													Q	. Coc	de:8	406	646	
					Reg. N	Io.												
		E	E / B '	тесн і	NECDI	F FV	AM		TIC		s M))))))		·			
		Ľ).Ľ. / D.	I ECII. J	DEGRI S	ixth Se	mest	er		JIN	5 , IVI.		2024					
			OE182	207 – BA	SICS (OF NA	NO	BIO	ТЕ	CH	NOI	LOG	Y					
		HOUDG			(Reg	ulatior	n 201	8A)								70	100	
COU	VLE: 5 RSE	HOURS				STAT	EMEN	Т					MA	X. ML	AKK	15:	IUU RB	т
OUTCO	OMES	Acquaint	ing the	basic	biology	and	mac	roma	าโคตม	iles	in	the	ann	licati	on	of	LEV	EL
001		nanotech	nology.	busie	olology	unu	mae	10110	Jieeu	105	111	uite	upp	iivati	on	01	-	'
CO 2		Describe	the role of	of nanoma	aterials in	n bioteo	chnol	ogy.									2	
CO 3		Apply the high start	ne know	ledge of	instrun	nental	anal	ysis	met	hod	s for	r cha	aracte	erizat	ion	of	3)
CO 4		Impleme	ais.	olication of	of nanote	chnolo	ev fo	or con	nstru	ctio	n ma	terial	s and	l thera	apeu	tic	3	;
		drug deli	very.				01								1		_	
CO 5		Assess th	e societa	l impacts	of nanob	oiotechi	nolog	y.									4	ļ
				Р	ART- A	(10 x	2 = 2	0 M	arks)								
					(Ansv	ver all	Ques	tions	3)	,								
															C	CO	RB LEV	T EL
1.	Discu	uss on the	multi fun	ctionality	of prote	in mole	ecule	in li	ving	bei	ngs.					1	2	
2.	Inter	pret the m	echanism	n behind t ds	he transf	fer of i	nforn	natio	n fro	om (one g	enera	tion	to the	e	1	2	
	пехе	unougnine		u b.														
3.	List a	a few prote	ins invol	ved in the	e flagella	r moto	r mec	hani	sm o	of ba	icteria	al cel	1.			2	2	
4.	Outli	ne Lab Or	A Chip	(LOC) tee	chnology										,	2	2	
5.	Discu	uss the wo	rking and	l applicati	on of AF	FM.										3	3	
			U	11														
6	Anal	uza tha an	liastion	V roy dif	fraction	for mol	مساد	r atr	uotur	•o1 o	haraa	toriz	ntion			2	2	
0.	Allal	yze tile ap	Jication	A-lay ull			ccuia	u su	uctui		llalac		ation	•	•	5	5	
7.	Infer	the photoe	lynamic	therapy in	targeted	l drug a	admir	nistra	tion.							4	2	
8.	Asse	ss the appl	ications of	of quantui	n dots.											4	2	
9.	List o	out the app	lications	of engine	ered nan	omater	rials i	n hu	man	hea	lth se	ctors				5	2	

Q. Code:840646 5 2

PART- B (5 x 14 = 70 Marks)

			Marks	CO	RBT LEVEL
11. (a)	(i)	Elucidate the cell organelles responsible for energy generation and information storage with its structure and characteristics.	(10)	1	3
	(ii)	Discuss the special features of cell membrane.	(4)	1	3
		(OR)			
(b)	(i)	Interpret the different types and functions of proteins in human body	(10)	1	3
	(ii)	Assess the various functions of carbohydrates present in our body.	(4)	1	3
12. (a)	(i)	Analyze the function of Actin-Myosin muscular motors to drive our	(10)	2	3
	(::)	body with a neat diagrammatic sketch.		2	2
	(11)	(OP)	(4)	Z	3
(b)	(i)	(UK) Assess the bacterial cell flagellar pape motor structure and function	(10)	2	3
(0)	(I) (ii)	Appraise the list of proteins involved in the flagellar motor	(10)	2	3
	(11)	mechanism of bacterial cell.	()	-	U
13. (a)	Elab micr	Porate the functioning of different types of electron beam aided roscopes with a neat sketch of their components.	(14)	3	4
(b)	Deta	il the mechanism of XPS and SIMS with their applications.	(14)	3	4
14. (a)	(i)	Interpret the application of micro and nano electrochemical devices in drug delivery process.	(7)	4	4
	(ii)	Assess the importance and advantages of nanotechnology-based drug delivery system.	(7)	4	4
		(OR)			
(b)	(i)	Explore how quantum dots can be engineered and utilized for	(7)	4	4
		imaging, drug delivery, and diagnostic purposes.			
	(ii)	Utilizing nano biosensors, describe how they can be applied in various biomedical applications, including disease diagnosis and monitoring.	(7)	4	4
15. (a)	Asse	ess the role of nanomaterials in targeted drug delivery and diagnosis and	(14)	5	4
	expl	ore the potential application in modern heal care.			
		(OR)			
(b)	App	ly the concept of plants and microbes as nano factories in the	(14)	5	4

production of nanomaterials with specific applications and provide examples for how produce nanoparticles with desired properties for

Q. Code:840646

biomedical, environmental, or industrial purposes.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	Develop a protocol for evaluating the toxic effects of engineered	(10)	5	5
	nanomaterials on human health and discuss the importance of conducting			
	thorough risk assessments before the widespread use of nanomaterials in			
	consumer products.			
