Q. Code: 399787

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, DEC 2019

Fifth Semester

BT16502 – BIOPROCESS ENGINEERING

(Biotechnology)

(Regulation 2016)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions

PART A - (10 X 2 = 20 Marks)

		CO	RBT
1.	What is cell recycling? List any two advantages of cell recycle cultivation.	1	U
2.	Compare external-loop and internal-loop airlift bioreactors.	1	AN
3.	Define microbial oxygen demand.	1	R
4.	List the factors affecting the K _L a in a bioreactor.	1	AN
5.	List the different methods available for immobilizing the biomolecules.	2	R
6.	Name any four polymers used in enzyme immobilization.	2	R
7.	What is Single-cell model?	2	R
8.	Define plasmid stability.	2	R
9.	Write the advantages of recombinant cell cultivation.	3	U
10.	List out the advantages of insect cell cultivation.	3	U

PART B - (5 X16 = 80 Marks)

11. (a) (i) Provide a schematic diagram of the chemostat with recycling by **(8)** 1 E derivation show that

$$S = \frac{K_s D(1 + \alpha - \alpha C)}{\mu_m - D(1 + \alpha - \alpha C)}$$

(ii) Provide a schematic of diagram chemostat by derivation prove (8) 1 E that

$$\frac{1}{Y_{X/S}^{AP}} = \frac{1}{Y_{X/S}^{M}} + \frac{m_s}{D}$$

(OR)

Q. Code: 399787

	(b)	(i)	Give a detailed account on cell recycle cultivation.	(8)	1	R
		(ii)	Explain two-stage cultivation in detail.	(8)	1	R
12.	(a)	mass transfer coefficient in bioreactors.			1	U
	(b)	sma dian three large	sider the up-scaling of bioreactor from 10 to 10,000 L vessel. The ll bioreactor has a height-to-diameter ratio of 3. The impeller neter is 30% of the tank diameter. Agitator speed is 500 rpm and a Rushton impellers are used. Determine the dimensions of the bioreactor and agitator speed for ii) Constant P/V iii) Constant impeller tip speed iiii) Constant Reynolds number tame geometric similarity.	(16)	1	E
13.	(a)	(i)	Explain the bioreactor considerations in immobilized cell systems.	(8)	2	AP
		(ii)	Discuss different methods of enzyme immobilization in detail. (OR)	(8)	2	U
	(b)	(i)	Discuss the design and operation of packed bed bioreactors.	(8)	2	AP
		(ii)	Explain membrane bioreactors in detail.	(8)	2	U
14.	(a)	Explain in detail the structured models for the analysis of variou bioprocesses.			2	AP
	(b)	Exp	(OR) lain three different models of plasmid replication.	(16)	2	U
15.	(a)	Explain in detail different host-vector systems used for recombinant cell cultivation.			3	AN
	(b)		(OR) e a detailed account of process strategies, reactor considerations for high cell density cultivation.	(16)	3	AN