	Q. Code:618739													9	
No.															

MAX. MARKS: 100

RRT

CO

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Reg.

Sixth Semester

ME18002 – 3D PRINTING AND DESIGN

(Mechanical Engineering) (Regulation 2018/2018A)

TIME: 3 HOURS

- **CO 1** Students will be able to understand the principles of AM, file conversion, and STL file structure.
- **CO 2** Students will be able to understand various additive manufacturing (AM) processes and the process parameters and calculate the build time.
- CO 3 Students will be able to understand the various design requirements for Additive Manufacturing.
- **CO 4** Students will be able to understand various post-processing methods in AM and select suitable property enhancement techniques.
- **CO5** Students will be able to explain various applications of AM in various fields.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	LEVEL				
1.	Justify the need for additive manufacturing technology.	1	3				
2.	Why are laser chosen as a light source for AM?	1	3				
3.	Explain why the parts made from LENS process are denser compared to parts made from SLS.	2	2				
4.	What is photopolymerization? In which AM process this concept is used?	2	2				
5.	Differentiate between low-end and high-end post-processing.	3	3				
6.	What are the advantages of reducing the part count in a product?	3	2				
7.	When do you use Abrasive flow machining process?	4	2				
8.	Why is infiltration needed for AM parts?	4	3				
9.	Differentiate between soft-tooling and hard-tooling.	5	3				
10.	What is remanufacturing?	5	2				
	PART- B (5 x 14 = 70 Marks)						

			Marks	CO	RBT LEVEL
11.(a)	(i)	What are the benefits of AM for various stakeholders?	(7)	1	2
	(ii)	Distinguish between CNC machines and additive manufacturing.	(7)	1	3
		(OR)			
(b)	(i)	Explain the generic additive manufacturing process.	(7)	1	2
	(ii)	Explain how reverse engineering helps AM process.	(7)	1	2

			Q. Cod	Q. Code:618739			
12.(a)	(i)	Explain the FDM process with a neat sketch.	(7)	2	2		
	(ii)	Various process parameters used in FDM process affect the build time, dimensional accuracy, and surface finish. Discuss on this.	(7)	2	2		
		(OR)					
(b)	(i)	Explain the LENS process with a simple and neat sketch.	(7)	2	2		
	(ii)	Compare the parts made from SLS and LENS and decide which process is superior in terms of material properties and applications.	(7)	2	2		
13.(a)	(i)	Explain part orientation and removal of supports.	(7)	3	2		
	(ii)	What do you understand by 'Integrated Assemblies'? What are the advantages of integrated assemblies? Give an example.	(7)	3	3		
(b)	(i)	Discuss the challenges the present Solid-Modeling CAD Systems	(7)	3	2		
		are facing to meet the additive manufacturing's requirements.	(.)	C	_		
	(ii)	Discuss the following (i) Hollowing Out Parts and (ii) Interlocking		3	2		
		Features with respect to design for additive manufacturing.	(7)				
14.(a)	(i)	Discuss on sharp edge contour machining and hole drilling.	(7)	4	2		
(ii)		Explain the machining strategies to be applied for finishing an AM part.	(7)	4	2		
		(OR)			•		
(b) (i) (ii)		Discuss the various aspects of Surface Texture Improvement. Discuss the technique of the metal spray process with a simple	(7)	4	2		
	(11)	sketch.	(7)	4	2		
15.(a)	(i)	Explain the process of building medical models.	(7)	5	2		
	(ii)	Describe in detail the various applications of AM models in Engineering Analysis.	(7)	5	2		
~ \		(OR)		_	-		
(b)	(i) (ii)	Explain the powder metallurgy tooling process. Write short notes on bi-metallic parts and remanufacturing.	(7) (7)	5 5	2 2		
	(11)		(7)	5	4		
		DADT $C(1 + 10 - 10 M_{order})$					

RBT

LEVEL

3

Marks

со

PART- C (1 x 10 = 10 Marks)

(Q.No.16 is compulsory)

16. A component in the shape of a cuboid must be built using an SLA machine. 2 (10) The cross-section has a length of 400 mm and a width of 300 mm; the height of the cuboid is 300 mm. The layer thickness is 1 mm. The diameter of the laser is 10 mm. The scanning speed is 50 mm/s. Calculate the time taken to build the component.
