

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

		LP: BT22603
Department of Biotechnology Rev.		Rev. No: 00
B.Tech: Biotechnology	Regulation: 2022	Date: 18-01-2025
PG Specialisation: N/A		
Sub. Code / Sub. Name: BT22603 – Genomics and Proteomics		
Unit: I		

Unit Syllabus:

GENOMICS SEQUENCING TECHNOLOGIES

12 Hrs

Next Generation Sequencing (NGS), Sequencing File formats, Basic pipeline for data analysis - quality check, adaptor trimming, Genome assembly, Genome annotation, Concepts of sequencing coverage and sequencing depth, phred score. Chip-Seq, DNAse-Seq, ATAC-seq, MNase-seq, FAIRE-seq.

Practical Sessions: Introduction to Bioinformatics Tools: Utilizing online resources - NCBI, UniProt, and Ensembl for sequence data retrieval and analysis, Genome browsers: UCSC and Ensembl, Finding genes from Genome browsers, Finding Transcripts from Genome browsers.

Objective: Familiarize students with Next-Generation Sequencing (NGS) technologies and bioinformatics tools for sequence analysis.

Session No *	Topics to be covered	Ref	Teaching Aids
1.	Maxam and Gilber, Sanger Sequencing and Next Generation Sequencing (NGS)	TB1; Pg. (93-104)	GCR/LCD
2.	Sequencing File formats, Basic pipeline for data analysis - quality check, adaptor trimming,	Weblink - 1	GCR/LCD
3.	Genome Mapping and assembly Genome annotation	TB1; Pg. (81-90) TB1; Pg. (98-100) TB1; Pg. (104-109)	GCR/LCD
4.	Concepts of sequencing coverage and sequencing depth, phred score	Weblink - 2	BB/Video Lecture
5.	Chip-Seq, DNAse-Seq	Journal Article-3	BB/LCD
6.	ATAC-seq, MNase-seq, FAIRE-seq	Journal Article-3	BB/LCD
7.	Sequence Data Retrieval from NCBI	Laboratory Manual	NCBI
8.	Protein Sequence Analysis Using UniProt	Laboratory Manual	UniProt
9.	Genome Browsing with UCSC Genome Browser	Laboratory Manual	UCSC Genome Browser
10.	Identifying Genes Using Ensembl Genome Browser	Laboratory Manual	Ensembl
11.	Transcript Analysis in Ensembl	Laboratory Manual	Ensembl
12.	Comparative Genome Analysis Using UCSC	Laboratory Manual	UCSC Browser

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BT22603 – Genomics and Proteomics

Unit: II

Unit Syllabus: GENOMICS APPLICATIONS 12 Hrs

Transcriptomics: RNA sequencing, Microarray, Epigenomics: Techniques for Studying DNA

Methylation, Histone Modifications, Comparative Genomics, Single Cell Genomics.

Practical Sessions: NGS Data Analysis: NGS data preprocessing, quality control, and read alignment using FASTQC, Trimmomatic, and Bowtie2. Transcriptomics Data Analysis: Differential gene expression analysis using GEO2R.

Objective: Enable understanding of genomics applications such as transcriptomics, epigenomics, and metagenomics.

Session No *	Topics to be covered	Ref	Teaching Aids
13.	Transcriptomics: RNA Sequencing	TB1; Pg. (292)	GCR/LCD
14.	Microarray	TB1; Pg. (266-292)	GCR/LCD/Vi deo Lecture
15.	Epigenomics: Techniques for Studying DNA Methylation	Journal Article-4	GCR/LCD
16.	Histone Modifications - ChIP-on-chip, ChIP-SAGE, ChIP-Seq	Weblink - 3	BB/LCD
17.	Comparative Genomics	TB1; Pg. (115-154)	BB/LCD
18.	Single Cell Genomics	Journal Article-5	BB/LCD
19.	NGS Data Preprocessing with Trimmomatic	Laboratory Manual	Trimmomatic
20.	Quality Control of NGS Data Using FASTQC	Laboratory Manual	FASTQC
21.	Read Alignment Using Bowtie2	Laboratory Manual	Bowtie2
22.	Differential Gene Expression Analysis Using GEO2R	Laboratory Manual	GEO2R
23.	Visualization of NGS Read Quality Metrics	Laboratory Manual	FASTQC
24.	Post-alignment Analysis Using Bowtie2 Output	Laboratory Manual	Bowtie2
Content be	eyond syllabus covered (if any): Nil		

