										Q. (Code	: 570	928	
			Reg. No.											
			L								·			
		B.E. / B.T	ECH. DEGREE E	XAN	IINA ter	ATI	ON	S, M	AY	2024	ŀ			
		ME	18001 – AUTOMO)BIL	E EI	NGI	NE	ERI	NG					
			(Mechanica	l Engir	neerin	ng)								
TI	ME: 3	HOURS	(Regulation	2018 /	201	8A)				MA	X. M.	ARK	S: 100	
COU	RSE	noons	ST	ATEME	NT					1,1,1,1,1,1				BI
CO) 1	The students will c auxiliary systems.	lassify the automobi	les, th	eir c	onst	ruct	ion ar	nd wo	orking	g of v	variou	IS	2
CO	2	The students will do working system.	etermine the various	electro	nics	com	pon	ents i	nvolv	ed in	auto	mobil	le	3
CO	3	The students will components.	evaluate mechanical	syste	m p	erfo	rma	nce a	long	with	elec	tronic	28	3
CO) 4	The students will de an automobile.	esign a suitable work	ng sys	stem	base	ed oi	n the o	energ	y sou	irces	used i	n	3
			PART- A (10	x 2 =	20 M	lark	s)							
			(Answer a	ll Que	stion	s)						C	ר די	RT
1	T • 4			1			1.4		C		C	1 1		VE
1.	List	any two major facto:	rs affecting vehicle a	erody	nami	cs ai	na t	heir i	niluer	ice o	n rue			Z
	effic	iency.												
2.	Com	pare the applications	of internal combustion	on eng	ines	in la	nd a	and w	ater h	ighli	ghting	g 1	,	2
	speci	fic design adaptation	s for each environme	nt.										
3.	Diffe	erentiate between Sup	perchargers and Turbo	charg	ers.							2	, ,	2
4.	Com	nare the advantages	of Multi-Point Fuel	Iniec	tion	(MP	PFI).	and	Gaso	line	Direc	et 2	,	2
	Iniec	tion (GDI) systems i	n spark ignition engin	5 65			,,							
5.	Mate	the following:	n spark ignition engin	05.								1	,	2
	1.Si	ngle Plate Clutch	a. Utilizes hydraulic	press	are to	o eng	gage	and o	diseng	gage	gears			
	2. N	Iulti-plate Clutch	b. Transfers power without a solid meet	from	the	eng	gine ion	to th	ie tra	nsmi	ssion			
	3. H	Iydraulic system	c. Consists of a serie	es of fi	rictio	n di	scs i	nterle	aved	with	steel			
	4. F	luid flywheel	d. Contains only assembly	one f	rictic	on d	lisc	and	press	ure	plate	_		
6.	L	the function of an ov	verdrive in a vehicle t	ransm	issio	1 sys	stem					_ 1	,	2

State the function of an overdrive in a vehicle transmission system. 6.

Q. Code: 570928

3

4

CO

Marks

RBT

- Explain the advantages of power steering systems over traditional manual steering 3 2 systems.
- **8.** Illustrate the function of an antilock braking system (ABS).
- 9. Match the following:

1. Proton Exchange Membrane	a. Suitable for stationary power generation in					
Fuel Cell (PEMFC)	residential and commercial buildings.					
2. Solid Oxide Fuel Cell (SOFC)	b. Primarily employed in large-scale power					
	generation and industrial applications.					
3. Molten Carbonate Fuel Cell	c. Commonly used in transportation applications,					
(MCFC)	such as fuel cell vehicles.					
i) considered the	most efficient and cleanest fuel for fuel cells.					

i) ______ considered the most efficient and cleanest fuel for fuel cells, 4 producing only water as a byproduct.

ii) ______ can be reformed to produce hydrogen for fuel cells but may require additional processing.

PART- B (5 x 14 = 70 Marks)

LEVEL
 11. (a) Discuss the evolution of automobile chassis design, highlighting the (14) 1 3 transition from body-on-frame to unibody construction. Analyze the advantages and disadvantages of each design approach in terms of structural integrity, weight distribution, and manufacturing complexity.

(OR)

- (b) Explore the importance and advantages of variable valve timing (VVT) in (14) 1 3 internal combustion engines. Analyze how VVT technology improves engine performance, fuel efficiency, and emissions control.
- 12. (a) Assess the effectiveness of electronically controlled diesel injection (14) 2 3 systems in enhancing diesel engine performance and efficiency, as well as reducing emissions.

(OR)

(b) Explore the application of engine emission control technologies, including (14) 2 3
 Three-Way Catalytic Converter system, Selective Catalytic Reduction

2

2

(SCR) system, and Exhaust Gas Recirculation (EGR) system.

13. (a) Compare and contrast the design and functionality of manual and automatic (14) 1 2 gear shift mechanisms.

(OR)

- (b) Examine the differential and rear axle systems' structure and functioning. (14) 1 2
 Discuss their roles in transmitting power to the wheels, managing wheel
 speed differentials, and optimizing vehicle stability and handling.
- 14. (a) Discuss how EBD optimizes brake force distribution to improve vehicle (14) 3 3 stability and control during braking maneuvers. Provide examples of situations where EBD is particularly beneficial.

(**OR**)

- (b) Discuss how traction control systems mitigate wheel slippage and improve (14) 3 3 traction in various driving conditions, such as slippery roads or off-road terrain.
- 15. (a) Discuss how these regulations (Euro and BS Standards) drive technological (14) 4 3 innovation and influence the adoption of alternative fuels and advanced emissions control systems.

(OR)

(b) Describe the construction and working principle of hybrid electric vehicle. (14) 4 3

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

Marks CO RBT LEVEL

4

16. Analyze a feasibility study comparing electric, hybrid, and fuel cell (10) 4 vehicles for a specific urban area. Consider factors such as charging/fueling infrastructure, vehicle range, emissions, cost of ownership, and consumer acceptance. Present your findings and recommend the most suitable options.

Q. Code: 570928