## B.E./B.TECH Degree Examination, December 2020

Semester - VI

## EE16603 - Discrete Time Signal Processing

(Regulation 2016)
Time: Three hours
Maximum : 80 Marks
Answer ALL questions

$$
\text { PART A- (8 X } 2=16 \text { marks })
$$

1. $\qquad$ of two signals is termed as Convolution.
(a) Addition
(b) Multiplication
(c) both of these
(d) none of these
2. Bilinear transformation is $\qquad$
(a) One to two mapping
(b) many to one mapping
(c) one to one mapping
(d) none of these
3. Poles of a Chebyshev filter lies on
(a) Circle
(b) ellipse
(c) rectangle
(d) none of these
4. Z transform of an impulse sequence is $\qquad$
(a) One
(b) Zero
(c) $\mathrm{x}(\mathrm{n})$
(d) none of these
5. Compare the different types of signal representation.
6. Explain Sampling theorem.
7. Find the Z transform of $\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n})$ and its ROC.
8. Explain the various realizations of IIR filter?

PART B - (4 X16 = 64 marks)
09. (a) Determine whether the signals are power, energy or neither energy nor power signals.
(i) $\mathrm{x}(\mathrm{n})=\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
(ii) $x(n)=e^{j\left(\frac{\pi}{2} n+\frac{\pi}{4}\right)}$
(iii) $\mathrm{x}(\mathrm{n})=\sin \left(\frac{\pi}{4} \mathrm{n}\right)$
(iv) $x(n)=e^{2 n} u(n)$

## (OR)

(b) Determine if the system described by the followng equations are causal or non-causal, linear or non-linear and time variant or time-invariant.
$\begin{array}{ll}\text { (i) } y(n)=x(n)+\frac{1}{x(n-1)} & \text { (ii) } y(n)=x^{2}(n)\end{array}$
10. (a) Determine the Z transform and its ROC of the following signals.
(i) $x(n)=r^{n} \sin \omega_{o n} u(n)$
(ii) $x(n)=a^{n} u(n)$

## (OR)

(b) Obtain the direct form I, direct form II, cascade and parallel form realization for the given system.
$y(n)=-0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$
11. (a) Determine the 8 -point DFT of the sequence $x(n)=\{1,1,1,1,1,1,0,0\}$

## (OR)

(b) Compute the 4-point DFT of a sequence, $\mathrm{x}(\mathrm{n})=\{0.5,0.5,0.5,0.5,0,0,0$, $0\}$ using radix-2 DIT and DIT algorithms.
12. (a) Design a Chebyshev filter for the following specifications using (i) bilinear transformation and (ii) impulse invariance transformation.

$$
\begin{array}{rl}
0.8 \leq\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 1 & 0 \leq \omega \leq 0.2 \pi \\
\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 0.2 & 0.6 \pi \leq \omega \leq \pi
\end{array}
$$

(OR)
(b) Design an ideal low pass filter with a frequency response

$$
\begin{aligned}
\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right) & =1 \text { for }-\frac{\pi}{2} \leq|\omega| \leq \frac{\pi}{2} \\
& =0 \text { for } \frac{\pi}{2} \leq|\omega| \leq \pi
\end{aligned}
$$

Find the values of $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=11$. Find $\mathrm{H}(\mathrm{z})$.

