	Q. Code:17		
	Reg. No.		
	B.E./ B. TECH DEGREE EXAMINATIONS, MAY 2024 Second Semester PH18253 – MATERIALS SCIENCE (Common to ME Branch)		
	(Regulation 2018 / 2018 A)	ra 10	•
COUR	IE: 3 HOURS MAX. MARK se statement	.S: 10	0 RBT
OUTCOM CO 1			level 2
CO 2	Students will gain the ability to distinguish conducting, semiconducting superconducting materials.	and	2
CO 3	Students will get the exposure of the dielectric properties and material and applications in various fields.	1 its	3
CO 4	Students will analyze the requirements of advanced materials for different application	ons.	3
	PART- A (10 x 2 = 20 Marks)		
	(Answer all Questions)	CO	RBT LEVEL
1.	Define the coefficient of thermal expansion.	1	2
2.	Distinguish between tempered glass and normal glass.	1	2
3.	Calculate the probability of occupancy of electron in energy greater than Femi energy level at $T = 0$ K.	2	2
4.	State the density of energy states.	2	3
5.	Give any four properties of semiconductors.	2	2
6.	Differentiate LED from photodiodes.	2	2
7.	Calculate the electronic polarisability of Neon. The radius of Neon atom is 0.158nm. (Given $\epsilon_0 = 8.854 \text{ x } 10\text{-}12 \text{ F/m}$).	3	2
_			

8. List the remedies to avoid breakdown in dielectric materials. 3 2 9. Identify top down and bottom up approach in the preparation of nano materials. 4 2 10. Mention any two applications of biomaterials. 4 2

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
11.(a)	(i) What are the Ferrites? Discuss about structure and applications of	(7)	1	3
	Ferrites.			
	(ii) Write short notes on bimetallic strip.	(7)	1	3

Q. Code:176471

(OR)

	(~)			
(b)	Explain in detail about domain theory of ferromagnetism and describe how	(10 + 4) 1	3
	it helps to understand the hysteresis property of Ferromagnetic materials.			
12.(a)	Deduce the expressions for electrical and thermal conductivities of a	(14)	2	3
	conducting material.			
	(OR)			
(b)	i) Distinguish between Type I and Type II superconductors.	(7+7)	2	3
	ii) Explain the various properties of superconducting materials.			
13.(a)	Derive an expression for density of holes in the valence band of an intrinsic	(14)	2	3
	semiconductor.			
	(OR)			
(b)	Derive the equation for Hall coefficient for a N-type semiconductor and	(14)	2	3
	explain experimental method to determine the Hall coefficient.			
14.(a)	Derive equation for the internal field in the dielectric material and hence	(14)	3	3
	deduce Claussius – Mosotti relation.			
	(OR)			
(b)	Derive an expression for various types of polarizations the dielectric	(7+7)	3	3
	materials and hence arrive Langevin-Debye equation in dielectrics.	~ /		
15.(a)	Paraphrase the properties and applications of shape memory alloys	(14)	4	2
	(OR)			
(b)		(14)	4	2
(0)	Discuss the reparation, properties and applications of Metanic glasses.	(14)	T	2
	DADT $O(1 = 10 = 10 N(1 = 1)$			
	<u>PART- C (1 x 10 = 10 Marks)</u>			
	(Q.No.16 is compulsory)	M. 1	00	DPT
		Marks	CO	RBT LEVEL
16.	Discuss the importance of NLO materials in the field of engineering.	(10)	4	3
