Q. Code:745063

	Reg. No.
--	----------

B.E./ B. TECH DEGREE EXAMINATIONS, MAY 2024

Second Semester

PH22253 – ENGINEERING MATERIALS

(Common to AE, ME & MN Branches)

(Regulation 2022)

TIME: 3 HOURS

MAX. MARKS: 100

COU OUTC			RBT LEVEL
CO 1			3
CO 2	Enhance knowledge about the heat treatment of alloys and alloy steels.		3
CO 3	Demonstrate an understanding of various properties of Semiconducting materials their internal structure.	And	3
CO 4	Summarize basics of magnetism and superconductivity. Explore a few of technological applications. Analyse the properties of dielectric materials and apply in various fields.		3
CO 5	Develop an understanding about ceramics and various new engineering materials.		2
	PART- A (20 x 2 = 40 Marks)		
	(Answer all Questions)	CO	RBT LEVEL
1.	Enumerate the conditions of Hume-Rothery rule.	1	2
2.	Interpret the rule of Gibb's Phase.	1	2
3.	Examine the lever rule in Binary phases.	1	2
4.	Ni, Al & Cu have face cantered cubic structure yet Ni is soluble in copper whereas Al has only a limited solubility. Explain why it is so?	1	3
5.	What is phase transformation in metals?	2	2
6.	Compare between Annealing and Normalizing.	2	2
7.	List out the importance of tempering process.	2	2
8.	Find out the various types of case hardening.	2	2
9.	Sketch the energy band diagram pertaining to conductor, semiconductor and insulators.	3	2
10.	Distinguish between elemental and compound semiconductor.	3	2
11.	State the law of mass action in semiconductors.	3	2
12.	Evaluate Fermi function for energy K _B T above the Fermi energy.	3	3
13.	Intervene the significance of loss tangent.	4	2
14.	Calculate the electronic polarisability of Neon. The radius of Neon atom is 0.158 nm. (Given $\varepsilon_0 = 8.854 \text{ x } 10^{-12} \text{ F/m}$).	4	3
15.	Point out the isotopic effect in superconductors	4	2
16.	Why ferrites are advantageous for use as transformer cores?	4	2
17.	Mention the significance of ceramics.	5	2

Q. Code:745063

18.	Define Pseudo-elasticity effect.	5	2
19.	Identify top down and bottom up approach in nanotechnology.	5	2
20.	List any four properties of nanoparticles.	5	2

	PART- B (5 x 10 = 50 Marks)			
		Marks	CO	RBT LEVEL
21.(a)	With neat labeled sketches draw the iron unary phase diagram and discuss the various phases.	(10)	1	3
	(OR)			
(b)	Describe the Cu-Zn phase diagram and explain how cooling causes microstructural changes.	(10)	1	3
22.(a)	Paraphrase the iron-carbon phase diagram in terms of temperature and composition changes.	(10)	2	3
	(OR)			
(b)	Explain the various phases in TTT diagram for the eutectoid steel.	(10)	2	3
23.(a)	Derive an expression for density of electrons in the conduction band of an intrinsic semiconductor.	(10)	3	3
	(OR)			
(b)	What is Hall effect? Discuss the theory of Hall effect for a N-type semiconductor and derive an Expression for Hall coefficient.	(10)	3	3
24.(a)	Derive expression for Electronic and ionic polarization performed in a dielectric material.	(10)	4	3
	(OR)			
(b)	Compare and contrast using diagrams between type I and type II superconductors.	(10)	4	3
25.(a)	Describe the preparation, properties and applications of metallic glasses.	(10)	5	2
	(OR)			
(b)	Investigate the different properties and medical applications of Shape Memory Alloys.	(10)	5	2
	PART- C (1 x 10 = 10 Marks)			
	(Q.No.26 is compulsory)			
		Marks	CO	RBT LEVEL
26.	Discuss the domain theory of Ferromagnetism and the energies involved in	(10)	4	3

it.