-----|--|----------------------------|--------------------| | 8. | Pollution - Sources of pollutants for Air, | Internet
Source | Online/GC
R/PPT | | 9. | Pollution - Sources of pollutants for Water (ground water, marine),
Noise, Land and its characteristics | Internet
Source | Online/GC
R/PPT | | 10. | Pollution control and management - Environmental monitoring | RB13-Ch5
Pg.65-88 | Online/GC
R/PPT | | 11. | sampling, Physical, chemical and biological methods and analysis | 5-Ch3
Pg.83-88 | Online/GC
R/PPT | | 12. | Air pollution - control and treatment strategies | RB13-Ch5
Pg.65-88 | Online/GC
R/PPT | | 13. | Modes of Biological treatment methods for wastewater - aerobic digestion | 5-Ch4
Pg.116-139 | Online/GC
R/PPT | | 14. | anaerobic digestion | 4-Ch5
(165-172) | Online/GC
R/PPT | | 15. | Anoxic digestion | Internet
Source | Online/GC
R/PPT | | 16. | The activated sludge process, Design and modeling of activated sludge processes | 5-Ch4
(124-
125,135- | Online/GC
R/PPT | | 17. | Design of a trickling biological filter | 4-Ch5
(121-124) | Online/GC
R/PPT | | 18. | Design of anaerobic digester | 2-Ch10
Pg.983- | Online/GC
R/PPT | ## Content beyond syllabus covered (if any): Design of Microbial fuel cells in the Aerobic digestor for the treatment of industrial effluents ^{*} Session duration: 50 mins ## COURSE DELIVERY PLAN - THEORY Page 3 of 6 Sub. Code / Sub. Name:BY18009 / Environmental Biotechnology Unit: III Unit Syllabus: 3 Industrial waste management - Dairy, Paper & Pulp, Textile, leather, hospital and pharmaceutical industrial waste management, e-waste - radioactive and nuclear power waste management - Solid waste management. Objective: To understand about different sources of waste management. | Session
No * | Topics to be covered | Ref | Teaching
Aids | |-----------------|--|----------------------|------------------| | 19. | Solid Waste Management | RB15-Ch8
Pg. 264- | Online
PPT/BB | | 20. | Industrial waste management - Dairy | RB15-Ch5
Pg. 159- | Online
PPT/BB | | 21. | Industrial waste management - Paper | Internet
Source | Online
PPT/BB | | 22. | Industrial waste management - Pulp | RB15-Ch5
Pg. 161- | Online
PPT/BB | | 23. | Industrial waste management - Textile | Internet
Source | Online
PPT/BB | | 24. | Industrial waste management - Leather | RB15-Ch5
Pg. 158- | Online
PPT/BB | | 25. | Industrial waste management - Hospital | RB15-Ch8
Pg. 313- | Online
PPT/BB | | 26. | Industrial waste management - Pharmaceutical industry | Internet
Source | Online
PPT/BB | | 27. | e-waste - radioactive and nuclear power waste management | Internet
Source | Online
PPT/BB | ## Content beyond syllabus covered (if any): Industrial waste management using Biotechnological principles- Boon justify ^{*} Session duration: 50 minutes #### COURSE DELIVERY PLAN - THEORY Page 4 of 6 Sub. Code / Sub. Name:BY18009 / Environmental Biotechnology Unit:IV Unit Syllabus: 4 Molecular biology tools for Environmental management, rDNA technology in waste treatment, Genetically modified organisms in Waste management, Genetic Sensors, Metagenomics, Bioprospecting, Nanoscience in Environmental management, Phytoremediation for heavy metal pollution, Biosensors development to monitor pollution. Objective: To understand the application of different molecular biology tools for environmental biotechnology. | Session
No * | Topics to be covered | Ref | Teaching
Aids | |-----------------|--|--------------------|------------------| | 28. | Molecular biology tools for Environmental management | Internet
