

COURSE DELIVERY PLAN - THEORY

Page 1 of 6

Department of Biotechnology	LP: BT22035 Rev. No: 00
B.E/B.Tech/M.E/M.Tech: <u>B.Tech</u> (Biotechnology) Regulation: 2022	Date: 21.01.25
PG Specialisation :-	
Sub. Code / Sub. Name : BT22035 – Cheminformatics and Medicinal Chemistry (H & M)	
Unit : I	

Unit Syllabus: BASICS OF DRUG ACTION

9 hrs

Introduction to Medicinal Chemistry, Energy, Thermodynamics, Interactions, Receptorology, Enzyme Kinetics, Enzyme Inhibition, Nucleic acids, Drug Likeness, Drug action after metabolism

Objective: This unit aims to acquire the basics of drug action.

Session No *	Topics to be covered	Ref	Teaching Aids	
1	Introduction to Medicinal Chemistry	TB3- Ch.5; pg.145-176 TB3- Ch.6; pg.177-206	LCD/BB	
2	Energy, Thermodynamics	TB3 – Ch.4; pg. 117-122	Blended Learning- Video Lecture	
3	Interactions, Receptorology	TB2- Ch.3; pg. 60-120 TB3 – Ch.8; pg. 251-264	Blended Learning- Video Lecture	
4	Enzyme kinetics	TB2- Ch.8; pg. 316-402 TB3- Ch.9; pg. 303-305	Blended Learning- Video Lecture	
5	Enzyme Inhibition	TB2- Ch.8; pg. 316-402 TB3- Ch.9; pg. 306-319	LCD/BB	
6	Nucleic acids	TB3 – Ch.10; pg. 335-344	Blended Learning- Video Lecture	
7	7 Drugs that act on Nucleic acids TB3- Ch.10; pg. 36		Blended Learning- Video Lecture	
8	Drug Likeness, Pharmacokinetics basics	TB3- Ch.11; pg. 403-408	Blended Learning- Video Lecture	
9	Drug action after metabolism	TB3 – Ch.12; pg. 439-476	LCD/BB	

Content beyond syllabus covered (if any): Pharmacokinetics basics

^{*} Session duration: 50 minutes

COURSE DELIVERY PLAN - THEORY

Page 2 of 6

Sub. Code / Sub. Name: BT22035 - Cheminformatics and Medicinal Chemistry (H & M)

Unit: II

Unit Syllabus: COMPUTER-AIDED DRUG DESIGN

9 hrs

Electronic structure methods, Molecular Modeling, Structure activity relationships, QSAR, Molecular docking, Molecular dynamics, Pharmacophore, De Novo drug design.

Objective: This unit aims to illustrate the different methods of Computer-aided drug design.

Session No *	Topics to be covered	Ref	Teaching Aids
10	Electronic structure methods	AR1- Ch2; pg.9-64	LCD/BB
11	Molecular Modeling – small molecules	AR1- Ch3; pg.65-76 TB3-Ch.4; pg.114	Blended Learning- Video Lecture
12	Molecular Modeling – macromolecules	AR1- Ch3; pg.77-132 TB3-Ch.4; pg.115	Blended Learning- Video Lecture
13	Structure activity relationships	AR2 – Ch.5; pg.181-212	Blended Learning- Video Lecture
14	QSAR	AR2 – Ch.5; pg. 181-207 TB2- Ch. 5; pg. 202-252 TB3-Ch.4; pg.136-140	LCD/BB
15	Molecular docking	AR2 – Ch.3; pg.92-121 TB3- Ch.4; pg.127-129	Blended Learning- Video Lecture
16	Molecular dynamics	AR2 – Ch.5; pg. 45-77 TB3 – Ch.4; pg. 123-126	Blended Learning- Video Lecture
17	Pharmacophore	AR2 – Ch.3; pg.121-123 TB3- Ch.4; pg. 133-134	Blended Learning- Video Lecture
18	De Novo drug design	AR2 – Ch.3; pg.124-129 TB3-Ch.4; pg.128-129	LCD/BB

Content beyond syllabus covered (if any): - NIL-

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 3 of 6

Sub. Code / Sub. Name: BT22035 - Cheminformatics and Medicinal Chemistry (H & M)

Unit: III

Unit Syllabus: ORGANIC SYNTHESIS

9 hrs

Organic reaction mechanism, alkylation, metal/ammonia reduction, reaction of electron-deficient intermediates, organometallics, asymmetric synthesis, photochemistry, synthesis of complex molecules.