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BT22603 - Genomics and Proteomics

Unit: III

Unit Syllabus: PROTEOMICS - PROTEIN IDENTIFICATION AND INTERACTION 12 Hrs

Two-dimensional Gel Electrophoresis (2D-PAGE), Protein Fractionation Techniques: Affinity chromatography, ion-exchange chromatography, size-exclusion chromatography, ultracentrifugation, Protein Sequencing: Edman degradation, Protein-Protein Interaction Analysis: yeast two-hybrid (Y2H) assays, co-immunoprecipitation (Co-IP), and tandem affinity purification (TAP)

Practical Sessions: Protein gel Image analysis using ImageJ and protein simulation studies.

Objective: Provide knowledge of protein identification techniques and protein-protein interaction analysis.

Session No *	Topics to be covered	Ref	Teaching Aids
25.	Two-dimensional Gel Electrophoresis (2D-PAGE), Protein Fractionation Techniques: Affinity chromatography	TB2; Pg. (25-36)	GCR/LCD
26.	ion-exchange chromatography, size-exclusion chromatography, ultracentrifugation	TB2; Pg. (36-38)	GCR/LCD
27.	Protein Sequencing: Edman degradation	TB2; Pg. (48-51)	GCR/LCD
28.	Protein-Protein Interaction Analysis: yeast two-hybrid (Y2H) assays	TB2; Pg. (145-149)	BB/LCD
29.	Co-immunoprecipitation (Co-IP)	TB2; Pg. (139-140)	BB/LCD
30.	Tandem affinity purification (TAP)	TB2; Pg. (153-155)	BB/LCD
31.	Protein Gel Image Analysis Using ImageJ	Laboratory Manual	ImageJ
32.	Quantification of Protein Bands and DNA Using ImageJ	Laboratory Manual	ImageJ
33.	Simulation of Protein Folding Using PyMOL	Laboratory Manual	PyMOL
34.	Energy Minimization of Protein Models	Laboratory Manual	GROMACS
35.	Molecular Dynamics Simulation Using GROMACS	Laboratory Manual	GROMACS
36.	Visualization of Protein Structure and Dynamics	Laboratory Manual	VMD

Content beyond syllabus covered (if any): Nil

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BT22603 - Genomics and Proteomics

Unit: IV

Unit Syllabus:

QUANTITATIVE PROTEOMICS

12 Hrs

Basics of Mass-spectrometry (MS), Types of MS, Peptide mass fingerprinting, stable isotope labeling (e.g., SILAC, TMT, iTRAQ), label-free quantification, and selected reaction monitoring (SRM), Data independent acquisition (DIA).

Practical Sessions: Protein-protein interaction network analysis using databases STRING or BioGRID **Objective:** Familiarize with mass spectrometry-based proteomics and quantitative analysis methods.

Ref	Teaching Aids
TB2; Pg. (.	(52-53) GCR/LCD
TB2; Pg. (54-57) GCR/LCD
TB2; Pg. (.	58-61) GCR/LCD
AQ) TB2; Pg. (77-84) BB/LCD
TB2; Pg.	. (77) BB/LCD
dependent Journal Ar	rticle-1 BB/LCD
ng STRING Laboratory	Manual STRING
RING Laboratory	Manual STRING
TRING Laboratory	Manual STRING
Laboratory	Manual BioGRID
ING and Laboratory	Manual STRING, BioGRID
tworks Laboratory	Manual Cytoscape for STRING/Bio GRID data
t	tworks Laboratory

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: BT22603 – Genomics and Proteomics

Unit: V

Unit Syllabus: STRUCTURAL PROTEOMICS

12 Hrs

Nuclear magnetic resonance (NMR) spectroscopy: Fundamentals of the NMR phenomenon, relationship between NMR spectra and molecular structure. Recording of routine spectra (1H and 13C), essentials of data processing (e.g., weightingfunctions). 1D NMR, 2D NMR techniques, X-ray crystallography, Cryo-electron microscopy (cryo-EM).

Practical Sessions: Introduction to molecular visualization tools: PyMOL or Jmol for protein structure visualization, Ramachandran plot. Mass Spectrometry tools: Basic data processing using softwares – Proteome Discoverer, MaxQuant, OpenMS, CompOMICS, Unipept, Tabloid Proteome, Ionbot.

