Q. Code:793627

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Third Semester

Reg. No.

MA22354 – MATHEMATICS FOR ELECTRICAL ENGINEERS

(Electrical and Electronics Engineering)

(Regulation 2022)

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Express proficiency in handling higher order Partial differential equations.	3
CO 2	Acquire the skill in examining a signal in another domain rather in the original domain by handling Full and Half Range Fourier Series.	3
CO 3	Develop skills in classification, formulation, solution, and interpretation of PDE models.	3
CO 4	Develop the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms.	3
CO 5	Apply the systematic method for finding the impulse response of LTI systems described by	3

difference equations: partial fraction expansion.

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Obtain the partial differential equation by eliminating arbitrary constants a and b from $z=(x-a)^2+(y-b)^2+1$.	1	2
2.	Solve $(1-x)p+(2-y)q=3-z$.	1	3
3.	Find the partial differential equation of all planes having equal intercepts on the x and y axis.	1	3
4.	Find the Particular Integral of $\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 2\cos y$.	1	2
5.	If $f(x)=x^2+x$ is expressed as a Fourier series in the interval $(-2, 2)$, what is the value of $f(x)$ at $x = 2$?	2	2
6.	Find the root mean square value of $f(x) = x^2$ in $(0, \pi)$.	2	2
7.	What is the constant term a_0 and the coefficient a_n of $\cos nx$ in the Fourier series expansion of $f(x)=x-x^3$ in $(-\pi,\pi)$?	2	3

Find the Fourier sine series for the function $f(x)=1, 0 < x < \pi$ 8. 2 2

TIME: 3 HOURS

(OR)				
21. (a)	Find the singular solution of $z = px + qy + \frac{p}{q} - p$. (1)	0)	1	3
	PART- B (5 x 10 = 50 Marks) Ma	rks	CO	RBT LEVEL
20.	Form the difference equation from $y_n = a + b 3^n$.		5	2
19.	Find the inverse Z transform of $\frac{z}{(z-1)(z-2)}$		5	2
18.	Find the Z transform of the sequence f(0)=1, f(1)=-1, f(2)=2, f(3)=-2, f(4)=4,		5	2
17.	Find the Z transform of a^n .		5	2
16.	Find the Fourier cosine transform of $x e^{-2x}$.		4	2
15.	If $f(x)$ is even function of x then prove that $F(s) = F[f(x)]$ is also an even function of s.		4	2
14.	Find the Fourier transform of $f(x) = \begin{cases} e^{ikx}, a < x < b \\ 0, x < a \land x > b \end{cases}$		4	2
13.	Find the Fourier sine transform of $f(x) = \frac{1}{x}$.		4	2
12.	How many boundary conditions are required to solve the two dimensional heat equations in the steady state?	ion	3	3
11.	is displaced to a distance 'h' and released from rest in this position write the init conditions.	-	5	5
10. 11.	Classify the PDE: $u_{xx} + 2u_{yy} + 3u_{xy} = 0$. A tightly stretched string of length <i>l</i> is fastened at both ends. The mid point of the string		3 3	2 3
9.	The ends A and B of a rod of length 10 cm long have their temperature kept at $20^{\circ} c_{e}$ 70° c.Find the steady state temperature distribution on the rod.	and	3	2

- (UR) (b) Solve $(D^2 - 2DD' + 2D'^2)z = \sin(xi - y).i$ (10) 1 3
- 22. (a) Find the Fourier series of $f(x) = x(2\pi x)$ in $0 \le x \le 2\pi$. Find the sum of the (10) 2 3

series
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 (OR)
(b) $\int \int \frac{1}{4} - x, 0 < x < \frac{1}{2}$ $(10) \quad 2 \quad 3$
Find the Fourier sine series of $f(x) = \begin{cases} \frac{1}{4} - x, 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, \frac{1}{2} < x < 1 \end{cases}$

3 23. (a) An elastic string is stretched between two fixed points a distance π apart. In (10)3 its initial position the string is in the shape of the curve f(x) = ki and then release it from rest. Obtain the displacement y(x,t).

(**OR**)

A rectangular plate is bounded by the lines x=0, x=a, y=0, y=b and the **(b)** (10) 3 3 edge temperatures are

 $u(0, y)=0, u(x, b)=0, u(a, y)=0, u(x, 0)=5\sin\frac{5\pi x}{a}+3\sin\frac{3\pi x}{a}$. Find the steady state temperature distribution at any point of the plate.

24. (a)
Find Fourier transform of
$$f(x) = i \left[a^2 - x^2 \right], |x| \le a i i i i$$
 (10) 4 3

1

1 1

(b)
$$(0R) (10) 4$$

Find the Fourier sine transforms of [1] [1]

25. (a) (10)5 3 Using Convolution theorem find inverse Z-transform of $\frac{z^2}{z}$

(**OR**)
(**b**) Solve using Z-transform
$$u_{n+2}+6u_{n+1}+9u_n=2^n$$
 with $u_0=u_1=0$ (10) 5 3

PART- C (1 x 10 = 10 Marks)

(Q.No.26 is compulsory)

RBT Marks CO LEVEL

3

Find the Fourier cosine series of $f(x)=x(\pi-x)$ in $0 < x < \pi$. Deduce that 26. 2 (10)3 $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \ldots = \frac{\pi^4}{90}.$

Q. Code:793627