Objective: This unit provides an insight on different reactions in Organic synthesis.

Session No *	Topics to be covered	Ref	Teaching Aids
19	Organic reaction mechanism	TB1 -Ch.4; pg.389-404 TB1- Ch.5; pg. 548-553 TB1-Ch.7; pg.682-684	LCD/BB
20	Alkylation	TB1-Ch.9; pg.805-808	Blended Learning- Video Lecture
21	Metal/ammonia reduction	TB1-Ch.6; pg.591-600	Blended Learning- Video Lecture
22	Reaction of electron-deficient intermediates	TB1-Ch.5; pg-531-535	Blended Learning- Video Lecture
23	Organometallics	TB1-Ch.7; pg. 676-681	LCD/BB
24	Asymmetric synthesis	TB1-Ch.2; pg. 189-207	Blended Learning- Video Lecture
25	Photochemistry	TB1- Ch.8; Pg. 1073-1153	Blended Learning- Video Lecture
26	Synthesis of complex molecules -Aromatic Substitution	TB1 – Ch.9; Pg. 771-824	Blended Learning- Video Lecture
27	Synthesis of complex molecules -Concerted Pericyclic Reactions	TB1 – Ch.10; Pg. 833-951	LCD/BB

Content beyond syllabus covered (if any): -NIL-

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 4 of 6

Sub. Code / Sub. Name: BT22035 - Cheminformatics and Medicinal Chemistry (H & M)

Unit: IV

Unit Syllabus: STRUCTURE AND FUNCTION OF BIOMOLECULES

9 hrs

Methods for the determination of structure of biomolecules, properties of amino acids and peptide bond, structure of nucleic acids and protein-nucleic acid interactions, structure and function of biomolecules pertaining to different therapeutic areas, biological crystallography, spectrofluorimetric and optical methods, Thermodynamics methods.

Objective: This unit helps to demonstrate on methods for determination of structure and function of biomolecules.

Session No *	Topics to be covered	Ref	Teaching Aids
28	Methods for the determination of structure of biomolecules	AR4- Ch.8; pg. 241-245	LCD/BB
29	Properties of amino acids	AR4-Ch.4; pg.67-70	Blended Learning- Video Lecture
30	Properties of peptide bond	AR4-Ch.4; pg.70	Blended Learning- Video Lecture
31	Structure of nucleic acids	TB3- Ch.10; pg. 341-344	Blended Learning- Video Lecture
32	Structure of protein-nucleic acid interactions	TB3- Ch.10; pg. 350-361	LCD/BB
33	Biological crystallography	TB4- Ch.4; pg. 59-90	Blended Learning- Video Lecture
34	Spectrofluorimetric methods	TB4- Ch.10; pg. 175-196	Blended Learning- Video Lecture
35	Other Optical Methods	TB4- Ch.3; pg. 37-58 AR4- Ch.4; pg. 73-77	Blended Learning- Video Lecture
36	Thermodynamics methods	AR4-Ch.3; pg. 52-64	LCD/BB

Content beyond syllabus covered (if any): -NIL-

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 5 of 6

Sub. Code / Sub. Name: BT22035 - Cheminformatics and Medicinal Chemistry (H & M)

Unit: V

Unit Syllabus: DRUG METABOLISM

9 hrs

Biotransformation of drugs, factors influencing enzyme induction and inhibition, factors affecting drug metabolism, dose-effect relationships, metabolism pathways, excretion of drugs, adverse drug reactions and drug interactions; toxic reactions, allergic reactions, idiosyncracy.

