Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, DEC 2019 Sixth Semester

 EE16007 - OPTIMIZATION TECHNIQUES

 EE16007 - OPTIMIZATION TECHNIQUES}
(Electrical and Electronics Engineering)
(Regulation 2016)
Maximum : 100 Marks
Answer ALL questions
PART A - (10 X $2=20$ Marks $)$

	CO	RBT	
1.	Define a feasible region.	$\mathbf{1}$	\mathbf{R}
2. What are the methods used to solve an linear programming problems (LPP)?	$\mathbf{1}$	\mathbf{R}	
3. What is meant by optimality test in a dual simplex method?	$\mathbf{2}$	\mathbf{R}	
4. Discuss the advantages of revised simplex method over the the ordinary simplex	$\mathbf{2}$	\mathbf{U}	
method.	$\mathbf{3}$	\mathbf{R}	
5. What is the objective of the travelling sales man problems?	$\mathbf{3}$	\mathbf{R}	
6. What is the purpose of MODI method?	$\mathbf{4}$	\mathbf{U}	
7. How bordered hessian matrix is helping to find the stationary point is weather			
	$\mathbf{4}$	\mathbf{R}	
8. Whatimum or minimum?	$\mathbf{5}$	\mathbf{U}	
9. How dummy activity is useful in a network diagram?	$\mathbf{5}$	\mathbf{R}	

$$
\text { PART B - (5 X16 = } 80 \text { Marks) }
$$

11. (a) Solve the following LPP by the graphical method.
(16) $1 \quad$ AP

Max $Z=3 X_{1}+2 X_{2}$
Subject to

$$
\begin{aligned}
-2 \mathrm{X}_{1}+\mathrm{X}_{2} & \leq 1 \\
\mathrm{X}_{1} & \leq 2 \\
\mathrm{X}_{1}+\mathrm{X}_{2} & \leq 3 \text { and } \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

(OR)
(b) A firm manufactures two types of products A \& B and sells them at
(16) a profit of Rs 2 on type A and Rs 3 on type B. Each product is processed on two machines M1 and M2. Type A requires1 minute of processing time on M1 and 2 minutes on M2. Type B requires 1 minute on M1 and 1 minute on M2. Machine M1 is available for not more than 6hours 40 minutes while machine M2 is available for 10 hours during any working day. Formulate the problems as a LPP so as to maximize the profit.
12. (a) Using dual simplex method solve LPP

Maximize $Z=6 x_{1}+4 x_{2}+4 x_{3}$
Subject to
$3 \mathrm{X}_{1}+\mathrm{X}_{2}+2 \mathrm{X}_{3} \geq 2$
$2 \mathrm{X}_{1}+\mathrm{X}_{2}-\mathrm{X}_{3} \geq 1$
$-\mathrm{X}_{1}+\mathrm{X}_{2}+2 \mathrm{X}_{3} \geq 1$

(OR)

(b) List the steps involved in the revised simplex method.
(16) 2 R
13. (a) Find the starting solution of the following transportation model.
(16) 3 AP Using (I) NWC (ii) LCM (iii) VAM

1	2	6	$\mathbf{7}$	Demand
0	4	2	$\mathbf{1 2}$	
3	1	5	$\mathbf{1 1}$	\downarrow
$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	\longleftarrow	Supply

(OR)
(b) Explain the steps in the Hungarian method used for solving assignment problems.
14. (a) Use the Lagrange multiplier method to solve the following non-
linear programming problem, Does the solution maximize or minimize the objective function?
Objective function
$\mathrm{F}(\mathrm{x})=2 \mathrm{X}_{1}{ }^{2}+\mathrm{X}_{2}{ }^{2}+3 \mathrm{X}_{3}{ }^{2}+10 \mathrm{X}_{1}+8 \mathrm{X}_{2}+6 \mathrm{X}_{3}-100$
Subject to
$\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}=20$
$\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \geq 0$
(OR)
(b) Discuss the procedure for solving the nonlinear programming (16) 4
problem using Kuhn-Tucker method.
15. (a) Discuss in details about CPM and PERT.
(16) 5 R
(OR)
(b) Discuss in details about maximum flow algorithm.
(16) 2 AP

