Q. Code:963455
Reg. No.

B.E. / B. TECH DEGREE EXAMINATIONS - MAY 2024 Second Semester PH22252 – PHYSICS OF MATERIALS

(Common to EC & EE)

(Regulation 2022)

TIME: 3	HOURS MAX. MARKS:	100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Comprehend the behavior of electrons in solids.	2
CO 2	Demonstrate an understanding of various properties of Semiconducting materials and their internal structure.	3
CO 3	Analyses the properties of dielectric materials and apply them in various fields.	3
CO 4	Summarize the basics of magnetism and superconductivity. Explore a few of their technological applications.	2
CO 5	Develop an understanding the Fundamentals of Electronic Science and its applications.	3

PART- A (20 x 2 = 40 Marks) (Answer all Questions)

		СО	RBT
1.	What is drift velocity? how is it different from the thermal velocity of an electron?	1	LEVEL 2
2.	How does the electrical resistivity of a metal vary with temperature?	1	2
3.	What are the main drawbacks of classical free electron theory?	1	2
4.	Write the significance of the Fermi-Dirac distribution function.	1	2
5.	The intrinsic carrier density at room temperature in Ge is 2.37×10^{-19} /m ³ . If the electron	2	3
6.	and hole mobilities are 0.38 and 0.18 m ² V ⁻¹ s ⁻¹ respectively, calculate the resistivity. Compared with Germanium, silicon is widely used to manufacture electronic devices. Why?	2	3
7.	Distinguish between elemental and compound semiconductors.	2	3
8.	In what way Schottky diode disadvantageous from that of the P-N Junction diode?	2	3
9.	How temperature effects the polarization of dielectrics?	3	3
10.	The atomic radius of germanium is 0.122 nm. Determine its electronic polarizability.	3	3
11.	Give the difference between polar and non-polar dielectrics	3	2
12.	Mention the different mechanisms involved in dielectric breakdown.	3	2

Q. Code:963455

13.	What are Cooper pair of electrons?	4	2
14.	Calculate the critical current which can flow through a long thin superconducting wire of diameter 1 mm. The critical magnetic field is $7.0 \times 10^3 \text{ Am}^{-1}$	4	2
15.	of diameter 1 mm. The critical magnetic field is 7.9 x 10 ³ Am ⁻¹ . How will you differentiate magnetic materials based on their spin alignment?	4	2
16.	Why are ferrites advantageous for use as transformer cores?	4	2
17.	Mention any two advantages of JFET.	5	2
18.	What are spintronics?	5	2
19.	Design OR gate using transistor.	5	3
20.	How gray code differs from binary code?	5	3

		PART- B (5 x 10 = 50 Marks)			
			Marks	CO	RBT LEVEL
21. (a)		ed on classical free electron theory, derive an expression for the electrical luctivity of metal and find expression for Lorentz number. (OR)	(10)	1	2
(b)	-	ain the meaning of density of states. Derive an expression for the ber of allowed states for unit volume of a solid.	(10)	1	2
22. (a)	(i)	Assume the Fermi –Dirac distribution and derive an expression for the concentration of electrons per unit volume in the conduction band of an intrinsic semiconductor.	(8)	2	3
	(ii)	Briefly discuss the variation of Fermi level with temperature in the case of an intrinsic semiconductor.	(2)	2	3
		(OR)			
(b)	(i)	Discuss Hall effect in p-type and n-type semiconductors.	(6)	2	3
	(ii)	Derive an expression for Hall Coefficient.	(4)	2	3
23. (a)	(i)	Name the different types of polarization mechanisms that can take part in the presence of an electric field in dielectric materials.	(2)	3	3
	(ii)	Obtain an expression for electronic and ionic polarization in dielectrics.	(8)	3	3
		(OR)			
(b)	(i)	Explain the frequency and temperature dependence of different polarization mechanisms.	(6)	3	3
	(ii)	List any four applications of ferroelectric materials.	(4)	3	3
24. (a)	Brie	fly explain the following	(2+4	4	2

	Q.	Code:9	Code:963455	
	a) Cryotron	+4)		
	b) Magnetic Levitation			
	c) High Temperature superconductors			
	(OR)			
(b)	(i) Differentiate Soft and Hard magnetic materials.	(6)	4	2
	(ii) Draw a B-H curve for a ferromagnetic material and identify retentivity and coercive fields on the curve.	(4)	4	2
25. (a)	With a neat diagram explain the working and output characteristics of JFET.	(10)	5	3
	(OR)			
(b)	Simplify using K-map Y = $F(A,B,C,D) = \Sigma$ (0,1,3,5,7,9,11,12,13,14,15) in sum of products.	(10)	5	3
	$\frac{PART-C(1 \times 10 = 10 \text{ Marks})}{(Q.\text{No.26 is compulsory})}$			
	(Q.10.20 is comparisory)	Marks	CO	RBT LEVEL
26.	Explain the term internal field in solids. Derive an expression for the Lorentz	(10)	3	3

field for elemental dielectrics.