

## COURSE DELIVERY PLAN - THEORY

Page 1 of 5

| Department of Electronics and Communication Engineering           | LP: EC22056 |
|-------------------------------------------------------------------|-------------|
| B.E/ <del>B.Tech/M.E/M.Tech</del> : ECE                           | Rev. No: 00 |
| Regulation:2022                                                   | Date:       |
| PG Specialisation : NA                                            | 20/1/2025   |
| Sub. Code / Sub. Name : EC22056 DEEP LEARNING FOR COMPUTER VISION | 20/1/2020   |
| <b>Unit : I - FUNDAMENTALS OF MACHINE LEARNING</b>                |             |

Unit Syllabus: Linear models (SVMs and Perceptron, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates

**Objective:** To understand the theoretical foundations of machine learning models.

| Session<br>No    | Topics to be covered                                                                                   | Ref   | Teachin<br>g Aids |
|------------------|--------------------------------------------------------------------------------------------------------|-------|-------------------|
| 1                | Introduction to Machine Learning and deep learning                                                     | 1,2,3 | PPT               |
| 2                | Intro to Neural Nets                                                                                   | 1,2,3 | PPT               |
| 3                | Exploring shallow networks and their capabilities.                                                     | 1,2,3 | PPT               |
| 4                | Understanding loss functions and their role in training.<br>Common loss functions:                     | 1,2   | PPT               |
| 5                | Conceptual overview of backpropagation.<br>Mathematical derivation of weight updates using chain rule. | 1,2,3 | PPT               |
| 6                | Stochastic gradient descent                                                                            | 1,23  | PPT               |
| 7                | Universal Function Approximation                                                                       | 1,2,4 | PPT               |
| 8                | Tuning hyperparameters: learning rate, momentum, and weight decay                                      | 1,2,4 | PPT               |
| 9                | Summary and Tutorials                                                                                  | 1,2   | PPT               |
| Content k<br>Nil | beyond syllabus covered (if any):                                                                      |       | 1                 |



COURSE DELIVERY PLAN - THEORY

Page 2 of 5

# Sub. Code / Sub. Name: EC22056 DEEP LEARNING FOR COMPUTER VISION Unit : II - DEEP LEARNING ARCHITECTURE

**Unit Syllabus** History of Deep Learning- A Probabilistic Theory of Deep Learning Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks Convolutional Networks- Generative Adversarial Networks (GAN), Semi supervised Learning.

**Objective:** To illustrate the different working principles of deep learning architectures.

| Session<br>No *                               | Topics to be covered                    | Ref   | Teaching<br>Aids |
|-----------------------------------------------|-----------------------------------------|-------|------------------|
| 10                                            | History of Deep Learning                | 1,2   | PPT              |
| 11                                            | A Probabilistic Theory of Deep Learning | 1,3   | РРТ              |
| 12                                            | Backpropagation and regularization      | 1,2   | PPT/ICT          |
| 13                                            | Batch normalization                     | 1,2,3 | PPT/ICT          |
|                                               | FAT 1                                   |       | -                |
| 14                                            | VC Dimension and Neural Nets            | 3     | PPT              |
| 15                                            | Deep Vs Shallow Networks                | 3.4   | РРТ              |
| 16                                            | Convolutional Networks                  | 1,2   | PPT              |
| 17                                            | Generative Adversarial Networks (GAN)   | 1,2,4 | PPT/ICT          |
| 18                                            | Semisupervised Learning                 | 5,6   | PPT              |
| Content beyond syllabus covered (if any): Nil |                                         |       |                  |



COURSE DELIVERY PLAN - THEORY

Page 3 of 5

## Sub. Code / Sub. Name: : EC22056 DEEP LEARNING FOR COMPUTER VISION Unit : III - DIMENSIONALITY REDUCTION

**Unit Syllabus :** Linear (PCA, LDA) and manifolds, metric learning - Autoencoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization.

