

COURSE DELIVERY PLAN - THEORY

Department of Electronics and Communication Engineering			LP: EC22042	
B.E/B.Tech/M.E/M.Tech	: ECE	Regulation:	2022(Autonomous)	Rev. No: 00
PG Specialization	: Not Applicable			Date:05-07-2024
Sub. Code / Sub. Name	: EC22042 - ASIC AND FPG.	A DESIGN		
Unit	: I			

Unit Syllabus: OVERVIEW OF ASIC AND PLD (9)

Types of ASICs - Design flow – CAD tools used in ASIC Design – Programming Technologies: Antifuse – static RAM – EPROM and EEPROM technology, Programmable Logic Devices: ROMs and EPROMs – PLA –PAL. Gate Arrays – CPLDs and FPGAs

Objective: To get familiar with the different types of programming technologies and logic devices

Session No*	Topics to be covered	Ref	Teaching Aids
1.	Introduction, Types of ASICs – Full Custom ASIC, Standard Cell Based ASIC.		ICT
2.	Types of ASICs – Gate Array Based ASIC, Channel Gate Array, Channel less Gate array, Structured Gate Array		ICT
3.	Programmable Logic Devices, Field Programmable Gate Arrays; Design flow, CAD tools used in ASIC Design, Comparison between ASIC Technologies		ICT
4.	Programming Technologies: Anti fuse, Metal-Metal Anti fuse; Static RAM.	1,2,9	ICT
5.	EPROM and EEPROM Technology, Practical Issues, Specification, PREP Benchmark.	1,2,9	ICT
6.	Programmable Logic Devices: ROMs, EPROMs, Programmable Logic Array (PLA).		ICT
7.	Programmable Array Logic (PAL).	1,5	ICT
8.	Gate Arrays – CPLDs, FPGAs	1,2, 6,9	ICT
9.	Gate Arrays – CPLDs, FPGAs	1,2, 6,9	ICT
	Content beyond syllabus covered (if any): NIL		

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: EC22042 - $ASIC\ AND\ FPGA\ DESIGN$

Unit: **II**

Unit Syllabus: ASIC PHYSICAL DESIGN (9)

System partition - partitioning - partitioning methods – interconnect delay models and measurement of delay - floor planning - placement – Routing global routing - detailed routing - special routing – circuit extraction - DRC

Objective: To acquire knowledge about partitioning, floor planning, placement and routing including circuit extraction of ASIC

Session No *	Topics to be covered		Teaching Aids
10.	System partitioning: Goals and objectives, FPGA Partitioning		ICT
11.	Partitioning methods: Constructive and Iterative partitioning algorithms,		ICT
12.	Partitioning methods: The Kernighan-Lin Algorithm, The Ratio Cut Algorithm, The Look-ahead Algorithm, Simulated Annealing algorithm		ICT
13.	Floor planning: Goals and objectives, measurement of delay, Channel Definition, I/O and Power Planning, Clock planning		ICT
14.	Placement: Terms, Definitions, Goals and Objectives, Measurement of Goals and Objectives, Placement Algorithms – Eigenvalue placement	1, 9	ICT
15.	Iterative placement improvement, Placement using Simulated Annealing, Time Driven placement method	1, 9	ICT
16.	Routing: Goals and Objectives, Measurement of Interconnect delay, Global Routing – between blocks – inside flexible blocks – timing driven methods – back annotation method	1,9	ICT
17.	Detailed Routing – Goals and objectives – Measurement of Channel Density – Algorithms: Left Edge Algorithm – Constraints and Routing graph	1, 9	ICT
18.	Detailed Routing – Area Routing Algorithm – Multilevel Routing – Timing Driven Detailed Routing, Special routing, Circuit extraction, DRC.	1, 9	ICT
	CAT - 1		
Content beyond syllabus covered (if any): NIL			

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: EC22042 - $ASIC\ AND\ FPGA\ DESIGN$

Unit: III

Unit Syllabus: LOGIC SYNTHESIS, SIMULATION AND TESTING (9)

Design systems - Logic Synthesis - Half gate ASIC -Schematic entry - Low level design language - PLA tools -EDIF- CFI design representation. Verilog and logic synthesis -VHDL and logic synthesis - types of simulation -boundary scan test - fault simulation - automatic test pattern generation