Objective: This unit provides broad knowledge on drug metabolism

Session No *	Topics to be covered	Ref	Teaching Aids
37	Biotransformation of drugs	AR3 – Ch. 5; pg. 111-146 RB1 – Ch. 9; pg. 116-124	LCD/BB
38	Factors influencing enzyme induction and inhibition	AR3 – Ch. 5; pg. 147-150	Blended Learning- Video Lecture
39	Factors affecting drug metabolism	TB3- Ch.12; pg. 439-443	Blended Learning- Video Lecture, Quiz
40	Dose-effect relationships	AR3 – Ch. 14; pg. 325-334 RB2 – Ch.12; pg. 530-534	Blended Learning- Video Lecture
41	Metabolism pathways	TB3- Ch.9; pg. 329-331	LCD/BB
42	Excretion of drugs, Adverse drug reactions	AR3 – Ch. 7; pg. 178-203 RB1 – Ch.57; pg. 692 RB1 – Ch.9; pg. 122-124	Blended Learning- Video Lecture, Animations
43	Drug interactions	TB3- Ch.12; pg. 460-474 RB1 – Ch.9; pg. 120-121	Blended Learning- Video Lecture
44	Toxic reactions, Allergic reactions	TB3- Ch.12; pg. 444 RB1 – Ch.57; pg. 693-695	Blended Learning- Video Lecture
45	Idiosyncracy	Lecture Notes	LCD/BB

Content beyond syllabus covered (if any):

^{*} Session duration: 50 mins

COURSE DELIVERY PLAN - THEORY

Page 6 of 6

Sub Code / Sub Name: BT22035 - Cheminformatics and Medicinal Chemistry (H & M)

REFERENCES:

TEXT BOOK (TB):

- 1. Francis A. Carey, Richard J. Sundberg, Advanced organic chemistry: part A structure and mechanisms, Springer, 5th Ed, 2008.
- 2. John Smith H, Hywel Williams, Introduction to the principles of drug design and action, CRC press, 4th Ed, 2005.
- 3. Gareth Thomas, Medicinal chemistry, John Wiley, 2nd Ed, 2007.
- 4. Notling B, Methods in modern biophysics, Springer, 2nd Ed, 2012.

REFERENCE BOOK (RB):

- 1. Rang H.P, Dale M.M, Ritter J.M, Flower R.J, Rang and Dale"s Pharmacology, Churchil Livingstone, Elsevier, 8th Ed, 2015.
- 2. Adeboye Adejare, Remington's the science and practice of pharmacy, Elsevier, 23rd Ed, 2021.

ADDITIONAL REFERENCES (AR):

- 1. Mannhold R, Kubinyi H, Timmerman H., Methods and Principles of Medicinal Chemistry, Wiley-VCH, 3rd Ed, 1996
- 2. Anand Solomon K, Molecular Modeling and Drug Design, MJP Publishers, 1st Ed, 2008.
- 3. Brahmankar DM, Sunil B. Jaiswal, Biopharmaceutics and Pharmacokinetics A Treatise, Vallabh Prakashan, 1st Ed, 2004.
- 4. Donald Voet, Judith G. Voet, Biochemistry, John Wiley & Sons, 4th Ed, 2011.

YOUTUBE CHANNEL VIDEOS LINK

https://www.youtube.com/playlist?list=PLvDocy_6Jwl-jY6PnuHRnrxXXzoVicLu7

	Prepared by	Approved by	
Signature	P.K-Poonles 21 Toi 125	Saluts	
Name	Dr. P.K. PRAVEEN KUMAR	Dr. E. NAKKEERAN	
Designation	PROFESSOR	PROFESSOR & HOD	
Date	21.01.2025	21.01.2025	
Remarks *:			
Remarks *:			