	Q. Code						34
	Reg. No.						
			<u> </u>			1	
	B.E. / B.TECH. DEGREE EXAMINAT Second-Semester	ΓΙΟΝ	 S, M <i> </i>	AY 20)24		
	PH18252 – PHYSICS OF MA	TER	IALS				
	(Common to EC & EE)	`					
TI	(Regulation 2018/2018A) ME: 3 HOURS	.)		N	IAX. MA	RKS:	100
	RSE STATEMENT			10			RBT LEVEL
CO 1	Comprehend the behavior of electrons in solids.						2
CO 2	Demonstrate an understanding of various properties	of Se	micono	lucting	g materia	ls and	3
CO 3	Analyze the properties of dielectric materials and appl	v then	n in va	rious f	ields.		4
CO 4	Summarize basics of magnetism and superconduction	ctivity	. Expl	lore a	few of	their	3
CO 5	technological applications.	a mat	ariala	and n	and and in	ooring	2
05	materials in various fields.	o mau		and m	w engin	cering	2
	PART- A (10 x $2 = 20$ Ma	rks)					
	(Answer all Questions)					CO	RBT
1	Give any two marits of classical free cleatron theory					1	LEVEL 7
1.	Give any two ments of classical free electron theory.					1	L
2.	What is Fermi level and Fermi Energy?.					1	2
3.	List any two important properties of semiconductors.					2	3
4.	The intrinsic carrier density at room temperature in Ge is 2.	.37 x1	$0^{19} / m^3$. If th	e electron	2	3
	and hole mobilities are 0.38 and 0.18 m ² V- ^{1s-1} respectively,	calcul	ate the	resisti	vity.		
5.	Distinguish between dielectric loss and dielectric breakdowr	1.				3	3
6.	Calculate the electronic polarizability of neon. The radius of	Neon	atom i	is 0.15	8nm.	3	4
7.	What are 'coercivity' and 'retentivity' of magnetic materials	s?				4	3
			. ~			-	_
8.	Superconducting tin has a critical temperature of 3.7K at zero	o magn	etic fie	eld and	a critical	4	3
	field of 0.0306 Tesla at 0 K. Find the critical field at 2K.						
9.	Sketch the two phases which occur in shape memory alloy.					5	2

Q. Code:987434 5 2

10. List any two properties of carbon nanotubes.

PART- B (5 x 14 = 70 Marks)

			Marks	CO	RBT LEVEL
11. (a)	Deri	ve an expression for electrical and thermal conductivity of metals.	(14)	1	2
		(OR)			
(b)	(i)	Write the expression for Fermi distribution function and explain with	(10)	1	2
		suitable diagram. How does it vary with temperature.			
	(ii)	Calculate the Fermi energy and Fermi temperature in a metal if the	(4)	1	2
		Fermi velocity of electrons in the metal is 0.86×10^6 m/s.			
12. (a)	(i)	Derive an expression for the carrier concentration in an intrinsic	(10)	2	3
		semiconductor by assuming the densities of electron and hole.			
	(ii)	Discuss the variation of Fermi level with temperature in intrinsic	(4)	2	3
		semiconductor.			
		(OR)			
(b)	(i)	What is the Hall effect? Obtain expressions to find the Hall	(10)	2	3
		coefficient and Hall voltage.			
	(ii)	Mention any two applications of the Hall effect.	(4)	2	3
13. (a)	Exp	lain the different types of polarization mechanisms in dielectric	(14)	3	3
	mate	erials and derive an expression for total polarization.			
		(OR)			
(b)	(i)	Explain the temperature and frequency dependence of polarization.	(8)	3	3
	(ii)	Give an account on the use of dielectric materials in capacitors.	(6)	3	3
14. (a)	(i)	Explain the phenomenon of Hysteresis in ferromagnetic materials.	(8)	4	3
	(ii)	Describe the structure of Ferrites.	(6)	4	3
		(OR)			
(b)	(i)	Prove that all the superconductors are perfect diamagnets in the	(4)	4	3
	(ii)	superconducting state. Distinguish between Type-I and Type-II superconductors	(10)	4	3
	(11)	Distinguish between Type I and Type II superconductors.	(10)	T	0
15. (a)	Wha of sł	at are shape memory alloys? Discuss the characteristics and properties hape memory alloys.	(14)	5	2

(OR)

Q. Code:987434

(b) How do nanomaterials differ from bulk materials? Explain the preparation (14) 5 2 of nanomaterials by Chemical Vapour Deposition method and give their important properties.

<u>PART- C (1 x 110 = 10Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT LEVEL
				LEVEL
16.	Deduce the expression for internal field using Lorentz method.	(10)	3	3