Q. Code:496563

NAN NANDIZO, 100

1

2

Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Third Semester

MA22358 – TRANSFORM AND RANDOM PROCESSES

(Electronics and Communication Engineering)

(Regulation 2022)

TIME: 3	HOURS MAX. MAF	KS:	100
COURSE OUTCOMES	STATEMENT		RBT LEVEL
CO 1	Acquire the skill in examining a signal in another domain rather in the original domain handling Full and Half Range Fourier Series.	by	3
CO 2	Develops the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms and Z-transform.		3
CO 3	Express proficiency in handling higher order Partial differential equations.		3
CO 4	Reproduce and explain the basic concepts such as probability and random variable and identify the distribution. Acquire skills in handling situations involving more than one random variable.		3
CO 5	Apply the relationship within and between random processes.		3
	PART- A (20 x 2 = 40 Marks)		
	(Answer all Questions)		
		CO	RBT LEVEL

1 2 Find the value of the Fourier series for $f(x) = \begin{cases} i 0 \in (-3,0) \\ i 4 \in (0,3) \end{cases}$ at the point of discontinuity x 1. = 0.1 2 2. Does $f(x) = \tan x$ possess a Fourier expansion? If the Fourier series corresponding to f(x) = x in the interval $(0,2\pi)$ is 2 3. 1 $\frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos nx + b_n \sin nx\}, \text{ without finding the values of } a_0, a_n, b_n \text{ find the value of } a$ $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$

- Find the **R.M.S** value of $y = x^4$ in (-1, 1). 4.
- Find the Fourier transform of $f(x) = \begin{cases} 1, 2 < x < 4 \\ 0, otherwise \end{cases}$. 2 5. 3
- Find the Fourier cosine transform of e^{-ax} , a > 0. 2 3 6.
- 2 7. 2 Find Z-Transform of $\frac{1}{n}$.

2

8.	Find F(z) for the equation $f(n+2) - 3f(n+1) + 2f(n)=0$, if $f(0)=0$.	2	2
9.	Find the PDE of the family of spheres having their centers on the Z-axis.	3	2
10.	Eliminate the arbitrary function f from $z=f(y/x)$.	3	2
11.	Form the PDE by eliminating arbitrary constant $z = ax^n + by^n$.	3	2
12.	Solve $(D^3 - 3DD^{'2} + 2D^{'3})z = 0.$	3	2
13.	Test whether $f(x) = \begin{cases} x , -1 \le x \le 1\\ 0, otherwise \end{cases}$ can be the probability density function of a	4	2
14.	continuous random variable? . A random variable X can only take values 2 and 5. Given that the value 5 is twice as likely the value 2, determine the expectation of X.	4	2

15. The following table gives the joint probability distribution of X and Y, find the marginal 4 2 distribution function of X and Y.

X Y	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

16. The regression equations are 3x + 2y = 26 and 6x + y = 31. Find the means of X and Y. 4

17. Consider a random process
$$X(t) = \cos(t+\phi)$$
, where ϕ is a uniform random variable in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Check whether the process is stationary.

- 18. If patients arrive at a clinic according to Poisson process with mean rate of 2 per minute. 5 3
 Find the probability that during a 1 minute interval, no patient arrives.
- 19. Find the variance of the stationary process [X(t)] whose autocorrelation function is given 5 2 by $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$.

CO

Maula

20. Determine the function $\frac{\omega^2}{\omega^6 + 3\omega^2 + 3}$ can or can't be a valid power density spectrum. 5 2

PART- B (5 x 10 = 50 Marks)

		Marks	CO	RBT LEVEL
21. (a)	Expand $f(x) = \begin{cases} \dot{\iota} \pi + x, -\pi \le x \le 0\\ \dot{\iota} \pi - x, 0 \le x \le \pi \end{cases}$ as a Fourier services and hence deduce that	(10)	1	3
	$\sum_{1}^{\infty} \frac{1}{\dot{i}\dot{i}}\dot{i}$			

(**OR**)

The table value of the function y = f(x) is given below. Find a Fourier series **(b)** (10) 1 3 up to the second harmonic to represent f(x) in terms of x.

Х	0	π/3	2 π/ 3	π	4 π/3	5 π/ 3	2 π
Y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

22. (a) Find the Fourier sine transform and Fourier cosine transform of 2 3 (10) $f(x) = x^{n-1}$ and show that $\frac{1}{\sqrt{x}}$ is self reciprocal under both. (**OR**) Find $Z^{-1}\left[\frac{8z^2}{(2z-1)(4z+1)}\right]$ by convolution theorem. (b) (10)2 3 Solve: (mz-ny)p+(nx-lz)q=ly-mx. 23. (a) (10)3 3

(b) Solve:
$$(D^{i}i^{3}-7DD^{i^{2}}-6D^{i^{3}})z=\sin(x+2y)+e^{2x+y}i$$
 (10) 3 3

24. (a) The probability mass function of random variable X is defined as (10)4 3 $P(X=0)=3C^2$, $P(X=1)=4C-10C^2$, P(X=2)=5C-1, where C>0, and P(X=r)=0 if $r \neq 0,1,2$. Find (i) The value of C.

(ii) $P((0 < X < 2) \lor (X > 0))$. (iii) The distribution function of *X*.

(iv) The largest value of x for which $F(x) < \frac{1}{2}$.

(OR)

(b)	Two random variables have the joint PDF	(10)	4	3
	$f(x, y) = \frac{x+y}{3}, 0 \le x \le 1, 0 \le y \le 2$. Find the correlation coefficient.			
25. (a)	Show that the random process $X(t) = A \cos i i$ is WSS if $A \wedge \omega$ are constants and θ is uniformly distributed random variable in $(0, 2\pi)$.	(10)	5	3

(OR)

(b) The autocorrelation function of random binary transmission |X(t)| is given (10) 5 3

by $R(\tau) = \begin{cases} i \ 1 - \frac{|\tau|}{T}, |\tau| \le T \\ i \ 0, \text{ elsewhere} \end{cases}$, where *T* is a constant. Find the power spectrum of

the process [X(t)].

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

		Marks	СО	RBT
				LEVEL
26.	A random variable X has the following probability distribution	(10)	4	3

(i) Find K.

- (ii) Evaluate P(X < 2) and P(-2 < X < 2).
- (iii) Find the CDF of X.
- (iv) Evaluate the mean of X.