FT/GN/68/01/23.01.16

SRI VENKATESWARA COLLEGE OF ENGINEERING

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Electronics and Communication Engineering			LP: EC22603
B.E/ B.Tech/M.E/M.Tech	• : ECE	Regulation: R2022	Rev. No: 00
PG Specialisation	: NA		
Sub. Code / Sub. Name	: EC22603 / Wireless Communication		Date: 20/01/2025
Unit	: I		

Unit Syllabus: Spectrum - Large scale path loss – Path loss models: Free Space and Two-Ray models - Link Budget design – Small scale fading - Parameters of mobile multipath channels – Time dispersion parameters - Coherence bandwidth – Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.

Objective: To know the characteristics of the wireless channel

Session No *	Topics to be covered	Ref	Teaching Aids
1	Spectrum, Large scale path loss	1,2.4	PPT
2	Path loss models- Free Space Propagation Model	1,4	РРТ
3	Free Space Propagation Model-Problems, Path loss model-Two-Ray Propagation model	1,4	РРТ
4	Two-Ray Propagation model-Problems, Link Budget design	1,4	PPT
5	Small scale fading, parameters of mobile multipath channels	1,4	PPT
6	Time dispersion parameters - Coherence bandwidth	1,4	РРТ
7	Fading due to Multipath time delay spread - flat fading & frequency selective fading	1,4	PPT
8	Frequency dispersion parameters - Doppler spread & Coherence Time	1,4	PPT
9	Fading due to Multipath Doppler spread - fast fading & slow fading	1,4	РРТ
	yond syllabus covered (if any): gation effects with mobile radio-Rayleigh Fading & Rician Fading	1	L

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: EC22603 / Wireless Communication

Unit : II

Unit Syllabus: Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations – Cellular concept Frequency reuse - channel assignment - hand-off - interference & system capacity - trunking & grade of service – Coverage and capacity improvement

Objective: To learn the various cellular architectures

Session No *	Topics to be covered	Ref	Teaching Aids
10	Multiple Access techniques-Introduction to Multiple Access-FDMA	1,4	PPT
11	Multiple Access-TDMA, CDMA	1,4	PPT
12	Cellular concept- Capacity calculations	1,4	PPT
13	Capacity of cellular CDMA with multiple cells, Capacity of Space Division Multiple Access	1,4	PPT
	FAT-I		
14	Frequency reuse, Channel Assignment, Illustration of cellular frequency reuse concept	1,6	РРТ
15	Hand off strategies-Proper and Improper Hand off Strategies-Prioritizing Handoffs	1	РРТ
16	Interference & System Capacity - Co-channel Interference -Average Received power Derivation	1	PPT
17	Trunking & grade of service - Power control for reducing Interference	1	PPT
18	Coverage and capacity improvement - Cell Splitting, Sectoring, Repeaters for Range Extension, Microcell Zone Concept	1,6	PPT
Content be	yond syllabus covered (if any): FHMA, Hybrid Spread Spectrum Techniques		

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: EC22603 / Wireless Communication

Unit : III

Unit Syllabus: Structure of a wireless communication link, Principles of Offset-QPSK, pi/4-DQPSK, QAM, Minimum Shift Keying, Gaussian Minimum Shift Keying, OFDM principle – Cyclic prefix, Windowing, PAPR

Objective: To understand the concepts behind various digital signaling schemes for fading channels

Session No *	Topics to be covered	Ref	Teaching Aids
19	Structure of a Wireless Communication Link, Introduction to Digital Modulation Techniques	1,4	PPT
20	Principles of Offset QPSK — Transmitter & Receiver	1,4	PPT
21	Principles of pi/4-DQPSK — Transmitter & Receiver	1,4	PPT
22	Principles of QAM — Transmitter & Receiver	1,4	PPT
23	Principles of Minimum Shift Keying— Transmitter & Receiver	1,4	PPT
24	Principles of Gaussian Minimum Shift Keying — Transmitter & Receiver	1,4	PPT
25	OFDM principle	4,5	PPT
26	OFDM - Cyclic prefix, Windowing	4,5	PPT
27	OFDM — PAPR	4,5	PPT
Content be	yond syllabus covered (if any): Practical applications of OFDM.		