Source | PPT/BB | | 29. | rDNA technology in waste treatment, | Internet
Source | PPT/BB | | 30. | Genetically modified organisms in Waste management, | Internet
Source | PPT/BB | | 31. | Genetic Sensors | 5-Ch3
Pg. 103- | PPT/BB | | 32. | Metagenomics | Internet
Source | PPT/BB | | 33. | Bioprospecting | Internet
Source | PPT/BB | | 34. | Nanoscience in Environmental management | Internet
Source | PPT/BB | | 35. | Phytoremediation for heavy metal pollution | 5-Ch5
Pg. 204- | PPT/BB | | 36. | Biosensors development to monitor pollution. | 5-Ch3
Pg. 102- | PPT/BB | ## Content beyond syllabus covered (if any): Nano -Smart sensors for the detection and monitoring of pollutants ^{*} Session duration: 50 mins ## COURSE DELIVERY PLAN - THEORY Page 5 of 6 Sub. Code / Sub. Name:BY18009 / Environmental Biotechnology Unit: V Unit Syllabus: 5 Alternate Source of Energy, Biomass as a source of energy, Biocomposting, Vermiculture, Biofertilizers, Organic farming, Biofuels, Biomineralization, Bioethanol and Biohydrogen, Bioelectricity through microbial fuel cell, energy management and safety. Objective: To understand about alternate source of energy. | Session
No * | Topics to be covered | Ref | Teaching
Aids | |-----------------|---|--------------------------|------------------| | 37. | Alternate Source of Energy | 5-Ch7
Pg. 292- | PPT/BB | | 38. | Biomass as a source of energy | 5-Ch7
Pg. 293- | PPT/BB | | 39. | Bio-composting | RB15-Ch8
Pg. 283- | PPT/BB | | 40. | Vermiculture | RB15-Ch8
Pg. 294- | PPT/BB | | 41. | Biofertilizers | RB14-Ch1
Pg. 156- | PPT/BB | | 42. | Organic farming | Internet
Source | PPT/BB | | 43. | Biofuels – Bioethanol and Biohydrogen | 5-Ch7
Pg.307-
316, | PPT/BB | | 44. | Biomineralization | Internet
Source | PPT/BB | | 45. | Bio-electricity through microbial fuel cell, energy management and safety | Internet
Source | PPT/BB | ## Content beyond syllabus covered (if any): Review on Biomass for the production of compounds from wastes- green energy possibilities #### COURSE DELIVERY PLAN - THEORY Page 6 of 6 Sub Code / Sub Name:BY18009 / Environmental Biotechnology ## **TEXT BOOKS:** - 1. Chakrabarty K.D., Omen G.S., Biotechnology And Biodegradation, Advances In Applied Biotechnology Series, Vol.1, Gulf Publications Co., 1989. - 2. Metcalf and Eddy, Waste water Engineering Treatment, Disposal and Reuse. 3rd Ed., Mc Graw Hill, 1991. - 3. Forster, C. F and Waste, D.A. J. Environmental Biotechnology, Ellis Horwood Halsted Press. 1987. - 4. Bailey, J. E. and Ollis, D. F., Biochemical Engineering Fundamentals, 2nd Ed., MacGraw Hill, 1986. - 5. Alan Scragg, Environmental Biotechnology, Longman, 1999. - 6. Bruce E. Rittmann, Eric Seagren, Brian A.Wrenn and Albert J. Valocchi, Chittaranjan Ray, Lutgarde Raskin, In-situ Bioremediation, 2nd Ed., Nayes Publication, 1991. - 7. Old R.W., and Primrose, S.B., Principles of Gene Manipulation, 3rd Ed., Blackwell Science Publication, 1985. #### REFERENCES: - 1. Stanier R.Y., Ingraham J.L., Wheelis M.L., Painter R.R., General Microbiology, 5th Ed., Macmillan Publications, 1989. - 2. G. Mattock E.D., New Processes of Waste water treatment and recovery, Ellis Horwood, 1978. - 3. Jogdand, Environmental Biotechnology, 1st Ed., S.N. Himalaya Publishing House, 1995. - 4. Young Murray Moo, Comprehensive Biotechnology (Vol. 1-4), Elsevier Sciences, 1985. - 5. Standard Method for Examination of Water & Waste water, 14th Ed., American