

B.E. / B.TECH. DEGREE EXAMINATIONS, DEC 2019

Sixth Semester

EE16007 – OPTIMIZATION TECHNIQUES

(Electrical and Electronics Engineering)

(Regulation 2016)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART A - (10 X 2 = 20 Marks)

		CO	RBT
1.	Define a feasible region.	1	R
2.	What are the methods used to solve an linear programming problems (LPP)?	1	R
3.	What is meant by optimality test in a dual simplex method?	2	R
4.	Discuss the advantages of revised simplex method over the the ordinary simplex method.	2	U
5.	What is the objective of the travelling sales man problems?	3	R
6.	What is the purpose of MODI method?	3	R
7.	How bordered hessian matrix is helping to find the stationary point is weather maximum or minimum?	4	U
8.	What is the difference between linear and nonlinear programming problem?	4	R
9.	How dummy activity is useful in a network diagram?	5	U
10.	What are the three main phases of a project?	5	R

PART B - (5 X16 = 80 Marks)

11. (a) Solve the following LPP by the graphical method. (16) 1 AP Max $Z = 3X_1 + 2X_2$ Subject to $-2X_1 + X_2 \le 1$ $X_1 \le 2$ $X_1 + X_2 \le 3$ and $x_1, x_2 \ge 0$ (OR)

(b) A firm manufactures two types of products A & B and sells them at (16) 1 AP a profit of Rs 2 on type A and Rs 3 on type B. Each product is processed on two machines M1 and M2. Type A requires 1 minute of processing time on M1 and 2 minutes on M2. Type B requires 1 minute on M1 and 1 minute on M2. Machine M1 is available for not more than 6hours 40 minutes while machine M2 is available for 10 hours during any working day. Formulate the problems as a LPP so as to maximize the profit.

12. (a) Using dual simplex method solve LPP (16) 2 AP Maximize $Z = 6x_1 + 4x_2 + 4x_3$ Subject to $3X_1 + X_2 + 2X_3 \ge 2$ $2X_1 + X_2 - X_3 \ge 1$ $-X_1 + X_2 + 2X_3 \ge 1$ (OR) (b) List the steps involved in the revised simplex method. 2 R (16) 13. (a) Find the starting solution of the following transportation model. 3 AP (16) Using (I) NWC (ii) LCM (iii) VAM 1 2 6 7 Demand 0 4 2 12 3 1 5 11 10 10 10 \leftarrow Supply (OR) Explain the steps in the Hungarian method used for solving (16) R (b) 3 assignment problems. Use the Lagrange multiplier method to solve the following non-14. (a) AP (16) 4 linear programming problem, Does the solution maximize or minimize the objective function? Objective function $F(x) = 2X_1^2 + X_2^2 + 3X_3^2 + 10X_1 + 8X_2 + 6X_3 - 100$ Subject to $X_1 + X_2 + X_3 = 20$ $X_1, X_2, X_3 \ge 0$ (**OR**) (b) Discuss the procedure for solving the nonlinear programming (16) R 4 problem using Kuhn-Tucker method. Discuss in details about CPM and PERT. 5 R 15. (a) (16) (**OR**) (b) Discuss in details about maximum flow algorithm. 5 R (16)