Q. Code: 398381

Reg. No.

B. E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

MA22456 – MATHEMATICS FOR MACHINE LEARNING

(Artificial Intelligence and Data Science)

(Regulation 2022)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Apply the Counting Principles to compute the running time algorithm.	3
CO 2	Explain the fundamental concepts of Linear Algebra.	3
CO 3	Demonstrate the use of the concepts of Principal component Analysis.	3
CO 4	Solve algebraic, transcendental and linear system of equations.	3
CO 5	Appreciate the numerical techniques of interpolation in various intervals and apply the	3
	numerical techniques of differentiation and integration for engineering problems.	

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

RBT CO LEVEL 1. 2 1 Use mathematical induction to prove the inequality $n < 2^n$ for all positive integers n. 2. 3 1 How many positive integers not exceeding 1000 are divisible by 7 or 11? 3. How many different strings can be made from the letters in ABRACADABRA, using all 1 3 the letters? 4. What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$? 2 1 5. Determine whether or not the vectors u = (1, 1, 2), v = (2, 3, 1), w = (4, 5, 5) in \mathbb{R}^3 are linearly 2 2 dependent. 6. 2 2 Give a spanning set of R^3 . 7. 2 Let $V = R^3$. Check whether $W = \{(a, b, c) : a \ge 0\}$ is a subspace of V. 2 Determine whether or not each the following form a basis of R^3 . 8. 2 2 (1,1,1), (1,2,3), (2,-1,1)

9.	How to repres	ent a data cov	ariance matrix	t in Principal c	omponent analy	sis?	3	2			
10.	Write any two	applications of	of Principal co	omponent anal	ysis.		3	2			
11.	What are the key steps involved in the Principal component analysis?										
12.	Explain standardization in PCA.										
13.	When converg	gence does occ	curs in Newton	n-Raphson me	thod?		4	2			
14.		<i>x</i> ₁ –	$4x_2 = -2, 3x_1 + 3x_2 = -2, 3x_1 = -2, 3x$	$+ x_2 = 7$			4	3			
15.	Solve the linea	ar system		by Ga	uss-Jordan metho	od.	Α	2			
	Why Gauss-Se	eidel method i	s better than (Gauss-Jordan r	nethod?		4	2			
16.		$A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$	37)				4	3			
	Find the invers	se of	by Gauss-Jo	ordan method.							
17.	Given $y_0 = 3$, $y_1 = 12$, $y_2 = 81$, $y_3 = 200$, $y_4 = 100$. Find $\Delta^4 y_0$										
18.				<u>1</u>			5	2			
	Find the third $f'(4)$	order divided	difference of	for the argu	uments a, b, c, d.		C	-			
19.	Find from	m the table:					_	2			
	x:	0	2	3	5		3	3			
	y:	8	6	20	108						
20.	Evaluate $\int_{0}^{1} \frac{dz}{1+z}$	$\frac{x}{x^2}$ using Trap	bezoidal rule v	with $h = 0.2$.			5	3			

PART- B (5 x 10 = 50 Marks)

		Marks	CO	RBT LEVEI
21 (a)	$1.2 + 2.3 + \dots n.(n+1) = \frac{n(n+1)(n+2)}{n(n+1)(n+2)}$	(10)	1	3
21.(a)	Prove that for every positive integer $n, 3$			

Prove that for every positive integer

(OR)

(b)

Q. Code: 398381

(10)

2

3

Using generating function, solve the recurrence relation $a_n = 8a_{n-1} + 10^{n-1}$ (10) 1 3 and initial condition $a_0 = 1$.

22.(a) Let
$$R^+$$
 be the set of all positive real numbers. (10) 2 3

Define addition and scalar multiplication as follows: u + v - uv for all $u, v \in R^+; au = u^{\alpha}$ for all $u \in R^+$ and $a \in R$. Determine whether or not R^+ is a vector space over R.

(**OR**)

(b) Let *W* be the subspace of R^4 spanned by the vectors $u_1 = (1, -2, 5, -3), u_2 = (2, 3, 1, -4), u_3 = (3, 8, -3, -5)$

Find a basis and dimension of *W*.

23.(a) Find the eigen values and eigen vectors for the given Covariance matrix and (10) 3 3 find the principal component sequence.

	Red meat	White meat	Eggs
Red meat	10.7341	-5.8442	-0.605
White meat	-5.8442	15.4177	3.1362
Eggs	-0.605	3.1362	1.2653
		(OR)	

(b) Find the covariance matrix for the following data		T1 1.1	•		0 1	0 11	• •	
	(h)	Find th	e covariance	matrix	tor the	tollos	wing data	۱ ۰
	(v)	1 ma m		mann	ior une	10110	wing date	ι.

Brea	10.1	8.9	13.5	7.8	9.7	10.6	8.4
d							
Yolk	1.4	14	9.3	6	11.4	10.8	11.6
Oats	0.5	4.3	4.1	1.6	2.8	3.7	3.7

24.(a) Find by Newton Raphson method a real positive root of $3x - \cos x - 1 = 0$ (10) 4 3 correct to 4 decimal places.

(OR)

 $\begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$ (10) 4 3

(b)

Using Gauss-Jordan method, find the inverse of $\begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$.

(10)

Marks

(10)

СО

1

3

RBT

LEVEL

3

5

Using Newton's divided difference formula, find the values of f(15)

and from the following table.

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(OR)

x = 56

(b)

 $x^{\overline{3}}$ x = 50Find the derivative of at and

1

from the following table:

X	50	51	52	53	54	55	56
$y = x^{\frac{1}{3}}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

26. How many students are enrolled in a course either in calculus, discrete mathematics, data structures, or programming languages at a school if there are 507, 292, 312, and 344 students in these courses, respectively; 14 in both calculus and data structures; 213 in both calculus and programming languages; 211 in both discrete mathematics and data structures; 43 in both discrete mathematics and programming languages; and no student may take calculus and discrete mathematics, or data structures and programming languages, concurrently?

25.(a)