Public Health Association, 1985. - 6. Lee, C.C. and Shun dar Lin, Handbook of Environmental Engineering Calculations, McGraw Hill, 1999. - 7. Hendricks D, Water Treatment Unit Processes Physical and Chemical, 1st Ed., CRC Press, 2006. - 8. Martin A.M., Biological Degradation of Wastes, Elsevier Appl. Science, 1991. - 9. Sayler, Gray S. Robert Fox and James W. Blackburn, Environmental Biotechnology for Waste Treatment, Plenum Press, 1991. - 10. Bruce E. Rittmann, Perry L. McCarty Environmental Biotechnology_ Principles and Applications-McGraw-Hill (2001) - 11. FEMS Microbiology reviews 20 (1997) 591-604 - 12. Bioaugmentation DOI: 10.1007/978-3-540-77587-4_356 - 13. Gareth M. Evans, Judith C. Furlong Environmental Biotechnology_ Theory and Application-Wiley (2002) - 14. A.K Chatterji Introduction to environmental biotechnology, Prentice Hall of India, 2005 | Pradipta | Prepared by | Approved by | |-------------|---------------------|----------------| | Signature | G. K27D2 | | | Name | Dr G Karthigadevi | Dr. V. Sumitha | | Designation | Assistant Professor | HOD - Incharge | | Date | 13-07-2021 | | Remarks *: If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD. # COURSE DELIVERY PLAN - THEORY Page 6 of 6 Sub Code / Sub Name:BY18009 / Environmental Biotechnology #### TEXT BOOKS: - 1. Chakrabarty K.D., Omen G.S., Biotechnology And Biodegradation, Advances In Applied Biotechnology Series, Vol.1, Gulf Publications Co., 1989. - 2. Metcalf and Eddy, Waste water Engineering Treatment, Disposal and Reuse. 3rd Ed., Mc Graw Hill, 1991. - 3. Forster, C. F and Waste, D.A. J. Environmental Biotechnology, Ellis Horwood Halsted Press. 1987. - 4. Bailey, J. E. and Ollis, D. F., Biochemical Engineering Fundamentals, 2nd Ed., MacGraw Hill, 1986. - 5. Alan Scragg, Environmental Biotechnology, Longman, 1999. - 6. Bruce E. Rittmann, Eric Seagren, Brian A.Wrenn and Albert J. Valocchi, Chittaranjan Ray, Lutgarde Raskin, In-situ Bioremediation, 2nd Ed., Nayes Publication, 1991. - 7. Old R.W., and Primrose, S.B., Principles of Gene Manipulation, 3rd Ed., Blackwell Science Publication, 1985. #### REFERENCES: - 1. Stanier R.Y., Ingraham J.L., Wheelis M.L., Painter R.R., General Microbiology, 5th Ed., Macmillan Publications, 1989. - 2. G. Mattock E.D., New Processes of Waste water treatment and recovery, Ellis Horwood, 1978. - 3. Jogdand, Environmental Biotechnology, 1st Ed., S.N. Himalaya Publishing House, 1995. - 4. Young Murray Moo, Comprehensive Biotechnology (Vol. 1-4), Elsevier Sciences, 1985. - 5. Standard Method for Examination of Water & Waste water, 14th Ed., American Public Health Association, 1985. - 6. Lee, C.C. and Shun dar Lin, Handbook of Environmental Engineering Calculations, McGraw Hill, 1999. - 7. Hendricks D, Water Treatment Unit Processes Physical and Chemical, 1st Ed., CRC Press, 2006. - 8. Martin A.M., Biological Degradation of Wastes, Elsevier Appl. Science, 1991. - 9. Sayler, Gray S. Robert Fox and James W. Blackburn, Environmental Biotechnology for Waste Treatment, Plenum Press, 1991. - 10. Bruce E. Rittmann, Perry L. McCarty Environmental Biotechnology_ Principles and Applications-McGraw-Hill (2001) | 0.1% | Prepared by | Approved by | |-------------|---------------------|----------------| | Signature | G. K2702 | | | Name | Dr G Karthigadevi | Dr. V. Sumitha | | Designation | Assistant Professor | HOD - Incharge | | Date | 13-07-2021 | 13/7/2/ | Remarks *: If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD.