Mark CO

DRT

No.	Reg.										
B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fourth Semester MA22451-INTRODUCTION TO BIOSTATISTICS											

(Biotechnology) (Regulation 2022) (Use of Statistical Tables is permitted)

TIME:3 HOURS

MAX.MARKS: 100

- **CO1** To have an in depth understanding of the various concepts that are used in biological models and apply the same appropriately
- **CO2** To understand and apply the concepts of probability and random variables in the study of biological models.
- **CO3** To apply the concepts of two dimension random variables and extend the same to multiple random variables.
- CO4 To frame suitable hypothesis and test the same using the appropriate test.
- **CO5** To apply statistical quality control methods on real time problems.

PART- A (20x2=40Marks)

(Answer all Questions)

														s s	co	LEVEL
1	Calcula	te the m	edian	of the f	ollowin	g freque	ency dis	strib	ition:					2	1	2
		Х	1	2	3	4	5	6	7		8	9				
	-	f	8	10	11	16	20	25	15	;	9	6				
2	Calcula	te the m	ean of	the foll	lowing	frequen	cy distr	ibuti	on:	I		1		2	1	2
		X	1	2	3	4	5		6	7	8	3				
		f	4	9	16	25	22	2	15	7		3				
3	A cycli	st pedal	s from	his ho	ouse to	his coll	lege at	a sp	eed of	f 1	0 kr	nph	and back	2	1	3
	from co	llege to	his ho	use at 1	5 kmpł	n. Find t	he aver	age	speed.							
4	Eight c	oins we	re tos	sed tog	ether a	nd the r	number	of l	neads	res	sultin	ng w	vas noted.	2	1	2
	The ope	eration v	vas rej	peated 2	256 tin	es and	the free	quen	cies (1) t	hat [.]	were	obtained			
	for diffe	erent va	lues o	f x, the	numbe	er of he	ads are	sho	wn in	th	e fo	llow	ing table:			
	Calcula	te the qu	artiles	5.												
	Γ	x	0	1	2	3	4	5	6		7	8				

5 Let A and B be two events such that $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{4}$, $P(A \cap B) = \frac{1}{4}$. Compute 2 2 3 $P\left(\frac{A}{B}\right)$ and $P(A \cap \overline{B})$.

O. Code:785911

3

2

2

4

3

2

- 6 If X and Y are independent binomial variates following $B\left(5,\frac{1}{2}\right)$ and $B\left(7,\frac{1}{2}\right)$ 2 2 3 respectively find P[X+Y=3].
- 7 If the probability is 0.05 that a certain kind of measuring device will show 2 2 3 excessive drift, what is the probability that the sixth of these measuring devices tested will be the first to show excessive drift?
- 8 If X is a normal variate with mean=20 and S.D = 10. Find $P[15 \le X \le 40]$ 2 2 3
- 9 The following table gives the joint probability distribution of X and Y. Find the 2 3 3 marginal distribution function of X and Y.

X Y	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

10 The joint p.d.f. of random variable (X,Y) is given as

 $f(x, y) = \begin{cases} k, 0 < x < y < 1\\ 0, otherwise \end{cases}$

Find k .

- 11 If X has mean 4 and variance 9, while Y has mean -2 and variance 5 and the two
 2 3 3 are independent find E[XY²].
 12 Let X and Y be two independent random variables with Var(X) = 9 and Var
 2 3 3
 - (Y) = 3. Find Var (4X 2Y + 6).
- 13 The critial value of a test statistic is determined from

(a) Calculations from the data

- (b) Calculations based on many actual repetitions of the same experiment
- (c) The sampling distribution of the statistic assuming Alternative Hypothesis
- (d) The sampling distribution of the statistics assuming Null Hypothesis

Q. Code:785911

3

3

2

2

5

2

2

2

4

14 Herbicide A has been used for years in order to kill a particular type of weed. An experiment is to be conducted in order to see whether a new herbicide, Herbicide B, is more effective than Herbicide A. Herbicide A will continue to be used unless there is sufficient evidence that Herbicide B is more effective. The alternative hypothesis in this problem is

(a)Herbicide A is more effective than Herbicide B(b)Herbicide B is more effective than Herbicide A

(c)Herbicide A is not more effective than Herbicide B

(d)Herbicide B is not more effective than Herbicide A

- 15 A sample of 100 students is taken from large population. The mean height of the 2 4 3 students in this sample is 160cm. If in the population, the mean height is 165cm and the Standard deviation is 10cm compute the test statistic.
- 16 Find the value of χ^2 for the following data:

	Smokers	Nonsmokers
Literates	83	57
Illiterates	45	68

17 Find the lower and upper control limits for \bar{X} and R chart when each sample is of 2 5 3 size 5 and \bar{X} =10.42 and \bar{R} =7.9.

- 18Which of these charts is more economical in the long term?252(a) \overline{X} chart and R chart(b) C chart(c) P chart(d) U chart
- 19 When we want to troubleshoot the out-of-control process, we use ______ 2
 5

 control charts.

(a) \overline{X} chart (b) C chart (c) P chart (d) U chart

- 20 The upper control limit defines
 - (a) the highest standard deviation of the process
 - (b) the highest variance of the process
 - (c) the highest level that the process should operate within
 - (d) The highest specification that the customer wants

Q. Code:785911

PART- B (5x 10=50Marks)

Mark CO RBT s LEVEL

3

21(a) An analysis of monthly wages paid to the workers of two firms A and B (10) 1 3 belonging to the same industry gives the following results:

	Firm A	Firm B
Number of workers	500	600
Average daily wage	Rs. 186	Rs. 175
Variance distribution of	81	100
wages		

(a) Which firm A or B has a larger wage bill?

(b) In which firm A or B is there a greater variability in individual wages?

(c) Calculate the average daily wage and the variance of the distribution of wages of all the workers in the firms A and B taken together.

(OR)

(b) An engineer conducts an experiment with the purpose of showing that adding a (10) 1 new component to the existing metal alloy increases the cooling rate. Faster cooling rates lead to stronger materials and improve other properties. Let x = percentage of the new component present in the metal and y = cooling rate during a heat – treatment stage in ∘F per hour. The engineer decides to consider several different percentages of the new component. Suppose that the observed data are:

X	0	1	2	2	4	4	5	6
У	25	20	30	40	45	50	60	50

Draw a scatter plot and determine the best fit curve.

22(a) The diameter of an electric cable, say X, is assumed to be a continuous random (10) 2 3 variable with probability density function

$$f(x) = 6x(1-x), 0 \le x \le 1$$
,

- (a) Check that the function is probability density function
- (b) Determine b such that P(X < b) = P(X > b)
- (c) Find the distribution of X
- (d) Find $P\left(X \le \frac{1}{2} | \frac{1}{3} < X < \frac{2}{3} \dot{\iota}.\right)$

(OR)

- (b) (i) If X and Y are independent Poisson variates such that P(X=1)=P(X=2) (6) 2 3 and P(Y=2)=P(Y=3) find the variance of X-2Y.
 - (ii) The time (in hours) required to repair a machine is exponentially (4) 2 3 distributed with parameter $\lambda = \frac{1}{2}$.
 - a) What is the probability that the repair time exceeds 2hrs?
 - b) What is the conditional probability that a repair takes at least 11 hrs given that its duration exceeds 8 hrs.
- 23(a) The joint probability mass function of the discrete random variables X and Y is (10) 3 3

given as $P(X = x, Y = y) = \begin{cases} i \frac{x+y}{32}, x=1,2, y=1,2,3,4\\ i 0, otherwise \end{cases}$. Compute the covariance

of X and Y.

(**OR**)

- (b) If X and Y each follow and exponential distribution with parameter 1 and are (10) 3 3 independent, find the probability density function of U=X-Y.
- 24(a) Before an increase in excise duty on tea, 800 people out of a sample of 1000 (10) 4 3 were consumers of tea. After the increase in duty, 800 people were consumers of tea in a sample of 1200 persons. Find whether there is significant decrease in the consumption of tea after the increase in duty. Test at 5% level of significance.

(OR)

- 24(b) Theory predicts that the proportion of beans in four groups A, B, C, D should (10) 4 3 be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experiment support the theory? Test at 5% level of significance.
- 25(a) Given below are the values of sample mean \overline{X} and sample range R for 10 (10) 5 3 samples, each of size 5. Draw the appropriate mean and range charts and comment on the state of control of the process.

Sample No.	1	2	3	4	5
Mean	43	49	37	44	45
Range	5	6	5	7	7

Marks

СО

RBT

Sample No.	6	7	8	9	10
Mean	37	51	46	43	47
Range	4	8	6	4	6

(OR)

(b) 10 samples each of size 50 were inspected and the numbers of defectives in the (10) 5 3 inspection were 2, 1, 1, 2, 3, 5, 5, 1, 2, 3. Draw the appropriate control chart for defectives.

PART- C (1x 10=10Marks)

(Q.No.26 is compulsory)

26 If $X_1, X_2, X_3, ..., X_n$, are poisson variables with parameter $\lambda = 2$, use the (10) 3 3 central limit theorem to estimate $P(120 < S_n < 160)$ where $S_n = X_1 + X_2 + X_3 + ... + X_n \land n = 75$.