Objective: To analyze the synthesis, simulation and testing of systems

Session No *	Topics to be covered	Ref	Teaching Aids
19.	Design systems - Logic Synthesis	1	ICT
20.	Half gate ASIC, Schematic entry	1	ICT
21.	Low level design language, PLA tools	1, 5	ICT
22.	EDIF- CFI design representation	1	ICT
23.	Verilog and logic synthesis	1	ICT
24.	VHDL and logic synthesis	1	ICT
25.	Types of simulation, Boundary scan test	1	ICT
26.	Fault simulation, Automatic test pattern generation.	1	ICT
27.	Formal Verification: An Example, Understanding Formal verification – Adding Assertion – Completing a proof	1	ICT
Content beyond syllabus covered (if any): NIL			

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: EC22042 - ASIC AND FPGA DESIGN

Unit: IV

Unit Syllabus: FPGA Fabrics 9

Introduction, FPGA Architectures; SRAM-Based FPGAs; Permanently Programmed FPGAs; Chip I/O; Circuit Design of FPGA Fabrics; Architecture of FPGA Fabrics

Objective: To learn the architecture of different types of FPGA

Session No *	Topics to be covered	Ref	Teaching Aids
28.	Introduction - FPGA Fabrics	1,2,6,9, 10, 11	ICT
29.	SRAM-Based FPGAs - I	1,2,6,9	ICT
30.	SRAM-Based FPGAs - II	1,2,6,9	ICT
31.	SRAM-Based FPGAs – III	1,2,6,9	ICT
32.	Permanently Programmed FPGAs	1,2,6	ICT
33.	Chip I/O	1,2,6	ICT
34.	Circuit Design of FPGA Fabrics	1, 6	ICT
35.	Circuit Design of FPGA Fabrics - Tutorial	1,2,9,11	ICT
36.	Architecture of FPGA Fabrics	6,9,11	ICT
Content beyond syllabus covered (if any): NIL			

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: EC22042 - ASIC AND FPGA DESIGN

Unit: V

Unit Syllabus: SOC DESIGN 9

 $Design \ Methodologies - Processes \ and \ Flows - Embedded \ software \ development \ for \ SOC - Techniques \ for \ SOC \ Testing - Configurable \ SOC - Hardware / \ Software \ co-design \ Case \ studies: \ Digital \ camera, \ Bluetooth \ radio / \ modem, \ SDRAM \ and \ USB$

Objective: To understand the design issues of SOC

Session No *	Topics to be covered	Ref	Teaching Aids
37.	Introduction to SOC, Design Methodologies	8,10	ICT
38.	Processes and Flows	8,10	ICT
39.	Embedded software development for SOC	8,10	ICT
40.	Techniques for SOC Testing	8,10	ICT
41.	Configurable SOC	8,10	ICT
42.	Hardware / Software co-design	8,10	ICT
43.	Digital camera	8,10	ICT
44.	Bluetooth radio	8,10	ICT
45.	Modem, SDRAM and USB	8,10	ICT
	CAT - 2		
Content beyond syllabus covered (if any): NIL			

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

ibje

ode

IT I es o fuse

MS &

sur

T In In

hes

erat

T

Sub Code / Sub Name: EC22042 - ASIC AND FPGA DESIGN

TEXTBOOKS:

- 1. M.J.S.Smith, "Application Specific Integrated Circuits, Addison -Wesley Longman Inc., 1997
- 2. Wayne Wolf, FPGA-Based System Design, Prentice Hall PTR, 2004.
- 3. P.K.Chan & S. Mourad, Digital Design Using Field Programmable Gate Array, PrenticeHall, 1994.

REFERENCES:

- 4. S.Trimberger, Field Programmable Gate Array Technology, Edr, Kluwer Academic Publications, 1994.
- 5. John V.Oldfield, Richard C Dore, Field Programmable Gate Arrays, Wiley Publications 1995.
- 6. Parag.K.Lala, Digital System Design using Programmable Logic Devices , BSP, 2003.
- 7. S. Brown, R. Francis, J. Rose, Z. Vransic, Field Programmable Gate Array, Kluwer Pubin, 1992.
- 8. J. Old Field, R.Dorf, Field Programmable Gate Arrays, John Wiley & Sons, Newyork, 995.
- 9. Farzad Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practical Approach, Prentice Hall PTR, 2003.
- 10. R. Rajsuman, System-on-a-Chip Design and Test. Santa Clara, CA: Artech House Publishers, 2000.
- 11. F. Nekoogar. Timing Verification of Application-Specific Integrated Circuits (ASICs). Prentice Hall PTR, 1999.

	Prepared by	Approved by				
Signature	Alalathi	pression				
Name	Dr. S. R. Malathi	Dr. G.A. Sathish Varmas				
Designation	Professor	Dr. O.A. Satnish Kumar				
Date	05 07 2024	Professor and Head				
Remarks *: «	Remarks *: 0 09.07.2024 09.07.2024					
academic year 2024-25 EVEN Semester also analothies work						
Remarks *:						