2

2

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester

ME22301 – ENGINEERING THERMODYNAMICS

(Mechanical Engineering)

(Regulation 2022)

(Use of Approved Steam Tables, Psychrometric chart and Data Book is permitted)

TIN COUR	ME: 3	HOURS MAX STATEMENT	K. MARKS:	100 RBT
CO 1	OMES	Students are able to analyze various Energy Transferring / transforming using First law of thermodynamics.	; equipment	LEVEL 4
CO 2		Students are able to analyze various Energy Transferring / transforming using Second law of thermodynamics.	g equipment	4
CO 3		Students are able to analyze the performance of steam power plant cycle w of steam table and charts.	ith the help	4
CO 4		Students are able to obtain different thermodynamic relations and equation and real gases.	ns for ideal	3
CO 5		Students will be able to analyze the various Psychrometric process and its and also able to analyze the properties of Gas mixtures.	applications	4
		PART- A ($20 \times 2 = 40$ Marks)		
		(Answer all Questions)	CO	RBT LEVEL
1.	State t	the law associated with thermal equilibrium of system.	1	2
2.	State t	the difference between path function and point function.	1	2
3.	What	t is PMM1? Why it is impossible?	1	2
4.	When	n a reversible polytropic process become a reversible adaiabatic process?	1	3
5.	What	t is the difference between a refrigerator and a heat pump?	2	2
6.	Define	ne PMM of second kind. Why it is impossible?	2	2

7. What are the processes involved in Carnot cycle?

		Q. Code: 671853	3
8.	Entropy of universe never decrease. Justify	2	2
9.	State the methods used for improving the performance of the Rankine cycle.	3	2
10.	What do you mean by degree of superheat?	3	2
11.	Define latent heat of vaporization.	3	2
12.	One kg of water at 10bar has an enthalpy of 2500kJ. Find its quality.	3	3
13.	Define equation of state. Write the same for an ideal gas.	4	2
14.	Define Avogadro's law.	4	2
15.	Define joule – Thompson coefficient.State its value for ideal gas.	4	2
16.	Write the Maxwell's equations.	4	2
17.	How does the wet bulb temperature differ from the dry bulb temperature?	5	2
18.	Differentiate between relative and specific humidity.	5	2
19.	In a psychometric chart, represent humidification and dehumidification proce	ss. 5	2
20.	State Dalton's law of partial pressures.	5	2

PART- B (5 x 10 = 50 Marks)

		Marks	СО	RBT
				LEVEL
21. (a)	One kg of air occupies 0.084m ³ at 12.5bar and 537°C. It is expanded at a	(10)	1	3
	constant temperature to a final volume of 0.336m ^{3.} Calculate the pressure at			
	the end of expansion, work done and heat absorbed .			
	(OR)			

(b) A nozzle is device for increasing the velocity of a steadily flowing stream. At (10) 1 3 Page 2 of 4

Q. Code: 671853

(10)

2

3

inlet to a certain nozzle, the enthalpy of the fluid passing is 3000kJ/kg and the velocity is 60m/sec. At the discharge end, the enthalpy is 2672kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (a) Find the velocity at exit from the nozzle. (b) If the inlet area is 0.1m² and the specific volume at inlet is 0.178m³/kg, find the mass flow rate.

22. (a) A reversible refrigerator is used to maintain a temperature of 0°C in a (10) 2 3 refrigerator when it rejects the heat to the surroundings at 25°C. If the heat removal rate from the refrigerator is 1440 kJ/min, determine the COP of the machine and work input required.

(OR)

- (b) State and prove Clausis inequality.
- 23. (a) Steam at 30 bar, 400°C is expanded in a steam turbine to 0.1 bar. It then (10) 3 3 enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler, assuming ideal process, find the network and cycle efficiency.

(**OR**)

- (b) A reheat cycle operating between 30bar to 0.04bar has a superheat and (10) 3 3 reheats temperature of 450°C. The first expansion takes place till the steam is dry saturated and then reheat is given. Neglecting feed pump work determines the ideal cycle efficiency.
- 24. (a) (i) Derive the Clausis Clayperon equation and discuss its significance(4)43(ii) Derive first and second Tds equations.(6)43

(**OR**)

- (b) The specific volume of R-134a at 60°C is 0.023m³/kg. Determine the (10) 4 3 pressure in bar by means of (i) Ideal gas equation (ii)) Compressibility chart.
- 25. (a) (i) Atmospheric air at 1.0132 bar has DBT of 30°C and WBT of 25°C. (5) 5 3
 Compute partial pressure of water vapour, specific humidity, relative humidity and the dew point temperature using formulas and equations.
 - (ii) A gas mixture consists of 7 kg Nitrogen and 2kg Oxygen, at a 4 bar and
 (5) 5 3
 27°C. Calculate the mole fraction, partial pressures, equivalent

molecular weight and equivalent gas constant of the mixture.

(OR)

(b) 2kg of air at 30°C, 65% RH is mixed adiabatically with 5kg of air at 20°C, (10) 5 3
10% RH. Determine final condition of the mixture.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

			Marks	CO	RBT
					LEVEL
26.	(i)	A reversible cycle consists of three processes. Assuming suitable heat	(5)	2	4
		interactions and associated temperatures for the processes of the cycle,			
		prove Clausius theorem.			
	(ii)	Is it possible to execute a Carnot cycle by eliminating any one of the	(5)	1	4
		isothermal process? Justify.			
