Reg. No.

M.E/ M. TECH.DEGREE EXAMINATIONS, MAY 2024 Second Semester

PD22202 – CONTROL SYSTEM DESIGN FOR POWER ELECTRONICS (Regulation 2022)

	(
TIME:3 HOURS MAX. MARKS:		100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Understand an overview on modern linear control strategies for power electronics devices.	2
CO 2	Design appropriate controllers for modern power electronics devices.	4
CO 3	Understand the concept and overview on modern nonlinear control strategies for power electronics devices.	2
CO 4	Model modern power electronic converters for industrial applications.	4

PART- A(20x2=40Marks)

(Answer all Questions)					
		CO	RBT LEVEL		
1.	Write the static transfer function of Buck converter.	1	2		
2.	How does a SEPIC converter differ from a traditional Buck-Boost converter?	1	2		
3.	What role does feedback control play in power electronics converters?	1	2		
4.	Depict the switched model of boost-boost converter from its circuit model.	1	3		
5.	List the three significant phases in Sliding Mode Control.	2	2		
6.	Write the sliding function 'S' for Boost converter.	2	2		
7.	Distinguish Variable Structure Systems (VSS) from conventional control systems.	2	4		
8.	Write the Lyapunov function for the power converter to analyze the stability of its zero	2	2		
	dynamics.				
9.	When a system is said to be flat?	2	2		
10.	Distinguish GPI and PID controller.	2	4		
11.	In the context of control system design, what key principle does Passivity Based	2	2		
	Control (PBC) rely on?				
12.	Highlight the advantages of using SMC over traditional control methods in power	2	2		
	converters.				
13.	How does Isidori's Canonical Form contribute to achieve Feedback Linearization in	3	3		
	control systems?				
14.	Outline the key advantages of Passivity Based Control compared to other control	3	2		
	strategies.				

15.	Compare and contrast Full Order Observers and Reduced Order Observers in terms of		4
	their design complexity and performance.		
16.	Elucidate the significance of Input-Output Feedback Linearization in control systems.	3	3
17.	What is the primary objective of model predictive control (MPC) in power converters?		2
18.	How does an AC-DC-AC converter system utilize predictive control strategy?		4
19.	Enumerate methods that are commonly used for fault diagnosis in power converters.		2
20.	Compare model predictive control and traditional control techniques in power	4	4
	converters.		
PART- B (5x 10=50Marks)			
	Marks	CO	RBT

		Wiai Ko	co	LEVEL	
21. (a)	Derive the averaged switching model of Zeta converter. (OR)	(10)	1	3	
(b)	Derive the general mathematical model of CUK converter.	(10)	1	3	
22. (a)	Design and implement sliding mode controller for Buck converter. (OR)	(10)	2	4	
(b)	Design and implement sliding mode controller for SEPIC converter.	(10)	2	4	
23. (a)	Explain the concept of pole placement by Full State Feedback in linear feedback control. Provide a step-by-step procedure for designing a full state feedback controller for a given system.	(10)	2	3	
	(OR)				
(b)	Explain the concept of Reduced Order Observers in control systems. How do they contribute to simplifying control design while maintaining system observability and estimation accuracy?	(10)	2	3	
24. (a)	Design the state feedback linearized model for DC-DC buck-boost converter. (OR)	(10)	3	4	
(b)	Design a full order observer for DC-DC boost converter.	(10)	3	4	
25. (a)	Derive the optimal solution for FCS-MPC strategy used for power converters and drives.	(10)	4	4	
(OR)					
(b)	Design a predictive control strategy for a three-phase Inverter.	(10)	4	4	
<u>PART- C (1x 10=10Marks)</u> (Q.No.26 is compulsory)					
	(Q.110.20 is computed y)	Marks	CO	RBT	

26. Design a high-performance controller for a DC-DC buck converter to (10) 4 4
enhance its efficiency and control accuracy. Analyze the proposed controller's impact on system stability and steady-state performance,

considering factors such as load variations and input voltage fluctuations.
