Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, DEC 2019
 Third Semester
 MA16351 - MATHEMATICS - III
 (Common to all branches)
 (Regulation 2016)

Time: Three Hours
Maximum : 100 Marks
Answer ALL questions
PART A-(10 X $2=20$ Marks $)$

1. Form the partial differential equation by eliminating the arbitrary function from $\mathbf{1} \mathbf{A P}$ $z=f\left(x^{2}+y^{2}\right)$.
2. Solve $\left(D^{2}+D D^{\prime}-2 D^{\prime 2}\right) z=0$.
3. State the conditions for the existence of Fourier series of a function $f(x)$.
4. Find the coefficient b_{n} of the Fourier series for the function $f(x)=x \sin x$ in $(-2,2)$.
5. Classify the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
6. Write down the three possible solutions of Laplace equation in two dimensions.
7. State Fourier integral theorem.
8. Find the finite Fourier sine transform of $\left(\frac{x}{\pi}\right)$ in $(0, \pi)$.
9. State initial and final value theorem for Z-transform.

R
10. Form a difference equation form $y_{n}=A+B 3^{n}$ by eliminating the arbitrary constants A and B.

PART B-(5 X16 = 80 Marks $)$

11. (a) (i) Form the partial differential equation by eliminating ' f ' from (8) $\mathbf{1}$ AP $f\left(x^{2}+y^{2}+z^{2}, x+y+z\right)=0$.
(ii) Find the singular solution of $z=p x+q y+p^{2} q^{2}$.
(8) $1 \quad \mathrm{AP}$
(b) (i) Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 z x$.
(8) $1 \quad A P$
(ii) Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x y}-6 \frac{\partial^{2} z}{\partial y^{2}}=\cos (2 x+y)+e^{x-y}$.
(8) $1 \quad A P$
12. (a) (i) Find a Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$.
(8) $2 \quad A P$
(ii) Obtain the Fourier series for $f(x)=\mathrm{x}^{2}$ in $-\pi<x<\pi$. Hence show
(8) $2 \quad A P$ that $\frac{\pi^{4}}{90}=1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots$.
(b) (i) Obtain a half range cosine series for $f(x)=\left\{\begin{array}{ll}k x, & \text { in } 0 \leq x \leq \frac{l}{2} \\ k(l-x), & \text { in } \frac{l}{2} \leq x \leq l\end{array}\right.$.
(8) $2 \quad$ AP
(ii) Compute the first two harmonics of the Fourier series of $f(x)$ given by the following table:

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$f(x)$	1	1.4	1.9	1.7	1.5	1.3	1

13. (a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in equilibrium position. If it is set vibrating giving each point a velocity $\lambda x(l-x)$, find the displacement of any point on the string at a distance x from one end at any time t.

(OR)

(b) An insulated rod of length ' l ' has its ends A and B maintained at $0^{\circ} c$ and $100^{\circ} c$ respectively until steady state conditions prevail. If B is suddenly reduced to $0^{\circ} c$ and maintained at $0^{\circ} c$, find the temperature at a distance x from A at time t .
14. (a) (i) Find Fourier transform of $e^{-\frac{x^{2}}{2}}$.
(10) 4 AP
(ii) Find the Fourier cosine transform of $f(x)= \begin{cases}x, & \text { for } 0<x<1 \\ 2-x, & \text { for } 1<x<2 \\ 0, & \text { for } x>2\end{cases}$
(6) 4 AP
(OR)
(b) (i) Find the Fourier transform of $\mathrm{f}(\mathrm{x})$ defined as
(10) 4 AP
$f(x)=\left\{\begin{array}{l}a-|x|, \text { for }|x|<a \\ 0 \quad, \text { for }|x|>a>0 .\end{array}\right.$
Hence evaluate $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{4} d t$.
(ii) Find the Fourier sine transform of $f(x)=\left\{\begin{array}{ll}\sin x, & 0<x<a \\ 0, & x>a\end{array}\right.$.
(6) $4 \quad$ AP
15. (a) (i) Find the Z-transform of $\frac{1}{n(n+1)}$.
(8) $5 \quad$ AP
(ii) Using the inversion integral method (Residue method), find the inverse
(8) 5 AP Z-transform of $\frac{z}{(z-1)(z-2)}$.
(OR)
(b) (i) Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^{2}}{(z-a)(z-b)}\right\}$.
(8) 5 AP
(ii) Solve $y(n+2)+6 y(n+1)+9 y(n)=2^{n}$ given that $y(0)=0$ and $y(1)=0$,
(8) 5 AP using Z-transforms.

