Q. Code:355686

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Sixth Semester OC18002 – FUEL CELL CHEMISTRY

(Common to CH & CS)

(Regulation 2018/2018A)

B HOURS MAX. MARKS: 10	0
STATEMENT	RBT LEVEL
Describe the basic principles of fuel cells.	2
Understand the way to fuel system design & optimization.	2
Apply their learned knowledge to develop conventional technologies.	2
Understand the importance of fuel cell applications.	2
The students will acquire knowledge on various fuel cell techniques and their mechanism	2
	STATEMENT Describe the basic principles of fuel cells. Understand the way to fuel system design & optimization. Apply their learned knowledge to develop conventional technologies. Understand the importance of fuel cell applications. The students will acquire knowledge on various fuel cell techniques and their

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

	(Allswer all Questions)		
		CO	RBT LEVEL
1.	What is the difference between an IC engine and a fuel cell?	1	2
2.	List the components of fuel cells.	1	2
3.	What is the need for the second law of thermodynamics?	2	2
4.	Give an example of a spontaneous process. Explain why it's spontaneous.	2	2
5.	Define overvoltage.	3	2
6.	Differentiate between series and parallel circuits.	3	2
7.	List the four main parts of a PEM fuel cell.	4	2
8.	Explain the role of bipolar plates in a fuel cell.	4	2
9.	What is the key difference between a micro fuel cell and a larger fuel cell, in terms of	5	2
	size and power output?		
10.	Differentiate between stationary and distributed power generation.	5	2
	PART- B (5 x 14 = 70 Marks)		
	Marks	CO	RBT LEVEL
11 (6	Compare and contrast the fuel cell types based on the following criterie: (14)	1	ſ

11. (a)Compare and contrast the fuel cell types based on the following criteria:(14)12Operating Temperature

- 1. Fuel Source
- 2. Efficiency
- 3. Applications

4. Membrane

(b)	(OR) Explain the working principle, components, and reactions involved in a	(14)	1	2
(b)	Direct Methanol Fuel Cell (DMFC).	(14)	1	2
	Direct Methanol Fuel Cell (DMFC).			
12. (a)	Explain the necessity of the second law of thermodynamics, considering the	(14)	2	2
()	limitations of the first law.	()		_
	(OR)			
(b)	Derive the Gibbs-Helmholtz equation, relating Gibbs free energy (G),	(14)	2	2
	Helmholtz free energy (A), temperature (T), and entropy (S).			
13. (a)	Explain the different types of overvoltage encountered in electrochemical	(14)	3	2
	systems. Discuss the concepts of chemical and electrochemical			
	overpotentials.			
	(OR)			
(b)	Explain the key components of an instrument used for Electrochemical	(14)	3	2
	Impedance Spectroscopy (EIS) and their functions.			
14. (a)	Explain the importance of modeling a fuel delivery system. Discuss the	(14)	4	2
	advantages and limitations.			
	(OR)			
(b)	Discuss the concept of mass transport/concentration losses in fuel cells.	(14)	4	2
	Explain how these losses impact the voltage output of a fuel cell.			
15. (a)	How do fuel cells address reliability and resilience concerns in stationary	(14)	5	2
	power supply?			
	(OR)			
(b)	What environmental benefits do portable fuel cells offer, and how do they	(14)	5	2
	mitigate carbon emissions?			
	<u>PART- C (1 x 10 = 10 Marks)</u>			
	(Q.No.16 is compulsory)	Montra	CO	ррт
16	What are the examples of successful initiatives or projects simed at	Marks	co 5	RBT LEVEL 7

16. What are the examples of successful initiatives or projects aimed at (10) 5 2 reducing the costs of fuel cell technology?