**Objective:** To analyze on how to reduce the dimensions of high resolution data.

| Session<br>No * | Topics to be covered                                  | Ref   | Teaching<br>Aids |
|-----------------|-------------------------------------------------------|-------|------------------|
| 19              | Linear (PCA, LDA) and manifolds                       | 1,2,6 | PPT              |
| 20              | Metric learning                                       | 1,2,6 | PPT              |
| 21              | Autoencoders and dimensionality reduction in networks | 1,2,5 | PPT              |
| 22              | Introduction to Convnet                               | 1,2   | PPT/ICT          |
| 23              | Architectures- AlexNet,VGG                            | 1,2,6 | PPT              |
| 24              | Inception and ResNet architectures                    | 1,2,6 | PPT              |
| 25              | Training a Convnet                                    | 1,2   | PPT              |
| 26              | Weights initialization                                | 1,2   | PPT              |
| 27              | Batch normalization, hyperparameter optimization      | 1,2   | PPT              |
|                 | FAT-2                                                 | -     | -                |
| Content b       | eyond syllabus covered (if any):Nil                   |       |                  |



COURSE DELIVERY PLAN - THEORY

Page 4 of 5

## Sub. Code / Sub. Name: EC22056 DEEP LEARNING FOR COMPUTER VISION Unit : IV - OPTIMIZATION AND GENERALIZATION

Unit Syllabus: Optimization in deep learning– Non-convex optimization for deep networks-Stochastic Optimization Generalization in neural networks Spatial Transformer Networks-Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

**Objective:** To evaluate the generalizability of the optimized deep networks.

| Session<br>No * | Topics to be covered                                       | Ref   | Teaching<br>Aids |
|-----------------|------------------------------------------------------------|-------|------------------|
| 28              | Optimization in deep learning                              | 1,2,6 | РРТ              |
| 29              | Non-convex optimization for deep networks                  | 1,2,6 | PPT              |
| 30              | Stochastic Optimization                                    | 1,2,6 | PPT              |
| 31              | Generalization in neural networks                          | 1,2   | РРТ              |
| 32              | Spatial Transformer Networks                               | 1     | PPT              |
| 33              | Recurrent networks, LSTM                                   | 1,2,6 | PPT              |
| 34              | Recurrent Neural Network Language Models- Word-Level RNNs  | 1,2   | PPT/ICT          |
| 35              | Deep Reinforcement Learning                                | 1,4,5 | PPT              |
| 36              | Computational & Artificial Neuroscience                    | 1,4,5 | PPT              |
| 37              | Large-Scale Deep Learning                                  | 6     | РРТ              |
| Content b       | eyond syllabus covered (if any): Large-Scale Deep Learning |       |                  |



COURSE DELIVERY PLAN - THEORY

Page 5 of 5

# Sub. Code / Sub. Name: EC22056 DEEP LEARNING FOR COMPUTER VISION Unit : V - APPLICATIONS AND CASE STUDY

Unit Syllabus : Imagenet- Detection-Audio Wave Net-Natural Language Processing Word2Vec - Joint Detection BioInformatics- Face Recognition- Scene Understanding Gathering Image Captions

Objective: To apply optimized deep networks for appropriate real-time applications

| Session<br>No *                               | Topics to be covered        | Ref   | Teaching<br>Aids |
|-----------------------------------------------|-----------------------------|-------|------------------|
| 38                                            | Imagenet                    | 1,2,6 | РРТ              |
| 39                                            | Detection-Audio Wave Net    | 1,2,6 | РРТ              |
| 40                                            | Natural Language Processing | 1,2,5 | PPT              |
| 41                                            | Word2Vec, Joint Detection   | 2,6   | PPT              |
| 42                                            | BioInformatics              | 1,2,6 | РРТ              |
| 43                                            | Face Recognition            | 1,2   | РРТ              |
| 44                                            | Scene Understanding         | 1,2   | РРТ              |
| 45                                            | Gathering Image Captions    | 1,2   | РРТ              |
| 46                                            | Summary and tutorials       | 1,2   | РРТ              |
|                                               | FAT-3                       | -     | -                |
| Content beyond syllabus covered (if any): NIL |                             |       |                  |





COURSE DELIVERY PLAN - THEORY

Page 6 of 6

# Sub Code / Sub Name: EC22056 DEEP LEARNING FOR COMPUTER VISION

### **REFERENCES:**

- 1. Aggarwal, Charu C, Neural networks and deep learning, Springer, 2018
- 2. Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning", MIT 2017
- Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 4. Mohamad H. Hassoun, Fundamentals of Artificial Neural Networks, The MIT Press 2013.
- 5. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
- 6. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013
- 7. <u>Deep Learning for Computer Vision Course(nptel.ac.in)</u>

|             | Prepared by                       | Approved by           |
|-------------|-----------------------------------|-----------------------|
| Signature   | Ziolins                           | assaume               |
| Name        | Dr.R.Gayathri and Dr.D.Menaka,    | Dr.G.A.Sathish Kumar  |
| Designation | Professor and Associate Professor | Professor and HoD EOD |
| Date        | 20/01/2025                        | 20/01/2025            |
| Remarks *:  |                                   |                       |

Remarks \*:

\* If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD