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: EC22603 / Wireless Communication

Unit : IV

Unit Syllabus: Fundamentals of Equalization – Adaptive equalization, Linear and Non-Linear equalization, Algorithms for Adaptive Equalization - Zero Forcing and LMS - Principle of Diversity - Micro Diversity and Macro Diversity – Space Diversity - Polarization Diversity - Frequency Diversity - Time Diversity - Diversity combining techniques - Selection Diversity - Switched Diversity - Maximal Ratio Combining - Equal Gain Combining - Rake receiver

Objective: To be familiar with various multipath mitigation techniques

Session No *	Topics to be covered	Ref	Teaching Aids
28	Equalization —Introduction, Fundamentals of Equalization,	1,6	PPT
29	Adaptive Equalization	1	PPT
30	Linear and Non-Linear equalization	1	РРТ
31	Equalization Algorithms -Zero forcing Algorithms	1.6	РРТ
32	Equalization Algorithms - LMS Algorithms	1	PPT
	FAT-II	1,6	PPT
33	Diversity — Principles, Micro & Macro Diversity Techniques	1,2,6	PPT
34	Space Diversity, Polarization Diversity, Frequency Diversity, Time Diversity	1,2,6	PPT
35	Diversity combining techniques- Selection Diversity - Switched Diversity - Maximal Ratio Combining - Equal Gain Combining	1,2,4,5	РРТ
36	Rake receiver and its functions	1,2	PPT
Content be	yond syllabus covered (if any): Equalizers in a Communications Receiver		

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: EC22603 / Wireless Communication

Unit : V

Unit Syllabus: GSM - Services and Features - System Architecture - Radio Subsystem - Channel Types - evolution of 2.5 G mobile radio networks - IS-95 - Frequency and Channel Specification - CDMA Channel Modulation Process - key features of IS-95 - 3G WCDMA - UMTS, LTE physical layer - UMTS network architecture - CDMA 2000 physical layer – Introduction to 5G Wireless Technology

Objective: To acquire knowledge of a few cellular standards

Session No *	Topics to be covered	Ref	Teaching Aids
37	GSM standardization - architecture and function partitioning	1	РРТ
38	GSM radio aspects, Channel types, Frequency and Channel Specification	1,4,5	РРТ
39	GSM standardization- Protocol Model, Call Flow Sequences	1,4,5	PPT
40	Evolution to 2.5G Mobile Radio Networks, CDMA Channel Modulation Process	1,4	PPT
41	IS-95 service and Radio Aspects	1,4	РРТ
42	Key features of IS-95 CDMA systems, 3G WCDMA	1,4	РРТ
43	UMTS, LTE physical layer	1,5	PPT
44	UMTS network architecture, Introduction to 4G and 5G Communication Networks	1,4,5	PPT
45	CDMA 2000 physical layer, 4G WiMax — Introduction to 5G Wireless Technology	1,4,5	PPT
	FAT-III		
Content bey	yond syllabus covered (if any): New aspects that are involved in ongoing 6G research	h	

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: EC22603 / Wireless Communication

REFERENCES:

- 1. Rappaport. T.S., "Wireless communications", Pearson Education, Second edition updated, 3rd impression, 2024.
- 2. Haykin & Moher, "Modern Wireless Communications" Pearson 2011 (Indian Edition)
- 3. Vijay K Garg, -Wireless Communications and networking, First Edition, Elsevier 2007
- 4. Andreas.F. Molisch, "Wireless Communications", John Wiley India, 2006.
- 5. Andreas Goldsmith, "Wireless Communication Cambridge University Press, Aug-2005.
- 6. D. Tse and P. Viswanath, "Fundamentals of Wireless Communications," Cambridge University Press, 2005.

	Prepared by	Approved by	
Signature	F.J.J. 42 -5 50000 20101/25	wosamine	
Name	Dr.T.J.Jeyaprabha / Dr.M.Bindhu/ Mr.S.Senthil Rajan	Dr.G.A.Sathish Kumar	
Designation	ASP/ASP/AP	HOD/ECE	
Date	20-01-2025	20-01-2025	
Remarks *:	Remarks *:		
Remarks *:			
* If the sa	me lesson plan is followed in the subsequent semester/year it	should be mentioned	

* If the same lesson plan is followed in the subsequent semester/year it and signed by the Faculty and the HOD