Q. Code:943390

Reg. No.

B.E. / B.TECH. DEGREE

EXAMINATIONS, MAY 2024

Sixth Semester

ME18601 – COMPUTER AIDED DESIGN AND MANUFACTURING

(Mechanical Engineering) (Regulation 2018A)

Г	TIME: 3	HOURS	MAX. MA	RKS:	100
C	DURSE	1100103	STATEMENT		RBT
001 C	COMES	Students w	vill be able to differentiate between conventional design & CAD; Perfor	m 2D	LEVEL
	~ ~ ~	& 3D trans	sformations. Also, can write algorithms for lines.		
(202	Students v application	will be able to understand and select different curves and surface	es for	3
0	CO 3	Students w various tec	will be able to understand hidden lines, surfaces, solid removal algorithm changes of colouring and shading.	ns and	3
C	CO 4	Students w	vill be able to understand different graphic and data exchange standards.		2
C	CO 5	Students v develop C componen	vill be able to understand the principles of operations of CNC machine CNC manual part programming using G-codes and M-codes for a t.	es and given	3
			PART- A (10 x 2 = 20 Marks)		
			(Answer all Questions)		DRT
1				CO	LEVEL
1.	Prepa	are the Cond	current workflow in the planning stage in concurrent engineering.	1	3
-					
2.	Provi	ide a scenar	io where clipping is essential in rendering realistic images.	1	3
3.	State	the advanta	ages of using B-spline curves over Bezier curves for surface modelling,	2	2
	partic	cularly in te	rms of smoothness and local control.		
4.	State	the concept	t of Coons patching and how it differs from bicubic patching in surface	2	2
	mode	elling.			
5.				3	2
	Draw	the RGB-b	based colour model that is used to generate primary colours.		
6.	What	t are the dif	ferent types of animations used to showcase product features, assembly	3	2
	proce	esses, and fi	unctional capabilities?		
7.	_			4	2
	Draw	a diagram	of a neutral data exchange format.		
8.	Expa	nd the follo	wings,	4	2
	(i)	PHIGS			

(ii) NAPLPS

5

2

(iii) IGES

(iv) STEP

9. Match the following:

i) G02	a) Absolute Programming				
ii) G03	b) Incremental Programming				
iii) G90	c) Circular Interpolation Anticlockwise				
iv) G91	d) Circular Interpolation Clockwise				

Match the following: 10.

11. (a)

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
(i)	Consider a triangle ABC has coordinates A (5, 5), B (8, 10) and	(8)	1	3
	C (10, 5). Determine the new vertex positions if the triangle is.			
	(a) rotated 60° clockwise about the Z axis.			
	(b) scaled by 2 times in the X direction and 3 times in the Y			
	$\bigwedge^{B(8, 10)} $ direction			
	about			
	vertex A.			
	A (5, 5) C (10, 5)			

C (10, 5) Page **2** of **4**

5 2

3

(ii) Consider the clipping window and lines shown in Figure 1.74. Find
 (6) 1
 the region codes for each endpoint and identify whether the line is completely visible, partially visible, or completely invisible.

(**OR**)

- (b) (i) Discuss how concurrent engineering principles are applied in the (7) 1 3 automotive industry during the design and development of a new vehicle.
 - (ii) Analyze how companies in the electronics sector strategically manage (7) 1 3 the entire product life cycle to maintain competitiveness and sustainability.
- 12. (a) Discuss the process of creating Bezier curves based on control points and (14) 2 3 control polygons. Provide a case study where Bezier curves played a crucial role in optimizing the design.

(OR)

- (b) Differentiate between Constructive Solid Geometry (CSG) and Boundary (14) 2 3
 Representation (B-rep) methods in solid modelling. Highlight a scenario where CSG is more suitable and explain why.
- 13. (a) Provide a case study where a specific hidden surface removal algorithm (14) 3 3 was employed to enhance the visual quality of images.

(OR)

(b) Provide a case study where engineering animation was utilized to promote a (14) 3 3

specific industrial product or machinery.

- 14. (a) (i) Explore how data exchange standards are utilized for sharing design (10) 4 2 data between different stakeholders and organizations.
 Draw the flow diagram to communicate between two CAD systems (4) 4 2
 - (ii) Draw the flow diagram to communicate between two CAD systems (4) 4 2 using IGES.

(OR)

(b) Elaborate in detail about the GKS standards and its testing. (14) 4 2

15. (a) Write an NC program using G codes and M-codes for the following figure. (14) 5 3

(b) Write an NC program for the following figure.

<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)
