Q. Code: 920315

B.E. / B.TECH. DEGREE EXAMINATIONS, DEC 2019 Third Semester MA16351 – MATHEMATICS - III (Common to all branches) (Regulation 2016)

Reg. No.

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART A - (10 X 2 = 20 Marks)

		CO	RBT			
1.	Form the partial differential equation by eliminating the arbitrary function from	1	AP			
	$z = f(x^2 + y^2).$					
2.	Solve $(D^2 + DD' - 2D'^2)z = 0$.	1	AP			
3.	State the conditions for the existence of Fourier series of a function $f(x)$.	2	R			
4.	Find the coefficient b_n of the Fourier series for the function $f(x) = x \sin x$ in (-2, 2).	2	U			
5.	Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0.$	3	AN			
6.	Write down the three possible solutions of Laplace equation in two dimensions.					
7.	State Fourier integral theorem.	4	R			
8.	Find the finite Fourier sine transform of $\left(\frac{x}{\pi}\right)$ in $(0,\pi)$.	4	U			
9.	State initial and final value theorem for Z-transform.					
10.	Form a difference equation form $y_n = A + B3^n$ by eliminating the arbitrary constants A	5	U			
	and B.					

PART B - (5 X16 = 80 Marks)

11. (a) (i) Form the partial differential equation by eliminating 'f' from (8) 1 AP $f(x^2 + y^2 + z^2, x + y + z) = 0.$

(ii) Find the singular solution of $z = px + qy + p^2 q^2$. (8) 1 AP (OR)

(b) (i) Solve
$$(x^2 - y^2 - z^2)p + 2xyq = 2zx$$
. (8) 1 AP

(ii) Solve
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial xy} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y) + e^{x - y}$$
. (8) 1 AP

12. (a) (i) Find a Fourier series to represent
$$x - x^2$$
 from $x = -\pi$ to $x = \pi$. (8) 2 AP

(ii) Obtain the Fourier series for $f(x) = x^2$ in $-\pi < x < \pi$. Hence show (8) 2 AP that $\frac{\pi^4}{2} = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$

hat
$$\frac{\pi}{90} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots$$

(OR)

Q. Code: 920315

- (b) (i) Obtain a half range cosine series for $f(x) = \begin{cases} kx, & \text{in } 0 \le x \le \frac{l}{2} \\ k(l-x), & \text{in } \frac{l}{2} \le x \le l \end{cases}$ (8) 2 AP
 - (ii) Compute the first two harmonics of the Fourier series of f(x) given by (8) 2 AP the following table:

			2 π/ 3				
f(x)	1	1.4	1.9	1.7	1.5	1.3	1

13. (a) A tightly stretched string with fixed end points x = 0 and x = l is initially at (16) 3 AP rest in equilibrium position. If it is set vibrating giving each point a velocity λx(l-x), find the displacement of any point on the string at a distance x from one end at any time t.

(OR)

(b) An insulated rod of length '*l*' has its ends A and B maintained at $0^{\circ}c$ and (16) 3 AP $100^{\circ}c$ respectively until steady state conditions prevail. If B is suddenly reduced to $0^{\circ}c$ and maintained at $0^{\circ}c$, find the temperature at a distance x from A at time t.

14. (a) (i) Find Fourier transform of
$$e^{-\frac{x^2}{2}}$$
. (10) 4 AP

(ii) Find the Fourier cosine transform of
$$f(x) = \begin{cases} 2-x, & \text{for } 1 < x < 2. \\ 0, & \text{for } x > 2 \end{cases}$$
 (6) 4 AP

(OR)

- (b) (i) Find the Fourier transform of f (x) defined as $f(x) = \begin{cases} a - |x|, & \text{for } |x| < a \\ 0, & \text{for } |x| > a > 0. \end{cases}$ Hence evaluate $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt$.
 - (ii) Find the Fourier sine transform of $f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0, & x > a \end{cases}$. (6) 4 AP

15. (a) (i) Find the Z-transform of
$$\frac{1}{n(n+1)}$$
. (8) 5 AP

(ii) Using the inversion integral method (Residue method), find the inverse (8) 5 AP Z-transform of $\frac{z}{(z-1)(z-2)}$.

(b) (i) Use convolution theorem to evaluate
$$Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$$
. (8) 5 AP

(OR)

(ii) Solve $y(n+2) + 6y(n+1) + 9y(n) = 2^n$ given that y(0) = 0 and y(1) = 0, (8) 5 AP using Z-transforms.