Objective: Equip with advanced structural biology techniques such as NMR spectroscopy and X-ray crystallography.

Session No *	Topics to be covered	Ref	Teaching Aids
49.	Nuclear magnetic resonance (NMR) spectroscopy - Magnetic Properties of Nuclei, Chemical Shift, Excitation and Relaxation	RB1; Pg. (1-10)	GCR/LCD
50.	NMR – Pulsed Experiments, Coupling Constant, Quantitation and Complex Splitting, Commonly studied nuclides	RB1; Pg. (11-22)	GCR/LCD
51.	NMR Spectrometer Sample Preparation, Acquistion Parameters, Processing Parameters Chemical Shift	RB1; Pg. (31-51) RB1; Pg. (62-88)	GCR/LCD
52.	2D NMR techniques	RB1; Pg. (172-208)	BB/LCD
53.	X-ray crystallography	RB2; Pg. (1-31)	BB/LCD
54.	Cryo-electron microscopy (cryo-EM).	Journal Article-2	BB/LCD
55.	Protein Structure Visualization Using PyMOL	Laboratory Manual	PyMOL
56.	Protein Structure Visualization Using Jmol	Laboratory Manual	Jmol
57.	Analysis of Protein Dihedral Angles with Ramachandran Plot	Laboratory Manual	MolProbity
58.	Basic Mass Spectrometry Data Processing Using OpenMS	Laboratory Manual	OpenMS
59.	Peptide Analysis Using UniPept	Laboratory Manual	UniPept
60.	Protein Identification with CompOmics Tools	Laboratory Manual	CompOmics (Peptide Shaker)

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BT22603 – Genomics and Proteomics

REFERENCES:

Text Books

- 1. Lesk, Arthur M. Introduction to Genomics. United Kingdom, Oxford University Press, 2017.
- 2. Twyman, Richard, et al. Principles of Proteomics. United Kingdom, CRC Press, 2013.

Reference Books

- 1. Lambert, Joseph B, Mazzola, Eugene P. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods. United Kingdom: Pearson Education, 2004.
- 2. Clegg, William. X-ray Crystallography. United Kingdom: Oxford University Press, 2015.

Journal Article

- 1. Van Bentum, M., & Selbach, M. (2021). An Introduction to Advanced Targeted Acquisition Methods. Molecular & cellular proteomics: MCP, 20, 100165. https://doi.org/10.1016/j.mcpro.2021.100165
- 2. Milne, J. L., Borgnia, M. J., Bartesaghi, A., Tran, E. E., Earl, L. A., Schauder, D. M., Lengyel, J., Pierson, J., Patwardhan, A., & Subramaniam, S. (2013). Cryo-electron microscopy--a primer for the non-microscopist. The FEBS journal, 280(1), 28–45. https://doi.org/10.1111/febs.12078
- 3. Klein, D. C., & Hainer, S. J. (2020). Genomic methods in profiling DNA accessibility and factor localization. Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 28(1), 69–85. https://doi.org/10.1007/s10577-019-09619-9
- 4. Marzese, D. M., & Hoon, D. S. (2015). Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert review of molecular diagnostics, 15(5), 647–664. https://doi.org/10.1586/14737159.2015.1027194
- 5. Kalisky, T., & Quake, S. R. (2011). Single-cell genomics. Nature methods, 8(4), 311–314. https://doi.org/10.1038/nmeth0411-311

Weblink

- 1. https://genomics-fungi.sschmeier.com/ngs-qc/index.html
- 2. https://www.cd-genomics.com/resource-sequencing-depth-and-coverage.html#:~:text=Coverage%3A%20Refers%20to%20the%20percentage,represented%20by%20a%20Phred%20score.
- 3. https://www.cusabio.com/c-20827.html?srsltid=AfmBOopqYtCPy8Mq-h0HFTqZALtHGbwQOjigYDv5PBjAeqsrZmm3IgpQ

	Prepared by	Approved by
Signature	Jan	t \$201/25
Name	J. Hariharan	Dr. E. Nakkeeran
Designation	Assistant Professor	HOD-Biotechnology
Date	18-01-2025	18-01-2025

Remarks *: the same lesson plan will be followed in the subsequent semester/year

Remarks *: the same lesson plan will be followed in the subsequent semester/year

^{*} If the same lesson plan is followed in the subsequent semester/year it should be mentioned and signed by the Faculty and the HOD